三棱锥外接球半径常见解法含答案解析

合集下载

三棱锥的外接球

三棱锥的外接球

三棱锥的外接球空间几何体的外接球和内切球问题一直是立体几何中的高频考点,尤其以三棱锥的外接球问题考察频率最高.本文主要对三棱锥的外接球半径求法进行了总结归纳,为高三立体几何复习提供帮助.1补形法【原理】若长方体的长、宽、高分别为,则其外接球半径.1.1共端点的三条棱两两垂直(墙角模型)例1.(2019全国卷Ⅰ)已知三棱锥的四个顶点在球的球面上,,是边长为2的正三角形,、分别是、的中点,,则球的体积为()A. B. C. D.1.2三组对棱相等的三棱锥例2.在四面体中,,,,则其外接球的表面积为.1.3两组垂直棱首尾相连例3.直角梯形满足,,,将其沿折叠成三棱锥,当三棱锥体积最大时,其外接球的体积为 .1.4有公共斜边的两个直角三角形组成的三棱锥例4.在四面体中,,,,则四面体的外接球的体积为()A. B. C. D.2轴截面法【原理】球心与球的截面圆心的连线垂直于这个截面.2.1有一条侧棱垂直于底面的三棱锥例5.三棱锥的四个顶点均在同一个球面上,其中,是正三角形,,则该球的表面积为________.2.2有一个侧面垂直于底面的三棱锥例6.(2019·广州模拟)三棱锥中,,,,,则三棱锥的外接球的表面积为( )A. B. C. D.2.3侧棱与侧面都不垂直于底面的三棱锥例7.三棱锥中,,二面角的大小为,则三棱锥的表面积是()A、 B、 C、 D、【总结】求解三棱锥外接球半径可以采用轴截面法:①先找到底面三角形外接圆的圆心;②过底面圆心作垂直于底面的轴;③根据球心到各顶点距离相等求出外接球半径.【特殊结论】:若正四面体的棱长为,则其外接球的半径 .。

三棱锥外接球的半径常见解法-锥形外接圆半径

三棱锥外接球的半径常见解法-锥形外接圆半径

C
y
x2
y
(0,1,0)解得:
2 z2 x1
x2 ,y
1
( ,
y z
1)2 1
z
2
22
所以 R=|OP|= 6 2
方法介绍
三棱锥的外接球半径的常见解法:
1、补形法 2、轴截面法 3、向量法
练习巩固
练习1(陕西,2010)如图,在三棱锥P-ABC
中,PA 平面ABC,CB PB,CB AB,且PA 2AB 2BC 2 ,
y
R 5
(B 2,0,0) x
轴截面法 活学活用,开阔思维
学习小结
三棱锥的外接球半径的常见解法:
1、补形法 2、轴截面法 3、向量法
练习1
PP2AA NhomakorabeaC
B
1
C
1
B
R= 6 , V 4 R3 6
2
3
练习1
P
O
D
A
C
B
OA=OB=OC=OP
R= 1 CP 6 , V 4 R3 6
22
(A 0,0,0)
C(-1,3,0)
y
R 5
(B 2,0,0) x
轴截面法 活学活用,开阔思维
练习巩固
练习4 如图,已知三棱锥P-ABC中,PA⊥底
面ABC,PA=AB=AC=2,∠BAC=120。,求其外
接球的半径。
z P(0,0,2)
球心坐标(1, 3,1)
(A 0,0,0)
C(-1,3,0)
3
练习2
D
A
D
A
C
C
B
R= 6 , 4
B
S 4 R2 3

三棱锥外接球半径常见解法(含答案解析)

三棱锥外接球半径常见解法(含答案解析)

特殊三棱锥外接球半径的常见求法
【方法介绍】
【法一:补形法】
外接球半径等于长方体体对角线的一半
ππ642
6
2===
R S R ,
注意:图中三棱锥的外接球与长方体外接球是同一个球。

【法二:轴截面法】
1、 寻找底面△PBC 的外心;
2、 过底面的外心作底面的垂线;
3、 外接球的球心必在该垂线上,利用轴截面计算出球心的位置。

【法三:向量法】
设外接球的球心坐标为:),,(z y x O .由→



===OC OB OA OP 可得:
【方法总结】
三棱锥外接球半径的常见解法:
1、 补形法;
2、轴截面法;
3、向量法.
【练习巩固】
【参考答案】
练习1 【补形法】
【轴截面法】
【轴截面法】
练习3 【补形法】。

高三复习题型:三棱锥外接球半径问题(含答案)

高三复习题型:三棱锥外接球半径问题(含答案)

数学一对一辅导教案授课教师 上课时间 2020年 月 日 第( )次课 2小时教学课题 高考探究专题1:三棱锥最值问题【法一:补形法】外接球半径等于长方体体对角线的一半ππ64262===R S R ,注意:图中三棱锥的外接球与长方体外接球是同一个球。

【法二:轴截面法(确定球心法)】1、寻找底面△PBC 的外心;2、过底面的外心作底面的垂线;3、外接球的球心必在该垂线上,利用轴截面计算出球心的位置。

【题型分析】【利用轴截面法1】例1.在三棱锥ABC P -中,︒=∠===⊥120,BAC AC AB PA ABC PA 2,底面,求其外接球的半径【变式1】已知在三棱锥ABC P -,222===⊥⊥⊥PC PB PA PA PC PC PB PB PA ,且,,,求该三棱锥外接球的表面积与体积。

【变式2】在四面体S ABC -中,SA ⊥平面ABC ,90ABC ∠=°,2SA AC ==,1AB =,则该四面体的外接球的表面积为【变式3】三棱锥P ABC -中,PA ⊥平面,,1,3ABC AC BC AC BC PA ⊥===,则该三棱锥外接球的表面积为( ) A .5π B .2π C .20π D .4π【变式4】如图,已知点A、B、C、D是球O的球面上四点,DA⊥平面ABC,AB⊥BC,DA=AB=BC=3,则球O 的表面积等于_________.【利用轴截面法2】例2.三棱锥P-ABC 内接于半径为2的球中,PA ⊥平面ABC ,∠BAC=90°,BC=22,则三棱锥P-ABC 的体积最大值是【变式1】三棱锥P-ABC 内接于半径为4的球中,PA ⊥平面ABC ,∠BAC=45°,BC=22,则三棱锥P-ABC 的体积最大值是【变式2】已知球的直径4SC =,A 、B 是该球球面上的两点,30ASC BSC ∠=∠=︒,则棱锥S ABC -的体积最大为( ) A .2 B .83C .3D .23 【答案】A【解析】如图所示,∵线段SC 是球的直径且4SC =,30ASC BSC ∠=∠=︒, ∴2AC =,=2BC ,23AS =,=23BS ,13A SBC SBC V S h -=⨯⋅△, (其中h 为点A 到底面SBC 的距离),故当h 最大时,A SBC V -的体积最大,由图可得当面ASC ⊥面BSC 时,h 最大且满足4223h =⋅,即3h =,此时112233232A SBC V -=⨯⨯⨯⨯=,故选A .【变式3】在三棱锥BCD A -中,BD AB DB AB DC DB AC AB ⊥=+==,4,,,则三棱锥BCD A -外接球的体积的最小值为( ) A .3264π B .332πC .328πD .34π【利用图形的特殊性】例3.已知在三棱锥ABC P -,222===⊥⊥⊥PC PB PA PA PC PC PB PB PA ,且,,,求该三棱锥外接球的表面积与体积。

【精品】三棱锥外接球的半径常见解法

【精品】三棱锥外接球的半径常见解法
C (-1,3,0)
A (0,0,0)
R 5
轴截面法 活学活用,开阔思维
y
x
B 2,0,0) (
练习4
P
Q
P R C
Q
A
2 R
O
2
D B A
2
D
R 5
活学活用,开阔思维
学习小结
三棱锥的外接球半径的常见解法:
1、补形法 2、轴截面法 3、向量法
Q O
6 R= 2
B
D
方法介绍
法三: 向量法
z
设外接球的球心坐标为: O(x,y,z) 由 | OP || OA || OB || OC | 可得:
2 2 2 2 2 2
A(0,0,2)
P (0,0,0) B (1,0,0) x
x y z x y ( z 2) 2 2 2 2 2 2 x y z ( x 1) y z x 2 y 2 z 2 x 2 ( y 1)2 z 2 y C (0,1,0) 1 1 解得: x , y , z 1 2 2 6 所以 R=|OP|= 2
法三:向量法
C B
活学活用,开阔思维
练习1
P
P
2
A 1 C B C 1 B
A
6 4 3 R= , V R 6 2 3
练习1
P
O A B
D C
OA=OB=OC=OP
1 6 4 3 R= CP , V R 6 2 2 3
练习巩固
练习2 (全国卷,2010)已知三棱锥的各条 棱长均为1,求其外接球的表面积。
A
5 D
10

三棱锥外接球半径常见解法(含答案解析)(K12教育文档)

三棱锥外接球半径常见解法(含答案解析)(K12教育文档)

(直打版)三棱锥外接球半径常见解法(含答案解析)(word版可编辑修改) 编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)三棱锥外接球半径常见解法(含答案解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)三棱锥外接球半径常见解法(含答案解析)(word版可编辑修改)的全部内容。

特殊三棱锥外接球半径的常见求法
【方法介绍】
【法一:补形法】
外接球半径等于长方体体对角线的一半
ππ642
6
2===
R S R ,
注意:图中三棱锥的外接球与长方体外接球是同一个球。

【法二:轴截面法】
1、 寻找底面△PBC 的外心;
2、 过底面的外心作底面的垂线;
3、 外接球的球心必在该垂线上,利用轴截面计算出球心的位置.
【法三:向量法】
设外接球的球心坐标为:),,(z y x O 。

由→
→→→
===OC
OB OA OP
可得:
【方法总结】
三棱锥外接球半径的常见解法:
1、 补形法;
2、轴截面法;
3、向量法。

【练习巩固】
【参考答案】
练习1 【补形法】
【轴截面法】
练习2 【补形法】
【轴截面法】
练习3 【补形法】
练习4 【轴截面法】。

三棱锥外接球半径常见解法

三棱锥外接球半径常见解法

特殊三棱锥外接球半径的常见求法
【方法介绍】
【法一:补形法】
外接球半径等于长方体体对角线的一半
ππ642
6
2===
R S R ,
注意:图中三棱锥的外接球与长方体外接球是同一个球。

【法二:轴截面法】
1、 寻找底面△PBC 的外心;
2、 过底面的外心作底面的垂线;
3、 外接球的球心必在该垂线上,利用轴截面计算出球心的位置。

【法三:向量法】
设外接球的球心坐标为:),,(z y x O .由→



===OC OB OA OP 可得:
【方法总结】
三棱锥外接球半径的常见解法:
1、 补形法;
2、轴截面法;
3、向量法.
【练习巩固】
【参考答案】
练习1 【补形法】【轴截面法】
【轴截面法】
练习3 【补形法】。

三棱锥外接球半径常见解法(含答案)

三棱锥外接球半径常见解法(含答案)

特殊三棱锥外接球半径的常见求法
【方法介绍】
【法一:补形法】
外接球半径等于长方体体对角线的一半
6
6 2
R ,S 4 R
2
注意:图中三棱锥的外接球与长方体外接球是同一个球。

【法二:轴截面法】
1、寻找底面△PBC 的外心;
2、过底面的外心作底面的垂线;
3、外接球的球心必在该垂线上,利用轴截面计算出球心的位置。

【法三:向量法】
设外接球的球心坐标为:O( x, y, z) .由OP OA OB OC 可得:
【方法总结】
三棱锥外接球半径的常见解法:
1、补形法;
2、轴截面法;
3、向量法. 【练习巩固】
【参考答案】
练习 1 【补形法】【轴截面法】
练习 2 【补形法】【轴截面法】
练习 3 【补形法】
练习 4 【轴截面法】
您好,欢迎您阅读我的文章,本 WORD 文档可编辑修改,也可以直接打印。

阅读过后,希望您提出保贵的意见或建议。

阅读和学习是一种非常好的习惯,坚持下去,让我们共同进步。

【精品】三棱锥外接球的半径常见解法

【精品】三棱锥外接球的半径常见解法
朝黄遵宪曾作诗曰:“钟声一及时,顷刻不少留。虽
有万钧柁,动如绕指柔。”这是在描写
()
A.电话
B.汽车
C.电报
D.火车
解析:从“万钧柁”“动如绕指柔”可推断为火车。
答案:D
[典题例析]
[例1] 上海世博会曾吸引了大批海内外人士利用各种
交通工具前往参观。然而在19世纪七十年代,江苏沿江
居民到上海,最有可能乘坐的交通工具是
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材·填要点]
一、铁路,更多的铁路 1.地位 铁路是 交通建运设输的重点,便于国计民生,成为国民经济 发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 至开胥平各庄铁 路建成通车。 1888年,宫廷专用铁路落成。
2
P
1
C
1
D
B
A
Q
R
2
O R= 6
R
2
P
D
2
2
方法介绍
设外接球的球心坐标为:O(x,y,z)
法三: 向量法 由 | OP || OA || OB || OC |
z A(0,0,2)
可得x:2 y2 z2 x2 y2 (z 2)2

x2

y2

z2

(x
1)2

1.李鸿章1872年在上海创办轮船招商局,“前10年盈和,成
为长江上重要商局,招商局和英商太古、怡和三家呈鼎立
之势”。这说明该企业的创办
()
A.打破了外商对中国航运业的垄断
B.阻止了外国对中国的经济侵略
C.标志着中国近代化的起步
D.使李鸿章转变为民族资本家

棱锥外接球半径常见解法

棱锥外接球半径常见解法

特殊三棱锥外接球半径的常见求法
【法一:补形法】
外接球半径等于长方体体对角线的一半
ππ642
62===R S R ,
注意:图中三棱锥的外接球与长方体外接球是同一个球。

【法二:轴截面法】
1、 寻找底面△PBC 的外心;
2、 过底面的外心作底面的垂线;
外接球的球心必在该垂线上,利用轴截面计算出球心的 图画捉迷藏 美少女2 幼儿读物少儿益智游戏 逻辑思维训练书籍
3、 位置。

【法三:向量法】
设外接球的球心坐标为:),,(z y x O .由→
→→→===OC OB OA OP 可得:
【练习巩固】
【参考答案】
练习1 【补形法】【轴截面法】
练习2 【补形法】【轴截面法】
练习3 【补形法】。

三棱锥外接球半径常见解法含答案解析

三棱锥外接球半径常见解法含答案解析

三棱锥外接球半径常见解法含答案解析在立体几何中,求三棱锥外接球半径是一个常见且重要的问题。

掌握有效的解法不仅能够帮助我们解决具体的数学题目,还能加深对空间几何关系的理解。

下面将为大家介绍几种常见的求解三棱锥外接球半径的方法,并通过具体的例子进行答案解析。

一、补形法补形法是一种常用的技巧,通过将三棱锥补成一个特殊的几何体,如长方体、正方体等,然后利用这些特殊几何体的外接球半径与原三棱锥外接球半径的关系来求解。

例如,对于墙角三棱锥(三条侧棱两两垂直的三棱锥),我们可以将其补成长方体。

设三棱锥的三条侧棱长分别为\(a\)、\(b\)、\(c\),则长方体的体对角线就是三棱锥外接球的直径\(2R\),根据长方体体对角线公式可得:\\begin{align}2R&=\sqrt{a^2 + b^2 + c^2}\\R&=\frac{\sqrt{a^2 + b^2 + c^2}}{2}\end{align}\例 1:已知三棱锥\(P ABC\)中,\(PA\perp PB\),\(PB\perp PC\),\(PC\perp PA\),且\(PA = 3\),\(PB =4\),\(PC = 5\),求其外接球半径。

解:将三棱锥\(P ABC\)补成长方体,长方体的体对角线就是外接球的直径。

\\begin{align}2R&=\sqrt{3^2 + 4^2 + 5^2}\\&=\sqrt{9 + 16 + 25}\\&=\sqrt{50}\\&=5\sqrt{2}\end{align}\所以,外接球半径\(R =\frac{5\sqrt{2}}{2}\)二、确定球心位置法通过寻找三棱锥外接球的球心位置,利用球心到各顶点的距离等于外接球半径来求解。

对于正三棱锥,球心通常在高线上。

设正三棱锥底面边长为\(a\),高为\(h\),底面外接圆半径为\(r\)(可由正弦定理求得\(r =\frac{\sqrt{3}}{3}a\)),球心到底面距离为\(d\),则根据勾股定理有:\\begin{align}R^2&=d^2 + r^2\\d&=h R\end{align}\联立可得\(R\)的表达式。

棱锥外接球半径常见解法

棱锥外接球半径常见解法

特殊三棱锥外接球半径的常见求法
【方法介绍】
例(江西改编)己知在三棱锥P-ABC中, PA 丄PB、PB 丄PC. PC丄= = 2 »
求该三棱锥外接球的表面积。


/I
/ 11
关键是求山外接球的半径R :
【法一:补形法】
外接球半径等于长方体体对角线的一半
4 R26
2

注意:图中三棱锥的外接球与长方体外接球是同一个球。

【法二:轴截面法】
1、寻找底面厶PBC勺外心;
2、过底面的外心作底面的垂线;
3、外接球的球心必在该垂线上,利用轴截面计算出球心的位置
【法三:向量法】
【方法总结】
三棱锥外接球半径的常见解法:
1、补形法; 2 、轴截面法; 3 、向量法.
【练习巩固】
练习1 (陕西,2010)如图,在三棱锥P-ABC 中,刊丄平血丄丄加、且E4二2肋二2BC二2 ,
求其外接球的体积。

练习2 (全国卷,2010)已知三棱锥的各条棱长均为1,求其外接球的表面积。

练习3 (河北,二012)如图,在四面体ABCD 中MB二DC二俪,AD二BC二0D二AC二屈, 求其外接球的表面积。

练习4如图,已知三棱锥P-ABC中,PA丄底面ABC, PA=AB=AC=2, ZBAC二120 ,求其夕卜接球的半径。

【参考答案】
0A=0B=0C=0P
练习3 【补形法】
A
S = 47rR2 = 14TT。

三棱锥外接球半径常见解法

三棱锥外接球半径常见解法

特殊三棱锥外接球半径的常见求法【方法介绍】例 (江西改编)已知在三棱锥P-ABC 中, PA ± PB, PB 1 PC,PC ± PA, f\PA^2PB = 2PC = 2 , 求该三棱锥外接球的表面积.【法一:补形法】外接球半径等于长方体体对角线的一半关键是求出外接球的半径RR = —, S — 4 兀 R 2 = 6 兀 2注意:图中三棱锥的外接球与长方体外接球是同一个球。

【法二:轴截面法】1、 寻找底面△PBC 的外心;2、 过底面的外心作底面的垂线;3、 外接球的球心必在该垂线上,利用轴截面计算出球心的位置。

【法三:向量法】【方法总结】三棱锥外接球半径的常见解法:设外接球的球心坐标为: O (x , y , z ).由 OP = OA = OB = OC 可得:1、补形法;2、轴截面法;3、向量法.【练习巩固】练习1 (陕西,2010)如图,在二棱锥P-ABC 中_L 平面ABGC8,阳C61AB.且* 2AB = 2BC = 2 求其外接球的体积。

P练习2 (全国卷,2010)已知三棱锥的各条棱长均为工,求其外接球的表面积。

练习3 (河北,2012)如图,在四面体ABCD 中,M二DC二回,助二BC二6即二AC二屈求其外接球的表面积口.练习4如图, 面ABC, PA=A 接球的半径。

【参考答案】练习1 【补形法】R粤v-【轴截面法】R 二;Cl已知三棱锥P-ABC中,PA_L 底B=AC=2, NBAC=1201求其外C 1 B=九川二而r0A =OB=OC=OP,二q, v=3冗始二展冗R二四S二4次4【轴截面法】练习3 【补形法】庭H3 S = =―" 叵匕AO2 = AE2+ OE1R:号S=4-TT R2=14TTB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊三棱锥外接球半径的常见求法
【方法介绍】
【法一:补形法】
外接球半径等于长方体体对角线的一半
ππ642
6
2===
R S R ,
注意:图中三棱锥的外接球与长方体外接球是同一个球。

【法二:轴截面法】
1、寻找底面△PBC的外心;
2、过底面的外心作底面的垂线;
3、外接球的球心必在该垂线上,利用轴截面计算出球心的位置。

【法三:向量法】
设外接球的球心坐标为:)
,
,
(z
y
x
O.由




=
=
=OC
OB
OA
OP可得:
【方法总结】
三棱锥外接球半径的常见解法:
1、补形法;
2、轴截面法;
3、向量法.
【练习巩固】
【参考答案】
练习1 【补形法】
【轴截面法】
【轴截面法】
练习3 【补形法】。

相关文档
最新文档