超声波焊接原理和应用
超声波焊接
超声波焊接超声波焊接是一种应用超声波技术进行焊接的方法,它具有高效、可靠、环保等特点,广泛应用于工业生产中。
本文将从超声波焊接的原理、设备、应用领域以及优势等方面进行介绍。
超声波焊接是利用超声波振动产生的能量实现焊接材料的熔接。
超声波是一种频率超过人耳能听到的声音的机械波,其频率一般在20kHz到70kHz之间。
超声波焊接的原理主要是利用超声波振动使材料分子的间距变小,从而产生高温高压的效果,促使材料发生熔接现象。
在焊接过程中,超声波振动会穿透至焊材表面,使接触部分的温度升高,然后通过适当的加压使材料熔化并熔接在一起,最终形成焊接接头。
超声波焊接设备主要由超声波振动系统、机械系统和电气系统组成。
超声波振动系统是超声波焊接的核心部分,它由发声器和承载器组成。
发声器是将电能转化为机械振动的装置,承载器则是将振动传递给焊接件的装置。
机械系统主要包括焊接头、压力机构等部分,用于在焊接过程中施加适当的压力。
电气系统则提供了超声波发生器、控制电路、传感器等设备,用于控制焊接过程的各个参数。
超声波焊接在工业生产中有着广泛的应用。
它可以焊接各种金属材料,如铝、铜、钢等,也可以焊接塑料和纺织品等非金属材料。
超声波焊接常被运用在汽车制造、电子设备生产、包装行业等领域。
例如,在汽车制造中,超声波焊接被应用于制造车灯、排气管和电池等零部件;在电子设备生产中,它被用于焊接电子元件和连接导线等;在包装行业中,超声波焊接可用于封口、划线和熔接等工作。
超声波焊接具有许多优势。
首先,它的焊接速度快,能够在短时间内完成焊接工作,提高生产效率。
其次,超声波焊接的焊接接头牢固可靠,具有较高的拉伸强度和密封性能。
再次,它适用于焊接的材料种类广泛,包括金属、塑料和纺织品等。
此外,超声波焊接过程不需要使用焊接剂和填料,所以它是一种环保、无污染的焊接方法。
总结起来,超声波焊接是一种高效、可靠、环保的焊接方法,广泛应用于多个行业中。
随着技术的不断进步,超声波焊接设备的性能和效果也在不断提高,为我们的生产和生活带来了许多便利和效益。
超声波金属焊接原理及应用详解
目录一、摘要 (2)二、超声波金属点焊接原理及特点 (2)1.超声波金属焊接的优点 (2)2.超声波金属焊接的不足 (3)3.影响超声波金属焊接质量的主要因素 (3)三、国内外研究现状 (4)1.研究现状国内 (4)2.国外研究现状 (5)四、制约国内超声波金属焊接技术发展的几个关键因素 (7)五、超声波金属焊接技术今后发展方向 (7)六、参考文献 (8)摘要:介绍了超声波焊接技术的基本原理、目前的发展状况,对目前国内外金属超声波焊接设备进行了简要介绍,对国内相关领域的发展进行了总结,分析了目前制约金属超声波焊接技术的关键因素和解决的对策,并对超声波技术的发展趋势进行了展望。
关键词:超声波焊接;发展状况;发展趋势The basic principles of ultrasonic welding technique and the present research status were presented, the metalultrasonic welding apparatus at home and abroad were briefly introduced, and the domestic developments in the relevant metalultrasonic welding areas were summarized. Moreover, the key factors that currently affect metal ultrasonic welding and thesolutions to these issues were analyzed, the development tendency of ultrasonic metal welding techniques was pointed out atthe end.Key words:ultrasonic welding; development status; development tendency超声波金属焊接还在电子工业、电器制造、新材料的制备、航空航天及核能工业、食品包装盒、高级零件的密封技术方面都有很广泛的应用,量比电流焊接少得多,超声波邦定作为超声波金属焊接的一种小功率应用,常用于晶体管或集成电路引线的焊接。
超声波金属焊接基础知识
一、超声波金属焊接基础知识1、原理超声波金属焊接是利用高频振动波传递到两个需焊接的金属表面,在加压的情况下,使两个金属表面相互摩擦而形成分子层之间的熔合,其优点在于快速、节能、熔合强度高、导电性好、无火花、接近冷态加工;缺点是所焊接金属件不能太厚(一般小于或等于5mm)、焊点位不能太大、需要加压。
2、焊接优点:1)、焊接材料不熔融,不脆弱金属特性。
2)、焊接后导电性好,电阻系数极低或近乎零.3)、对焊接金属表面要求低,氧化或电镀均可焊接。
4)、焊接时间短,不需任何助焊剂、气体、焊料.5)、焊接无火花,环保安全。
3、超声波金属焊接适用产品:1)、镍氢电池镍氢电池镍网与镍片互熔与镍片互熔。
.2)、锂电池、聚合物电池铜箔与镍片互熔,铝箔与铝片互熔。
3)、电线互熔,偏结成一条与多条互熔。
4)、电线与名种电子元件、接点、连接器互熔。
5)、名种家电用品、汽车用品的大型散热座、热交换鳍片、蜂巢心的互熔。
6)、电磁开关、无熔丝开关等大电流接点,异种金属片的互熔。
7)、金属管的封尾、切断可水、气密.4、振幅参数振幅对于需要焊接的材料来说是一个关键参数,相当于铬铁的温度,温度达不到就会熔接不上,温度过高就会使原材料烧焦或导致结构破坏而强度变差。
因为每一间公司选择的换能器不同,换能器输出的振幅都有所不同,经过适配不同变比的变幅杆及焊头,能够校正焊头的工作振幅以符合要求,通常换能器的输出振幅为10—20μm,而工作振幅一般为30μm左右,变幅杆及焊头的变比同变幅杆及焊头的形状,前后面积比等因素有关,形状来说如指数型变幅、函数型变幅、阶梯型变幅等,对变比影响很大,前后面积比与总变比成正比。
贵公司选用的是不同公司品牌的焊接机,最简单的方法是按已工作的焊头的比例尺寸制作,能保证振幅参数的稳定。
5、频率参数任何公司的超声波焊接机都有一个中心频率,例如20KHz、40 KHz等,焊接机的工作频率主要由换能器(Transducer)、变幅杆(Booster)、和焊头(Horn)的机械共振频率所决定,发生器的频率根据机械共振频率调整,以达到一致,使焊头工作在谐振状态,每一个部份都设计成一个半波长的谐振体。
超声波焊接塑料原理
超声波焊接塑料原理一、引言超声波焊接是一种常见的塑料焊接方法,利用超声波的热效应将塑料件加热至熔融状态并进行焊接。
本文将介绍超声波焊接塑料的原理及其应用。
二、超声波焊接原理超声波焊接是利用超声波振动在塑料接合部分产生热能,从而使塑料材料熔融并形成焊接接头的一种焊接方法。
超声波通过超声波振动头传导到塑料接合部分,使塑料分子发生摩擦振动,产生热能。
当热能达到一定程度时,塑料材料开始熔融,通过施加一定的焊接压力,使熔融的塑料材料在接触面上形成焊接接头,待冷却后形成牢固的焊接接头。
三、超声波焊接设备超声波焊接设备主要包括超声波发生器、超声波振动头和焊接模具。
超声波发生器负责产生高频的超声波信号,传递给超声波振动头。
超声波振动头将超声波能量转化为机械振动,并将其传导到塑料接合部分。
焊接模具则起到固定和定位塑料件的作用,保证焊接的准确性和稳定性。
四、超声波焊接的优点1. 快速高效:超声波焊接的焊接速度快,一般只需要几秒钟就可以完成焊接过程。
2. 无需添加其他材料:超声波焊接不需要添加任何胶水、溶剂等辅助材料,避免了对环境的污染。
3. 焊接强度高:超声波焊接的焊接接头强度高,能够满足大部分工程应用的需求。
4. 焊接质量稳定:超声波焊接过程中,焊接接头的质量稳定可靠,不易出现质量问题。
五、超声波焊接的应用超声波焊接广泛应用于塑料制品的生产加工领域。
例如,汽车零部件的制造、电子设备的组装、医疗器械的生产等都需要使用超声波焊接技术。
超声波焊接在这些领域中,能够实现高效、稳定、环保的焊接过程,提高生产效率和产品质量。
六、超声波焊接的注意事项1. 焊接参数的选择:超声波焊接需要根据不同的塑料材料选择适当的焊接参数,包括振幅、压力、时间等。
2. 焊接界面的准备:焊接接合部分需要进行表面处理,保证焊接界面的清洁和平整,以提高焊接质量。
3. 焊接模具的设计:焊接模具的设计应考虑到塑料件的形状、大小等因素,以确保焊接过程的准确性和稳定性。
焊接接头的超声波检测技术
焊接接头的超声波检测技术超声波检测技术是一种非破坏性检测方法,广泛应用于工业领域的缺陷检测、质量控制和安全监测等方面。
在焊接接头检测中,超声波检测技术具有广泛的应用前景。
本文将介绍焊接接头超声波检测技术的原理、应用和未来发展前景。
一、原理焊接接头的缺陷包括裂纹、气孔、夹杂物、未熔合和过熔等。
超声波检测技术利用超声波在物质中传播的声波特性来探测物质内部的缺陷和不均匀性。
通过传输高频超声波束,在材料内部形成回波,在回波信号中检测缺陷的位置、大小和形状。
检测原理下图所示:(图1)超声波检测技术的实现需要超声波发射器、接收器和电子信号处理仪器等。
在焊接接头的检测中,超声波发射器将超声波通过焊接接头,超声波接收器接受信号,电子信号处理仪器通过计算回波信号的时差和强度准确地确定缺陷位置和形状。
二、应用1. 超声波检测技术广泛应用于焊接接头缺陷检测中,比如精密焊接、管道焊接、门窗焊接和车身焊接等领域。
2. 超声波检测技术被广泛应用于航空、石油、电力、冶金、汽车等各个领域的质量控制和安全监测中,以保证相关设备的安全性和可靠性。
3. 超声波检测技术能够使无法直接观察的材料内部缺陷显露无遗,使不良品得以及时检测和修复,提高了产品的可靠性和安全性。
4. 超声波检测技术在连续生产线上能够实现在线检测,无需停机,提高了生产效率。
三、未来发展前景超声波检测技术在焊接接头的检测中得到了广泛的应用,但是仍存在一些挑战和问题。
例如:信号噪声抑制、精度与灵敏度的提高、检测速度的提高等问题。
随着新材料的出现和生产工艺的改进,超声波检测技术的应用前景将更加广阔。
在未来,超声波检测技术将更加智能化、无损化和自动化,大幅提高生产效率和产品质量。
结语焊接接头的超声波检测技术是一种非破坏性的方法,具有广泛的应用前景。
本文介绍了焊接接头超声波检测技术的原理、应用和未来发展前景。
我们相信,在技术革新和实践探索的推动下,超声波检测技术将在焊接接头等领域展现出更加广阔的前景与美好的未来。
超声波焊接的原理及应用
超声波焊接的原理及应用1. 简介超声波焊接是一种利用超声波振动能量来实现材料的焊接技术。
它通过将高频振动传导到两个被焊接的材料之间,使它们在接触面产生摩擦热而达到熔接的目的。
超声波焊接广泛应用于汽车、电子、医疗等领域,具有焊接速度快、焊接强度高、无需额外添加焊接材料等优点。
2. 原理超声波焊接的原理是利用超声波在材料接触面上产生摩擦振动,使材料表面产生高温和高压,并迅速熔接起来。
其具体原理如下:•超声波产生:超声波是频率高于20kHz的机械振动波。
通过超声波发生器产生的高频电信号,经过换能器的转换作用,变成机械振动,形成超声波。
•振动传导:超声波振动通过提示头传导到焊接材料上,使其产生微小的摩擦振动。
•接触面摩擦:被焊接材料表面相互接触产生摩擦,使温度急剧升高,因为摩擦产生的热量引起焊接界面的塑性变形。
•熔接:热量累积到一定程度时,焊接界面的材料开始熔化,并形成熔池。
•固化:当超声波停止传导时,熔池冷却凝固,并且形成牢固的焊接接头。
3. 应用领域超声波焊接在多个领域有着广泛的应用,以下是其中几个主要领域:3.1 汽车制造•车灯组件焊接:超声波焊接可用于汽车前大灯、尾灯等组件的焊接。
它可以确保灯具的水密性,提高焊接强度,同时避免因高温焊接导致的变形。
•内饰部件焊接:超声波焊接可用于汽车内饰件的焊接,如仪表板、门板等。
它能够快速焊接,并且焊接点牢固,不会对外观造成任何损伤。
3.2 电子制造•电子元件焊接:超声波焊接可用于电子元件的焊接,如电池片、电路板等。
它可以实现高效快速的焊接,同时保持焊接点的精确度和稳定性。
•电缆连接:超声波焊接可用于电缆的连接,如线缆、USB接口等。
它能够实现高强度的焊接,并且焊接时间短,无需使用额外的焊接材料。
3.3 医疗器械•塑料容器焊接:超声波焊接可用于医疗器械中的塑料容器的焊接。
它可以确保无菌环境,同时提高容器的密封性和耐压性。
•医用器械组件焊接:超声波焊接可用于医用器械的组件焊接,如手术器械、医用注射器等。
超声波的焊接原理及技术
超声波焊接机工作原理及工艺参数一.超声波应用原理我们知道正确的波的物理定义是:振动在物体中的传递形成波。
这样波的形成必须有两个条件:一是振动源,二是传播介质。
波的分类一般有如下几种:一是根据振动方向和传播方向来分类。
当振动方向与传播方向垂直时,称为横波。
当振动方向与传播方向一致时,称为纵波。
二是根据频率分类,我们知道人耳敏感的听觉范围是20HZ-20000HZ,所以在这个范围之内的波叫做声波。
低于这个范围的波叫做次声波,超过这个范围的波叫超声波。
波在物体里传播,主要有以下的参数:一是速度V,二是频率F,三是波长λ。
三者之间的关系如下:V=F.λ。
波在同一种物质中传播的速度是一定的,所以频率不同,波长也就不同。
另外,还需要考虑的一点就是波在物体里传播始终都存在着衰减,传播的距离越远,能量衰减也就越厉害,这在超声波加工中也属于考虑范围。
1、超声波在塑料加工中的应用原理:塑料加工中所用的超声波,现有的几种工作频率有15KHZ,18KHZ,20KHZ,40KHZ。
其原理是利用纵波的波峰位传递振幅到塑料件的缝隙,在加压的情况下,使两个塑料件或其它件与塑料件接触部位的分子相互撞击产生融化,使接触位塑料熔合,达到加工目的。
2、超声波焊机的组成部分超声波焊接机主要由如下几个部分组成:发生器、气动部分、程序控制部分,换能器部分。
发生器主要作用是将工频50HZ的电源利用电子线路转化成高频(例如20KHZ)的高压电波。
气动部分主要作用是在加工过程中完成加压、保压等压力工作需要。
程序控制部分控制整部机器的工作流程,做到一致的加工效果。
换能器部分是将发生器产生的高压电波转换成机械振动,经过传递、放大、达到加工表面。
3.换能器部分由三部分组成:换能器(TRANSDUCER);增幅器(又称二级杆、变幅杆,BOOSTER);焊头(又称焊模,HORN或SONTRODE)。
①换能器(TRANSDUCER):换能器的作用是将电信号转换成机械振动信号。
超声波焊的原理和应用
超声波焊的原理和应用1. 超声波焊的原理超声波焊(Ultrasonic Welding)是一种利用超声波振动能量将两个或多个塑料工件连接在一起的焊接方法。
它利用超声波振动通过摩擦产生热量,使工件的表面温度升高,然后施加一定的压力将两个工件压合在一起,使其熔融并形成焊接。
超声波焊的原理主要包括以下几个方面: - 超声波振动:超声波的频率通常在20kHz到70kHz之间,它通过音频振动将能量传递到焊点,形成局部高温。
- 摩擦发热:超声波振动产生的微小位移使接触表面产生摩擦,产生热量,使塑料材料软化。
- 塑料熔融:摩擦发热使塑料材料温度升高,达到熔融点,使接触面热熔。
- 硬化而成:当超声波停止振动时,热熔的塑料材料快速冷却,形成坚固的焊接点。
2. 超声波焊的应用超声波焊在各个工业领域得到广泛应用,以下是几个常见的应用领域:2.1 电子电器行业•电子产品组装:超声波焊可以用于连接电子元件,如线缆连接、连接器固定等。
•电池组装:超声波焊可以用于连接电池盖与电池壳,实现电池的密封。
•电路板焊接:超声波焊可用于电路板的贴片焊接和印刷电路板的元件连接。
2.2 汽车制造业•塑料零件焊接:超声波焊可用于汽车零部件的连接,如汽车大灯、仪表盘等。
•焊接线束:超声波焊可用于汽车线束的连接,确保线束的稳固性和电气性能。
2.3 医疗器械行业•医疗器械组装:超声波焊可用于医疗器械的组装,如输液器的连接、雾化器的连接等。
•医疗包装:超声波焊可用于医疗器械的包装,确保器械的密封性和安全性。
2.4 塑料制品行业•塑料容器焊接:超声波焊可用于塑料容器的焊接,如食品包装容器、化妆品容器等。
•塑料管道焊接:超声波焊可用于塑料管道的连接,如水管、气管等。
3. 超声波焊的优势超声波焊相比传统的焊接方法具有以下几个优势:•高效快捷:超声波焊接速度快,焊接时间短,可以大幅度提高生产效率。
•焊接强度高:焊接接头强度高,焊缝表面平整,无需额外辅助材料,焊点美观牢固。
口罩超声波焊接机原理
口罩超声波焊接机原理
超声波焊接是一种利用高频机械振动将材料熔化并融合在一起的技术。
在口罩生产中,超声波焊接机被广泛应用于口罩鼻梁条和耳带的焊接。
它具有焊接质量高、效率高、无污染等优点,是当前口罩生产中主要的焊接方式之一。
1. 超声波振动系统
超声波焊接机的核心部件是超声波振动系统,它由换能器、振子和波峰组成。
换能器利用反向压电效应将电能转化为机械振动,振子将这种高频机械振动沿轴向传递和放大,波峰则为特殊设计的焊头。
2. 焊接过程
焊接过程包括夹持、振动、焊接和冷却四个步骤。
首先,被焊接的口罩部件被夹持在定位座上。
随后,振子振动产生的高频机械能被传递到波峰处,波峰与被焊接部件相互摩擦产生剪切热从而使材料熔化。
经过一段时间的振动,材料发生分子扩散从而实现焊接。
最后,停止振动,被焊接部件冷却固化。
3. 焊接参数控制
焊接质量取决于加热温度、时间和压力等参数。
加热温度由振动频率和振幅决定,时间由振动持续时间控制,压力由夹持部件的压力调节。
合理设置这些参数对于实现熔体互扩散至关重要。
通过精确控制超声波焊接的原理和参数,可以保证口罩焊接质量,提高
生产效率,满足口罩在使用时的密合性和耐用性要求。
超声焊的原理和应用
超声焊的原理和应用1. 超声焊的原理超声焊是一种非常常用的焊接方法,它利用超声波振动产生的热量来进行材料的焊接。
超声波在振动时可以产生黏合热,并且可以在焊接接触点处产生局部加热。
这种焊接方法具有以下原理:•超声波振动效应:超声波是指频率高于人耳可听到的20kHz的声波。
超声波振动时,会在材料的接触面产生剧烈的摩擦和振动,从而产生热量。
•界面结构变化:超声波振动会使得焊接材料的界面结构发生变化,从而增加了焊接接触面积,并且形成了更好的焊接接触。
•塑性变形:超声波振动会在焊接接触点附近产生塑性变形,从而使金属在一个小的区域内发生细微的形变。
•扩散效应:超声波焊接时,焊接接触点的原子会因为振动而发生扩散,从而增加了材料的结合力。
2. 超声焊的应用超声焊具有广泛的应用领域,特别是在电子、汽车、塑料等行业中经常使用。
以下是一些超声焊的应用情况:2.1 电子领域超声焊在电子领域中被广泛应用于电子元件的连接和封装。
例如:•电缆连接:超声焊可以用于连接电缆与插头,实现可靠的电气连接。
•电池制造:超声焊可以用于电池的连接,提高电池的性能和寿命。
•电子元件封装:超声焊可以用于电子元件的封装,保护电子元件免受外界环境的影响。
2.2 汽车工业超声焊在汽车工业中广泛应用于汽车零部件的制造和组装。
以下是一些超声焊在汽车工业中的应用:•汽车灯具制造:超声焊可以用于汽车灯具的焊接和封装,确保灯具的可靠性和密封性。
•汽车仪表盘制造:超声焊可以用于汽车仪表盘的焊接,提高仪表盘的稳定性和耐用性。
•汽车内饰件制造:超声焊可以用于汽车内饰件的焊接和组装,提高内饰件的牢固度和整体质量。
2.3 塑料加工超声焊在塑料加工领域中被广泛应用于塑料制品的生产和加工。
以下是一些超声焊在塑料加工中的应用:•塑料零件制造:超声焊可以用于塑料零件的焊接和组装,提高零件的耐用性和结构稳定性。
•塑料包装材料制造:超声焊可以用于塑料包装材料的焊接和封装,确保包装材料的密封性和保鲜性。
超声波焊接的原理及应用
非焊接区域不发热,易实现自动化等优点, 已 被广泛用于同种材料或不同材料之间的连接。 ❖溶剂粘敷:连接物表面需要处理, 不但费时, 还易造成外观粗糙。 ❖热融接法:焊接质量极差, 工件外观易变形, 尤其是当产品要求密封性好时, 废品率极高。
超声波焊接的机理
❖ 初始温度的影响
精品课件
超声波焊接的机理
❖ 初始产热源
精品课件
超声波焊接的机理
❖ 产热机理
精品课件
内容提要
1
基本概念
2
焊接机理
3
工艺条件
4
当前应用
5
总结展望
精品课件
超声波焊接的工艺参数
❖一、材料选择
❖ 热塑性vs热固性 ❖ 非结晶vs结晶(熔化温度、能量补充、传递) ❖ 能量传递特性(近场与远场) ❖ 吸湿性(PC、PA)
❖ 特殊焊接设计
精品课件
超声波焊接的工艺条件
❖ 点焊
❖ 铆焊
精品课件
超声波焊接的工艺条件
❖ 凸缘连接焊
精品课件
内容提要
1
基本概念
2
焊接原理
3
工艺条件
4
当前应用
5
总结展望
精品课件
超声波焊接的应用
❖ 应用领域:医械、包装、汽配、渔具等行业 ❖ 产品:汽车、服装、塑料玩具自封袋、塑料酒
瓶盖、洗碗机水轮、塑料假鱼饵、充电器外壳 和手机吊带的焊接、一次打火机外壳。 ❖材料范围:ABS 塑料、AEC塑料、AMMA塑料、 ABA塑料、ARS塑料、AS塑料、PS塑料、PP塑料、 PC塑料、PE、PVC、POM等
金属超声波焊接原理
金属超声波焊接原理一、引言金属超声波焊接是一种常用的金属焊接方法,它利用超声波的振动能量使金属零件发生塑性变形,从而实现焊接。
本文将从超声波焊接的原理、设备和应用等方面进行详细介绍。
二、超声波焊接原理超声波焊接的原理是利用高频振动能量将金属零件的表面摩擦加热,使其达到焊接温度,然后施加一定的压力使金属零件发生塑性变形,最终实现焊接。
具体原理如下:1. 超声波的产生超声波是指频率超过20kHz的声波,它是通过压电晶体的振动产生的。
压电晶体在电场作用下会发生压缩和伸长,从而产生机械振动,进而产生超声波。
2. 超声波的传导超声波在金属中的传导速度较快,传导过程中会发生反射和折射现象。
当超声波传播到金属接触面时,部分能量会被反射回来,而另一部分能量会通过金属传导到达焊接区域。
3. 摩擦加热当超声波传导到达焊接界面时,由于金属材料的摩擦阻力,能量会被转化为热能,从而使金属表面温度升高。
这种摩擦加热的现象可以有效地提高焊接区域的温度,为后续的塑性变形提供条件。
4. 塑性变形当金属表面温度达到一定程度时,施加一定的焊接压力,金属零件会发生塑性变形。
在塑性变形的过程中,金属表面的氧化物和污染物会被挤出,从而使金属接触更紧密,焊接效果更好。
5. 冷却固化在金属零件发生塑性变形后,停止超声波的振动,金属表面温度开始降低,从而使金属重新固化。
这个过程需要一定的时间来保证焊接接头的强度。
三、超声波焊接设备超声波焊接设备主要由超声波发生器、换能器、焊头和控制系统等组成。
1. 超声波发生器超声波发生器是产生超声波的核心部件,它通过电能转换为机械能,从而产生高频振动。
2. 换能器换能器是将超声波的机械振动转换为金属零件的振动能量的装置。
它通常由压电晶体和共振器组成。
3. 焊头焊头是将超声波振动能量传递给金属零件的部件。
它通常由钛合金制成,具有良好的耐磨性和导热性能。
4. 控制系统控制系统用于调节超声波的频率、振幅和焊接时间等参数,以确保焊接质量。
超声波焊接的原理
超声波焊接的原理
超声波焊接是一种高效、精确的焊接技术,它利用超声波的振动能量将两个或多个材料加热并融合在一起。
这种焊接技术广泛应用于汽车、电子、医疗、食品和包装等行业。
超声波焊接的原理是利用超声波振动器将高频振动能量传递到焊接部位,使材料表面产生高频振动,从而产生热能。
当材料表面温度升高到熔点时,材料开始融化并形成焊缝。
焊接完成后,焊缝冷却并形成牢固的焊接。
超声波焊接的优点是焊接速度快、焊接质量高、无需使用焊接剂、无污染、无需后处理等。
它可以焊接各种材料,包括金属、塑料、陶瓷、玻璃等。
此外,超声波焊接还可以实现多点焊接、连续焊接和自动化生产。
超声波焊接的应用非常广泛。
在汽车行业中,它可以用于焊接汽车零部件,如车灯、仪表盘、空调出风口等。
在电子行业中,它可以用于焊接电子元件,如电池、电路板、手机壳等。
在医疗行业中,它可以用于焊接医疗器械,如注射器、输液器、手术器械等。
在食品和包装行业中,它可以用于焊接食品包装袋、饮料瓶盖等。
超声波焊接是一种高效、精确、环保的焊接技术,它在各个行业中都有广泛的应用。
随着科技的不断发展,超声波焊接技术将会越来越成熟,为各行各业的生产带来更多的便利和效益。
超声波焊
图1超声波焊的原理
1—发生器;2—换能器;3—传振杆; 4—聚能器;5—耦合器;6—静载荷; 7—上声极;8—焊件;9—下声极; F—静压力;v1—纵向振动方向; v2—弯曲振动方向
2.1、超声波的分类
根据接头形式分类:超声 波焊可分为点焊、缝焊、 环焊和线焊等。 不同类型的超声波焊得到 的焊缝形状不同,分别为 焊点、密封连续焊缝、环 焊缝和平直连续焊缝。 【1】点焊 根据能量传递方式,点焊 可分为单侧式和双侧式两 类。
3.2、超声波焊接工艺
3.2.1 接头设计 超声波焊接的接头目前只限于搭接一种形式。考虑 到焊接过程母材不发生熔化,焊点不受过大压力, 也没有电流分流等问题,设计焊点的点距s、边距e 、和行距r等参数。
1、边距e 电阻点焊时为了防止熔合溢出而要求 e>6δ (δ为板厚)。超声波点焊不受此限制,可以比 它小,只要声极不压碎或穿破薄板的边缘,就采用 最小的e,节省母材,减轻质量。
点焊机
当超声振动能量只通过 上声极导入时为单侧式 点焊;
分别从上、下声极导入
时为双侧式点焊。目前 应用最广泛的是单侧导 入式超声波点焊。
图2 超声波点焊的能量系统类型 1—静压力 2—上声极 3—焊件 4—下声极 V—振动方向
根据上声极的振动情 况,点焊分为纵向振 动式、弯曲振动式和 介于两者之间的轻型 弯曲振动式。 纵向振动系统主要用于 小功率超声波焊机, 弯曲振动系统主要用 于大功率超声波焊机 ,而轻型弯曲振动系 统适用于中小功率的 超声波焊机。
1.2、超声波的原理
超声波焊接时既不向焊件输送电流,也不向焊件 引入高温热源,只是在静压力作用下将弹性振动 能量转变为焊件间的摩擦功、变形能及随后有限 的温升。接头之间的冶金结合是在母材不发生熔 化的情况下实现的,因而是一种固态焊接方法。 超声波焊接的原理如下:
超声波焊接的原理和应用
超声波焊接的原理和应用1. 简介超声波焊接是一种利用超声波振动来实现材料焊接的技术。
它是一种无损和环保的焊接方式,广泛应用于塑料、金属和复合材料的焊接领域。
本文将介绍超声波焊接的工作原理和应用。
2. 工作原理2.1 超声波振动超声波是指频率高于20kHz的声波。
超声波振动是通过将电能转换成机械振动来实现的。
使用压电晶体作为振动产生器,当施加电压时,晶体发生共振并产生超声波振动。
2.2 焊接过程超声波焊接的焊接过程包括以下几个步骤:1.清洁表面:将要焊接的材料表面清洁干净,以确保焊接的质量。
2.加热材料:将焊接材料加热至接近熔点。
超声波振动会在材料表面形成高频振动,产生局部热量,使材料加热。
3.压力施加:在材料加热的同时,施加一定的压力使焊接面紧密接触。
压力的施加可以提高焊接强度。
4.压力保持:在一定的时间内保持压力,使材料充分熔合。
5.冷却固化:停止振动和加热,保持压力,使焊接部分冷却和固化。
2.3 焊接效果超声波焊接可以实现高强度的焊接效果,其焊缝强度接近于材料本身的强度。
焊接时产生的热量较少,不会导致材料变形或热裂纹。
同时,焊接速度较快,效率高。
3. 应用领域3.1 塑料焊接超声波焊接广泛应用于塑料制品的焊接。
它可以实现不同塑料材料的焊接,并且焊接强度高、密封性好。
在汽车制造、电子产品制造等领域,塑料焊接是一个必不可少的工艺。
3.2 金属焊接尽管超声波焊接一般用于塑料焊接,但它也可以用于金属焊接。
超声波焊接可以实现多种金属材料的焊接,如铝、镁和钛合金等。
它在汽车、航空航天等领域的金属焊接应用中具有广阔的前景。
3.3 复合材料焊接超声波焊接还可以应用于复合材料的焊接。
复合材料由于具有复杂的结构和各向异性的特性,传统的焊接方法往往无法实现。
而超声波焊接可以在不破坏材料结构的情况下,实现复合材料的有效焊接。
3.4 其他应用领域除了上述应用领域,超声波焊接还可以应用于医疗器械、电缆连接、电池制造等领域。
超声波焊接的原理及应用
超声波焊接的原理及应用1.塑料焊接:超声波焊接可以用于塑料零件的连接,例如汽车零件、电子产品、医疗器械等。
由于超声波焊接的效率高、速度快,可以实现自动化生产,因此得到了广泛应用。
2.金属焊接:超声波焊接也可以用于金属零件的连接。
与传统焊接方法相比,超声波焊接无需使用钎焊材料,可以减少焊接时间和能源消耗,同时具有高强度、耐腐蚀等优点,适用于汽车、飞机等高要求的金属焊接领域。
3.化妆品和药品包装:超声波焊接可以用于包装材料的密封和焊接。
它可以实现快速、牢固的密封,确保产品的质量和安全性。
4.电子产品制造:超声波焊接可以用于电子产品的组装和连接。
由于超声波焊接无需使用电阻、电流等电热的焊接方式,因此可以避免对电子元件的损坏,适用于封装电池、芯片、电路板等高频电子产品的制造。
5.医疗器械制造:超声波焊接也广泛应用于医疗器械的制造过程中。
例如,可以用于制造医用输液器、输血管、雾化器等产品。
1.高效率:超声波焊接可以在很短的时间内完成焊接过程,提高生产效率。
2.无需外加材料:超声波焊接无需在焊接过程中使用外加材料,减少了生产成本。
3.精确控制:超声波焊接可以通过调整振动频率和振动幅度来控制焊接的效果,实现精确控制。
4.焊接强度高:超声波焊接可以实现材料的冷焊接,焊接强度高,焊接接头牢固。
5.环保:超声波焊接无需使用焊接剂,减少了有害气体的排放,是一种环保的焊接方法。
然而,超声波焊接也存在一些限制。
首先,对于较大尺寸和较厚的材料,超声波焊接效果不佳。
其次,焊接面积过大或夹杂有灰尘、油脂等杂质时,超声波焊接效果可能不理想。
总的来说,超声波焊接是一种高效、环保的焊接方法,广泛应用于塑料、金属、电子、医疗器械等行业,对于提高生产效率、降低生产成本具有重要意义。
但在具体应用过程中,需要根据材料的特点和焊接要求来选择合适的超声波焊接参数和工艺。
超声波焊接工作原理
超声波焊接工作原理
超声波焊接是一种利用超声波在材料界面产生剧烈摩擦热而实现焊接的方法。
其工作原理如下:
1. 超声波发生器产生超声波:超声波是指频率高于20kHz的
机械波,通常使用频率在20kHz-60kHz之间的超声波。
2. 超声波通过换能器传递:超声波发生器会将电能转化为机械振动能,通过换能器将振动能传递到工作头部。
3. 工作头部振动:工作头部内部有一个振子,接受到换能器传递的振动能后开始振动,并将振动能传递到焊接接触面。
4. 材料剧烈摩擦热产生:当工作头部与焊接接触面接触时,因为接触面之间有些微的间隙,工作头部的振动会引起接触面的高频摩擦运动,从而产生摩擦热。
5. 材料局部软化:由于摩擦热的作用,接触面的局部区域会被加热到临界温度以上,使得材料表面局部软化,形成塑性流动层。
6. 塑性流动层的形成:当达到一定程度的软化温度时,材料表面就会形成塑性流动层,这层材料具有一定程度的流动性。
7. 熔汇与结合:在两接触面产生摩擦热的作用下,塑性流动层流向工件内部,使得两材料的表面粘接在一起,形成焊接接头。
总结来说,超声波焊接是通过超声波产生高频振动,通过振动产生的摩擦热使材料局部软化形成塑性流动层,最终实现两材料的粘接。
这种焊接方法具有快速、高效、无污染等优点,在各种行业中得到广泛应用。
超声波焊接技术的原理与应用
超声波焊接技术的原理与应用在现代工业生产中,焊接技术是一项至关重要的工艺。
而超声波焊接技术作为一种先进的焊接方法,凭借其独特的优势,在众多领域得到了广泛的应用。
超声波焊接技术的原理其实并不复杂。
简单来说,它是通过高频振动产生的能量来实现材料的连接。
这个过程就好像我们快速地用手搓动两个物体,摩擦会产生热量,从而使它们结合在一起。
但超声波焊接的振动频率极高,通常在 20kHz 以上,这种高频振动能够在极短的时间内产生大量的热能,并集中在焊接区域。
在超声波焊接设备中,有一个关键的部件叫做换能器。
它的作用就像是一个能量转换器,将输入的电能转化为机械振动能。
而变幅杆则负责将换能器产生的振动进行放大,并传递到焊接模具上。
焊接模具直接与被焊接的材料接触,将高频振动传递给它们。
当材料受到高频振动时,它们之间的分子会相互摩擦、碰撞,从而产生热量。
这些热量会使材料的接触面迅速熔化,形成一个焊接区域。
同时,在压力的作用下,熔化的材料会相互融合,并在冷却后形成牢固的焊接接头。
超声波焊接技术具有许多显著的优点。
首先,它的焊接速度非常快,通常只需要几秒钟就能完成一个焊接点,大大提高了生产效率。
其次,由于焊接过程中产生的热量相对较少,所以对周围材料的热影响很小,能够有效避免材料的变形和性能下降。
此外,超声波焊接不需要使用额外的焊接材料,如焊条、焊丝等,降低了成本,也减少了材料的浪费。
在汽车制造领域,超声波焊接技术被广泛应用于汽车零部件的生产。
例如,汽车内饰中的塑料件,如仪表盘、门板、座椅等,很多都是通过超声波焊接连接在一起的。
这种焊接方式不仅能够保证连接的强度和稳定性,还能使内饰件的外观更加美观。
在电子行业,超声波焊接也发挥着重要的作用。
像手机、电脑等电子产品中的电池、线路板、连接器等部件,都可以采用超声波焊接进行组装。
由于其焊接精度高,能够满足电子设备对微型化和高性能的要求。
医疗行业同样离不开超声波焊接技术。
一次性医疗器械,如注射器、输液管等,通常采用超声波焊接来保证其密封性和安全性。
超声波塑料焊接工艺
超声波塑料焊接工艺超声波塑料焊接工艺是一种高效并且环保的塑料连接工艺,它能够将两个或多个塑料件快速地、牢固地连接在一起。
本文将详细介绍超声波塑料焊接工艺的原理、应用、优点以及局限性。
一、超声波塑料焊接工艺的原理超声波塑料焊接工艺是利用超声波产生的高频振动来摩擦、加热和融化塑料,在外力的作用下将塑料件连接在一起的技术。
具体来说,超声波发生器会将电能转化成机械能,通过换能器将超声波传递到塑料件焊点。
当超声波遇到塑料面时,会产生剪切力和热量,使塑料面快速摩擦、热化并融化,再由外力压合,使塑料接头得以牢固地连接起来。
二、超声波塑料焊接工艺的应用超声波塑料焊接工艺可以应用于各种塑料产品的制造,如汽车、电子、医疗设备等。
特别是在电子行业中,超声波塑料焊接工艺被广泛应用于连接小型电子元件,因为它可以快速而精准地进行塑料连接,连接质量高且不损坏电子元件。
此外,超声波塑料焊接工艺也可应用于食品包装行业,如酸奶杯、密封袋等。
三、超声波塑料焊接工艺的优点1.快速精准:超声波塑料焊接工艺能够在短时间内完成连接工作,且连接质量高,不产生塑料渣和其他杂质。
2.无毒环保:超声波塑料焊接工艺没有采用粘合剂或其他有害化学物质,不会对环境造成污染。
3.节能省电:超声波塑料焊接工艺没有热损失,不需要额外的加热设备或大量的电能,具有节能省电的优点。
4.设计自由度高:由于超声波可以穿透一个物体,因此可以实现复杂的连接形状和各种不同的体积大小。
四、超声波塑料焊接工艺的局限性1.对焊接材料要求高:超声波塑料焊接工艺对焊接材料有一定的要求,只有符合材料特性才能保障连接质量。
2.焊接深度受限:由于超声波的穿透能力有限,因此对于较厚的材料,超声波可能会造成局部无法接触的情况。
3.受限于材料性质:超声波的焊接效果受材料性质的影响,如硬度、粘度等,在处理不同种类的塑料时可能收到一定程度的限制。
综上所述,超声波塑料焊接工艺是一种高效、快速、精准、环保的连接工艺,被广泛应用于各种塑料产品的制造。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波焊接原理:
超声波焊接是熔接热塑性塑料制品的高科技技术,各种热塑性胶件均可使用超声波熔接处理,而不需加溶剂,粘接剂或其它辅助品。
其优点是增加多倍生产率,降低成本,提高产品质量及安全生产。
超声波塑胶焊接原理是由发生器产生20KHz(或15KHz)的高压、高频信号,通过换能系统,把信号转换为高频机械振动,加于塑料制品工件上,通过工件表面及在分子间的磨擦而使传递到接口的温度升高,当温度达到此工件本身的熔点时,使工件接口迅速熔化,继而填充于接口间的空隙,当震动停止,工件同时在一定的压力下冷却定形,便达成完美的焊接。
新型的15KHz超声波塑胶焊接机,对焊接较软的PE、PP材料,以及直径超大,长度超长塑胶焊件,具有独特的效果,能满足各种产品的需要,能为用户生产效率以及产品档次贡献。
超声波焊接工艺:
一、超声波焊接:
以超声波超高频率振动的焊头在适度压力下,使二块塑胶的结合面产生磨擦热而瞬间熔融接合,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品带来的不便,实现高效清洁的焊接焊接强度可与本体媲美。
二、铆焊法:
将超声波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。
三、埋植:
借着焊头之传导及适当压力,瞬间将金属零件(如螺母、螺杆等)挤入预留的塑胶孔,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具成型之强度,可免除射出模受损及射出缓慢之缺点。
一、超声波塑料焊接的相容性和适应性:
热塑性塑料,由于各种型号性质不同,造成有的容易进行超声波焊接,有的不易焊接;下表中黑方块的表示两种塑料的相容性好,容易进行超声波焊接;圆圈表示在某些情况下相容,焊接性能尚可;空格表示两种塑料相容性很差,不易焊接。
热塑性塑料
超声波焊接的相容性示例图表A
B
S
ABS/
聚碳
酸酯
合金
(赛
柯乐
800)
聚
甲
醛
丙
烯
腈
丙烯
酸系
多元
共聚
物
丁
二
烯
-
苯
乙
烯
纤维
素
(CA,
CAB,
CAP)
氟
聚
合
物
尼
龙
亚苯基-
氧化物
为主的
树脂(诺
里尔)
聚酰胺
-酰亚
胺(托
郎)
聚
碳
酸
酯
热
塑
性
聚
酯
聚
乙
烯
聚
甲
基
戊
烯
聚
苯
硫
聚
丙
烯
聚
苯
乙
烯
聚
砜
聚
氯
乙
烯
SAN-NAS-ASA 四、成型:
本方法与铆焊法类似,将凹状的焊头压着于塑胶品外圈,焊头发出超声波超高频振动后将塑胶熔融成形
注意:表中所列仅供参考,因为熟知的变化可导致结果略有差异.。