七年级上探索与表达规律
北师大版七年级数学上册探索与表达规律课件
![北师大版七年级数学上册探索与表达规律课件](https://img.taocdn.com/s3/m/10ff5784cf2f0066f5335a8102d276a201296008.png)
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
规律: “M”形中 七数之和=7×中间数
北师大版七年级《数学》上册 3.5.1 探索与表达规律
北师大版七年级《数学》上册
第三章 整式及其加减
3.5.1 探索与表达规律
北师大版七年级《数学》上册 3.5.1 探索与表达规律
学情分析
本节内容是在学生学习了“用字母表示数”、“ 列代数式”、“去括号”、“合并同类项”等知识的基 础上进行的,它既是对前面所学知识的综合应用, 也是对这些知识的拓展与延伸,对学生体会数学建 模具有重要的作用。
拓展训练
1. 用火柴棒按下图中的方式搭图形。
①
②
(1) 按图示规律填空:
图形符号 ①
②
③
火柴棒根数 4
6
8
③
④
⑤
10
12
(2)按照这种方式搭下去,搭第n个图形需要多少根火柴?
2n+2或2(n+1)
北师大版七年级《数学》上册 3.5.1 探索与表达规律
考考你 视察图1至图5中小黑点的摆放规律,并按照这样的规 律继续摆放.记第n个图中小黑点的个数为y.解答下列 问题:
作业:
习题3.8第1、2题
随堂练习
1.照这样的规律摆下去,摆第7、8个正方形
需要多少颗棋子? 2.探究:摆第n个正方形
需要多少颗棋子?
北师大版七年级《数学》上册 3.5.1 探索与表达规律
北师大版七年级数学上册探索与表达规律课件
![北师大版七年级数学上册探索与表达规律课件](https://img.taocdn.com/s3/m/40ddde56ba68a98271fe910ef12d2af90242a82f.png)
a-8 a-7 a-6
a-1
a a+1
a+6 a+7 a+8
用式子表示九个数的关系: (a-8)+ (a-7) + (a-6) + (a-1) + a +
(a+1) + (a+6) + (a+7) + (a+8)= 9a.
规律六: 方框中九个数的和是正中间这个数的九倍.
创设情境,探索规律
尝试解决:
九数之和=9×中间数
创设情境,探索规律
九数之和=9×中间数 这个关系在任何一个月的日历中也成立吗? 如果用a表示中间数,请按前面找出的关系填出 框中另外8个数.
a
视察日历方框中九个数,四人小组讨论并用计算 器计算验证自己的结论,四人小组再任选一方框用计 算器验证结论是否成立.
创设情境,探索规律
用代数式填写,得到:
让老师来猜一猜!
创设情境,探索规律
游戏规则:你在心里想好一个两位数,将十
位数字乘2,然后加上3,再乘5,然后再加上个位 数字.把你的结果告知我,我就知道你心里想的两 位数.
(1)如果本来的两位数是12,则最后得到的 两位数是多少?如果最后得到的两位数是93 ,你 能求出本来的两位数吗?
27, 78.
规律四:
1 2 3 4 5 下一个比上一
6 7 8 9 10 11 12 个多6.
13 14 15 16 17 18 19
a
20 21 22 23 24 25 26
a+6
27 28 29 30 31
a+12
创设情境,探索规律
尝试解决: (1)一个数列上三个数之间有什么相等关系? (2)你能用数学符号表示出这个规律吗?
北师大版数学七年级上册(2024)探索与表达规律课件
![北师大版数学七年级上册(2024)探索与表达规律课件](https://img.taocdn.com/s3/m/c292de8a3086bceb19e8b8f67c1cfad6195fe9e5.png)
尝试练习
将连续的奇数1,3,5, 1 3 5 7 9 11
7…,排成如图数表,十 13 15 17 19 21 23
字框内有五个数。
4132、、十十若字字将设形框 十 中框内 字 间中五 形 的五个 框 数个数上为数的下a,之左如和 25 27 29 31 33 35
北师大版七年级上册
学习目标
1.能用代数式表示数与图形的变化规律.(重点) 2.进一步培养学生视察、分析、抽象、概括等思维 能力和应用意识.(难点)
导入新课
情境引入
请同学们伸出左手,一起 做下面的游戏:从大拇指开始, 像图中显示的这只手那样依次 数数字1,2,3,4,5,……, 请问数字20落在哪个手指上?
探知规律
如图,是用火柴棒拼成的图形。
(2)拼成第n个图形需要_(2_n__+_1_)根火柴棒。
(1) (2) (3)
(4)
图案编号
水平的火柴根数 倾斜的火柴根数 总的火柴根数
(1)
(2) (3) (4)
… 第n个
1 234
n
2 3 45
n+1
3 5 7 9 … 2n+1
探知规律
如图,是用火柴棒拼成的图形。
(2)拼成第n个图形需要_(2_n__+_1_)根火柴棒。
(图1)形的变(2化) 规律(问3)题要多视(察4)图形,从中 找图出案编排号 列(1)的规(2律) ,或(转3) 化为一(4)组数…字再第探n索个其
火柴根数 3 3+2×1 3+2×2 3+2×3 … 3+2×(n-1)
规律,要与图形的序号相联系。
七年级上册数学《探索与表达规律》课件-北师大版
![七年级上册数学《探索与表达规律》课件-北师大版](https://img.taocdn.com/s3/m/f7b3c5b00875f46527d3240c844769eae009a3d2.png)
a-1 aa-7 a+1
a+7
202X 年 星期日
12 月
日历
6
星期一
7
星期二
1 8
星期三 星期四
2
3
9
10
星期五
4 11
星期六
5 12
变式探 究(2)
13
14
15
16
17
20
21
22
23
24
27
28
29
30
31
18
19
25
26
在 H 形区域内,七个数之和与正中心的数有何关系?
所以, 3×3方框中, a-8 a-7 a-6
a 九数之和等于中间数 a-1 a+1
的九倍。
a+6a+7 a+8
(5) 你还能发现方框中九数之 间的其它关系吗?
a-8 a-7 a-6
a a-1
a+1
a+6 a+7 a+8
2 34
9 10 11
16 17 18
202X 年 星期日 12 月 日历
6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
探究活动三
(1) 日历中3×3方框内九数之和与 方框中正中间的数有何等量关系?
3.3.1探索与表达规律(第一课时)课件2024-2025学年北师大版数学七年级上册
![3.3.1探索与表达规律(第一课时)课件2024-2025学年北师大版数学七年级上册](https://img.taocdn.com/s3/m/ba1dad45a4e9856a561252d380eb6294dd8822d4.png)
合作交流
星期 日
星期 一
星期 二
1
星期 星期 星期 星期 三四五六
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Байду номын сангаас
19
20
21
22
23
24
25
26
27
28
29
30
31
(3) 这个关系对任何一个月的日历都成立吗?为什么?
成立
若日历表中某3×3方框中的中间一个数为a,请补全下表.
a-8 a-7 a-6 a-8+a-7+a-6+a-1+a+a+1
所以,这九个日期分别是9、10、11、16、17、 18、23、24、25.
例 从日历中任意框出3×3九个数之和为153,请问这九个日期 分别是几号?那能否使方框中9个数的和为144? 180呢
解:假设方框正中间的数为a,框中9个数的和为9a. 使得9a=144,所以a=16. 在图中能找到这样的方框,所以能使框中9个数的和为144.
13
14
15
16
七年级数学 第10讲 探索与表达规律(解析版)
![七年级数学 第10讲 探索与表达规律(解析版)](https://img.taocdn.com/s3/m/4385a2bdcf2f0066f5335a8102d276a2002960bd.png)
第10讲探索与表达规律1.初步掌握规探索的方法,并能对简单的规律进行用数学语言描述;2.培养学生对数和字母应用的理解,从而拓展学生的视野;3.掌握从特殊到一般、从个体到整体地观察。
分析问题的方法,尝试从不同角度探究问题,培养应用意识和创新意识知识点1:规律类:数字变化型一、等差规律:前后两项差几写成几×n,令n=1,在通过加减来凑第一个数。
例如:上面的第(3)列数,相差3,则先得到3n,而第1项是4,当n=1时,3n=3,3+1=4,所有第n项表示为3n+1.拓展延申:知识点2:规律型:图形变化类1.基本思想:图形规律数字规律2.基本方法:(1)从具体的实际问题出发,观察各个数量的特点及相互之间的变化规律.(2)由此及彼,合理联想,大胆猜想(3)善于类比,从不同事物中发现相似或相同点;(4)总结规律,得出结论,并验证结论正确与否;考点1:数字变化类例1.(2023•红河州二模)按一定规律排列的单项式:3a2,﹣5a4,7a6,﹣9a8,…,第13个单项式为()A.27a26B.﹣27a26C.25a26D.﹣25a25【答案】A【解答】解:观察这列单项式,可以发现系数的绝对值是从3开始的奇数,可表示为:(﹣1)n+1•(2n+1),字母a的指数为连续的偶数,可表示为:a2n,因此第n个单项式为:(﹣1)n+1•(2n+1)a2n,∴第13个单项式为:27a26,故选:A.【变式1】(2023•双柏县模拟)按一定规律排列的单项式:﹣x,5x2,﹣9x3,13x4,﹣17x5,…,第n个单项式是()A.(5n﹣4)(﹣x)n B.(5n﹣4)x nC.(4n﹣3)x n D.(4n﹣3)(﹣x)n【答案】D【解答】解:第n个单项式为:(4n﹣3)(﹣x)n.故选:D.例2.(2023•安徽模拟)观察以下等式:第1个等式:1×(2+4)+4×2=2×5+4,第2个等式:2×(6+4)+4×5=3×8+16,第3个等式:3×(12+4)+4×10=4×13+36,第4个等式:4×(20+4)+4×17=5×20+64,…按照以上规律,解决下列问题:(1)写出第5个等式:5×(30+4)+4×26=6×29+100;(2)写出你猜想的第n个等式:n[n(n+1)+4]+4(n2+1]=(n+1)(n2+4)+4n2(用含n的代数式表示),并证明.【答案】(1)5(30+4)+4×26=629+100;(2)n[n(n+1)+4]+4(n2+1]=(n+1)(n2+4)+4n2,证明见解答.【解答】解:(1)根据已给四个等式,可得第5个等式为:5(30+4)+4×26=629+100;(2)等式左边由两部分组成,第一部分是序号与比序号大1的数的积再加上4的和的序号倍,第二部分为序号的平方加1的和的4倍,可表示为:n[n(n+1)+4]+4(n2+1],等式右边也有两部分组成,第一部分为比序号大1的数乘以序号的平方与4的和,第二部分为序号平方的4倍,可表示为:(n+1)(n2+4)+4n2,因此猜想第n个等式为:n[n(n+1)+4]+4(n2+1]=(n+1)(n2+4)+4n2,证明:左边=n[n2+n+4]+4n2+4=n3+n2+4n+4n2+4=n3+5n2+4n+4,右边=n3+4n+n2+4+4n2=n3+5n2+4n+4,∵左边=右边,∴n[n(n+1)+4]+4(n2+1]=(n+1)(n2+4)+4n2.【变式2-1】(2023•霍邱县一模)观察以下等式:第1个等式:22﹣12=2×1+1,第2个等式:32﹣22=2×2+1,第3个等式:42﹣32=2×3+1,第4个等式:52﹣42=2×4+1,按照以上规律,解决下列问题:...(1)写出第6个等式:72﹣62=2×6+1.(2)写出你猜想的第n个等式:(n+1)2﹣n2=2n+1(用含n的等式表示),并证明.【答案】(1)72﹣62=2×6+1;(2)(n+1)2﹣n2=2n+1.【解答】解:(1)第6个等式是72﹣62=2×6+1,故答案为:72﹣62=2×6+1;(2)猜想:第n个等式是(n+1)2﹣n2=2n+1,证明:∵(n+1)2﹣n2=n2+2n+1﹣n2=2n+1,∴(n+1)2﹣n2=2n+1成立.故答案为:(n+1)2﹣n2=2n+1.【变式2-2】(2023•无为市三模)观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,……解决下列问题:(1)按照以上规律,写出第6个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明;(3)利用上述规律,直接写出结果:=4850.【答案】(1);(2);证明见解析;(3)4850.【解答】解:(1)第6个等式为,故答案为:;(2)第n个等式为,证明:左边=,右边=,∴左边=右边,∴等式成立;故答案为:;(3)=﹣×97=2++3++4++…+98+﹣×97=2+3+4+…+98=4850;故答案为:4850.例3.(2023•涡阳县二模)观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n 的等式表示),并证明.【答案】(1);(2),证明见解析.【解答】解:(1)由题意可得,第5个等式为.故答案为:.(2).证明:左边===,右边=,∵左边=右边,∴等式成立.【变式3】(2023•明光市一模)观察下列等式:①;②;③;④;…(1)写出第n个等式,并证明你的结论;(2)运用(1)中的结论计算.【答案】(1),证明见解析过程;(2).【解答】解:(1)∵①;②;③;④;…∴第n个等式为,理由:左边====,右边=,∴左边=右边,∴;(2)====.例4.(2023春•邳州市期中)给出下列算式:32﹣12=8=8×1;52﹣32=16=8×2;72﹣52=24=8×3;92﹣72=32=8×4;52﹣32=16=8×2,……(1)用含n的式子(n为正整数)表示上述规律并用所学的知识验证这个规律的正确性.(2)借助你发现的规律填空:1412﹣1392=560.(3)利用(1)中发现的规律计算:8×1+8×2+8×3+⋯+8×49+8×50=1012﹣1(或10200).【答案】(1)(2n+1)2﹣(2n﹣1)2=8n,验证见解析;(2)141;139;(3)1012﹣1(或10200).【解答】解:(1)(2n+1)2﹣(2n﹣1)2=8n,验证:∵左边=(2n+1)2﹣(2n﹣1)2=(4n2+4n+1)﹣(4n2﹣4n+1)=8n,右边=8n,∴左边=右边,∴(2n+1)2﹣(2n﹣1)2=8n;(2)由(1)可知,∵8n=560,∴n=70,2×70+1=141,2×70﹣1=139,故答案为:141;139;(3)由(1)可知:当n=49时,2×49+1=99,2×49﹣1=97,n=50,2×50+1=101,2×50﹣1=99,∴8×1+8×2+8×3+⋯+8×49+8×50=(32﹣12)+(52﹣32)+(72﹣52)+⋯+(992﹣972)+(1012﹣992)=32﹣12+52﹣32+72﹣52+⋯+992﹣972+1012﹣992=1012﹣1.故答案为:1012﹣1(或10200).【变式4】(2023•长丰县模拟)观察下列等式的规律,解答下列问题:第1个等式:12+22+32=3×22+2.第2个等式:22+32+42=3×32+2第3个等式:32+42+52=3×42+2.第4个等式:42+52+62=3×52+2.……(1)请你写出第5个等式:52+62+72=3×62+2.(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【答案】(1)52+62+72=3×62+2;(2)第n个等式:n2+(n+1)2+(n+2)2=3(n+1)2+2,见解答过程.【解答】解:(1)由题意得:第5个等式为:52+62+72=3×62+2.故答案为:52+62+72=3×62+2;(2)猜想的第n个等式:n2+(n+1)2+(n+2)2=3(n+1)2+2,证明:左边=n2+n2+2n+1+n2+4n+4=3n2+6n+5,右边=3(n2+2n+1)+2=3n2+6n+5,∴左边=右边,∴猜想成立.考点2:图形变化类例5.(2023•砀山县二模)某校教学楼前走廊用同样规格的黑白两种颜色的正方形瓷砖来铺设地面,图1表示地面的瓷砖排列方式.【观察思考】当黑色瓷砖有1块时,瓷砖的总数有9块(如图2);当黑色瓷砖有2块时,瓷砖的总数有15块(如图3);当黑色瓷砖有3块时,瓷砖的总数有21块(如图4);…;以此类推.【规律总结】(1)若该走廊每增加1块黑色瓷砖,则瓷砖的总数增加6块;(2)若这样的走廊一共有n(n为正整数)块黑色瓷砖,则瓷砖的总数为(6n+3)块;(用含n的代数式表示)【问题解决】(3)现总共有2025块瓷砖,若按此规律再建一条走廊,则黑色瓷砖有多少块?【答案】(1)6;(2)(6n+3);(3)黑色瓷砖有337块.【解答】解:(1)由题意知,每增加1块黑色瓷砖,则白色瓷砖增加5块,∴瓷砖的总数增加1+5=6(块),故答案为:6;(2)由题意知,有1块黑色瓷砖时,瓷砖的总数为9块;有2块黑色瓷砖时,瓷砖的总数为9+6=15块;有3块黑色瓷砖时,瓷砖的总数为9+6×2=21块;有4块黑色瓷砖时,瓷砖的总数为9+6×3=27块;∴一般性规律:有n块黑色瓷砖,瓷砖的总数为9+6×(n﹣1)=(6n+3)块;故答案为:(6n+3);(3)令6n+3=2025,解得n=337,∴黑色瓷砖有337块.【变式5-1】(2023•全椒县二模)如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,完成下面各题.(1)2节链条的总长度为 4.6cm;3节链条的总长度为 6.4cm;4节链条的总长度为8.2cm;(2)根据上述规律,n节链条的总长度为多少cm;(用含n的式子表示,不用说理)(3)一根链条的总长度能否为73cm?若能,请求出该链条由几节组成;若不能,请说明理由.【答案】(1)4.6;6.4;8.2;(2)(1.8n+1)cm;(3)能,由40节组成.【解答】解:(1)由题意得:1节链条的长度=2.8cm,2节链条的总长度=[2.8+(2.8﹣1)]=4.6cm,3节链条的总长度=[2.8+(2.8﹣1)×2]=6.4cm,4节链条的总长度=[2.8+(2.8﹣1)×3]=8.2cm,故答案为:4.6;6.4;8.2;(2)根据(1)可得,n节链条的总长度为2.8+(2.8﹣1)(n﹣1)=(1.8n+1)cm;(3)一根链条的总长度可以为73cm,设该链条由x节组成,根据题意得1.8x+1=73,解得x=40,∴总长度为73cm的链条由40节组成.【变式5-2】(2023•包河区二模)某旅游景区走廊的中间部分是用边长为1米的白色正方形地砖和彩色正方形(图中阴影部分)地砖铺成的,图案如图所示,根据图示排列规律,解答以下问题.(1)第4个图案L(4)有白色地砖15块地砖;第n个图案L(n)有白色地砖块(3n+3)地砖(用含n的代数式表示);(2)已知L(1)的长度为3米,L(2)的长度为5米,…,L(n)的长度为2023米,求图案L(n)中白色正方形地砖有多少块.【答案】(1)15,(3n+3);(2)3036.【解答】解:(1)∵第1个图案L(1)的白色地砖块数为:6,第2个图案L(2)的白色地砖块数为:6+3=6+3×1,第3个图案L(3)的白色地砖块数为:6+3+3=6+3×2,第4个图案L(4)的白色地砖块数为:6+3×3=15,…,第n个图案L(n)的白色地砖块数为:6+3(n﹣1)=3n+3,故答案为:15,(3n+3);(2)∵L(1)的长度为3米,L(2)的长度为5米,…,∴L(n)的长度为:(2n+1)米,∴当2n+1=2023时,解得:n=1011,∴L(1011)中白色地砖的块数为:3n+3=3×1011+3=3036.【变式5-3】(2023•安徽模拟)如图,下列图案都是由同样大小的基本图形⊙按一定规律所组成的,其中:第1个图案中基本图形的个数:1+2×2=5,第2个图案中基本图形的个数:2+2×3=8,第3个图案中基本图形的个数:3+2×4=11,第4个图案中基本图形的个数:4+2×5=14,….按此规律排列,解决下列问题:(1)写出第5个图案中基本图形的个数:17;(2)如果第n个图案中有2024个基本图形,求n的值.【答案】(1)17;(2)n=674.【解答】解:(1)由题意得:第5个图案中基本图形的个数:5+2×6=17,故答案为:17;(2)由题意得:第n个图形中基本图形的个数为:n+2(n+1)=3n+2,∵第n个图案中有2024个基本图形,∴3n+2=2024,解得:n=674.【变式5-4】(2023•金寨县一模)为了渲染新年喜庆氛围,某人民广场用鲜花摆出不同的造型,小明同学把每盆花用点在纸上表示出来,如图所示.[观察思考]第1个图形有4盆花,第2个图形有6盆花,第3个图形有8盆花,第4个图形有10盆花,以此类推.[规律总结](1)第5个图形有12盆花;(2)第n个图形中有(2n+2)盆花(用含n的代数式表示);[问题解决](3)现有2023盆花,若按此规律摆出一个图形,要求剩余花盆数最少,则可摆出第几个图形?【答案】(1)12;(2)(2n+2);(3)1010.【解答】解:第1个图形有(1+1)×2=4盆花,第2个图形有(2+1)×2=6盆花,第3个图形有(3+1)×2=8盆花,第4个图形有(4+1)×2=10盆花,第5个图形有(5+1)×2=12盆花,……第n个图形有(n+1)×2=(2n+2)盆花,(1)第5个图形有12盆花,故答案为:12;(2)第n个图形有(2n+2)盆花,故答案:(2n+2);(3)2n+2≤2023,解得:n≤1010.5,当n=1010时,2n+2=2022,2023﹣2022=1,所以2023盆花,要求剩余花盆数最少,则可摆出第1010个图形.例6.(2022秋•黔江区期末)(1)为了计算1+2+3+⋯+8的值,我们构造图形(图1),共8行,每行依次比上一行多一个点.此图形共有(1+2+3+⋯+8)个点.如图2,添出图形的另一半,此时共8行9列,有8×9=72个点,由此可得1+2+3+⋯+8=×(1+8)×9=36.用此方法,可求得1+2+3+⋯+20=210(直接写结果).(2)观察下面的点阵图(如图3),解答问题:填空:①1+3+5+⋯+49=625;②1+3+5+⋯+(2n+1)=(n+1)2.(3)请构造一图形,求(画出示意图,写出计算结果).【答案】(1)210;(2)625;(n+1)2;(3)1﹣.【解答】解:(1)1+2+3+…+20=(1+20)×20=21×10=210;故答案为:210;(2)由点阵图可知:一个数时和为1=12,2个数时和为4=22,3个数时和为9=32,…,n个数时和为n2.①∵1+3+5+…+49中有25个数,∴1+3+5+…+49=252=625.②∵1+3+5…+(2n+1)中有(n+1)个数,∴1+3+5…+(2n+1)=(n+1)2.故答案为:625,(n+1)2;(3)由题意画出图形如下:假定正方形的面积为1,由图可知=1﹣.【变式6-1】(2023•五华县校级开学)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把其中一个面积为的长方形等分成两个面积为的正方形,再把其中一个面积为的正方形等分成两个面积为的长方形,如此进行下去,….(1)试利用图形揭示规律,计算:=,并使用代数方法说明你的结论正确;(2)请你再设计一个能求出的值的几何图形.【答案】(1);(2)见解答.【解答】解:(1)由图可知,+…=1﹣=;证明如下:+…=+++...+=====;(2)如下图:【变式6-2】(2022秋•双牌县期末)【阅读】求值1+2+22+23+24+…+210解:设S=1+2+22+23+24+ (210)将等式①的两边同时乘以2得:2S=2+22+23+24+25+ (211)由②﹣①得:2S﹣S=211﹣1即:S=1+2=22+23+24+…+210=211﹣1【运用】仿照此法计算:(1)1+3+32+33+34+ (350)(2)1++++…+.(3)【延伸】如图,将边长为1的正方形分成4个完全一样的小正方形,得到左上角一个小正方形为S1,选取右下角的小正方形进行第二次操作,又得到左上角更小的正方形S2,依次操作2022次,依次得到小正方形S1、S2、S3、…、S2022.完成下列问题:①小正方形S2022的面积等于;②求正方形S1、S2、S3、…、S2022的面积和.【答案】(1);(2)2﹣;(3)①;②.【解答】解:(1)设S=1+3+32+33+34+…+350①,①×3,得:3S=3+32+33+34+35+…+351②,②﹣①,得:2S=351﹣1,则S=,即1+3+32+33+34+…+350=;(2)设S=1++++…+①,①×,得:S=++++…+②,②﹣①,得:﹣S=﹣1,∴S=2(1﹣)=2﹣,即1++++…+=2﹣;(3)∵S1=()2=,S2=S1=,S3=S2=,…,∴S2022=,故答案为:;②设S=S1+S2+S3+…+S2022=+++…+①,①×,得:S=+++…+②,①﹣②,得:S=﹣,∴S=(﹣)=,即S1+S2+S3+…+S2022=.例7.(2022秋•达川区期末)五一期间,某人民广场的一个公共区域用盆栽进行了美化,盆栽按如图的方式摆放,图中的盆栽被折线隔开分成若干层,第一层有1个盆栽,第二层有3个盆栽,第三层有5个盆栽,第四层有7个盆栽,…,以此类推,请观察图形规律,解答下列问题:(1)计算:1+3+5+…+99=2500;(2)拓展应用:求101+103+105+…+999的值.【答案】(1)2500;(2)247500.【解答】解:(1)根据题意可得,1+3+5+…+99=502=2500,故答案为:2500;(2)1+3+5+…+101+103+105+…+999=5002=250000,1+3+5+…+99=502=2500,101+103+105+…+999=1+3+5+…+101+103+105+…+999﹣(1+3+5+…+99)=250000﹣2500=247500,∴101+103+105+…+999的值为247500.【变式7-1】(2023•定远县一模)图1是由若干个小圆圈推成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共推了n层.将图1倒置后与原图1排成图2的形状,这样图2中每一行的圆圈数都是n+1.我们可以利用“倒序相加法”算出图1中所有圆圈的个数为:.(1)按照图1的规则摆放到第12层时,求共用了多少个圆圈;(2)按照图1的规则摆放到第19层,每个圆圈都按图3的方式填上一串连续的正整数:1,2,3,4,……,则第19层从左边数第二个圆圈中的数字是173.【答案】(1)78个;(2)173.【解答】解:(1)图1中所有圆圈的个数为:(个),当n=12时,(个),答:摆放到第12层时,求共用了78个圆圈;(2)图3中,第18层最右边的数字是:=171(个),则图3中第19层从左边数第二个圆圈中的数字是是:171+2=173(个),故答案为:173.【变式7-2】(2023•萧县一模)观察如图中用小黑点摆成的三角形,并根据图中规律回答相关问题.(1)第4个图形对应的等式为1+2+3+4+5=;(2)若第n个图形对应的黑点总数为66个,求n的值.【答案】(1)1+2+3+4+5=;(2)10.【解答】解:(1)由题意得:第4个图形对应的等式为:1+2+3+4+5=,故答案为:1+2+3+4+5=;(2)由题意得:第n个图形对应的等式为:1+2+3+…+(n+1)=,∴,解得:n=10.1.(2023•安徽)【观察思考】【规律发现】请用含n的式子填空:(1)第n个图案中“◎”的个数为3n;(2)第1个图案中“★”的个数可表示为,第2个图案中“★”的个数可表示为,第3个图案中“★”的个数可表示为,第4个图案中“★”的个数可表示为,……,第n个图案中“★”的个数可表示为.【规律应用】(3)结合图案中“★”的排列方式及上述规律,求正整数n,使得连续的正整数之和1+2+3+……+n等于第n个图案中“◎”的个数的2倍.【答案】(1)3n;(2);(3)11.【解答】解:(1)∵第1个图案中“◎”的个数为:3=1+2,第2个图案中“◎”的个数为:6=1+2+2+1,第2个图案中“◎”的个数为:6=1+2+2+3+1,…,∴第n个图案中“◎”的个数:1+2(n﹣1)+n+1=3n,故答案为:3n;(2)由题意得:第n个图案中“★”的个数可表示为:;故答案为:;(3)由题意得:=2×3n,解得:n=11或n=0(不符合题意).2.(2023•浙江)观察下面的等式:32﹣12=8×1,52﹣32=8×2,72﹣52=8×3,92﹣72=8×4,…(1)写出192﹣172的结果;(2)按上面的规律归纳出一个一般的结论(用含n的等式表示,n为正整数);(3)请运用有关知识,推理说明这个结论是正确的.【答案】(1)72;(2)(2n+1)2﹣(2n﹣1)2=8n;(3)见解答.【解答】解:(1)∵17=2×9﹣1,∴192﹣172=8×9=72;(2)由题意可得,(2n+1)2﹣(2n﹣1)2=8n;(3)∵(2n+1)2﹣(2n﹣1)2=[(2n+1)+(2n﹣1)][(2n+1)﹣(2n﹣1)]=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n×2=8n,∴(2n+1)2﹣(2n﹣1)2=8n正确.3.(2022•嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=3×4×100+25;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.【答案】(1)3×4×100+25;(2)=100a(a+1)+25,理由见解答过程;(3)5.【解答】解:(1)∵①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;∴③当a=3时,352=1225=3×4×100+25,故答案为:3×4×100+25;(2)=100a(a+1)+25,理由如下:=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25;(3)由题知,﹣100a=2525,即100a2+100a+25﹣100a=2525,解得a=5或﹣5(舍去),∴a的值为5.4.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【答案】(1)(2×5+1)2=(6×10+1)2﹣(6×10)2,(2)(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明过程见解答.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.5.(2020•安徽)观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:×(1+)=2﹣;(2)写出你猜想的第n个等式:×(1+)=2﹣(用含n的等式表示),并证明.【答案】见试题解答内容【解答】解:(1)第6个等式:×(1+)=2﹣;(2)猜想的第n个等式:×(1+)=2﹣.证明:∵左边=×==2﹣=右边,∴等式成立.故答案为:×(1+)=2﹣;×(1+)=2﹣.1.(2023•安徽二模)观察下列等式:第1个等式:1×2+1=3;第2个等式:2×3+2=8;第3个等式:3×4+3=15;第4个等式:4×5+4=24;…按照以上规律,解决下列问题:(1)写出第5个等式:5×6+5=35;(2)写出你猜想的第n个等式(用含n的等式表示,n≥1,且为整数),并证明.【答案】(1)5×6+5=35;(2)n(n+1)+n=n(n+2).证明见解析.【解答】解:(1)∵第1个等式:1×2+1=3;第2个等式:2×3+2=8;第3个等式:3×4+3=15;第4个等式:4×5+4=24;∴第5个等式:5×6+5=35;故答案为:5×6+5=35;(2)根据(1)猜想第n个等式:n(n+1)+n=n(n+2).证明:∵等式左边=n2+n+n=n2+2n,等式右边=n2+2n,∴左边=右边,∴n(n+1)+n=n(n+2).2.(2022秋•南票区期中)观察下列等式.第一个等式:1﹣=×;第二个等式:1﹣=×;第三个等式:1﹣=×;……按上述规律,回答下列问题:(1)请写出第四个等式:1﹣=×;(2)计算:(1﹣)×(1﹣)×…×(1﹣)×(1﹣).【答案】(1)1﹣=×;(2).【解答】解:(1)1﹣=×,故答案为:1﹣=×;(2)(1﹣)×(1﹣)×…×(1﹣)×(1﹣)=××××…××××=.3.(2022秋•大连月考)观察下列三行数:第一行:2,﹣4,8,﹣16,32,﹣64,…第二行:4,﹣2,10,﹣14,34,﹣62,…第三行:1,﹣2,4,﹣8,16,﹣32,…(1)第一行数的第9个数为512,第二行数的第9个数为514,第三行数的第9个数为256;(2)第二、三行数与第一行相对应的数分别有什么关系;(3)第一行是否存在连续的三个数使得三个数的和是﹣384?若存在,求出这三个数,若不存在,请说明理由.【答案】(1)512,514,256;(2)第二行的每一个数是第一行的对应数加2,第三行的每一个数是第二行的对应数的;(3)不存在.【解答】解:(1)∵2,﹣4,8,﹣16,32,﹣64,…,∴第一行的第n个数是(﹣1)n+1•2n,∴第9个数是29=512,第二行的每一个数是第一行的对应数加2,∴第二行的第n个数是(﹣1)n+1•2n+2,∴第二行的第9个数是514,第三行的每一个数是第二行的对应数的,∴第三行的第n个数是(﹣1)n+1•2n﹣1,∴第三行的第9个数是256,故答案为:512,514,256;(2)由(1)可得第二行的每一个数是第一行的对应数加2,第三行的每一个数是第二行的对应数的;(3)不存在连续的三个数使得三个数的和是﹣384,理由如下:设三个连续的数是(﹣1)n•2n﹣1,(﹣1)n+1•2n,(﹣1)n+2•2n+1,∴(﹣1)n•2n﹣1+(﹣1)n+1•2n+(﹣1)n+2•2n+1=﹣384,∴3×(﹣1)n•2n﹣1=﹣384,∴n﹣1=7,∴n=8,∵n是奇数,∴不存在连续的三个数使得三个数的和是﹣384.4.(2023•合肥模拟)将从1开始的连续自然数按以下规律排列:请根据上述规律解答下面的问题:(1)第6行有11个数;第n行有(2n﹣1)个数(用含n的式子表示);(2)若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6.①求(11,20)表示的数;②求表示2023的有序数对.【答案】(1)11,2n﹣1;(2)①120;②(45,87).【解答】解:(1)第6行有:2×6﹣1=11个数;第n行有(2n﹣1)个数,故答案为:11,2n﹣1;(2)①∵第11行有2×11﹣1=21个数,且最末尾的数是112=121,而(11,20)表示第11行的第20个数,∴(11,20)表示的数是121﹣1=120;②∵442=1936,452=2025,∴442<2023<452,∴2023位于第45行,∵第45行有45×2﹣1=89个数,而2023与2025相差2个数,∴2023位于第45行的第87个数,∴表示2023的有序数对是(45,87).5.(2023•蜀山区校级模拟)从2开始,连续的偶数相加,观察下列各式:2=12+1.2+4=22+2.2+4+6=32+3.2+4+6+8=42+4.…根据规律,解答下列问题:(1)写出第5个等式:2+4+6+8+10=52+5;(2)①写出第n个等式:2+4+6+…+2n﹣2+2n=n2+n;(用n表示)②计算:102+104+106+…+198+200.【答案】(1)2+4+6+8+10=52+5;(2)①2+4+6+…+2n﹣2+2n=n2+n;②7550.【解答】解:(1)由题意得:第5个等式为:2+4+6+8+10=52+5,故答案为:2+4+6+8+10=52+5;(2)①由题意得:第n个等式为:2+4+6+…+2n﹣2+2n=n2+n,故答案为:2+4+6+…+2n﹣2+2n=n2+n;②102+104+106+…+198+200=2+4+6+...+198+200﹣(2+4+6+ (100)=1002+100﹣(502+50)=10000+100﹣2500﹣50=7550.6.(2023春•邗江区月考)阅读材料:求1+2+22+23+24+…+22019的值.解:设S=1+2+22+23+24+…+22018+22019…①则2S=2+22+23+24+25+…+22019+22020…②②﹣①,得2S﹣S=22020﹣1即S=22020﹣1∴1+2+22+23+24+…+22019=22020﹣1仿照此法计算:(1)计算:1+3+32+33+34+ (32023)(2)计算:1++++…++=2﹣(直接写答案).【答案】(1)=;(2)2﹣.【解答】解:(1)设S=1+3+32+33+34+…+32023①,则3S=3+32+33+34+…+32023+32024②,②﹣①,得:3S﹣S=32024﹣1,即S=,∴1+3+32+33+34+…+32023=;(2)设S=1++++…++①,则S=+++…+++②,①﹣②,得:S﹣S=1﹣,即S=2﹣,∴+++…++=2﹣.故答案为:2﹣.7.(2023•安徽模拟)【数学阅读】计算:1+2+3+ (100)解:设S=1+2+3+6+…+100,①则S=100+99+98+…+1,②①+②(即左右两边分别相加),得:2S=(1+100)+(2+99)+(3+98)+…+(100+1)=100×101.所以,所以1+2+3+…+100=5050.【问题解决】利用上面的方法解答下面的问题:(1)猜想:1+2+3+…+n=(用含n的式子表示);(2)利用(1)中的结论,计算:1001+1002+ (2000)【答案】(1);(2)1500500.【解答】解;(1)设S=1+2+3+⋯+n,①则S=n+⋯+3+2+1,②①+②得2S=n+1+⋯+n+1+n+1,所以,故答案为:;(2)由(1)可知.8.(2023•瑶海区校级模拟)观察下列等式的规律,并解决问题:第1个等式:1+.第2个等式:2+.第3个等式:3+.……(1)请写出第4个等式:4+=52×;(2)请用含n的式子表示你发现的规律,并证明.【答案】(1)4+=52×;(2)规律:n+,见解答过程.【解答】解:(1)第4个等式为:4+=52×.故答案为:4+=52×;(2)规律:n+,证明:左边====(n+1)2×=右边,故规律成立.9.(2022秋•西山区期末)观察下列等式:a1=+=;a2=+=;a3=+=;…(1)猜想并写出第6个等式a6=.;(2)猜想并写出第n个等式a n=;(3)证明(2)中你猜想的正确性.【答案】(1);(2);(3)见解答过程.【解答】解:(1)由题意得:第6个等式a6=.故答案为:;(2)由题意得:第n个等式a n=.故答案为:;(3)(2)中的等式左边=====右边.故猜想成立.10.(2023•来安县二模)如图,某医院广场上的图案由红、白两色正方形地砖铺成,这些地砖除颜色外,形状、大小均相同.当中间的红色地砖只有1块时,四周的白色地砖有4块(如图1),当中间的红色地砖有4块时,四周的白色地砖有8块(如图2),以此类推.(1)当红色正方形地砖为16块时,白色地砖为16块;(2)当白色正方形地砖为n(n为4的整数倍)时,红色地砖为块;(3)已知该医院的另一个广场上也按此规律建图案,且红色地砖比白色地砖多用了140块,求这个广场上的图案分别用红、白两色地砖的块数.【答案】(1)16;(2);(3)这个广场上的图案分别用红、白两色地砖的块数分别为196和56块.【解答】解:(1)图1,红色正方形地砖为1=12块,白色地砖为4=(1×4)块;图2,红色正方形地砖为4=22块,白色地砖为8=(2×4)块;图3,红色正方形地砖为9=32块,白色地砖为12=(3×4)块;…图n,红色正方形地砖为n2块,白色地砖为4n块;∵n2=16,∴n=4(负值不符合题意,已舍去),∴白色地砖为4×4=16;(2)第x个图中白色正方形地砖为n,根据(1)的规律,得,∴红色地砖为;(3)设用红色地砖的块数为x2,则用白色地砖的块数为4x,根据的规律得:x2﹣4x=140,解得x=14,x=﹣10(不合题意,舍去),∴x2=142=196,4x=4×14=56,答:这个广场上的图案分别用红、白两色地砖的块数分别为196和56块.11.(2023•合肥模拟)丰艳花卉市场将深色和浅色两种花齐摆成如图所示的排列图案,第1个图案需要5盆花卉,第2个图案需要13盆花卉,第3个图案需要25盆花卉,以此类推.按照以上规律,解决下列问题:(1)第4个图案需要花卉41盆;(2)第n个图案需要花卉[n2+(n+1)2]盆(用含n的代数式表示);(3)已知丰艳花卉市场春节期间所摆的花卉图案中深色花卉比浅色花卉多101盆,求该花卉图案中深色花卉的盆数.【答案】(1)41;(2)[n2+(n+1)2];(3)2601.【解答】解:(1)第1个图案需要花卉的盆数为:5=1+4=12+22,第2个图案需要花卉的盆数为:13=2×2+3×3=22+32,第3个图案需要花卉的盆数为:25=3×3+4×4=32+42,第4个图案需要花卉的盆数为:4×4+5×5=42+52=16+25=41,故答案为:41;(2)由(1)可得:第n个图案需要花卉的盆数为:n2+(n+1)2;故答案为:[n2+(n+1)2];(3)设第m个花卉图案中深色花卉比浅色花卉多101盆,由题意得:(m+1)2﹣m2=101,解得:m=50,512=2601,答:该花卉图案中深色花卉的盆数为2601.12.(2023•庐阳区校级三模)将若干枚黑白棋子按照一定规律摆放成三角形阵,前5次摆放的情况如图所示.如果按照此规律继续摆放三角形阵,请解决下列问题:(1)第6个图案中,黑棋子的个数为15,白棋子的个数为21;(2)第n个图案中,黑棋子的个数为,白棋子的个数为3n+3;(用含n 的式子表示)(3)当摆放到第8个三角形阵时,该三角形阵中的黑棋子数第一次比白棋子多.【答案】(1)15,21;(2),3n+3;(3)8.【解答】解:(1)第6个图案中,黑棋子的个数为15,白棋子的个数为21;故答案为:15,21;(2)由图可知,白棋子的变化规律为每次增加3个,则第n个图案中白棋子的个数为3n+3,黑棋子的变化为:n=1时,0个;n=2时,0+1=1个;n=3时,0+1+2=3个;n=4时,0+1+2+3=6个;故第n个图案中黑棋子个数为0+1+2+3+...+(n﹣1)=•(n﹣1)=;故答案为:,3n+3;(3)=3n+3,n2﹣7n﹣6=0,解得:n=,n=(不符题意,舍去),∴>3n+3,n>,∵n取正整数,且黑棋子第一次比白棋子多,∴n=8.当摆放到第8个三角形阵时,该三角形阵中的黑棋子数第一次比白棋子多.故答案为:8.13.(2023•蜀山区一模)如图中,图(1)是一个菱形ABCD,将其作如下划分:第一次划分:如图(2)所示,连接菱形ABCD对边中点,共得到5个菱形;第二次划分:如图(3)所示,对菱形CEFG按上述划分方式继续划分,共得到9个菱形;第三次划分:如图(4)所示,…依次划分下去.(1)根据题意,第四次划分共得到17个菱形,第n次划分共得到(1+4n)个菱形;(2)根据(1)的规律,请你按上述划分方式,判断能否得到2023个菱形?为什么?【答案】(1)17;(1+4n);(2)不能,见解答过程.【解答】解:(1)∵第一次划分所得到的菱形的个数为:5=1+4,第二次划分所得到的菱形的个数为:9=1+4+4=1+4×2,第三次划分所得到的菱形的个数为:13=1+4+4+4=1+4×3,∴第四次划分所得到的菱形的个数为:1+4×4=17(个),第n次划分所得到的菱形的个数为:(1+4n)个,故答案为:17;(1+4n);(2)不能,理由如下:1+4n=2023,解得:n=505.5,故不能得到2023个菱形.14.(2023•蜀山区校级模拟)同样大小的黑色棋子按如图所示的规律摆放:(1)图5有多少颗黑色棋子?(2)若第(n+2)个图形比第n个图形中多2021颗棋子,试求n的值.【答案】(1)19;(2)1008.【解答】解:(1)图1中有1个黑色棋子;图2中有(1+2)+1=4个黑色棋子,比图1多3个;图3中有(1+2+3)+2=8个黑色棋子,比图2多4个;图4中有(1+2+3+4)+3=13个黑色棋子,比图3多5;图5中有(1+2+3+4+5)+4=19个黑色棋子,比图4多6个;∴图5有多少颗黑色棋子19个;(2)由(1)得:第(n+2)个图形比第n个图形中多(n+3)+(n+2)=(2n+5)颗棋子,∴2n+5=2021,解得:n=1008,所以n是值为:1008.15.(2023春•莱芜区月考)用同样规格的黑,白两种颜色的正方形瓷砖按如图所示的方式铺宽为1.5米的小路.(1)铺第6个图形用黑色正方形瓷砖25块,用白色正方形瓷砖14块;(2)按照此方式铺下去,铺第n个图形用黑色正方形瓷砖(4n+1)块,用白色正方形瓷砖(2n+2)块(用含n的代数式表示);(3)在(2)的基础上,若黑,白两种颜色的瓷砖规格都为(长为0.5米×宽0.5米),若按照此方式铺满一段总面积为24.75平方米的小路时,n是多少?【答案】(1)25,14(2)2n+2块.(3)16.【解答】解:(1)第1个图形中有1+4=5个黑色正方形瓷砖,有2+2=4个白色瓷砖;第2个图形中有1+4×2=9个黑色正方形瓷砖,有2+2×2=6个白色瓷砖;第3个图形中有1+4×3=13个黑色正方形瓷砖,有2+2×3=8个白色瓷砖;……,第n个图形中有(1+4n)个黑色正方形瓷砖,有(2+2n)个白色瓷砖;4n∴第6个图形中有25个黑色正方形瓷砖,有14个白色瓷砖;故答案为:19,14;(2)由(1)知:第n个图形中有(1+4n)个黑色正方形瓷砖,有(2+2n)个白色瓷砖,故答案为:(1+4n),(2+2n);(3)第n个图形中有(1+4n)个黑色正方形瓷砖,有(2+2n)个白色瓷砖,故第n个图形中有(1+4n)+(2n+2)=(6n+3)个正方形瓷砖;∴(6n+3)×0.25=24.75,解得:n=16.16.(2022秋•绥德县期末)如图,第1个图中有1颗棋子,第2个图中有5颗棋子,第3个图中有9颗棋子,第4个图中有13颗棋子,…,以此类推.(1)第6个图中有21棋子;(2)用含a的代数式表示第a个图中棋子的颗数;(3)第多少个图中有505颗棋子?【答案】(1)21个;(2)4a﹣3;(3)第127个图中有505棋子.【解答】解:(1)第6个图中有1+4×(6﹣1)=21(个),故答案为:21;(2)用含a的代数式表示第a个图中棋子的颗数为1+4(a﹣1)=4a﹣3;(3)由(2)可知,4a﹣3=505,解得a=127,答:第127个图中有505棋子.17.(2022秋•长春期末)【方法指引】利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形或图形之间的关系,这种思想方法称为数形结合.【方法生成】将一个边长为1的正方形纸片分割成若干个部分,请利用数形结合的思想解决下列问题:(1);(2);(3);【方法迁移】(4)=1﹣;【灵活运用】(5)=1﹣.【答案】(1);(2);(3);(4)1﹣;(5)1﹣.【解答】解:(1);(2);(3);【方法迁移】(4)=1﹣;【灵活运用】(5)=1﹣.故答案为:(1);(2);(3);(4)1﹣;(5)1﹣.18.(2023•定远县校级二模)为美化市容,某广场要在人行雨道上用10×20的灰、白两色的广场砖铺设图案,设计人员画出的一些备选图案如图所示.。
3.3探索与表达规律(教案)北师大版(2024)数学七年级上册
![3.3探索与表达规律(教案)北师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/a857be52f02d2af90242a8956bec0975f565a457.png)
3.3探索与表达规律1.探索数量关系,运用数学符号表示规律;2.通过运算验证规律;3.培养学生自主探究与合作交流的能力.重点探究数量关系,运用代数式表示规律的能力.难点用代数式表示实际问题中的规律.一、导入新课课件出示杨辉三角图,提出问题:你能猜想中间的数字是几吗?两边的呢?你能尝试写出下一层的数字吗?你是如何得到的?学生独立完成,教师点评.教师:这节课我们将一起探究数学中的规律.二、探究新知1.探索图形中的规律课件出示教材第96页第1个日历图.教师引导学生观察日历图,通过观察找到日历中每一行、每一列、每一条对角线上相邻两个数之间的关系,并提出问题:(1)日历图的套色方框中的9个数之和与该方框正中间的数有什么关系?学生独立思考后举手回答,教师点评.(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?学生小组讨论完毕后,派代表回答,教师引导学生验证结论的正确性并点评.(3)这个关系对任何一个月的日历都成立吗?为什么?学生小组讨论,并进行验证,找出一般性规律,派代表汇报讨论结果,教师点评.(4)你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示.学生独立思考,总结关系,然后小组内分享交流结果并汇报,最后由教师进行总评.课件出示教材第97页第2个日历图,提出问题:(1)如果将方框改为十字框,你能发现哪些规律?如果改为H形框呢?(2)你还能设计其他形状的包含数字规律的数框吗?学生小组讨论交流,教师点评.2.探究数字中的规律小亮和小丽在玩个小游戏.你在心里想好一个两位数,将这个两位数的十位数字乘2,然后加3,再将所得的和乘5,最后将得到的数加你想的那个两位数的个位数字.把你的结果告诉我,我就知道你心里想的两位数.学生讨论交流,共同探究其中的规律,从而激发起学生的学习兴趣.让学生以小组为单位,设计类似的数字游戏,并解释其中的道理.(1)一个三位数能否被3整除,只要看这个数的各数位上的数字之和能否被3整除.你能说明其中的道理吗?(2)一个四位数能否被3整除是否也有这样的规律?请说明理由.三、课堂练习1.教材第98页“随堂练习”.四、课堂小结通过本节课的学习,你有什么收获?找规律的一般步骤和方法:面对具体问题,首先对它的特例进行分析,然后猜想其规律,再用适当的代数式进行表示,最后检验得出结论.五、课后作业教材第98~99页第1,2题.课堂上,通过对日历的观察与分析,从不同角度进行思考,去探索日历中数与数之间的变化规律,用本章学习过的代数式表示规律;再以玩游戏的方式,让学生进一步巩固发现规律、用代数式表示规律的方法,并运用发现的规律来解决一些简单的问题,使学生体会数学就是一个发现规律、运用规律的过程,以此来激发学生的学习兴趣.本节课让学生通过动手实践与合作交流来完成对规律的探索、表达和验证过程,让学生充分展示自我、表现自我,在学习的过程中学会竞争与合作,增强团队互助合作的精神,提高学生的整体数学水平.☆问题解决策略:归纳1.能够利用从特殊到一般的归纳方法,从而发现数学结论、解决数学问题;2.体验从特殊到一般,再到特殊的数学思想.重点学会从特殊到一般的归纳方法.难点利用从特殊到一般的归纳方法解决问题.一、导入新课走近游乐园(1)一首永远唱不完的儿歌,你能用字母表示这首儿歌吗?1只青蛙1张嘴,2只眼睛4条腿,扑通1声跳下水.2只青蛙2张嘴,4只眼睛8条腿.扑通一声跳下水,3只青蛙3张嘴,6只眼睛12条腿,扑通1声跳下水……(2)联欢会上,小明按照4个红球、3个黄球、2个绿球、1个白球的顺序把气球串起来装饰会场,第52个气球是什么颜色?教师提出问题引导学生进行解决,初步感受探索规律.二、探究新知1.提出问题“低多边形风格”是一种数字艺术设计风格.它将整个区域分割为若干三角形,通过把相邻三角形涂上不同颜色,产生立体及光影的效果,随着三角形数量增加,效果更为斑斓绚丽.将长方形区域分割成三角形的过程是:在长方形内取一定数量的点,连同长方形的4个顶点,逐步连接这些点,保证所有连线不再相交产生新的点,直到长方形内所有区域都变成三角形.如图3-10,当长方形内有1个点时,可分得4个三角形;当长方形内有2个点时,可分得6个三角形(不计被分割的三角形).问题:当长方形内有35个点时,可分得多少个三角形?2.理解问题(1)先引导学生动手画一画,感受分割得到三角形的过程.(2)已知条件是什么?目标是什么?3.拟订计划(1)直接研究“长方形内有35个点”的情形,你遇到了什么困难?(2)哪些情形容易研究?从中你能发现什么规律?(3)你发现的规律正确吗?你能给出合理的解释吗?4.实施计划(1)先研究长方形内有三个点、四个点的情形,点数较少,易操作.(2)通过几种简单情形的数据,发现规律:长方形内点的个数每增加1,三角形的个数增加2.(3)得出结论:当长方形内有35个点的时候,分得的三角形个数是:4+2×34=725.回顾反思(1)从特殊到一般,当长方形内有n个点时,分得的三角形个数是多少?用含n的代数式来表示.归纳:4+2×(n-1)=2n+2(2)从一般再到特殊,当长方形内有100、1000、10000个点时,分得的三角形个数是多少?总结:在运用归纳策略寻找规律时,要先在若干简单情形中寻找相应的规律.初步发现规律后,可以通过更多的情形验证,再考虑一般情况.最后,试着给出合理的解释,并用数学语言简洁地表达规律.三、课堂练习教材P102~P103第1~4题.四、课堂小结本节课你有哪些收获呢?五、课后作业教材P107~P108第17,18,19题.本节课的教学过程中,教师通过设计不同的情景活动,引导学生去猜测,发现其中的规律,并尝试用代数式解释这个规律,让同学们体验从特殊到一般的教学思想.整个课堂同学们积极参与,合作交流,提高了他们探索、发现和归纳的能力.。
(2024秋新版本)北师大版七年级数学上册 《 探索与表达规律》PPT课件
![(2024秋新版本)北师大版七年级数学上册 《 探索与表达规律》PPT课件](https://img.taocdn.com/s3/m/086ce942640e52ea551810a6f524ccbff121cad9.png)
课堂检测
基础巩固题
1.用棋子摆出下列一组“口”字,按照这种方法摆下去,则 摆第n个“口”字需用棋子( A )
A.4n枚 C.(4n+4)枚
B.(4n-4)枚 D.n2 枚
课堂检测
基础巩固题
2.用正方形套住日历中的任意 9 个数,若中间的数是 14, 则这 9 个数的和是__1_2_6__.
课堂检测
如果用a,b分别表示一个两位数的十位数字和个位数字, 那么这个两位数可以表示为10a+b ,则可得,
5(2a+3)+b=10a+b+15
规律:结果为原两位数与15的和.
探究新知
方法归纳
用代数式表示数的变化的规律: (1)数字为整数,考虑相邻两数的和、差、积、商、符号等方面是否存在
规律,也可以是奇、偶、平方等方面的规律; (2)数字为分数,可分别观察分子、分母的变化规律及它们之间的联系; (3)若表示数字变化规律的是等式(或表格),可将每个等式对应写好,
=7+13+14+15+21 =70 5×中间数 =5 ×14
=70
规律: 十字形中五数之和=5×中间数.
探究新知
日一二三四五六
H形中七数之和
1234 5
=10+12+17+18+19+24+26
6 7 8 9 10 11 12
=126.
13 14 15 16 17 18 19
7×中间数=7×18=126.
北师大版 数学 七年级 上册
3.3 探索与表达规律 (第1课时)
导入新知
请同学们伸出左手,一起做下面的游 戏:从大拇指开始,像图中显示的这只手 那样依次数数字1,2,3,4,5,……, 请问数字20落在哪个手指上?
探索与表达规律课件 2024-2025学年北师大版数学七年级上册
![探索与表达规律课件 2024-2025学年北师大版数学七年级上册](https://img.taocdn.com/s3/m/86d2217c182e453610661ed9ad51f01dc3815702.png)
单击此处编辑母版文本样式
数字游戏题 阅读课本第97页“随堂练习”之后和第98页“随堂练习”之前 的内容,思考下列问题. 1.设该游戏中心里想的两位数的十位数字是a,个位数字是b, 请你表示出这个两位数,并计算这个两位数经过游戏中的运算 之后的结果. 10a+b,(2a+3)×5+b=10a+b+15.
解:心里想的那个数分别是5,12,18,告诉老师的结果是 心里想的那个数的2倍.
单击此处编辑母版文本样式数字规律例1 Nhomakorabea观
察
式:12+1=1×2,22+2=2×3,32+3=3×4,
写出第4个等式,并写出第n个等式.
下
列
各
……按此规律
解:42+4=4×5;第n个等式是n2+n=n(n+1).
单击此处编辑母版文本样式
单击此处编辑母版文本样式
2.若将日历图中的方框改为十字形,你能发现哪些规律?如 果改成“H”形框呢?
在十字形框中,设框正中间的数为a,则这5个数之和为5a;在 “H”形框中,设框正中间的数为a,则这7个数之和为7a.
单击此处编辑母版文本样式
3.仿照上面的方法,请你在日历图中设计一个其他形状的方 框,你能发现什么规律?
合作探究 单击此处编辑母版文本样式
探索、表达规律 阅读课本第96页至第97页“随堂练习”之前的内容,思考下列 问题. 1.在日历图中,若方框中有9个数,你认为设哪个数为a时求这 9个数之和最简便呢?根据你所设的未知数,你能求出这9个数之 和吗?
单击此处编辑母版文本样式
设方框正中间的数为a最简便,这9个数之和:(a-8)+(a7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8)=9a.
3.3探索与表达规律(一)——图形变化类2024-2025学年北师大版(2024)数学七年级上册
![3.3探索与表达规律(一)——图形变化类2024-2025学年北师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/102ce4b7b04e852458fb770bf78a6529657d3533.png)
探索与表达规律(一) ——图形变化类
·数学
1.(2022新课标)了解代数推理. 2.能用代数式表示并借助代数式运算验证所探索规律的一 般性,并对具体现象做出解释.
抽象能力 运算能力 推理能力 应用意识
·数学
探索规律的一般方法 (1)从具体的、实际的问题出发,观察各个数量的特点及相 互之间的变化规律; (2)由此及彼,合理联想,大胆猜想; (3)善于类比,从不同事物中发现其相似或相同点; (4)总结规律,作出结论,并验证结论正确与否; (5)在探索规律的过程中,要善于变换思维方式,达到事半 功倍的效果.
以采用横着看、竖着看、斜对角看等方法,有时题目的问题
也是找规律的方向.
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
·数学
2.(北师7上P96)观察如左图所示的日历图. (1)日历图中的数有什么规律? 横着看:每横行中相邻两数相差 1 ; 竖着看:每竖行中相邻两数相差 7 ; (2)日历图的套色方框中的9个数之和与该方框正中间的数有 什么关系?
·数学
(1)框中的四个数的关系是 对角两数的和相等 ; (2)在图中任意画一个类似(1)中的框,设左上角的一个数为x, 那么其他三个数怎样表示?你能求出这四个数的和吗?
解:(2)其他三个数分别为x+2,x+8,x+10,四个数的和 为x+(x+2)+(x+8)+(x+10)=4x+20.
3.3探索与表达规律 课件(共23张PPT) 北师大版初中数学七年级上册
![3.3探索与表达规律 课件(共23张PPT) 北师大版初中数学七年级上册](https://img.taocdn.com/s3/m/de9dc2764a73f242336c1eb91a37f111f0850d6e.png)
情境导入
观察下图日历,请你回答以下问题:
日 一二三四五六 1234
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
(1)横向相邻的数之间的 关系是什么?
后一个数比前一个数多1.
达
规
律
探索数字与图形之间的规律的过程:
发现规律→表示规律→揭示规律.
家庭作业
教科书第100页(习题3.9) 第2、3题
(3)斜下方三个相邻的数 之间的关系是什么?
右下比左上的数多8
用字母表示: a-8,a,a+8 a-8+a+a+8=3a
斜下方三个相邻数的和是中间的数的3倍.
情境导入
观察下图日历,请你回答以下问题:
日 一二三四五六 1234
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
(2)纵向相邻的数之间的 关系是什么?
下边一个数比上边一个数多7.
用字母表示: a-7,a,a+7 a-7+a+a+7=3a
纵向相邻三个数的和是中间的数的3倍.
情境导入
观察下图日历,请你回答以下问题:
日 一二三四五六 1234
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
我的结果是93
那你心里 想的是78.
我的结果是27
那你心里 想的是12
3.3探索与表达规律第1课时探索并表达规律课件北师大版(2024)数学七年级上册
![3.3探索与表达规律第1课时探索并表达规律课件北师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/83c8d9b1112de2bd960590c69ec3d5bbfc0ada0a.png)
之间的其他关系吗?用代数式表示。 期 期 期 期 期 期 期 日一二三四五六
用代数式表示
12345 6 7 8 9 10 11 12
a-8 a-7 a-6
13 14 15 16 17 18 19 20 21 22 23 24 25 26
a-1 a a+1
27 28 29 30 31
a+6 a+7 a+8
(1)日历图中的数有什么规律?
左右相邻的数字相差1, 上下相邻的数字相差7。 (答案不唯一)
新课导入
观察下图所示的日历图,回答下列问题:
星星星星星星星 期期期期期期期 日一二三四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
星星星星星星星 期期期期期期期 日一二三四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
a-8+a-7+a-6-a-1+a+a+1+a+6+a+7+a+8=9a
新课导入
(4)你还能发现这样的方框中9个数 星 星 星 星 星 星 星
所以这个月的第一个星期日是2号。
合作探究
(1)如果将方框改为十字形框,你能发现哪些规律?如果改为“H”
形框呢?它们有什么共同规律?
十字形框中五个数之和是该框中 正中间数的5倍;
“H”形框中七个数之和是该框中 正中间数的7倍。
星星星星星星星 期期期期期期期 日一二三四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
探索与表达规律课件-七年级数学上册(北师大版)
![探索与表达规律课件-七年级数学上册(北师大版)](https://img.taocdn.com/s3/m/b7c2f80df11dc281e53a580216fc700abb685226.png)
新课讲授
典例分析
例2.正整数按下图的规律排列,则第20行,第21列的数字是_3_8_0_.
新课讲授
典例分析
例3.将棱长为1的正方体层层叠放如图所示,问第(5)个、第(6)个 图形各需多少个正方体?
解:第(5)个图形需1+(1+2)+(1+2+3) +(1+2+3+4)+(1+2+3+4+5)= 35(个)正方体.同理,第(6)个图形需56个 正方体.
新课讲授
(3)这个关系对任何一个月的日历都成立吗?为什么?
成立
星星星星星星星 期期期期期期期 日一二三四五六
设日历中间的某数为a,则月历中数 的排列规律:
a–8 a–7 a–6
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19
a–1 a
a+1
a+6 a+7 a+8
12345 6 7 8 9 10 11 12 套色方框9个数之和是90,是正中间的 13 14 15 16 17 18 19 数10的9倍. 20 21 22 23 24 25 26 27 28 29 30 31
新课讲授
星期 日
6 13 20 27
星期 一
7 14 21 28
星期 二 1 8 15 22 29
星期 三 2 9 16 23 30
星期 四 3 10 17 24 31
星期 五 4 11 18 25
星期 六 5 12 19 26
(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?
套色方框中9个数之和是144,是正中心数16的9倍.
a-8+a-7+a-6-a-1+a+a+1+a+6+a+7+a+8=9a
3.3探索与表达规律(第2课时+表达规律)2024-2025学年北师大版(2024)数学七年级上册
![3.3探索与表达规律(第2课时+表达规律)2024-2025学年北师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/a67cf0b89a89680203d8ce2f0066f5335b816715.png)
无关
知识讲解
例 猜数游戏。 你在心里想好一个两位数,将十位数字乘2,然后加3,再将所得 新数乘5,最后将得到的数加原来两位数的个位数字。把你的结 果告诉我,我就知道你心里想的两位数。 (1)想好几个两位数,并按上述方法得到结果,比较它们之间 的关系,你发现有什么规律? (2)你能用语言描述你的发现吗? (3)请用字母表达并借助代数式的运算解释其中的道理。
随堂训练
2.猜数游戏
请你随便想一个数,并将此数乘5加7,然后再将结果
乘2减4,你将最后结果告诉我,我心里将这个结果减
10,再除以10,我就能知道你想的数.你能用字母表达并
借助代数式的运算解释其中的道理吗?
解:设心里想的数为a,根据游戏规则可得 {[(5a+7)×2-4]-10}÷10=(10a+14-4-10)÷10 =10a÷10=a。根据游戏规则最后得到的数与心里想
随堂训练
1.甲、乙两同学进行数字猜谜游戏:甲说一个数a的相反 数就是它本身,乙说一个数b的倒数也等于它本身,请你 猜一猜|a-b|= 1 。
解析:相反数就是它本身的数是0;倒数等于它
本身的数是1或-1。当a=0,b=1时,|a-b|=1; 当a=0,b=-1时,|a-b|=1。总之|a-b|=1。
3-2+(3-2)
3+2+1-(3-2)
3-1
结果得出中间一堆牌现有的张数
3+2+1-(3-2)=5
游戏中发现中间一堆牌的最终结果都是5张。
知识讲解
如果用a(a>2)表示第一次分发的每堆牌的张数,上述规律还存 在吗?
出示表2:
操作步骤
代数表达
左
北师大版(2024新版)七年级数学上册教案:3.3 探索与表达规律
![北师大版(2024新版)七年级数学上册教案:3.3 探索与表达规律](https://img.taocdn.com/s3/m/3234f3daed3a87c24028915f804d2b160b4e86c8.png)
《探索与表达规律》教学设计学习目标1.能分析日历和图形问题中的简单数量关系,并会用代数式表示.2.通过观察日历和图形、交流分析数量关系的过程,提高学生分析问题和解决问题的能力.重点分析实际问题中的数量关系.难点用代数式表示实际问题中的数量关系.第一环节情境引入课题请同学们随便想一个自然数,将这个数乘5减7,再把结果乘2加14,老师一定知道你的结果的个位数字是几?你知道为什么吗?(设计意图:使学生体会到数学中的规律性以及用代数式表示规律的可行性与应用性,预计3分钟)教师:这节课我们将一起探究日历和图形中的规律.第二环节合作探究日历中的规律探究活动1 请同学们认真观察日历表,回答下列问题:(1)请找出同一横线上三个相邻数之间的关系;(2)请找一找竖列三个相邻数的关系;(3)请找一找左上、右下对角线上三个相邻数的关系;(4)请找一找左下、右上对角线上三个相邻数的关系.你能用字母表示这些关系吗?(设计意图:用问题引导学生的思考,从特殊入手,发现规律。
让学生体会用字母表示规律的思维过程,5分钟)探究活动2(1)日历红色方框中的9个数之和与该方框正中间的数有什么关系?(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?(3)这个关系对任何一个月的日历都成立吗?为什么?(4)你还能发现这样的方框中的9个数之间的其他关系吗?用代数式表示.(设计意图:教师示范验证过程,规范学生的数学推理的书写过程.预计8分钟)探究活动3(1)如果将方框改为十字形框,你能发现哪些规律?(2)你还能设计其他形状的包含数字规律的数框吗?(3)如果有一个如第1问的十字形框中的5个数的和为110,则其中最小的数是多少?这5个数的和能为121吗?为什么?(4)你能根据这个十字形数框提出问题解答吗?(设计意图:教师讲解后让学生及时练习,有助于对知识的掌握与巩固,第2问给学生表达的机会,锻炼其提出问题解决问题的能力,预计7分钟)小结:从日历中的数这个具体问题入手,通过观察、分析、比较、猜想得出规律,表示出规律,并利用规律解决了简单问题.第三环节探究图形中的规律探究活动4创新1 班要上一节主题班会,需要重新摆放桌椅,按照班委会要求准备了充足的桌子(一张桌子坐6人),根据以下问题探究规律.1.按图(1)的方式摆放餐桌和椅子,完成下表桌子张数12345…n可坐人数(设计意图:由贴近生活的情景问题开始,由学生自主探索,经历观察、比较、归纳、猜想、验证,了解探索规律的过程)2.若按图2 的方式摆放餐桌和椅子,完成下表:(设计意图:巩固加深学生对探索规律的过程和方法的理解):3.能力提升:问题1:班委提出利用8张这样的桌子想要坐更多的人,应选择哪种方法摆放?问题2:现在有40张这样的桌子,若按照第一种摆放方式,每8张拼成1张大桌子,一共可以坐______人.问题3:如果有8n张桌子,仍然按第一种规律8张拼成一张大桌子,此时桌子周围可以坐多少人?你是怎么想的?你能根据这个图形提出问题并解答吗?(设计意图:通过这几个问题,加大了题目的开放性,不仅在探索过程中培养了学生的创造能力,也使学生在对数学的生活化和生活的数学化都有较好的体验,预计15分钟)第四环节学生总结收获探索规律的方法和步骤是什么呢?(教师分析)通过本节课的学习,你有什么收获?(设计意图:给学生表达的机会,培养学生及时归纳总结知识的方法的好习惯,3分钟)第五环节学以致用mm的黑白两种颜色的大理石地砖,按如图的方1.某展览馆选用规格为600600式铺设通向展厅的走廊地面,依据上图规律,第4个图形需要黑色大理石地砖________块,第n个图形中需要黑色大理石地砖________块.2.下面是用棋子摆成的“小房子” ,摆第10个这样的“小房子” 需要多少枚棋子?摆第n个这样的“小房子”呢?你是如何得到的?3.将连续的奇数1,3,5,7,9…排成如图所示的数表.(1)十字形框中的五个数之和与中间数17有什么关系?(2)设十字框中间的奇数为a,用含a的代数式表示框中五个奇数之和为______.(3)若将十字形框上下左右移动,可框住另外五个数,这五个数的和还有上述规律吗?(4)已知被十字框框中的五个奇数之和为6025,则十字框中间的奇数是______.(5)被十字框框中的五个奇数之和能等于2019吗?能等于2015吗?说说你的理由.结语:同学们,把你的年龄的两位数的十位与个位对调,然后相减,得到一个数,记下这个数,我知道你得到的数一定能被9整除. 同学们试一试,想知道为什么吗?下节课我们将探索其中的规律.。
3.3+探索与表达规律+课件2024-2025学年北师大版(2024)数学七年级上册
![3.3+探索与表达规律+课件2024-2025学年北师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/943802957d1cfad6195f312b3169a4517623e565.png)
谢谢
(2)请同学们找一找右上左下、左上右下对角线上三个相邻数的关系.
左上右下对角线上三个相邻数的关系:下一行比上一行多8. 左下右上对角线上三个相邻数的关系:下一行比上一行多6.
知识点二:解决日历中的数
(1)日历图的套色方框中的9个数之和 与该方框正中间的数有什么关系?
(2)这个关系对其他这样的方框成立吗? 你能用代数式表示这个关系吗?
星期 星期 星期 星期 星期 星期 星期 日一二三四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
同一横行上相邻三个数之间的关系:相差1, 竖列上三个相邻数的关系:相差7.
知识点一:日历中的数字规律
解:
a-8
a-7
a-6
a-1
a
a+1
a+6
a+7
a+8
(a-8)+(a-7)+(a-6)+(a-1) +a+(a+1)+(a+6)+(a+7)+(a+8)=9a.9个数 的和是中间这个数的9倍.
当是“十字型”“H型”“M型”时, 周围数字与中间数字有什么关系?
“十”字形:5个数的和是中间这个数的5倍; “H” 形和“M型”:7个数的和是中间这个数的7倍;
新壹 课 导 入
目录
讲贰 授 新 知
当叁 堂 训 练
课肆 堂中的数字规律 (1)请找出同一横行上三个相邻数、竖列上三个相邻数之间的关系:
星期 星期 星期 星期 星期 星期 星期 日一二三四五六
数学七年级北师大版上册3.5探索与表达规律课题:探索规律(教案)
![数学七年级北师大版上册3.5探索与表达规律课题:探索规律(教案)](https://img.taocdn.com/s3/m/cc55b23f0a1c59eef8c75fbfc77da26925c59684.png)
-解决实际问题:将数列规律应用于解决具体问题,如计算数列的第n项、数列的和等。
举例说明:
-通过观察数列2, 5, 8, 11, 14...,学生需要能发现这是一个等差数列,每一项与前一项的差是3。
-学生应学会用代数式表示等差数列的通项公式,如an = a1 + (n - 1)d,其中a1是首项,d是公差,n是项数。
在学生小组讨论时,我尝试作为一个引导者,提出开放性的问题来启发学生思考。这种方法在一定程度上是有效的,但我感觉还可以进一步优化问题设计,让学生的思考更加深入,更好地激发他们的创新思维。
在今后的教学中,我计划这样做:
1.使用更多的多媒体教学资源,如动画和图表,来直观展示数列的规律。
2.设计更多的互动环节,让学生在实际操作中感受数列的变化,提高他们的参与度和兴趣。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解数列的基本概念。数列是由按照一定规律排列的一列数构成的。它是数学中非常重要的一部分,可以帮助我们预测和解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了数列在计算物体下落距离中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调等差数列和等比数列这两个重点。对于难点部分,比如等差数列的通项公式和等比数列的求和公式,我会通过举例和比较来帮助大家理解。
数学七年级北师大版上册3.5探索与表达规律课题:探索规律(教案)
一、教学内容
本节课选自《数学》七年级北师大版上册第三章第五节“探索与表达规律”,课题为“探索规律”。教学内容主要包括以下两个方面:
1.梳理数的规律:通过观察数列,引导学生发现和总结数列中的规律,如等差数列、等比数列等。
3.3探索与表达规律第2课时(北师大版2024)
![3.3探索与表达规律第2课时(北师大版2024)](https://img.taocdn.com/s3/m/8b23d3716fdb6f1aff00bed5b9f3f90f76c64d24.png)
课堂小结
本节课你学习了什么?本节课你有哪些收获?
探索与表达规律:
具
体
问
题
观
察
、
比
较
猜
想
规
律
表
示
规
律
验
证
规
律
得
出
结
论
成立
不成立
回头重新探索
作业布置
习题3.3:3,4,5题.
感谢聆听
第三步:算出y2的各位数字之和得x3,再计算x32+1得y3.
依此类推,y30的值为( D )
A.5
B.26
C.65
D.122
学以致用
3.破译密码“L dp d vwxghqw”,现在给你一把破译它的“钥匙”x-3,
即:把26个英文字母顺序排成圈,x-3代表“把一个字母换成字母表
中 从 它 向 前 移 动 3 位 的 字 母 ” , 那 么 “L dp d vwxghqw” 的 意 思 是
我便可以说出那个三位数.”乙同学试了几次,果真如此.请你指出甲同学
是如何猜出这个三位数的,并用数学知识说明理由.
解:只要将说出的三位数减去100就知道了.
理由:设百位上的数字为a,十位上的数字为b,个位上的数字为c,
则乙按步骤所得的三位数为10[2(5a+5)+b]+c,
化简后为100a+10b+c+100,减去100就是原三位数.
a+b+c+d+999a+99b+9c,
显然999a+99b+9c可以被3整除,
所以只考虑a+b+c+d,若a+b+c+d可以被3整除,则四位数可以被3整除.
3.3.1探索与表达规律+课件+2024-2025学年北师大版数学七年级上册
![3.3.1探索与表达规律+课件+2024-2025学年北师大版数学七年级上册](https://img.taocdn.com/s3/m/4ffe5465eef9aef8941ea76e58fafab068dc447d.png)
形 与“H”
星星星
期期期 日一二
星星星
期期期 四五六
1
345
67 8
10 11 12
13 14 15
17 18 19
20 21 22 23 24 25 26
27 28 29 30
04 课堂练习
【知识技能类作业】必做题:
1. 如图,第①个图形中共有1个小平行四边形,第②个图形中共 有5个小平行四边形,第③个图形中共有11个小平行四边形..... 则第⑩个图形中小平行四边形的个数是( D )
03 新知讲解
尝试 ·思考
(1)图所示的日历图中,能否使框中9个数的和为144?180呢?为什么?
星期日 星期一 星期二 星期三 星期四 星期五 星期六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
因为9个数的和可以表示为9a,即可以被9整除,所以框中的9个数的和 不能为144,9个数的和可以是180
03 新知讲解
(2)在某个月的日历中,恰好有五个星期日位于同一列且日期数的 和为80,这个月的第一个星期日是几号?
设这五个星期日的日期数由上至下分别为a-14,a-7 ,a ,a+7,
a+14, 根据题意,得(a-14)+(a-7)+a+(a+7)+(a+14)=80,
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
03 新知讲解
(1)日历图中的数有什么规律? (2)日历图的套色方框中的9个数之和与该方框正中间的数有什 么关系? (3)这个关系对任何一个月的日历都成立吗?为什么? (4)你还能发现这样的方框中9个数之间的其他关系吗?请用代数 式表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上探索与表达规律
挑战自我,极限冲刺:
1、今天星期五,再过100天星期几?
2、比较大小:2002070与 820020807
七年级上探索与表达规律
火柴棒问题
用火柴棒按下图的方式搭三角形.
填写下表:
三角形 个数
1
2
34 5
…
n
火柴棒 根数
3
5
7 9 11 …
七年级上探索与表达规律
搭第一个正方形需要4根火柴棒。 (1)搭一搭,填一填:
3.5探索与表达规律
七年级上探索与表达规律
问题情境:
一首永远唱不完的儿歌: 1只青蛙1 张嘴,2 只眼睛,4 条 腿,1声扑通跳下水;
2 只青蛙2 张嘴,4 只眼睛,8 条 腿,2声扑通跳下水;
3 只青蛙3 张嘴,6 只眼睛,12 条腿,3声扑通跳下水;
······
a只青蛙如何说?
a 只青蛙a 张嘴,2a只眼睛,4a 条 腿,a声扑通跳下水。
七年级上探索与表达规律
请按某种规律填数:
①. –1、2、–3、4、__-5__、_6___ ②. 2、4、8、16、_3__2_ 、_6_4__
③. 1、5、9、13、17 、 _2_1__、_2__5_
④.
1,43,95,176,_2_59
11
___,36 __
_,
七年级上探索与表达规律
下表是某一月的月历:
(1)日历表中的数有什么特点,它们之间有什么 关系?
横排相邻的日期; 竖排相邻的日期;
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
(1)日历图的套色方 框中的9个数之和与该 方框正中间的数有什 么关系?
13
17
20
27
如左图在月历中圈出的三 个数:
①如果中间的数是10,那么 上、下两个数分别是_____ 这三个数的和是
_________3_0____
②如果中间的数是20,那么 上、下两个数分别是______ 这三个数的和是
_________6_0____
③如果中间的数是a,那么上
、下两个数分别是_a__-_7_、__a_+7
日一二三四五六 12345
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
七年级上探索与表达规律
日一二三四五六
789 22 23 24
如左图在月历中圈出的 三个数:
①如果中间的数是8,那么 前、后两个数分别是多少?
①如果将方框改为十字形,你能发现哪些规律?如果改为H形框呢? ②你还能设计其它形状包含数字规律的数框吗?
七年级上探索与表达规律
如果改为H形呢?
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
如果用a 表示中 间的数,这9个数 的和等于9a
七年级上探索与表达规律
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
22
33
44
5
6
7
8
9
1100 1111
12
13 14 15 16 1177 1188 19
20 21 22 23 24 25 26
27 28 29 30 31
(3)这个关系对任何 一个月的日历都成立吗?
……
正方形个数
1
2
3
4
5
火柴棒根数 4 7 10 13 16
(2)搭10个这样的正方形需要 _31 根火柴棒。
(3)搭n个这样的正方形需要多少根火柴棒?
(3n+1根)
你是怎样得到的? 七年级上探索与表达规律
举一反三
n个呢?
…… 4n+1根
n个呢?
…… 5n+1根
七年级上探索与表达规律
3.如下列各图是用“ ”按一定规律排列而成的
为什么?
成立
因为这九个数可表示为:
a-8 a-7 a-6 a-1 a a + 1
a+6 a+7 a+8
利用字母表示数与运
将这九个数相加,正好
算,可从一般角度来验证 等于9a 。
七年级的方框中的9个数之和能等于100吗? 能等于180吗?270呢?
星期日 星期一 星期二 星期三 星期四 星期五 星期六
这三个数的和是
______3__a______
七年级上探索与表达规律
探究活动 星期 一星期 星期 星期 星期 星期 星期
日 一 二三 四 五 六 12 3 4 5
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
9个数之和为90 90=9×10
七年级上探索与表达规律
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
(2)这个关系对其他 这样的方框成立吗? 你能用代数式表示这 个关系吗?
图案,第1个图案由4个“ ”组成,第2个图案 由7个“ ”组成,第3个图案由7个“ ”组 成,……,则第n(n是正整数)个图案中由_______
个“ ”组成.
……
(1)
(2)
(3)
4.用矩形套住日历中的任意9个数,若中间的数是14,则 这9个数的和是________
七年级上探索与表达规律
四.巩固练习:
这三个数的和是
____2_4_____
②如果中间是23呢?则前、 后两数分别是多少?这三个
数的和是_____6__9_____
③如果中间是a呢?则前、 后两数分别是
_______a_-_1_、__ a+1
这三个数的和是
_____3_a_______
七年级上探索与表达规律
日一 二 三 四 五 六
3
10
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
七年级上探索与表达规律
日一二三四五六 12345
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
1.用紫、白两种颜色的正六边形地砖按下图所示的规 律排列,则第n个图案中紫色正六边形有( )
第1个
第2个
A、2+6n ,