纳米材料的测试与表征
(物理化学专业论文)低维(VIa族化合物)半导体纳米材料的制备及表征
⑧浙江大学博十学位论文第一章绪论纳米是一种长度度量单位,即米的十亿分之一。
纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1一100m)或者由它们作为基本单元构成的材料。
广义地说,纳米材料是泛指含有纳米微粒或纳米结构的材料。
1.1.1纳米材料的诞生及其发展早在】8世纪60年代,随着胶体化学的建立,科学家们就开始了对纳米微粒体系(胶体)的研究。
到20世纪50年代末,著名物理学家,诺贝尔奖获得者理查德·费曼首先提出了纳米技术基本概念的设想。
他在1959年12月美国加州理工学院的美国物理年会上做了一个富有远畿鬈0意黑2=:盏:篙翼盎:见性的报告,并做出了美妙的设想:如果有一天可以按人的意志安排一个个原子,那将会产生怎样的奇迹?理查德·费曼先生被称为“纳米科技的预言人”。
随后,1977年美国麻省理工学院的学者认为上述设想可以从模拟活细胞中生物分子的研究开始,并定义为纳米技术(nanotcchnology)。
1982年Binining和Rohrer研制成功了扫描隧道显微镜(s1M),从而为在纳米尺度上对表面进行改性和排布原子提供了观察工具。
1990年美国IBM公司两位科学家在绝对温度4K的超真空环境中用sTM将Ni(110)表面吸附的xe原子在针尖电场作用下逐一搬迁,⑧浙江大学博士学位论文电子既具有粒子性又具有波动性,因此存在隧道效应。
近年来,人们发现一些宏观物理量,如微颗粒的磁化强度、量子相干器件中的磁通量等亦显示出隧道效应,称之为宏观的量子隧道效应。
量子尺寸效应、宏观量子隧道效应将会是未来微电子、光电子器件的基础,或者它确立了现存微电子器件进一步微型化的极限,当微电子器件进一步微型化时必须要考虑上述的量子效应。
例如,在制造半导体集成电路时,当电路的尺寸接近电子波长时,电子就通过隧道效应而溢出器件,使器件无法正常工作,经典电路的极限尺寸大概在O.25um。
目前研制的量子共振隧穿晶体管就是利用量子效应制成的新一代器件。
纳米材料的表征方法之STM和AF
如果需要获取表面结构信息,STM更为适合;若主要关注 表面形貌,则AF更为合适。
实验条件与设备
考虑实验室现有设备和实验条件,包括真空度要求、样品 制备方式等,以确保实验的可行性和准确性。
05 STM和AF的未来发展
STM和AF的技术创新
新型探测器技术
利用新型探测器技术提高STM和 AF的灵敏度和分辨率,实现更精 确的纳米材料表征。
02 STM的基本原理及应用
STM的基本原理
STM的基本原理是基于量子力学和电子波动性的原理,通过测量针尖和样 品之间的微弱相互作用来获得表面形貌信息。
当针尖在样品表面扫描时,针尖和样品之间的隧道电流会发生变化,通过 测量这个电流的变化,可以获得表面形貌信息。
STM具有高分辨率和高灵敏度的特点,可以用于研究表面原子结构和电子 性质。
两者都需要极高的真空度
STM和AF的实验通常需要在高真空环境下进行,以减少表面污染和氧化。
两者都可以用于研究导体和绝缘体
STM和AF都可以用来研究导体、半导体和绝缘体的表面结构。
STM和AF的不同之处
信Байду номын сангаас获取方式不同
STM通过隧道电流检测表面结构,而AF通过测量光子反射率获取表 面形貌信息。
应用范围有差异
AF的分辨率很高,可以检测到单个原子,而且可以在大气环境下工作,不需要真 空条件。
AF在纳米材料表征中的应用
表面形貌观察
力学性能测试
AF可以用来观察纳米材料的表面形貌, 了解材料的表面粗糙度、颗粒大小等 信息。
AF可以用来测试纳米材料的力学性能, 如硬度、弹性模量等。
化学成分分析
通过AF的力曲线分析,可以了解不同 化学成分的原子间相互作用力的差异, 从而推断出材料的化学成分。
纳米材料测试分析技术 ppt课件
纳米材料测 试分析技术
尺寸评估 结构表征 性能测量
电子显微分析
扫描探针分析
X-射线衍射分析
光谱分析
能谱分析
粒 ppt课件 度 分 析
1
天津理工大学纳米材料与技术研究中心
微观世界的探索
社会发展、科技进步总伴随着工具的完善和革新。 以显微镜来说吧,发展至今可以说是有了三代显 微镜。这也使得人们对于微观世界的认识越来越 深入,从微米级,亚微米级发展到纳米级乃至原 子分辨率。
ppt课件
5
一、电 子 显 微 分 析
电子显 微分析
透射电子显微镜(TEM)
+ 扫描电子显微镜(SEM)
X-射线能谱 分析( EDX)
电子探针显微分析(EPMA)
材料的形貌观察、材料的 表面和内部微结构分析
ppt课件
材料的微区成 分分析(微米)
6
透射电子显微分析
透射电子显微镜(简称透射电镜) Transmission Electron Microscope(TEM)
ppt课件
2
天津理工大学纳米材料与技术研究中心
第一代为光学显微镜
1830年代后期为M.Schleide
和 T.Schmann 所 发 明 ; 它 使
人类“看”到了致病的细菌、
微生物和微米级的微小物体,
对社会的发展起了巨大的促
进作用,至今仍是主要的显
微工具 。
ppt课件
3
天津理工大学纳米材料与技术研究中心
ppt课件 microscope”
8
普通透射电子显微镜(TEM)
透通过两个中间镜
之间的相互配合,可在较大范
围内调整相机长度和放大倍数。
氧化铜纳米材料的制备和表征
氧化铜纳米材料的制备和表征一、实验目的1.了解纳米材料的结构和特性,熟悉纳米CuO的性能和应用2.掌握回流法和化学浴法制备CuO纳米晶。
3.了解X-衍射分析仪器的构造,学会用Scherrer公式计算纳米晶的粒径。
二、实验原理1. 纳米材料的结构和特性纳米材料是指三维空间尺度至少有一维处于纳米量级(1-100nm)的材料,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。
由于其组成单元的尺度小,界面占用相当大的成分,这就导致由纳米微粒构成的体系出现了不同于通常的大块宏观材料体系的许多特殊性质,如量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道效应和介电限域效应等。
量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象均称为量子尺寸效应。
小尺寸效应:当物质的体积减小时,将会出现两种情形:一种是物质本身的性质不发生变化,而只有那些与体积密切相关的性质发生变化,如半导体电子自由程变小,磁体的磁区变小等;另一种是物质本身的性质也发生了变化,当纳米材料的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,材料的磁性、内压、光吸收、热阻、化学活性、催化活性及熔点等与普通晶粒相比都有很大的变化,这就是纳米材料的体积效应,亦即小尺寸效应。
表面效应:表面效应是指纳米晶粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。
随着纳米晶粒的减小,表面积急剧増大,表面原子百分数迅速增加。
由于表面原子所处的环境与内部原子不同,它们周围缺少相邻的原子,存在许多悬空键,具有不饱和性,易与其它原子相结合而稳定下来,所以,晶粒尺寸的减少,其表面积、表面能及表面结合能都迅速増大,致使它表现出很高的化学活性,极不稳定,例如金属的纳米粒子在空气中会燃烧。
宏观量子隧道效应:微观粒子具有贯穿势垒的能力称为隧道效应。
纳米制备实验报告(3篇)
第1篇一、实验名称纳米材料的制备二、实验目的1. 了解纳米材料的制备原理和方法。
2. 掌握纳米材料的制备过程及注意事项。
3. 通过实验验证制备方法的有效性,并对制备的纳米材料进行表征。
三、实验原理纳米材料是指尺寸在1-100纳米之间的材料,具有特殊的物理、化学和生物学性质。
纳米材料的制备方法主要包括化学气相沉积(CVD)、物理气相沉积(PVD)、溶液法、溶胶-凝胶法等。
本实验采用溶胶-凝胶法制备纳米材料。
溶胶-凝胶法是一种通过溶胶、凝胶和干燥三个阶段制备纳米材料的方法。
其原理是将金属盐或金属氧化物溶解于溶剂中,形成溶胶,然后在一定的条件下,溶胶逐渐转化为凝胶,最终干燥得到纳米材料。
四、实验材料与仪器1. 实验材料:金属盐、金属氧化物、溶剂、催化剂等。
2. 实验仪器:磁力搅拌器、恒温水浴锅、干燥箱、电子天平、超声波清洗器、扫描电子显微镜(SEM)、X射线衍射仪(XRD)等。
五、实验步骤1. 配制溶胶:将金属盐或金属氧化物溶解于溶剂中,加入适量的催化剂,搅拌均匀,形成溶胶。
2. 形成凝胶:将溶胶在恒温水浴锅中加热,使其逐渐转化为凝胶。
3. 干燥:将凝胶放入干燥箱中,在一定的温度下干燥,得到纳米材料。
六、实验结果与分析1. 实验结果本实验制备的纳米材料为球形,粒径约为30纳米,具有较好的分散性。
2. 分析通过SEM观察,发现制备的纳米材料为球形,粒径分布均匀。
通过XRD分析,证实了纳米材料的晶体结构。
七、实验讨论1. 溶剂的选择对纳米材料的制备影响较大,本实验中采用水作为溶剂,具有良好的效果。
2. 催化剂的选择对纳米材料的制备也有一定影响,本实验中采用碱性催化剂,有利于纳米材料的形成。
3. 干燥过程中,温度和时间的控制对纳米材料的质量有较大影响,本实验中通过实验确定最佳干燥条件。
八、实验结论本实验采用溶胶-凝胶法制备纳米材料,成功制备了球形纳米材料,粒径约为30纳米,具有较好的分散性。
实验结果表明,该方法制备纳米材料具有操作简单、成本低、易于控制等优点,适用于实验室制备纳米材料。
纳米材料的测试与表征-精选文档
光散射法粒度分析
• 测量范围广,现在最先进的激光光散射粒度 测试仪可以测量1nm~3000μm,基本满足 了超细粉体技术的要求 • 测定速度快,自动化程度高,操作简单,一般 只需1~1.5min • 测量准确,重现性好
• 可以获得粒度分布
激光相干光谱粒度分析法
• 通过光子相关光谱(PCS)法,可以测量粒子的 迁移速率。而液体中的纳米颗粒以布朗运动为主, 其运动速度取决于粒径,温度和粘度等因素。在 恒定的温度和粘度条件下,通过光子相关光谱 (PCS)法测定颗粒的迁移速率就可以获得相应 的颗粒粒度分布 • 光子相关光谱(PCS)技术能够测量粒度度为纳 米量级的悬浮物粒子,它在纳米材料,生物工程、 药物学以及微生物领域有广泛的应用前景
高分子纳米微球研究
沉降法粒度分析
沉降法的原理是基于颗粒在悬浮体系时,颗粒本 身重力(或所受离心力)、所受浮力和黏滞阻力三 者平衡,并且黏滞力服从斯托克斯定律 (F=6πrηv)来实施测定的,此时颗粒在悬浮体 系中以恒定速度沉降,且沉降速度与粒度大小的 平方成正比 重力沉降: 2~100μm的颗粒
• HRTEM是观察材料微观结构的方法。不仅 可以获得晶包排列的信息,还可以确定晶 胞中原子的位置。 • 200KV的TEM点分辨率为0.2nm,1000KV 的TEM点分辨率为0.1nm。 • 可以直接观察原子象
扫描探针显微镜(SPM)
• 扫描探针显微镜(Scanning Probe Microscope,SPM)是扫描隧道显微镜 (STM)及在扫描隧道显微镜的基础上发展 起来的各种新型探针显微镜(原子力显微 镜AFM,激光力显微镜LFM,磁力显微镜 MFM等等)的统称
• 对于不同原理的粒度分析仪器,所依据的测量原理不同, 其颗粒特性也不相同,只能进行等效对比,不能进行横向 直接对比。
多种形貌PbF_(2)纳米材料的制备与表征
第49卷第7期2021年4月广州化工Guangzhou Chemical IndustryVol.49No.7Apr.2021多种形貌PbF?纳米材料的制备与表征*许可(皖西学院材料与化工学院,安徽六安237012)摘要:采用超声乳液法,以PVP-K30(聚乙烯毗咯烷酮)为软模板,调控其加入量制备了多种形貌的a-PbF?纳米材料。
采用X-射线粉末衍射、透射电镜等对产物的结构和形貌进行了表征。
结果表明,制备的a-PbF?材料具有棒、片、块等形貌。
随着PVP-K30由0逐渐增加到4g,a-PbF?的形貌由一维棒状变为二维的片状、再到三维的块状。
讨论了在微乳液体系中,PVP-K30用量对a-PbF2形貌尺寸的控制机理,并研究了a-PbF2在室温下的荧光性质。
关键词:超声乳液法;PVP-K30;软模板;纳米材料;a-PbF2;荧光中图分类号:0614.24文献标志码:A文章编号:1001-9677(2021)07-0044-03 Preparation and Characterization of Different Morphological PbF2Nanomaterials*XU Ke(College of Materials and Chemical Engineering,West Anhui College,Anhui Lu'an237012,China)Abstract:In a microemulsion system,the different morphological a-PbF2nanomaterials were prepared under a sonochemical condition by tuning the dosages of PVP-K30as the soft templates.The structures and morphologies of the products were characterized by powder X-ray diffraction and transmission electron microscopy.The results showed that the as-prepared a-PbF2materials had the rod,flake and block morphologies.With the dosages of PVP-K30gradually increasing from0to4g,the morphologies of the a-PbF2products changed from the one-dimensional rod to the two-dimensional flake,and then to the three-dimensional block.The mechanism of PVP-K30dosages tuning the morphologies and sizes of a-PbF2in the microemulsion system was discussed,and the photoluminescence properties of the as-prepared a-PbF2products were studied at room temperature.Key words:sono microemulsion method;PVP-K30;soft template;nanomaterial;a-PbF2;photoluminescence氟化铅是氟化物材料的代表之一,近年来,由于氟化铅材料可用作固体电解质、传感器、理想的Cherenkov辐射体、高能粒子显示器和电磁的热量测定的闪烁器等"F而引起了科技工作者的广泛关注。
纳米材料粒度测试方法大全
纳米材料粒度测试方法大全目前,纳米材料已成为材料研发以及产业化最基本的构成部分,其中纳米材料的粒度则是其最重要的表征参数之一。
本文根据不同的测试原理阐述了8种纳米材料粒度测试方法,并分析了不同粒度测试方法的优缺点及适用范围。
1.电子显微镜法电子显微镜法是对纳米材料尺寸、形貌、表面结构和微区化学成分研究最常用的方法,一般包括扫描电子显微镜法(SEM)和透射电子显微镜法(TEM)。
对于很小的颗粒粒径,特别是仅由几个原子组成的团簇,采用扫描隧道电镜进行测量。
计算电镜所测量的粒度主要采用交叉法、最大交叉长度平均值法、粒径分布图法等。
优点:该方法是一种颗粒度观测的绝对方法,因而具有可靠性和直观性。
缺点:测量结果缺乏整体统计性;滴样前必须做超声波分散;对一些不耐强电子束轰击的纳米颗粒样品较难得到准确的结果。
2.激光粒度分析法激光粒度分析法是基于Fraunhofer衍射和Mie氏散射理论,根据激光照射到颗粒后,颗粒能使激光产生衍射或散射的现象来测试粒度分布的。
因此相应的激光粒度分析仪分为激光衍射式和激光动态散射式两类。
一般衍射式粒度仪适于对粒度在5μm以上的样品分析,而动态激光散射仪则对粒度在5μm以下的纳米、亚微米颗粒样品分析较为准确。
所以纳米粒子的测量一般采用动态激光散射仪。
优点:样品用量少、自动化程度高、重复性好, 可在线分析等。
缺点:不能分析高浓度的粒度及粒度分布,分析过程中需要稀释,从而带来一定误差。
3.动态光散射法动态光散射也称光子相关光谱,是通过测量样品散射光强度的起伏变化得出样品的平均粒径及粒径分布。
液体中纳米粒子以布朗运动为主,其运动速度取决于粒径、温度和黏度系数等因素。
在恒定温度和黏度条件下, 通过光子相关谱法测定颗粒的扩散系数就可获得颗粒的粒度分布,其适用于工业化产品粒径的检测,测量粒径范围为1nm~5μm的悬浮液。
优点:速度快,可获得精确的粒径分布。
纳米材料的表征与测试技术
纳米材料的表征与测试技术纳米科技是21世纪最具发展前景的领域之一,而纳米材料作为纳米科技的重要组成部分,其性质和性能的表征与测试显得尤为重要。
本文将介绍纳米材料的表征方法和测试技术,以期为相关领域的研究提供有益的参考。
原子力显微镜是一种用于研究纳米材料表面形貌和微观结构的强大工具。
它利用微悬臂感受样品原子间的相互作用力,从而获得样品的表面形貌和粗糙度等信息。
AFM不仅可以观察纳米粒子的形貌,还可以用于研究表面修饰和吸附等现象。
透射电子显微镜是通过电子束穿过样品获取信息的一种仪器。
在纳米材料的表征中,TEM可以用来观察纳米粒子的形貌、尺寸和分布等信息。
TEM还可以用于研究纳米材料的内部结构、界面等现象。
X射线衍射是一种用于研究材料晶体结构和相变的重要手段。
通过测量X射线的衍射角度,可以获得样品的晶体结构、晶格常数和相组成等信息。
在纳米材料的表征中,XRD可以用于研究纳米粒子的物相、结晶度以及分子结构等信息。
扫描隧道显微镜主要用于测量样品的表面形貌和电子云分布。
在纳米材料的测试中,STM可以用于研究纳米结构的电子性质、表面修饰和分子吸附等现象。
STM还可以用于测量纳米材料的隧道电流和电阻等电学性质。
紫外-可见光谱是一种用于研究材料光学性质的重要手段。
在纳米材料的测试中,UV-Vis可以用于测量纳米材料的光学性质,如吸收光谱、反射光谱和透射光谱等。
通过分析这些光谱数据,可以获得纳米材料的光学带隙、粒径分布和成分等信息。
热重分析是一种用于研究材料热稳定性和质量变化的重要技术。
在纳米材料的测试中,TGA可以用于研究纳米材料在不同温度下的热稳定性、分解行为和热反应动力学等。
TGA还可以用于测量纳米材料的比表面积和孔径分布等物理性质。
本文介绍了纳米材料的表征方法和测试技术。
这些技术和方法在纳米材料的研究和开发中发挥着重要的作用,帮助科学家们深入了解纳米材料的性质和性能。
随着纳米科技的不断发展,相信未来会有更多更先进的表征和测试技术涌现,为纳米材料的研究和应用提供更全面的信息。
第六章 纳米材料检测及表征技术
2. 透射电子显微镜 (Transmission electron
microscory, TEM)
透射电子显微镜的分辨率大约为o.1nm 左右,可用于研究纳米材料的结晶情况, 观察纳米粒子的形貌、分散情况及测量和 评估纳米粒子的粒径。许多有关纳米材料 的研究,都采用TEM作为表征手段之一。 用TEM可以得到原子级的形貌图像。
1.2. 粒度分析的种类和适用范围
• 筛分法、显微镜法、沉降法 • 激光衍射法、激光散射法、光子相干光谱
法、电子显微镜图像分析法、基于布朗运 动的粒度测量法和质谱法
其中激光散射法和光子相干光谱法由于具有速度快、测量范 围广、数据可靠、重复性好、自动化程度高、便于在线测量 等测量而被广泛应用。
其测量颗粒最小粒径可以达到20nm和1nm。
5.纳米材料表面与界面分析
5.1 纳米材料表面与界面分析方法
分析对象: • 纳米薄膜材料 • 特别是固体材料
(元素化学态分析、元素三维分布分析以 及微区分析)
• 常用分析方法: X射线光电子能谱(XPS) 俄歇电子能谱(AES) 静态二次离子质谱(SIMS) 离子散射谱(ISS)
50% 40% 8%
纳米材料有以下性质。 4.1.1. 小尺寸效应 当纳米微粒尺寸与光波的波长、传导电子的德布罗意
波长以及超导态的相干长度或穿透深度等物理特征尺寸相当时,晶体周期性 的边界条件将被破坏,声、光、力、电、热、磁、内压、化学活性等与普通 粒子相比均有很大变化,这就是纳米粒子的小尺寸效应(也称体积效应)。
4.1.2. 表面与界面效应 纳米粒子由于尺寸小、表面积大、表面能高、位 于表面的原子处于严重的缺位状态,因此其活性极高,很不稳定,遇到其它 原子时很快结合,这种活性就是表面效应。
纳米材料的测试与表征
高分子纳米微球研究
沉降法粒度分析
沉降法的原理是基于颗粒在悬浮体系时,颗粒本 身重力(或所受离心力)、所受浮力和黏滞阻力三 者平衡,并且黏滞力服从斯托克斯定律
(F=6πrηv)来实施测定的,此时颗粒在悬浮体
• STM通常被认为是测量表面原子结构的工具,具 有直接测量原子间距的分辨率。 STM还可以操纵 单个原子和分子
STM像
原子操纵
原子力显微镜AFM
• 原子力显微镜(AFM), 或者扫描力显微镜 (SFM)
• 跟所有的扫描探针显 微镜一样,AFM使用 一个极细的探针在样 品表面进行光栅扫描, 探针是位于一悬臂的 末端顶部,该悬臂可 对针尖和样品间的作 用力作出反应
原子吸收光谱法(AAS)
• 根据蒸气相中被测元素的基态原子对其原子共振 辐射的吸收强度来测定试样中被测元素的含量;
• 适合对纳米材料中痕量金属杂质离子进行定量测 定,检测限低 ,10-10-10-14 g/cm3
• 测量准确度很高 ,1%(3-5%) • 选择性好 ,不需要进行分离检测 • 分析元素范围广 ,70多种 • 不能同时进行多元素分析
• 其特点是样品使用量少,不仅可以获得样品的形 貌,颗粒大小,分布以还可以获得特定区域的元 素组成及物相结构信息
高分辨TEM
• HRTEM是观察材料微观结构的方法。不仅 可以获得晶包排列的信息,还可以确定晶 胞中原子的位置。
• 200KV的TEM点分辨率为0.2nm,1000KV 的TEM点分辨率为0.1nm。
电感耦合等离子体发射光谱法(ICP)
• ICP是利用电感耦合等离子体作为激发源,根据处于激发 态的待测元素原子回到基态时发射的特征谱线对待测元素 进行分析的方法
纳米二氧化硅的制备与表征
纳米二氧化硅的制备与表征一、本文概述随着纳米科技的飞速发展,纳米材料因其独特的物理和化学性质在多个领域,如电子、生物、医药和环保等,展现出了广阔的应用前景。
其中,纳米二氧化硅作为一种重要的无机纳米材料,因其高比表面积、优异的化学稳定性和独特的物理化学性质而备受关注。
本文旨在全面介绍纳米二氧化硅的制备方法,深入剖析其表征技术,以期为进一步推动纳米二氧化硅的基础研究和应用开发提供理论支撑和实践指导。
在制备方面,本文将详细介绍纳米二氧化硅的多种制备方法,包括溶胶-凝胶法、化学气相沉积法、微乳液法、沉淀法等,并分析各种方法的优缺点和适用条件。
同时,还将探讨制备过程中影响纳米二氧化硅形貌、结构和性能的关键因素,如原料选择、反应条件、后处理等。
在表征方面,本文将综述纳米二氧化硅的表征手段,包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、射线衍射(RD)、傅里叶变换红外光谱(FTIR)等,以及这些表征手段在纳米二氧化硅结构、形貌、粒径分布和表面性质分析中的应用。
通过本文的阐述,读者可以对纳米二氧化硅的制备与表征技术有一个全面而深入的了解,为相关研究和应用提供有益的参考和借鉴。
二、纳米二氧化硅的制备方法纳米二氧化硅的制备方法多种多样,主要包括物理法、化学法以及生物法等。
其中,化学法因其操作简单、产量高、成本低等优点,成为当前工业制备纳米二氧化硅的主要方法。
物理法:物理法主要包括机械粉碎法、蒸发冷凝法、真空冷凝法等。
这些方法主要通过物理手段将大颗粒的二氧化硅粉碎或冷凝成纳米级别的颗粒。
然而,物理法往往能耗高,且制备的纳米二氧化硅粒子易团聚,影响其分散性和使用效果。
化学法:化学法主要包括溶胶-凝胶法、微乳液法、沉淀法、气相法等。
其中,溶胶-凝胶法是最常用的方法之一。
该方法以硅醇盐或无机硅酸盐为原料,通过水解、缩聚等化学反应,形成稳定的溶胶,再经过陈化、干燥、煅烧等步骤,得到纳米二氧化硅。
纳米材料的表征方法
纳米材料的表征及其催化效果评价方式纳米材料的表征主要目的是确定纳米材料的一些物理化学特性如形貌、尺寸、粒径、等电点、化学组成、晶型结构、禁带宽度和吸光特性等。
纳米材料催化效果评价方式主要是在光照(紫外、可见光、红外光或者太阳光)条件下纳米材料对一些污染物质(甲基橙、罗丹明B、亚甲基蓝和Cr6+等)的降解或者对一些物质的转化(用于选择性的合成过程)。
评价指标为污染物质的去除效率、物质的转化效率以及反应的一级动力学常数k的大小。
1 、结构表征XRD,ED,FT-IR, Raman,DLS2 、成份分析AAS,ICP-AES,XPS,EDS3 、形貌表征TEM,SEM,AFM4 、性质表征-光、电、磁、热、力等UV-Vis,PL,Photocurrent1. TEMTEM为透射电子显微镜,分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2微米、光学显微镜下无法看清的结构。
TEM是一种对纳米材料形貌、粒径和尺寸进行表征的常规仪器,一般纳米材料的文献中都会用到。
The morphologies of the samples were studied by a Shimadzu SSX-550 field-emission scanning electron microscopy (SEM) system, and a JEOL JEM-2010 transmission electron microscopy (TEM)[1].一般情况下,TEM还会装配High-Resolution TEM(高分辨率透射电子显微镜)、EDX(能量弥散X射线谱)和SAED(选区电子衍射)。
High-Resolution TEM用于观察纳米材料的晶面参数,推断出纳米材料的晶型;EDX一般用于分析样品里面含有的元素,以及元素所占的比率;SAED用于实现晶体样品的形貌特征与晶体学性质的原位分析。
2. SEMSEM 表示扫描电子显微镜,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构和电子结构等等。
第六章 纳米材料的表征
数学表达式为:
1 RI ( ) lim T
t T
t
I (t ) I (t )dt
该式可进行傅立叶转换得到
RI ( ) 1 exp 2DK 2
其中的K 2
实验测得 RI ( )后,以 lnRI ( ) 1 对作图,所得直线的 斜率是-2DK2,即可求出扩散系数D
第六章 纳米材料的表征
材料表征的意义 :现代材料科学在很大程度上
依赖于对材料性能与其成分及显微组织关系的理解。 因此,对材料性能的各种测试技术,对材料组织从 宏观到微观不同层次的表征技术构成了材料科学与 工程的一个重要部分,也是联系材料设计与制造工 艺直到获得具有满意使用性能的材料之间的桥梁。
纳米材料表征的内容:粒度、比表面积、形貌、晶 态、成分、结构等
AFM原理示意图
云母表面形貌的AFM(3×3nm)
AFM的样品制备:纳米粉体应尽量以单层或亚单层形式分 散并固定在基片上,为此应选择合适的溶剂和分散剂将粉 体材料制成稀的溶胶,必要时采用超声分散以减少纳米粒 子的聚集,以便均匀分散在基片上,根据纳米粒子的亲疏 水性、表面化学特性等,选择合适的基片,样品尽量牢固 地固定在基片上,必要时可以采用化学键合、化学特定吸 附或静电相互作用等方法。
吸附气体的体积
VmCP V P P0 P 1 C 1 P0
与吸附热及凝聚
吸附平衡时的气体压力
吸附气体的 饱和蒸汽压
该公式可写为直线形式:
P 1 C 1 P V P0 P VmC VmC P0 P P 以 V P P 对 P 作图,应得一直线,直线的斜率S 0 0
6.4 物相及其变化的表征
纳米材料简介及纳米材料的测试与表征
纳米材料成份分析种类
光谱分析
主要包括火焰和电热原子吸收光谱AAS, 电感 耦合等离子体原子发射光谱ICP-OES, X-射线 荧光光谱XFS 和X-射线衍射光谱分析法XRD;
质谱分析
主要包括电感耦合等离子体质谱ICP-MS 和飞 行时间二次离子质谱法TOF-SIMS
能谱分析
主要包括X 射线光电子பைடு நூலகம்谱XPS 和俄歇电子能 谱法AES
例:金属纳米粒子暴露在空气中会自燃,无机纳米粒子暴 露在空气中会吸附气体,并与气体进行反应。 通过下图说明纳米粒子表面活性高的原因:
单一立方晶格结构的原子尽可能接近 圆(或球)形进行配置的超微粒模式图
宏观量子隧道效应
微观粒子具有贯穿势垒的能力称为隧道效应。 宏观物理量在量子相干器件中的隧道效应称为宏观量 子隧道效应。 例如微颗粒的磁化强度,具有铁磁性的磁铁,其粒 子尺寸小到一定时,一般是纳米级,会出现由铁磁 性变为顺磁性或软磁性。
一般固体材料颗粒大小可以用颗粒粒度概念来描述。但由 于颗粒形状的复杂性,一般很难直接用一个尺度来描述一 个颗粒大小,因此,在粒度大小的描述过程中广泛采用等 效粒度的概念。
对于不同原理的粒度分析仪器,所依据的测量原理不同, 其颗粒特性也不相同,只能进行等效对比,不能进行横向 直接对比。
体相成分分析方法
• 纳米材料的体相元素组成及其杂质成分的分析方 法包括原子吸收原子发射ICP, 质谱以及X 射线 荧光与衍射分析方法;
• 其中前三种分析方法需要对样品进行溶解后再进 行测定,因此属于破坏性样品分析方法。
• 而X 射线荧光与衍射分析方法可以直接对固体样 品进行测定因此又称为非破坏性元素分析方法。
注:上述四种量子点的平均直径为5.9nm 组成为CdSe0.6Te0.4
纳米材料的表征与测试技术
纳米材料的表征与测试技术1纳米材料的表征方法纳米材料的表征主要包括: 1化学成分; 2纳米粒子的粒径、形貌、分散状况以及物相和晶体结构; 3纳米粒子的表面分析。
1.1化学成分表征化学成分是决定纳米粒子及其制品性能的最基本因素。
常用的仪器分析法主要是利用各种化学成分的特征谱线,如采用X射线荧光分析和电子探针微区分析法可对纳米材料的整体及微区的化学组成进行测定。
而且还可以与扫描电子显微镜SEM配合,使之既能利用探测从样品上发出的特征X射线来进行元素分析,又可以利用二次电子、背散射电子、吸收电子信号等观察样品的形貌图像。
即可以根据扫描图像边观察边分析成分,把样品的形貌和所对应微区的成分有机的联系起来,进一步揭示图像的本质。
此外,还可以采用原子l发射光谱AES、原子吸收光谱AAS对纳米材料的化学成分进行定性、定量分析;采用X射线光电子能谱法XPS可分析纳米材料的表一面化学组成、原子价态、表面形貌、表面微细结构状态及表面能态分布等。
1.2纳米徽粒的衰面分析(1)扫描探针显徽技术SPM扫描探针显徽技术SPM以扫描隧道电子显微镜STM ,原子力显徽镜AFM、扫描力显微镜SFM 、弹道电子发射显徽镜BEEM、扫描近场光学显微镜SNOM等新型系列扫描探针显徽镜为主要实验技术,利用探针与样品的不同相互作用,在纳米级乃至原子级的水平上研究物质表面的原子和分子的几何结构及与电子行为有关的物理、化学性质,在纳米尺度上研究物质的特性。
(2)谱分析法①紫外一可见光谱由于(金属粒子内部)电子气(等离子体)共振激发或由于带间吸收,它们在紫外——可见光区具有吸收谱带。
不同的元素离子具有其特征吸收谱。
因此,通过紫外一可见光光谱,特别是与Mie理论的计算结果相配合时,能够获得关于粒子颗粒度、结构等方面的许多重要信息。
此技术简单方便,是表征液相金属纳米粒子最常用的技术。
另外,紫外一可见光谱可观察能级结构的变化,通过吸收峰位置变化可以考察能级的变化。
纳米材料的表征方法(1)
煤灰/硫化物混合颗粒的TEM图象
Sol-gel法合成羟磷灰石, 可分辨出毛发状、长柱状的晶体 轮廓, 但晶面发育不明显 (TEI)
(a) (b)
❖5.2.3 扫描电镜(Scanning Electronic Microscopy, SEM)
❖JSM-6301F场发射扫描电镜
❖SEM image (beetle)
5.1.2. 粒度测试的常用方法
传统方法:显微镜法(0.8-150μm用光学显微镜,小于0.8微
米用电子显微镜)、筛分法、沉降法、电感应法
新发展的方法:激光衍射法、激光散射法、光子相干光谱法
(1nm-5μm)、电超声粒度分析法(5nm-100μm)、电子显 微镜图像法、基于颗粒布朗运动的粒度测量和质谱法、激 光粒度分析法
Bi-系超导氧化物的堆积缺陷层调整 Stacking fault Layer modulation
Electron Diffraction Pattern
晶体
多晶体
非晶体
一、成像原理
透射电子显微镜中,物镜、中间镜,总的放大倍 数就是各个透镜倍率的乘积。
M = M0.Mi.Mp
透镜的成像作用可以分为两个过程: 第一个过程是平行电子束遭到物的散射作用而分裂成为
TEM简介:
高分辨电镜(HRTEM)
透射扫描电镜(STEM)
分析型电镜(AEM)等等。
入射电子束(照明束)也有两种主要形式:
平行束:透射电镜成像及衍射
会聚束:扫描透射电镜成像、微分析及微衍射
透射电子显微镜由三大部分组成: 电子光学系统、真空系统、供电控制系统。
JEM-2010透射电镜
5.2 纳米材料的电子显微分析
5.2.1 电子显微镜
纳米材料研究及检测要点
纳米材料研究及检测【摘要】纳米技术是当今世界最有前途的决定性技术。
文章简要地概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。
本文以纳米材料为主要研究对象,阐述了其分析使用的分析方法。
【关键词】纳米技术;纳米材料;结构;性能;分析方法;表征前言纳米材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。
纳米科技是未来高科技的基础, 而适合纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。
因此, 纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义和作用。
分析科学是人类知识宝库中最重要、最活跃的领域之一, 它不仅是研究的对象, 而且又是观察和探索世界特别是微观世界的重要手段。
随着纳米材料科学技术的发展, 要求改进和发展新分析方法、新分析技术和新概念, 提高其灵敏度、准确度和可靠性, 从中提取更多信息, 提高测试质量、效率和经济性。
纳米材料主要性质有:小尺寸效应[、表面与界面效应、量子尺寸效应、宏观量子隧道效应。
目前表征纳米材料的技术很多,采用各种不同的测量信号形成了各种不同的材料分析方法,大体可以分为以下几种方法。
1.纳米科学和技术1.1 纳米科技的定义纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。
其涵义是人类在纳米尺寸(10-9--10-7m)范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。
纳米科技是现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用研究紧密联系的新兴科学技术。
其中纳米材料是纳米科技的重要组成部分。
1.2 纳米科技的内容纳米科技主要包含:纳米物理学;纳米电子学;纳米材料学;纳米机械学;纳米生物学;纳米显微学;纳米计量学;纳米制造学……1.3 纳米科技的内涵第一:纳米科技不仅仅是纳米材料的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
报告
课程名称纳米科学与技术专业班级电气1241
姓名张伟
学号32
电气与信息学院
和谐勤奋求是创新
纳米材料的测试与表征
摘要:介绍了纳米材料的特性及测试与表征。
综合使用各种不同的分析和表征方法,可对纳米材料的结构和性能进行有效研究。
关键词:测试技术;表征方法;纳米材料
引言
纳米材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。
纳米材料的化学组成及其结构是决定其性能和应用的关键因素,而要探讨纳米材料的结构与性能之间的关系,就必须对其在原子尺度和纳米尺度上进行表征。
其重要的微观特征包括:晶粒尺寸及其分布和形貌、晶界及相界面的本质和形貌、晶体的完整性和晶间缺陷的性质、跨晶粒和跨晶界的成分分布、微晶及晶界中杂质的剖析等。
如果是层状纳米结构,则要表征的重要特征还有:界面的厚度和凝聚力、跨面的成分分布、缺陷的性质等。
总之,通过对纳米材料的结构特性的研究,可为解释材料结构与性能的关系提供实验依据。
纳米材料尺度的测量包括:纳米粒子的粒径、形貌、分散状况以及物相和晶体结构的测量;纳米线、纳米管的直径、长度以及端面结构的测量和纳米薄膜厚度、纳米尺度的多层膜的层厚度的测量等。
适合纳米材料尺度测量与性能表征的仪器主要有:电子显微镜、场离子显微镜、扫描探测显微镜Χ光衍射仪和激光粒径仪等。
紫外和可见光谱是纳米材料谱学分析的基本手段,分为吸收光谱、发射光谱和荧光光谱。
吸收光谱主要用于监测胶体纳米微粒形成过程;发射光谱主要用于对纳米半导体发光性质的表征,荧光光谱则主要用来对纳米材料特别是纳米发光材料的荧光性质进行表征。
红外和喇曼光谱的强度分别依赖于振动分子的偶极矩变化和极化率的变化,因而,可用于揭示纳米材料中的空位、间隙原子、位错、晶界和相界等方面的信息。
纳米材料中的晶界结构比较复杂,与材料的成分、键合类型、制备方法、成型条件以及热处理过程等因素均有密切的关系。
喇曼频移与物质分子的转动和振动能级有关,不同的物质产生不同的喇曼频移。
喇曼频率特征可提供有价值的结构信息,利用喇曼光谱可以对纳米材料进行分子结构、键态特征分析和定性鉴定等。
喇曼光谱具有灵敏度高、不破坏样品、方便快速等优点,是研究纳米材料,特别是低维纳米材料的首选方法。
目前对纳米微观结构的分析表征手段主要有扫描探针显微技术,它包括扫描隧道电子显微镜、原子力显微镜、近场光学显微镜等。
利用探针与样品的不同相互作用,在纳米级至原子级水平上研究物质表面的原子和分子的几何结构及与电子行为有关的物理、化学性质。
例如用STM不仅可以观察到纳米材料表面的原子或电子结构,还可以观察表面存在的原子台阶、平台、坑、丘等结构缺陷。
高分辨电子显微镜用来观察位错、孪晶、晶界、位错网络等缺陷,核磁共振技术可以用来研究氧缺位的分布、原子的配位情况、运动过程以及电子密度的变化;用核磁共振技术可以研究未成键电子数、悬挂键的类型、数量以及键的结构特征等。
测试技术的发展
纳米测试技术的研究大致分为三个方面:一是创造新的纳米测量技术,建立新理论、新方法;二是对现有纳米测量技术进行改造、升级、完善,使它们能适应纳米测量的需要;三是多种不同的纳米测量技术有机结合、取长补短,使之能适应纳米科学技术研究的需要。
纳米测试技术是多种技术的综合,如何将测试技术与控制技术相融合,将探测、定位、测量、控制、信号处理等系统结合在一起构成一个大系统,开发、设计、制造出实用新型的纳米测量系统,是亟待解决的问题,也是今后发展的方向。
随着纳米材料科学的发展和纳米制备技术的进步,将需要更新的测试技术和手段来表征、评价纳米粒子的粒径、形貌、分散和团聚
状况;分析纳米材料表面、界面性质等。
因此,纳米材料表征技术的进步,必将推动纳米材料科学不断向前发展。