空间向量的坐标表示
空间向量的正交分解及其坐标表示(上课用)
注意: 1.空间向量的基底可以为零向量吗?
基向量不能为零向量
2.空间向量的基底唯一吗?
任意三个不共面的向量都可作为空间向量的一个基底。
三、平面向量的坐标表示
y
正交单a位 xi +y j
基底
yj
a 我们把(x,y)叫做向量 a 的
j
(直角)坐标,记作
O
x
i xi
a (x, y)
其中,x叫做 a 在x轴上的坐标, y叫做 a在y轴上的坐标, (x,y)叫做向量的坐标表示.
记作.P=(x,y,z)
e3
e1
O e2
y
x
三、空间向量的正交分解及其坐标表示
由空间向量基本定理,对
z
于空间任一向量 p 存在唯
一的 有序实数组 (x,y, z)使 p xi yj zk
记作 p =(x,y,z)
PP k
i Oj
y
空间向量 p
i, j, k 为基底
P′
一一对应
x 有序实数组 (x, y, z)
1 2 OA MN
23
O M
1
OA
2
ON
OM
2 3
A
Q
P
C
1
OA
2
ON
1
OA
2 3 2
1
OA
2
1
OB
OC
6 3 2
N B
1
OA
1
OB
1
OC
633
例题:
已知空间四边形OABC,其对角线为OB,AC,M,N,分
别是对边OA,BC的中点,点P,Q是线段MN三等分点,用基向
量OA,OB,OC表示向量OP,OQ.
课件1:1.3.2 空间向量运算的坐标表示
2.类比平面向量,空间向量共线的充要条件是什么? [提示] 若 a=(a1,a2,a3),b=(b1,b2,b3),
a1=λb1, 则 a∥b⇔a=λb⇔a2=λb2,
a·b=(2,-1,-2)·(0,-1,4) =2×0+(-1)×(-1)+(-2)×4=-7; (2a)·(-b)=-2(a·b)=-2×(-7)=14; (a+b)·(a-b)=(2,-2,2)·(2,0,-6) =2×2-2×0+2×(-6)=-8.
规律方法 进行空间向量的数量积坐标运算的技巧 利用向量坐标运算解决问题的关键是熟记向量坐标运算 的法则,同时掌握下列技巧. (1)在运算中注意相关公式的灵活运用,如(a+b)·(a-b) =a2-b2=|a|2-|b|2,(a+b)·(a+b)=(a+b)2 等.
(2)设 Q(x,y,z),则P→Q=(x+1,y-2,z+3),M→N=(1,1,1),
∴x+x1+=1y2-+2=y-z+232+,z+32=3 12+12+12,
x=-4,
解得y=-1 z=-6
x=2,
,或y=5, z=0,
∴Q 点的坐标为(-4,-1,-6)或(2,5,0).]
类型二 空间向量的平行与垂直
(2)正方体 ABCD-A1B1C1D1 中,E 是棱 D1D 的中点,P、Q 分别为线段 B1D1,BD 上的点,且 3B→1P=P→D1,若 PQ⊥AE, B→D=λD→Q,求 λ 的值.
(2)[解] 如图所示,以 D 为原点,D→A,D→C,D→D1的方向分别为 x 轴,y 轴,z 轴的正方向建立空间直角坐标系,设正方体棱长为 1, 则 A(1,0,0),E0,0,12,B(1,1,0),B1(1,1,1),D1(0,0,1),
空间向量的坐标表示
e3 Oe 2
分别为x,y,z轴正方向上的单位向量,由空间向量 ( x, y, z) 基本定理,存在唯一的有序实数组
给定一个空间直角坐标系和向量 p 且设 ,
i、 k j、
A(x,y,z) y
e1
(1)设a (a1, a2 , a3 ), b (b1, b2 , b3 )
即对应坐标成比例.
4.判断下列各组中的两个向量是否共线.
9 (1)a (2,3, 4, ), b (3, , 6) 2 (2)a (2,0, 4,), b (4,1, 8) (3)a (2,0, 4,), b (4,0, 8)
5.已知m (8,3, a), n (2b, 6,5) ,若m n 则a=_____,b=______.
则:
2、空间向量的直角坐标运算律:
a (a1 , a2 , a3 )
(2)若A(a1 , b1 , c1 ), B(a2 , b2 , c2 )则 AB (a2 a1 , b2 b1 , c2 c1 )
a b (a1 b1 , a2 b2 , a3 b3 ) a b (a1 b1 , a2 b2 , a3 b3 )
a b
a (a1, a2 )( R),
(a1 b1 , a2 b2 ),
(2)若A( x1 , y1 ), B( x2 , y2 )
则AB ( x2 x1 , y2 y1 )
1、空间向量的坐标表示:
使得 p xi y j zk 则有序实数组 ( x, y, z ) 叫做 p 在空间直角坐标系 O-xyz中的坐标,上式可简记作 p ( x, y, z) z
1.3.2空间向量运算的坐标表示
坐标表示
2.空间向量的坐标与其端点坐标的关系:
设A(x1,y1,z1),B(x2,y2,z2),则
=(x2-x1,y2-y1,z2-z1).
即一个空间向量的坐标等于表示此向量的有向线段的终点坐标减
去起点坐标.
3.空间向量平行与垂直条件的坐标表示
若向量a=(a1,a2,a3),b=(b1,b2,b3),则
一、空间向量运算的坐标表示
1.空间向量运算法则设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
向量表示
加法
a+b
(a1+b1,a2+b2,a3+b3)
减法
a-b
(a1-b1,a2-b2,a3-b3)
数乘
λa
(λa1,λa2,λa3)
数量积
a·b
a1b1+a2b2+a3b3
若向量a=(a1,a2,a3),b=(b1,b2,b3),则
21 + 22
(1)|a|= ·=
(2)cos<a,b>=
·
||||
+ 23
z
P1
k
;
1 1 + 2 2 + 3 3
=
;
12 + 22 + 32 12 + 22 + 32
(3)若 P1(x1,y1,z1),P2(x2,y2,z2),则 P1,P2 两点间的距离为
1
3
1,- ,-
1,1),c=
2
2 ,则它们之间的关系是( A )
A.a⊥b 且 a∥c
B.a⊥b 且 a⊥c
C.a∥b 且 a⊥c
空间向量的表示与运算技巧
空间向量的表示与运算技巧空间向量在数学和物理学中扮演着重要的角色,它们被广泛地用于描述力、速度、加速度和位移等物理量。
在本文中,我将介绍空间向量的表示方法和一些常用的运算技巧。
一、空间向量的表示方法空间向量可以用多种方式表示,其中最常见的是使用坐标表示。
在笛卡尔坐标系中,一个空间向量可以由其在x、y和z轴上的分量表示。
例如,一个点P的坐标为(x, y, z),其中x、y和z分别表示P在x、y和z轴上的分量。
这种表示方法简单直观,易于理解和计算。
除了坐标表示外,空间向量还可以使用矢量符号表示。
矢量符号通常在向量上方加一箭头,表示其方向和大小。
例如,一个向量a可以表示为a→。
这种表示方法更加简洁,能够清晰地表达向量的性质,但在计算时需要注意方向和大小的对应关系。
二、空间向量的运算技巧1. 向量相加空间向量的相加运算是将两个向量的对应分量相加得到一个新的向量。
假设有两个向量a和b,分别表示为a = (a₁, a₂, a₃) 和 b = (b₁,b₂, b₃),它们的和向量c可以表示为 c = (a₁+b₁, a₂+b₂, a₃+b₃)。
这个运算规则适用于三维空间中的所有向量。
2. 向量的数量乘法向量的数量乘法是将一个向量的每个分量与一个实数相乘得到一个新的向量。
假设有一个向量a和一个实数k,向量ka可以表示为 ka = (ka₁, ka₂, ka₃)。
这个运算技巧可以用来改变向量的大小或方向。
3. 向量的点积向量的点积(内积)是两个向量相乘后再求和的结果。
假设有两个向量a和b,它们的点积可以表示为 a · b = a₁b₁ + a₂b₂ + a₃b₃。
点积运算的结果是一个标量,可以用来计算向量的夹角、判断两个向量是否垂直或平行等。
4. 向量的叉积向量的叉积(外积)是两个向量相乘后得到一个新的向量。
假设有两个向量a和b,它们的叉积可以表示为 a × b = (a₂b₃ - a₃b₂, a₃b₁ - a₁b₃, a₁b₂ - a₂b₁)。
空间向量运算的坐标表示
a (a1,a2,a3 )( R)
a b a1b1 a2b2 a3b3
a // b a1 b1,a2 b2,a3 b3( R)
a b a1b1 a2b2 a3b3 0.(a,b都不是零向量)
练习1:已知
a
(2,3,5),b
已知 A( x1, y1, z1 ) , B( x2, y2, z2 )
则线段 AB 的中点坐标为 ( x1 x2 , y1 y2 , z1 z2 )
2
2
2
例1 如图, 在正方体ABCD A1B1C1D1中,点 M
是AB的中点,求 DB1 与 CM 所成的角的余弦值.
z
O
y
x
练习1:如图, 在正方体ABCD A1B1C1D1中,B1E1
对空间任一向量 a ,由空间
za
向量基本定理,存在唯一的有序实
A(a1, a2 , a3 )
数组 (a1, a2 , a3 ),使a a1i a2 j a3k. k
有序实数组 (a1, a2 , a3 ) 就
i Oj
y
叫做 a 在这一空间直角坐标系下 x 的坐标.
记为 a (a1,a2,a3 ) .
⑶已知 A(3,5, 7) , B(2,4, 3) ,则 AB 在坐标平面 yOz 上的射影的长度为__1__0_1__.
练习 2: ⑴已知 A(0, 2, 3)、B( 2,1,6), C(1, 1,5) , 则 △ABC 的面积 S=_7__3__.
2
⑵ a (x, 2,1) , b (3, x2, 5) 且 a 与 b 的夹角为
结论:若A(x1,y1,z1),B(x2,y2,z2), 则 AB = OB-OA=(x2,y2,z2)-(x1,y1,z1) =(x2-x1 , y2-y1 , z2-z1)
空间向量的坐标表示
A B = ( a2 − a1 , b2 − b1 , c2 − c1 )
空间向量的坐标等于它的终点坐标减去起点坐标. 空间向量的坐标等于它的终点坐标减去起点坐标.
例1、已知 a = (2, −3, 5), b = ( −3,1, − 4) 求 a + b, a − b, 8a
解:
a + b = (2, −3,5) + (−3,1, −4) = (−1, −2,1) a − b = (2, −3,5) − (−3,1, −4) = (5, −4,9) 8a = 8× (2, −3,5) = (16, −24, 40)
5.已知m = (8,3, a), n = (2b, −6,5) ,若m n 已知 若 则a=_____,b=______.
例题3: 例题 (1)已知 已知A(1,0,2),B(0,1,-2),C(0,0,3),若四边 若四边 已知 是平行四边形,求点 的坐标. 形ABCD是平行四边形 求点 的坐标 是平行四边形 求点D的坐标 (2)已知 已知A(1,0,1),B(2,4,1),C(2,2,3), 已知 D(10,14,17),试判断 试判断A,B,C,D四点是否共面 四点是否共面. 试判断 四点是否共面 已知A(-2,3,1),B(2,-5,3),C(10,0,10), 变:已知 已知 D(8,4,9),试证明 四边形 试证明:四边形 是梯形. 试证明 四边形ABCD是梯形 是梯形
空间向量的坐标表示
1、空间向量基本定理: 空间向量基本定理: 如果三个向量 a、、不共面, 那么对空间任一 b c 不共面, 向量 p , 存在唯一的有序实数组{x,y,z} {x,y,z}, 存在唯一的有序实数组{x,y,z},使得
p = x a + yb + z c
1.3 空间向量的坐标表示及其运算(共47张PPT)
设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
加法
减法
数乘
数量积
向量表示
a+b
a-b
λa
a·b
坐标表示
(a1+b1,a2+b2,a3+b3)
(a1-b1,a2-b2,a3-b3)
(λa1,λa2,λa3)
a1b1+a2b2+a3b3
2.空间向量的坐标与其端点坐标的关系:
能运用公式解决问
题.(数学运算)
思维脉络
情境导学
我国著名数学家吴文俊先生在《数学教育现
代化问题》中指出:“数学研究数量关系与空间形
式,简单讲就是形与数,欧几里得几何体系的特点是
排除了数量关系,对于研究空间形式,你要真正的
‘腾飞’,不通过数量关系,我想不出有什么好的办
法…….”
吴文俊先生明确地指出中学几何的“腾飞”是
(1)求AB + CA, CB-2BA, AB ·AC;
(2)若点 M 满足AM =
1
3
AB + AC,求点
2
4
M 的坐标;
(3)若 p=,q=,求(p+q)·(p-q).
思路分析先由点的坐标求出各个向量的坐标,再按照空间向量运算的坐标运算法则进行计算求解.
解:(1)因为 A(1,-2,4),B(-2,3,0),C(2,-2,-5),
(2)a⊥b⇔
a·b=0
⇔
a1=λb1,a2=λb2,a3=λb3 (λ∈R);
a1b1+a2b2+a3b3=0
.
点睛:当b的坐标中b1,b2,b3都不等于0时,a与b平行的条件还可以表
空间向量的坐标表示
3、已知向量a (1,3,2),b (2,0,8),
求 单 位 向 量c, 使c与a、b都 垂 直 。
解:设c (x, y, z)
x 3y 2z 0
2x 8z 0
x
2
y2
z2
1
x
4 21
y
2
21
z
1
21
x
4 21
or y 2
21
z
1
21
c ( 4 , 2 , 1 ) or c ( 4 , 2 , 1 )
a b a b 0 a1b1 a2b2 ;a3b3 0
三、距离与夹角
1.距离公式
(1)向量的长度(模)公式
| a |2 a a a12 a22 a32
注意:此公式的几何意义是表示长方体的对角线的长度。
a的单位向量a0是 ____________
(2)空间两点间的距离公式
终点坐标减 在空间直角坐标系中,已知 A(x1起, y点1 , 坐z1)标、
坐标 x , y , z 满足的条件。
解:点P(x , y , z)到 A 、B 的距离相等,则
(x 3)2 ( y 3)2 (z 1)2 (x 1)2 ( y 0)2 (z 5)2 ,
化简整理,得 4x 6 y 8z 7 0 即到 A 、B 两点距离相等的点的坐标 (x , y , z) 满 足的条件是 4x 6 y 8z 7 0
思考题:
已知A(0,2,3)、B( 2,1,6), C(1,1,5), 用向量 方法求ABC的面积S。
a b (a 1b1,a2 b2 ,a3 b3) ; a b (a1b1,a2 b2 ,a3 b3 ) ;
a (a1,a2,a3),( R) ;
1.3 空间向量及其运算的坐标表示 课件(共45张PPT)
[解] (1)建立如图所示的空间直角坐标 系.点 E 在 z 轴上,它的 x 坐标、y 坐标均为 0,而 E 为 DD1 的中点,故其坐标为0,0,12.
由 F 作 FM⊥AD,FN⊥DC,垂足分别为 M,N, 由平面几何知识知 FM=12,FN=12, 故 F 点坐标为12,12,0. 点 G 在 y 轴上,其 x、z 轴坐标均为 0,
解决空间向量垂直、平行问题的有关思路 (1)若有关向量已知时,通常需要设出向量的坐标.例如, 设向量 a=(x,y,z). (2)在有关平行的问题中,通常需要引入参数.例如,已 知 a∥b,则引入参数 λ,有 a=λb,再转化为方程组求解. (3)选择向量的坐标形式,可以达到简化运算的目的.
利用坐标运算解决夹角、距离问题
1.建立空间直角坐标系时,要考虑如何建系才能使点的 坐标简单、便于计算,一般是要使尽量多的点落在坐标轴上.
2.已知空间点的坐标、A(x1,y1,z1),B(x2,y2,z2)向 量―A→B 的坐标等于终点坐标减起点坐标.即―A→B =(x2-x1, y2-y1,z2-z1).
[跟踪训练] 1.(2019·福建三明高二期末质量检测)已知 A(1,-2,0)和向量
空间向量的坐标表示
[ 例 1] ( 链 接 教 材 P18 例 1) 在 棱 长 为 1 的 正 方 体 ABCD-A1B1C1D1 中,E,F 分别是 D1D,BD 的中点,G 在棱 CD 上,且 CG=14CD,H 为 C1G 的中点,建立适当的坐标系.
(1)写出 E,F,G,H 的坐标; (2)写出向量―E→F ,―G→H 的坐标.
又 GD=34,故 G 点坐标为0,34,0. 由 H 作 HK⊥CG 于 K,由于 H 为 C1G 的中点. 故 HK=12,CK=18,∴DK=78, 故 H 点坐标为0,78,12. (2)―E→F =―O→F -―O→E =12,12,-12, ―G→H =―O→H -―O→G =0,18,12.
空间向量的坐标表示
空间向量得坐标表示[本周重点]:空间右手直角坐标系,向量得坐标运算,夹角公式,距离公式。
[本周难点]:向量坐标得确定以及夹角公式,距离公式得应用。
[知识要点]:一、空间直角坐标系中空间向量得直角坐标表示在空间直角坐标系O一xyz中,以为单位正交基底, 对空间任一点A,对应向量,存在唯一一组有序实数组x、y、z,使,则在空间直角坐标系中,点A得坐标为(x,y,z),其中x叫做点A 得横坐标;y叫做点A得纵坐标;z叫做点A得竖坐标、向量得坐标为(x,y,z)。
(1)空间直角坐标系就是在仿平面直角坐标系得基础上,选取空间任意一点O与一个单位正交基底(按右手系排列)建立得坐标系,做题选择坐标系时,应注意点O得任意性,原点O得选择要便于解决问题,既有利于作图直观性,又要尽可能使各点得坐标为正。
(2)空间任一点P得坐标确定得办法如下:作P在XOY平面上得射影点,求出在XOY 平面内得坐标(x,y,0),求出并确定符号即z,得坐标P(x,y,z)。
二、空间向量得直角坐标运算:设则(1) + =(a1+b1,a2+b2,a3+b3);(2) - =(a1-b1,a2-b2,a3-b3);(3) =a1b1+a2b2+a3b3、(4) // 或、(5) a1b1+a2b2+a3b3=0、(6)A(x1,y1,z1),B(x2,y2,z2),则三、夹角与距离公式:1、向量与得夹角:设则、注意:(1)夹角公式可以根据数量积得定义推出:,其中θ得范围就是(2)用此公式求异面直线所成角等角度时,要注意这些角度与θ得关系(相等,互余,互补)。
2、两点距离公式:设A(x1,y1,z1),B(x2,y2,z2)为空间两点,则两点间距离公式就是模长公式得推广,首先根据向量得减法推出向量得坐标表示,然后再用模长公式推出。
3、平面得法向量:如果表示向量得有向线段所在得直线垂直于平面α,则称这个向量垂直于平面α,记作、如果,那么向量叫做平面α得法向量四、利用向量得坐标理论完成解题得程序:建立空间直角坐标系O-xyz,对空间图形中得向量进行量化处理,用坐标(x,y,z)进行表示、利用坐标运算与图形得数量关系、位置关系之间得对应,完成解题过程、重点例题讲解:例1.已知空间三点A(—2,0,2),B(—1,1,2),C(—3,0,4)。
空间向量运算的坐标表示 课件
2.对空间两向量夹角与距离的四点说明: (1)范围:空间两条直线夹角的范围与向量夹角的范 围不同,当所求两向量夹角为钝角时,两直线夹角是与此 钝角互补的锐角. (2)夹角公式的一致性:无论在平面还是空间,两向
量的夹角余弦值都是 cos〈a,b〉=|aa|·|bb|,只是坐标运算
时空间向量多了一个竖坐标. (3)长度公式的类似性:空间向量的长度公式与平面
向量的长度公式形式一致,坐标运算时空间向量多了一个 竖坐标.
(4)空间两点间的距离公式是长度公式的推广,首先根 据向量的减法推出向量A→B(空间任意两点)的坐标表示,然 后再用长度公式推出 A、B 两点间的距离.
3.a∥b(b≠0)⇔aaa123= ==λλλbb12b, ,3,这一形式不能等价于ab11=ab22
在解题过程中,把向量的坐标相等转化为方程组,注 意对应坐标相等,此步是解题的基本功,是考试中不能失 分的步骤.
归纳升华 1.解题时注意进行等价转化. 2.对于公式中的一些特殊情形要记清,不要漏掉, 如 a,b 夹角为 180°时. 3.注意解答题的规范性,不要漏掉必要的步骤,保 证解答的完整,不失分.
a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0;
|a|= a·a= a21+a22+a23;
cos〈a,b〉=|aa|·|bb|=
a1b1+a2b2+a3b3 a21+a22+a23 b12+b22+b23
.
温馨提示 1.空间向量坐标的本质:
a=(x,y,z)的本质是 a=xi+yj+zk,其中(i,j,k)
3.空间向量的坐标运算法则和平面向量的坐标运算 法则类似,可类比记忆.计算(2a)·(-b),既可以利用运 算律把它化成-2(a·b),也可先求出 2a,-b 后,再求数 量积.
空间向量及其运算的坐标表示
探•知1究识梳 在理空间直角坐标系Oxyz中, 对空间任意一点A, 或任意一个向量OA, 你能
借助几何直观确定它们的坐标( x, y, z)吗 ? 事实上,如图1.3 5,过点A分别作垂直于x轴、y轴和z轴的平面, 依次交
x轴、y轴和z轴于点B, C, D, 可以证明OA
z
在x轴、y轴和z轴上的投影向量分别为
以
1 3
OA,
1 4
OC ,
1 2
OD 为单位正交基底,
建立如图所示的空间直角坐
标系Oxyz.
(1) 写出D, C, A, B四点的坐标z ;
(2) 写出向量AB, BB, AC, AC 的坐标.
D
C
A O
B
C y
A x
B 图1.3-6
•向2 量运算的坐 标表示
探究 有了空间向量的坐标表示,你能类比平面向量的坐标运算,得出 空间向量运算的坐标表示并给出证明吗?
由上述结论可知,空间向量运算的坐标表示与平面向量运算的坐 标表示是完全一致的.
例如,我们有:
一个空间向量的坐标等于表示此向量的有向线段的终点坐标减去 起点坐标.
•向2 量运算的坐 标表示
类似平面向量运算的坐标表示,我们还可以得到:
当b 0时, a // b a b a1 b1, a2 b2,a3 b3( R);
C1
A1
E1
B1
M
DO
C y
A练习4】如图,在直三棱柱(侧棱垂直于底面的棱柱)ABCA1B1C1中,CA =CB=1,∠BCA=90°,棱AA1=2,N为A1A的中点. (1)求BN的长; (2)求A1B与B1C所成角的余弦值.
5 课堂小结
不属于∉
空间向量运算的坐标表示精选全文完整版
在空间选定一点O和一个单位正交基底{i , j, k } 以点O为原
点,分别以 i , j, k 的正方向建立三条数轴:x 轴、y 轴、z 轴,
这样就建立了一个空间直角坐标系O —xyz . x 轴、y 轴、z 轴,都叫
做叫做坐标轴,点O 叫做原点,向量i , j, k都叫做坐标向量.通过
每两个坐标轴的平面叫做坐标平面.
练习 3⑵.如图,在平行六面体 ABCD-A1B1C1D1 中,
O 是 B1D1 的中点,求证:B1C∥面 ODC1.
证明:设 OD OD1
C1B1 c
a,C1D1 1(b a) 2
b,C1C c ,则 c ,若存在实数 x,
B1C c y ,使得
a ,C1O B1C xOD
1(a b), 2 yOC1成立,
Eb p A
对向量 p 进行分解,
作 AB // b, BD // a, BC // c
O
D c p OB BA OC OD OE
C
B
xa yb zc
a
然后证唯一性
注:空间任意三个不共面向量都可以构成空
间的一个基底.如: a, b, c 3
例1 课本94页例4
推论:设点O、A、B、C是不共面的四点,则 对空间任一点P,都存在唯一的有序实数组 x、 y、z使OP xOA yOB zOC
22
学习小结:
1.基本知识: (1)向量的长度公式与两点间的距离公式; (2)两个向量的夹角公式。 2.思想方法:用向量计算或证明几何问题 时,可以先建立直角坐标系,然后把向量、点坐 标化,借助向量的直角坐标运算法则进行计算或 证明。
23
证明:如图,不妨设正方体的棱长为 1,
分别以 DA 、 DC 、 DD1 为单位正交基底
空间向量9个坐标计算公式
空间向量9个坐标计算公式空间向量是三维空间中的一个重要概念,它可以用来描述物体在空间中的位置、方向和运动。
在三维空间中,一个向量可以用三个坐标来表示,分别是x、y和z坐标。
通过这三个坐标,我们可以计算出向量的模、方向角和方向余弦等重要性质,从而更好地理解和应用空间向量。
在三维空间中,一个向量可以用以下公式来表示:\[。
\vec{a} = (x, y, z)。
\]其中,\(\vec{a}\)表示向量,\(x\)、\(y\)和\(z\)分别表示向量在x、y和z方向上的分量。
向量的模是指向量的长度,它可以用以下公式来计算:\[。
|\vec{a}| = \sqrt{x^2 + y^2 + z^2}。
\]这个公式就是三维空间中向量的模的计算公式,通过这个公式我们可以计算出向量的长度,从而更好地理解向量在空间中的位置和方向。
除了模之外,向量的方向角也是一个重要的性质。
在三维空间中,一个向量的方向角可以用以下公式来计算:\[。
\cos\alpha = \frac{x}{|\vec{a}|}, \cos\beta = \frac{y}{|\vec{a}|}, \cos\gamma =\frac{z}{|\vec{a}|}。
\]其中,\(\alpha\)、\(\beta\)和\(\gamma\)分别表示向量与x、y和z轴的夹角,通过这个公式我们可以计算出向量与坐标轴的夹角,从而更好地理解向量的方向。
除了方向角之外,向量的方向余弦也是一个重要的性质。
在三维空间中,一个向量的方向余弦可以用以下公式来计算:\[。
\cos\alpha = \frac{x}{|\vec{a}|}, \cos\beta = \frac{y}{|\vec{a}|}, \cos\gamma =\frac{z}{|\vec{a}|}。
\]通过这个公式我们可以计算出向量的方向余弦,从而更好地理解向量的方向。
除了以上的性质之外,向量还有很多其他重要的性质,比如向量的加法、减法、数量积、向量积等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、空间向量基本定理:
如果三个向量 a、 b、 c 不共面,那么对空间任一 存在唯一的有序实数组{x,y,z},使得 向量 p ,
p xa yb zc
a
P
c
p
b
A'
c o Aa
C
p
bB
P’
B'
OP OA' OB' P' P xOA yOB zOC
a (a1 , a2 , a3 )
例1、已知a (2, 3,5), b (3,1, 4)
求a b, a b,8a,
例2:(1)已知空间三个点的坐标为 A(1,5,-2),B(2,4,1),C=(p,3,q+2),若 A,B,C三点共线,则p+q= .
(2)已知a=(3,-2,6),b=(-1,4,-2), c=(7,5,λ),若三个向量共面,求实数λ 的值.
(3)若m=(8,3,a)与n=(2b,6,5) 共线, 则a+b= .
例3:已知直三棱柱ABC-A1B1C1中, 底面是直角三角形,且∠ACB=900, 点M,N分别是AC、A1B1的中点,利用 向量的知识证明:MN∥平面BC-B1C1.
1:已知A(3,5,-7),B(-2,4,3), 则AB 的坐标为 ;
p xa yb zc
1、空间向量的坐标表示:
给定一个空间直角坐标系和向量 p 且设 ,
i、 j、 k
为单位坐标向量, 由空间向量基本定理,存在唯一
的有序实数组 ( x, y, z ) ,使得 p xi y j zk 则有序实数组 ( x, y, z ) 叫做 p在空间直角坐标系Oz 上式可简记作 xyz中的坐标, p
空间向量的坐标表示
1、平面向量的坐标表示及运算律:
(1)若a (a1, a2 ), b (b1, b2 ) 则 a b (a1 b1, a2 b2 ),
a b
a (a1, a2 )( R),
(a1 b1 , a2 b2 ),
(2)若A( x1 ,Hale Waihona Puke y1 ), B( x2 , y2 )
练5:已知A(1,0,0),B(0,1,0), C=(0,0,2), 求一点D使DB∥AC,DC ∥AB.
练6:已知正方体ABCD-A1B1C1D1 中,点M、N分别在AC和C1D上,且 AM:MC=C1N:ND=2:1,求证: z MN∥BD1. A1 D1 B1 C1 N A D M B C x
y
1、重点: (1)、熟练掌握空间向量坐标表示的各种运 算律; (2)、空间向量中的公式的形式与平面向
量中相关内容一致,因此可类比记忆; 2、难点:
确定空间几何体中顶点和向量的坐标;
2、已知a (3, 2,5), b (1,5, 1)
求(1)a b;
(2)3a b;
(3)6a;
练3:空间四个点A(1,0,1),B(4,4,6), C=(2,2,3),D(10,14,17),判定四点是否 共面,
练4:已知a=(0,0,1),b=(-1,3,2), c=(2,-1,3),d=(4,5,6),设d=xa+yb+zd, 则x,y,z的值是 。
k
p ( x, y, z)
A(x,y,z)
i
Oj
y
2、空间向量的直角坐标运算律: 则:
设a (a1, a2 , a3 ), b (b1, b2 , b3 )
a b (a1 b1 , a2 b2 , a3 b3 )
a b (a1 b1 , a2 b2 , a3 b3 )