氢燃料电池控制策略
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
3
ALARM
15000
19
多机工作时,冷却液水位低
5
4
ALARM
300000
5,6,7
I_Bus<15(A)
5
5
ALARM
100
3
Cell巡检通断有新断路错误
5
6
ALARM
100
非10,
参数存贮表1,6全错
参数存贮表2,7全错
参数存贮表3,8全错
上次的参数存贮表2,7全错
2.6
工作模式分为CRM(Current Ramp Mode)和CDR(Current Draw Request)。
5
FAULT
1000
非1,5,6,7,10
I_Bus>50A
1
6
FAULT
100
非1,10
氢气进气阀打开2秒后,P_H2IN>150PSI(1032.4KPa)
1
7
FAULT
1000
非1,10,13,15,17
氢气进气阀打开2秒后,P_H2IN< 40PSI(275.8KPa)
1
7
FAULT
3000
1百度文库
对于氢燃料电池,追求的指标有:能量密度、额定功率、最大峰值功率(保持有限时间)、最小稳定功率(小于该功率,功率输出波动大,长时间小于最小稳定功率下工作(包括开路),对电极有损伤))、效率(以氢气低燃值计算,净输出功率),生命周期、启动时间(从空闲到额定功率)、停机时间、环境要求(工作温度、存贮温度、湿度、海拔(主要是大气压力和密度变化对电堆其它指标的影响))等。
2.9
A、在状态CS5下的处理
α_Air =α_Air_CRM
在多机工作模式下:
CDA = 30 + Q_Air/(120×0.01657×α_Air)
在单机工作模式下:
CDA = 30 + Q_Air/(120×0.01657×α_Air)
Coolant High Temp.
T_Coolant>80℃
0
4
FAULT
100
非1,2,10
Heartbeat
在心跳时间内未接收到1C0或1C0+ID命令
0
6
FAULT
100
非1,10
Internal Sys. E-stop
E-STOP开关
1
0
FAULT
100
17
H2 Subsystem LeakCheck Fault
4、电气子系统控制涉及的项:
电堆节数(N_Cell,120)、电堆单节最小电压(MinV_Cell)、最小电压的节号(No_MinV_Cell,0-119,0号在前端)、电堆单节最大电压(MaxV_Cell)、最大电压的节号(No_MaxV_Cell,0-119,0号在前端)、电堆单节平均电压(AvgV_Cell)、电堆计算的电压(V_Stack)、总线电压(V _Bus)、总线电流(I_Bus)、总线输出开关(EN_Bus)。
对于电堆,通过实验和测试,绘制各个因素组合下的输出特性曲线。根据这些测绘出的输出特性曲线,综合出各个指标。根据指标,在输出特性曲线中,确定一个安全稳定工作区域。根据输出特性曲线的安全稳定工作区域,再确定各个因素以输出电流为横轴的工作区域。这些因数的工作区域,就是集成系统(模块)的技术规范(即电堆生产厂的《电堆集成手册》)。
α_Air是α_In的函数,该函数为多段线性插值
FLOAT32 Interp_α_Air(FLOAT32α_In )
表5α_Air --α_In插值表
α_Air
2.7
2.5
2.3
2.3
2.2
2.2
2.0
2.0
2.0
1.9
α_In
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
α_Air_CRM = Interp_α_Air(I_Bus/In_Bus)
2.3
2.4
2.5
字节
位
类型
持续时间
(mS)
有效状态域
CtrState
源
0
0
FAULT
500
5,6,7,8,9
Cell Low Voltage
MinV_Cell<0.1V
0
0
FAULT
500
8,9
Cell Low Voltage
MinV_Cell< 0.5V
0
1
FAULT
1000
非1,2,10,11
13
氢气进气阀打开2秒后,P_H2IN< 40PSI
1
7
FAULT
100
15
氢气进气阀打开2秒后,P_H2IN < 40PSI
4
1
ALARM
1000
非1,10,
Q_Air<= 0 ||Q_Air>3000(LPM)
4
2
ALARM
1000
非10,
单机工作时,FC总线电流传感器输出电压<0.25或>4.75
2、CRM工作模式
I_Bus的200mS增量> 8A或≤8A持续时间未到10秒,则
QAR = 120×0.01657×α_Air×(I_Bus+30)
I_Bus的200mS增量≤8A持续时间达10秒后,则
QAR = 120×0.01657×α_Air×(I_Bus+10)
3、CDR工作模式
I_Bus的200mS增量> 10A,则
CRM模式,电流斜坡模式,是指负载电流以一定的斜率上升或下降。
CDR模式,电流请求模式,是指在CDA限制下,负载电流通过通讯或模拟信号提供给FC控制器CDR值。
2.7
2.8
空气流量需求QAR基本计算公式
QAR = 120×0.01657×α_Air×I_Bus
注:120为电堆的总Cell数,0.01657为单个Cell在I_Bus为1A时,1分钟需要消耗的理论空气体积量(升)。
根据《电堆集成手册》,设计电堆模块,根据电堆模块的工艺,形成《模块手册》。根据《模块手册》设计辅助系统工艺。最终形成《系统工艺流程图》(P&ID)。对于应用还需要《应用需求》。以上资源是控制策略的依据。
2
控制策略内容包括:系统量定义,ALARM和FAULT判定规则,节电压巡检处理策略,电堆冷却液出口温度设定值策略,工作模式(CRM和CDR)策略,阳极氢气循环回路控制策略,阴极空气传输回路控制策略,冷却液传输回路控制策略,阳极氢气吹扫(Purge)过程,防冻(Freeze)处理过程,泄露检查(LeakCheck)过程、注水入泵(Prime)过程,冷启动过程,状态及迁移,CAN通讯协议。
1
0
FAULT
100
2
H2 Subsystem LeakCheck Fault
1
1
FAULT
100
13
Freeze Fault
1
2
FAULT
5000
5,6,7
单机工作时冷却液水位开关为低液位
1
2
FAULT
30000
3,4
单机启动时冷却液水位开关为低液位
1
4
FAULT
100
15
Purge fault
1
QAR = 120×0.01657×α_Air×(I_Bus×1.3)
2、I_Bus≤CDR
若CDR≤(I_Bus+10)或CDR > (I_Bus+10)持续时间未到60秒,则
QAR = 120×0.01657×α_Air×(CDR×1.2)
若CDR > (I_Bus+10)持续时间到60秒后,则
5、控制接口涉及的项:
燃料电池模块使能开关(EN_FC)、运行开关(S_Run)、CAN总线。
2.2
额定功率(Pn):31kW
工作电流(I):0-500A
额定电流(In):495A
起动时间(t_Startup):≤20S
停止时间(t_Shutdown):≤5S
氢气气源压力(P_H2Supply):653-928kPa
5
0
ALARM
10000
非1,11,10
冷却液出口温度>75(℃)
5
1
ALARM
10000
5,6,7
V_Stack<60(V)
5
2
ALARM
100
7
1
5
3
ALARM
15000
11,19
单机工作时,冷却液水位低
5
3
ALARM
500
5,6,7,11
多机工作时,冷却液水位低
5
3
ALARM
30000
3,4
多机工作时,冷却液水位低
电堆工作压力(P_StackOp):≤120kPa
氢气最大流量(MaxQ_H2):≤500LPM
氢气温度(T_H2):-10–46℃
空气流量(Q_Air):≤2500LPM
空气温度(T_Air):-10–46℃
存贮温度(T_Storage): -40–65℃
最小湿件温度(MinT_WettedComp):2℃
这些指标,都反映在氢燃料电池的输出特性曲线(极化曲线)上。对氢燃料电池的设计、实验上,就是使输出特性曲线反映的指标最好。
影响输出特性曲线的因素很多,对于质子交换膜氢燃料电池,主要反映在MEA的工艺上,继而派生出的因素有:阳极氢气的输入口压力(本文档中,所有压力是指绝对压力)、阳极中氢气的湿度,阴极空气的压力和流速、阴极空气的湿度,阳极和阴极的的压差、膜的温度,因流场气流的影响,流场入口端的湿度低于流场出口端的湿度,出现干端和湿端,影响指标,为了平衡湿度,采取入口气体增湿工艺,阳极采用将出口处湿度高的氢气通过回流泵直接送回入口,增加阳极气体入口处的湿度。因此氢气回流泵的流速也算一个因素。因质子交换膜氢燃料电池,在输出功率时会产生热量,为了达到稳定MEA的温度,就需要将热量消散掉。因此需要测试不同电流下的热量,用于设计热源到冷却介质间的热阻(工艺设计中计算或测试)及冷却流道的工艺参数。因阳极在输出功率时,湿度会逐渐增大,会产生水以及氢气纯度会逐渐降低,到一定条件就需要将阳极的氢气置换(吹扫)一次。
最大燃料电池模块内部温度(MaxT_FCPM): 55℃
相对湿度(RH):≤95%
海拔(AT):0–1600m
水平倾角(θ):±30°
阳极收集水量(Vol_AnodeWater):≤48mL/min
阴极收集水量(Vol_CathodeWater):≤64mL/min
热功率(P_Heater):≤52kW
QAR = 120×0.01657×α_Air×(I_Bus×1.2)
3、最小值处理
QAR结果小于50,则结果值为50。
C、在状态CS7下的处理
α_Air =α_Air_CRM
1、从CS6迁入
QAR = 120×0.01657×α_Air×(CDR×1.5)
2、从CS5迁入
QAR = 120×0.01657×α_Air×(I_Bus×1.5)
2、阴极空气子系统控制涉及的项:
空压机驱动器PWM(PWM_AirBlower)、空压机的转速(n_AirBlower)、空气流量(Q_Air)。
3、冷却子系统控制涉及的项:
冷却液出口温度(T_CoolantOutlet)、冷却液泵运行控制开关(EN_CoolantPump)、冷却液泵驱动器PWM(PWM_CoolantPump)散热器风扇运行控制开关(EN_RadiatorFan)、散热器风扇驱动器(PWM_RadiatorFan)。
α_Air_CDR = Interp_α_Air(CDR /In_Bus)
A、在状态CS5(CRM)下的处理
1、过剩空气系数的处理
进入CS5状态头30秒:α_Air =α_Air_CRM
30秒后,先缺省α_Air =α_Air_CRM,在某个持续20秒的事件发生后,α_Air =α_Air_CRM + 0.8
2.1
1、阳极氢气子系统控制涉及的项:
氢气进气阀控制开关(S_H2Inlet)、氢气进气阀后的压力(P_H2Inlet)、氢气回流泵的运行控制开关(EN_H2RecirPump)、氢气回流泵的转速(n_H2RecirPump)、氢气回流泵驱动器PWM(PWM_H2RecirPump),氢气回流泵驱动器中的1个测量量(V_H2RecirPump)、氢气吹扫阀控制总开关(S_H2Purge)、氢气前吹扫阀控制开关(S_H2FrontPurge)、氢气后吹扫阀控制开关(S_H2BackPurge)、模块前后向水平倾斜角(θ_FB)、模块左右向水平倾斜角(θ_LR)。
冷却液出口温度(T_CoolantOutlet):50–70℃
冷却液流量(Q_Coolant):≥75LPM
冷却液最大压力降(MaxDropP_Coolant):≤35kPa
最大冷却液入口压力(MaxP_CoolantInlet):≤170kPa
CAN总线:CAN 2.0A/B Passive(Standard 11 bit) BPS 250 kb/s
4
2
ALARM
1000
非1,10
多机工作时的主机(1号机),FC总线电流传感器输出电压<0.25 或 >4.75(A)
4
3
ALARM
1000
非1,10
冷却液出口温度<-50或>100(℃)
4
4
ALARM
1000
5,6,7
W_FC>33000(W)
4
7
ALARM
15000
5,6,7,13
氢气回流泵运行时,转速<300 (RPM)(10/2Hz)
QAR = 120×0.01657×α_Air×(I_Bus×1.2)
I_Bus的200mS增量≤10A,则
QAR = 120×0.01657×α_Air×I_Bus
4、最小值处理
QAR结果小于50,则结果值为50。
B、在状态CS6(CDR)下的处理
α_Air =α_Air_CDR
1、I_Bus> CDR
3
ALARM
15000
19
多机工作时,冷却液水位低
5
4
ALARM
300000
5,6,7
I_Bus<15(A)
5
5
ALARM
100
3
Cell巡检通断有新断路错误
5
6
ALARM
100
非10,
参数存贮表1,6全错
参数存贮表2,7全错
参数存贮表3,8全错
上次的参数存贮表2,7全错
2.6
工作模式分为CRM(Current Ramp Mode)和CDR(Current Draw Request)。
5
FAULT
1000
非1,5,6,7,10
I_Bus>50A
1
6
FAULT
100
非1,10
氢气进气阀打开2秒后,P_H2IN>150PSI(1032.4KPa)
1
7
FAULT
1000
非1,10,13,15,17
氢气进气阀打开2秒后,P_H2IN< 40PSI(275.8KPa)
1
7
FAULT
3000
1百度文库
对于氢燃料电池,追求的指标有:能量密度、额定功率、最大峰值功率(保持有限时间)、最小稳定功率(小于该功率,功率输出波动大,长时间小于最小稳定功率下工作(包括开路),对电极有损伤))、效率(以氢气低燃值计算,净输出功率),生命周期、启动时间(从空闲到额定功率)、停机时间、环境要求(工作温度、存贮温度、湿度、海拔(主要是大气压力和密度变化对电堆其它指标的影响))等。
2.9
A、在状态CS5下的处理
α_Air =α_Air_CRM
在多机工作模式下:
CDA = 30 + Q_Air/(120×0.01657×α_Air)
在单机工作模式下:
CDA = 30 + Q_Air/(120×0.01657×α_Air)
Coolant High Temp.
T_Coolant>80℃
0
4
FAULT
100
非1,2,10
Heartbeat
在心跳时间内未接收到1C0或1C0+ID命令
0
6
FAULT
100
非1,10
Internal Sys. E-stop
E-STOP开关
1
0
FAULT
100
17
H2 Subsystem LeakCheck Fault
4、电气子系统控制涉及的项:
电堆节数(N_Cell,120)、电堆单节最小电压(MinV_Cell)、最小电压的节号(No_MinV_Cell,0-119,0号在前端)、电堆单节最大电压(MaxV_Cell)、最大电压的节号(No_MaxV_Cell,0-119,0号在前端)、电堆单节平均电压(AvgV_Cell)、电堆计算的电压(V_Stack)、总线电压(V _Bus)、总线电流(I_Bus)、总线输出开关(EN_Bus)。
对于电堆,通过实验和测试,绘制各个因素组合下的输出特性曲线。根据这些测绘出的输出特性曲线,综合出各个指标。根据指标,在输出特性曲线中,确定一个安全稳定工作区域。根据输出特性曲线的安全稳定工作区域,再确定各个因素以输出电流为横轴的工作区域。这些因数的工作区域,就是集成系统(模块)的技术规范(即电堆生产厂的《电堆集成手册》)。
α_Air是α_In的函数,该函数为多段线性插值
FLOAT32 Interp_α_Air(FLOAT32α_In )
表5α_Air --α_In插值表
α_Air
2.7
2.5
2.3
2.3
2.2
2.2
2.0
2.0
2.0
1.9
α_In
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
α_Air_CRM = Interp_α_Air(I_Bus/In_Bus)
2.3
2.4
2.5
字节
位
类型
持续时间
(mS)
有效状态域
CtrState
源
0
0
FAULT
500
5,6,7,8,9
Cell Low Voltage
MinV_Cell<0.1V
0
0
FAULT
500
8,9
Cell Low Voltage
MinV_Cell< 0.5V
0
1
FAULT
1000
非1,2,10,11
13
氢气进气阀打开2秒后,P_H2IN< 40PSI
1
7
FAULT
100
15
氢气进气阀打开2秒后,P_H2IN < 40PSI
4
1
ALARM
1000
非1,10,
Q_Air<= 0 ||Q_Air>3000(LPM)
4
2
ALARM
1000
非10,
单机工作时,FC总线电流传感器输出电压<0.25或>4.75
2、CRM工作模式
I_Bus的200mS增量> 8A或≤8A持续时间未到10秒,则
QAR = 120×0.01657×α_Air×(I_Bus+30)
I_Bus的200mS增量≤8A持续时间达10秒后,则
QAR = 120×0.01657×α_Air×(I_Bus+10)
3、CDR工作模式
I_Bus的200mS增量> 10A,则
CRM模式,电流斜坡模式,是指负载电流以一定的斜率上升或下降。
CDR模式,电流请求模式,是指在CDA限制下,负载电流通过通讯或模拟信号提供给FC控制器CDR值。
2.7
2.8
空气流量需求QAR基本计算公式
QAR = 120×0.01657×α_Air×I_Bus
注:120为电堆的总Cell数,0.01657为单个Cell在I_Bus为1A时,1分钟需要消耗的理论空气体积量(升)。
根据《电堆集成手册》,设计电堆模块,根据电堆模块的工艺,形成《模块手册》。根据《模块手册》设计辅助系统工艺。最终形成《系统工艺流程图》(P&ID)。对于应用还需要《应用需求》。以上资源是控制策略的依据。
2
控制策略内容包括:系统量定义,ALARM和FAULT判定规则,节电压巡检处理策略,电堆冷却液出口温度设定值策略,工作模式(CRM和CDR)策略,阳极氢气循环回路控制策略,阴极空气传输回路控制策略,冷却液传输回路控制策略,阳极氢气吹扫(Purge)过程,防冻(Freeze)处理过程,泄露检查(LeakCheck)过程、注水入泵(Prime)过程,冷启动过程,状态及迁移,CAN通讯协议。
1
0
FAULT
100
2
H2 Subsystem LeakCheck Fault
1
1
FAULT
100
13
Freeze Fault
1
2
FAULT
5000
5,6,7
单机工作时冷却液水位开关为低液位
1
2
FAULT
30000
3,4
单机启动时冷却液水位开关为低液位
1
4
FAULT
100
15
Purge fault
1
QAR = 120×0.01657×α_Air×(I_Bus×1.3)
2、I_Bus≤CDR
若CDR≤(I_Bus+10)或CDR > (I_Bus+10)持续时间未到60秒,则
QAR = 120×0.01657×α_Air×(CDR×1.2)
若CDR > (I_Bus+10)持续时间到60秒后,则
5、控制接口涉及的项:
燃料电池模块使能开关(EN_FC)、运行开关(S_Run)、CAN总线。
2.2
额定功率(Pn):31kW
工作电流(I):0-500A
额定电流(In):495A
起动时间(t_Startup):≤20S
停止时间(t_Shutdown):≤5S
氢气气源压力(P_H2Supply):653-928kPa
5
0
ALARM
10000
非1,11,10
冷却液出口温度>75(℃)
5
1
ALARM
10000
5,6,7
V_Stack<60(V)
5
2
ALARM
100
7
1
5
3
ALARM
15000
11,19
单机工作时,冷却液水位低
5
3
ALARM
500
5,6,7,11
多机工作时,冷却液水位低
5
3
ALARM
30000
3,4
多机工作时,冷却液水位低
电堆工作压力(P_StackOp):≤120kPa
氢气最大流量(MaxQ_H2):≤500LPM
氢气温度(T_H2):-10–46℃
空气流量(Q_Air):≤2500LPM
空气温度(T_Air):-10–46℃
存贮温度(T_Storage): -40–65℃
最小湿件温度(MinT_WettedComp):2℃
这些指标,都反映在氢燃料电池的输出特性曲线(极化曲线)上。对氢燃料电池的设计、实验上,就是使输出特性曲线反映的指标最好。
影响输出特性曲线的因素很多,对于质子交换膜氢燃料电池,主要反映在MEA的工艺上,继而派生出的因素有:阳极氢气的输入口压力(本文档中,所有压力是指绝对压力)、阳极中氢气的湿度,阴极空气的压力和流速、阴极空气的湿度,阳极和阴极的的压差、膜的温度,因流场气流的影响,流场入口端的湿度低于流场出口端的湿度,出现干端和湿端,影响指标,为了平衡湿度,采取入口气体增湿工艺,阳极采用将出口处湿度高的氢气通过回流泵直接送回入口,增加阳极气体入口处的湿度。因此氢气回流泵的流速也算一个因素。因质子交换膜氢燃料电池,在输出功率时会产生热量,为了达到稳定MEA的温度,就需要将热量消散掉。因此需要测试不同电流下的热量,用于设计热源到冷却介质间的热阻(工艺设计中计算或测试)及冷却流道的工艺参数。因阳极在输出功率时,湿度会逐渐增大,会产生水以及氢气纯度会逐渐降低,到一定条件就需要将阳极的氢气置换(吹扫)一次。
最大燃料电池模块内部温度(MaxT_FCPM): 55℃
相对湿度(RH):≤95%
海拔(AT):0–1600m
水平倾角(θ):±30°
阳极收集水量(Vol_AnodeWater):≤48mL/min
阴极收集水量(Vol_CathodeWater):≤64mL/min
热功率(P_Heater):≤52kW
QAR = 120×0.01657×α_Air×(I_Bus×1.2)
3、最小值处理
QAR结果小于50,则结果值为50。
C、在状态CS7下的处理
α_Air =α_Air_CRM
1、从CS6迁入
QAR = 120×0.01657×α_Air×(CDR×1.5)
2、从CS5迁入
QAR = 120×0.01657×α_Air×(I_Bus×1.5)
2、阴极空气子系统控制涉及的项:
空压机驱动器PWM(PWM_AirBlower)、空压机的转速(n_AirBlower)、空气流量(Q_Air)。
3、冷却子系统控制涉及的项:
冷却液出口温度(T_CoolantOutlet)、冷却液泵运行控制开关(EN_CoolantPump)、冷却液泵驱动器PWM(PWM_CoolantPump)散热器风扇运行控制开关(EN_RadiatorFan)、散热器风扇驱动器(PWM_RadiatorFan)。
α_Air_CDR = Interp_α_Air(CDR /In_Bus)
A、在状态CS5(CRM)下的处理
1、过剩空气系数的处理
进入CS5状态头30秒:α_Air =α_Air_CRM
30秒后,先缺省α_Air =α_Air_CRM,在某个持续20秒的事件发生后,α_Air =α_Air_CRM + 0.8
2.1
1、阳极氢气子系统控制涉及的项:
氢气进气阀控制开关(S_H2Inlet)、氢气进气阀后的压力(P_H2Inlet)、氢气回流泵的运行控制开关(EN_H2RecirPump)、氢气回流泵的转速(n_H2RecirPump)、氢气回流泵驱动器PWM(PWM_H2RecirPump),氢气回流泵驱动器中的1个测量量(V_H2RecirPump)、氢气吹扫阀控制总开关(S_H2Purge)、氢气前吹扫阀控制开关(S_H2FrontPurge)、氢气后吹扫阀控制开关(S_H2BackPurge)、模块前后向水平倾斜角(θ_FB)、模块左右向水平倾斜角(θ_LR)。
冷却液出口温度(T_CoolantOutlet):50–70℃
冷却液流量(Q_Coolant):≥75LPM
冷却液最大压力降(MaxDropP_Coolant):≤35kPa
最大冷却液入口压力(MaxP_CoolantInlet):≤170kPa
CAN总线:CAN 2.0A/B Passive(Standard 11 bit) BPS 250 kb/s
4
2
ALARM
1000
非1,10
多机工作时的主机(1号机),FC总线电流传感器输出电压<0.25 或 >4.75(A)
4
3
ALARM
1000
非1,10
冷却液出口温度<-50或>100(℃)
4
4
ALARM
1000
5,6,7
W_FC>33000(W)
4
7
ALARM
15000
5,6,7,13
氢气回流泵运行时,转速<300 (RPM)(10/2Hz)
QAR = 120×0.01657×α_Air×(I_Bus×1.2)
I_Bus的200mS增量≤10A,则
QAR = 120×0.01657×α_Air×I_Bus
4、最小值处理
QAR结果小于50,则结果值为50。
B、在状态CS6(CDR)下的处理
α_Air =α_Air_CDR
1、I_Bus> CDR