第二章 微 分 方 程 模 型.
常微分方程第三版全文
![常微分方程第三版全文](https://img.taocdn.com/s3/m/19fb95683868011ca300a6c30c2259010302f374.png)
解 设t时刻时镭元素的量为R(t),
依题目中给出镭元素的衰变律可得 :
dR dt
kR,
R(0) R0
这里k 0,是由于R(t)随时间的增加而减少.
解之得 :
例2 RLC电路
如图所示的R-L-C电路. 它包含电感L,电阻R,电容C及电源 e(t). 设L,R,C均为常数,e(t)是时间t的已知函数.试求当 开关K合上后,电路中电流强度I与时间t之间的关系.
沃特拉把所有的鱼分为两类:被食鱼 与捕食鱼,设t时刻被食鱼的总数为x(t),而 捕食鱼的总数为y(t).
解
Volterra
dx
被捕食-捕食模型:
dt dy
x(a by), y(c dx)
dt
Volterra
dx
模型:
dt dy
x(a bx cy), y(d ex fy)
dt
欧拉 (1707 – 1783)
瑞士数学家. 他写了大量数学经典 著作, 如《无穷小分析引论 》, 《微 分学原理 》, 《积分学原理》等, 还 写了大量力学, 几何学, 变分法教材. 他在工作期间几乎每年都完成 800 页创造性的论文. 他的最大贡献是扩展了微积分的领域, 为分析学的重 要分支 (如无穷级数, 微分方程) 与微分几何的产生和 发展奠定了基础. 在数学的许多分支中都有以他的名 字命名的重要常数, 公式和定理.
一、什么是微分方程?
方程对于学过中学数学的人来说是比较熟悉的; 在初等数学中就有各种各样的方程,比如线性方 程、二次方程、高次方程、指数方程、对数方程、 三角方程和方程组等等。这些方程都是要把研究 的问题中的已知数和未知数之间的关系找出来, 列出包含一个未知数或几个未知数的一个或者多 个方程式,然后取求方程的解。
常微分方程第二章第一讲
![常微分方程第二章第一讲](https://img.taocdn.com/s3/m/1f312d3887c24028915fc3b2.png)
2.1.2 可化为变量分离方程的类型
引言 有的微分方程从表面上看,不是可分 离变量的微分方程,但是,通过适当的变量替 换,就可以很容易地化为“变量分离方程”, 在这里,介绍两类这样的方程。 1. 齐次方程
1)方程的类型
定义
dy y g ( ) (2.5) 的方程,称为齐次 dx x 微分方程,这里 g (u ) 是 u 的连续函数。 14
dy ( y) f ( x)dx C (2.2)
可以证明这就是方程(2.1)的通解.
2)如果存在 y0, ( y0 ) 0, 则方程( .1 使 2 )还有特解
y y0
(**)
微分方程(2.1)的所有解为:式(2.2)和(**).
注意:积分常数C 的相对任意性。
7
3.变量分离方程的解题步骤
即 1 , 2 1 ,
则 ON OM ,
PM 而 tan 2 , OP ON
_____ _____
则有 y'
y x x y
2 2
.
上述方程为齐次微分 方程,可用变量变换 法求解。
27
小结 1.变量分离方程的形状 dy f ( x) ( y )或M 1 ( x) N1 ( y ) dx M 2 ( x) N 2 ( y ) dy 0 dx 2.变量分离方程的求解:分离变量法 步骤:分离变量,两边积分,检查是否有遗漏的特解
2
(*)
23
分离变量,得 dX 1 u du 2 X 1 2u u 两边积分,得 ~ 2 2 ln X ln | u 2u 1 | C
即X (u 2u 1) C1 (C1 e ), 此外容易验证 u 2 2u 1 0 亦为方程(*)的解,因此方程(*)的通解为 X 2 (u 2 2u 1) C1, 其中C1为任意常数。
流体力学第2章水静力学--用
![流体力学第2章水静力学--用](https://img.taocdn.com/s3/m/1504e6303c1ec5da50e27070.png)
由此得证,静止流体中任一点压强与作用的方位无关。 由此可知,流体静压强只是空间坐标的函数,即
p f x,y,z
且dppdxpdypdz x y z
§2-2 流体平衡微分方程
一、静止流体平衡微分方程及其积分
取泰勒级数展
在静止流体中取六面体微团dx,dy,dz,并取开坐式标的如前图两所项示。
Evaluation only. eated(w静各it止h向CA流等osp体值pyo中r性isg任e)h.一tS2l点i0d1e的9s静-f2o压0r1强.N9与EAT作sp3用o.s5的eC方Pli位teyn无Lt 关tPdr.ofile 5.2.0
1.方向特性 :证明
由液体的性质可知,静止的 液体不能承受剪切力,也不
x
dx
由静平衡关系 Fx 0有:
p1pd x dyd p z1pd x dyd X d z xd 0 ydz
2x 2x
可得:
X 1 p 0
x
eat同ed理w,i对thyCA,ozsp方py向orisg可eh得.tS:2lEYZi0dv1ea119slu-f2ppyzao0tri1o00.N9nEAoTsn流也pl3y体称o..s5静 欧eC平拉Pl衡平itey微衡nL分微t tP方分dr.程方of式程ile,。5.2.0
的数值C反op映y了rig压h强t 2的01大9小-2。019( hAspp)ose Pty Ltd.
三者关系: 1 P工程=1.0Kgf/cm2=10mH2O=98KPa 1 P标准 = 101.3KPa =760mmHg=10.336mH2O
第2章 水静力学
二 静水压强基本特性
流体静压强总是指向作用面的内法线方向 (垂直指向性)
自动控制原理:第二章--控制系统数学模型全
![自动控制原理:第二章--控制系统数学模型全](https://img.taocdn.com/s3/m/5786b9b1f9c75fbfc77da26925c52cc58bd690ab.png)
TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
(1)根据克希霍夫定律可写出原始方程式
((23))式消LuLCcdd中去(titd)i中2d是utRc间2(中Cti1)变间C1量iR变dCti量idd后udt,ct,(t它)u输r与u(入tc输)(输t)出出uu微rc((tt)分)有方如程下式关系
或
T1T2
d 2uc (t) dt 2
T2
duc (t) dt
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
线性(或线性化)定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比 称为传递函数。
令线C性(s定)=常L[c系(t统)],由R下(s)述=Ln阶[r(微t)]分,方在程初描始述条:件为零
时[[aab,nnmbssdmdn进mt+ndn+dt行acmmbn(tm拉-r1)-(s1t氏ns)-am1变n+-1b1+…m换dd…1t+,nndd+1a1t得mm1bcs1(11到+ts)r+a关(t0b)]于0C]的RD(sM的s的a(()分s1s(分))=代sdbd为母)t1子为数cd传d多(tt多传方)r递项(项t程递函)式a式0函数c。b(0数tr) (t)
第二章(概念,微分方程,传递函数)
![第二章(概念,微分方程,传递函数)](https://img.taocdn.com/s3/m/b6a23fc4bb4cf7ec4afed097.png)
取一次近似, 取一次近似,且令
y( x) = y( x) y( x0 )
≈ E0 sin x0 ( x x0 )
既有
≈ E0 sin x0 ( x x0 )
y = E0 sin x0 x
12
第二章 控制系统的数学模型
控制系统三域的数学模型关系
微分方程 t (时域)
L L
1
F F 1
系统
《自动控制理论》 自动控制理论》
江苏大学电气学院自动化系 张军
1
第二章 控制系统的数学模型
§2.1 §2.2 §2.3 §2.4 控制系统数学模型的概念 微分方程描述 传递函数 结构图
2
第二章 控制系统的数学模型
2.1 数学模型的概念
数学模型: 数学模型: 是描述系统特性或状态的数学表达式。它表达了系统输入 是描述系统特性或状态的数学表达式。它表达了系统输入 输出及系统各变量之间的定量关系 关系。 输出及系统各变量之间的定量关系。是系统内部本质信息的反 是系统内在客观规律的写照或缩影。 举例:电路模型) 映。是系统内在客观规律的写照或缩影。(举例:电路模型) 建模目的: 建模目的: 可以定量分析系统动静态性能,看是否能满足生产工艺要求。 动静态性能 1. 可以定量分析系统动静态性能,看是否能满足生产工艺要求。 可以用于定量的控制计算 对系统行为进行预测, 定量的控制计算, 2. 可以用于 定量的控制计算 , 对系统行为进行预测 , 并加以控 制。控制精度与模型精度有关。 控制精度与模型精度有关。 3. 利用模型可以进行有关参数的寻优 。
①标准形式
K W (s) = S
N
∏
m
(T i S + 1) (T j S + 1)
常微分方程第二章
![常微分方程第二章](https://img.taocdn.com/s3/m/33854c806bec0975f465e2d8.png)
第二章 基本定理我们在第一章主要学习了初等积分法,掌握了几类常微分方程的解法.但是这些解法只适用于某些特殊的类型,很多其它的常微分方程不能用初等解法进行求解.1841年,法国数学家刘维尔(Liouville )证明了里卡蒂(Riccati )方程)0)(()()()(2≠++=x p x r y x q y x p dydx 除了某些特殊的类型外,一般不能用初等积分法求解.例如,很简单的里卡蒂方程22y x dxdy +=就不能用初等积分法求解.自然地,如果一个常微分方程不能用初等积分法求解,那么应该如何处理呢?是否存在解呢?如果存在解,它的解是否唯一呢?解的存在区间是什么呢?初值的微小误差对解有什么影响呢?这些问题在理论的研究和实际应用中,都有着重要的意义.本章将解决这些基本问题. 本章主要介绍解的存在唯一性定理、解的延展定理与比较定理、解对初值的连续依赖性定理以及解对初值的可微性定理,这些定理就回答了我们刚才的疑问,有效的处理解的存在性、唯一性、存在区间、初值对解的影响等问题,为我们使近似解法奠定理论基础,同时这些定理也是常微分方程理论的基础内容,对进一步的学习奠定基础.2.1 解的存在唯一性定理对于一般的常微分方程),(y x f dxdy = (2.1) 如果给出了初始条件00)(y x y =,我们就得到了柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy (2.2) 这时,在什么样的条件下,柯西初值问题的解存在且唯一呢?解的存在区间是什么呢?我们有如下的解的存在唯一性定理.2.1.1 存在唯一性定理的叙述定理2.1(存在唯一性定理)如果方程(2.1)的右端函数),(y x f 在闭矩形区域b y y b y a x x a x R +≤≤-+≤≤-00002,:上满足如下条件:(1)在2R 上连续;(2)在2R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数N ,使对于2R 上的任何一对点),(y x 和),(x 有不等式:y y N y x f y x f -≤-),(),(则初值问题(2.2)在区间],[0000h x h x +-上存在唯一解00)(),(y x x y ==ϕϕ 其中),(max ),,min(),(0y x f M Mb a h R y x ∈==. 在给出定理2.1的证明之前,我们先对定理2.1的条件和结论做些说明:1、在两个条件中,条件(2),即李普希兹条件比较难于验证,因为李普希兹常数N 难以确定.但是,我们可以将该条件加强,替换为:如果函数),(y x f 在闭矩形区域2R 关于y 的偏导数),(y x f y '存在且有界.这样,可以推出李普希兹条件成立.事实上,因为),(y x f y '有界,故设N y x f y ≤'),(,对2),(),,(R x y x ∈∀,由拉格朗日中值定理得:y y N y y x f y x f y x f y -≤-'=-),(),(),(ξ我们验证),(y x f y '在闭矩形区域2R 上有界也不容易,可以进一步将条件加强为:),(y x f y '在闭矩形区域2R 上连续.由闭区域上连续函数的性质知:),(y x f y '在闭矩形区域2R 上有界,所以李普希兹条件成立.因此,有如下的关系式:),(y x f y '在2R 上连续⇒),(y x f y '在2R 上存在且有界⇒李普希兹条件2、在定理2.1的结论中,解)(x y ϕ=的存在区间为],[0000h x h x +-,其中 ),(max ),,min(),(0y x f M Mb a h R y x ∈==.为什么解的存在区间不是],[00a x a x +-呢?这是因为我们研究问题的范围为闭矩形区域2R ,方程的解)(x y ϕ=不能超出2R 的范围,又因为),(max ),(y x f M Ry x ∈=,所以M y x f M ≤≤-),( 即 M dxdy M ≤≤- 由⎪⎩⎪⎨⎧=-=00)(y x y M dx dy 和⎪⎩⎪⎨⎧==00)(y x y M dx dy 得:001)()(y x x M x y +--=,002)()(y x x M x y +-= 因此)()()(21x y x y x y ≤=≤ϕ,即)(x y ϕ=夹在)(1x y 与)(2x y 之间.又,)(1x y 与)(2x y 在2R 上的存在区间为],[0000h x h x +-,故)(x y ϕ=的存在区间也是],[0000h x h x +-.2.1.2 存在性的证明首先,我们给出柯西初值问题(2.2)的等价转化,即求(2.2)的解)(x y ϕ=,等价于求解积分方程⎰+=xx d y f y y 0))(,(0ξξξ (2.3) 事实上,如果)(x y ϕ=是初值问题(2.2)的解,即有))(,()(x x f x ϕϕ='且00)(y x =ϕ从0x 到x 积分得:⎰+=xx d f y x 0))(,()(0ξξϕξϕ 即)(x y ϕ=是积分问题(2.3)的解.反过来,如果)(x y ϕ=是积分问题(2.3)的解,即有⎰+=xx d f y x 0))(,()(0ξξϕξϕ 则00)(y x =ϕ且))(,()(x x f x ϕϕ='即)(x y ϕ=是初值问题(2.2)的解.经过等价转化,我们将初值问题(2.2)的求解,转化为积分问题(2.3)的求解.下面用皮卡(Picard )逐次逼近来证明积分问题(2.3)的解的存在性,分为三个步骤:1、构造近似函数列{})(x n ϕ任取一个满足初值条件00)(y x y =的函数)(0x y ϕ=作为首项(初始项),并要求在2R 上的存在区间为:],[0000h x h x +-,简单起见,取00)(y x =ϕ,将它代入方程(2.3)的右端,所得到的函数用)(1x ϕ表示,并称为一次近似,即⎰+=xx d f y x 0))(,()(001ξξϕξϕ 再将)(1x ϕ代入方程(2.3)的右端就得到二次近似⎰+=xx d f y x 0))(,()(102ξξϕξϕ 序行此法,可以得到n 次近似⎰-+=xx n n d f y x 0))(,()(10ξξϕξϕ 为了保证上述的逐次逼近过程可以一直进行下去,必须有2))(,(R x x n ∈ϕ,即当],[0000h x h x x +-∈时,有,2,1)(0=≤-n b y x n ϕ 下面用数学归纳法证明b y x n ≤-0)(ϕ.显然,当],[0000h x h x x +-∈时,有b y y y x ≤=-=-0)(0000ϕ假设,当],[0000h x h x x +-∈时,有b y x n ≤--01)(ϕ,那么,对于)(x n ϕ有⎰-=-xx n n d f y x 0))(,()(10ξξϕξϕ 从而有b Mb M Mh x x M d f y x xx n n =≤≤-≤≤-⎰-00100))(,()(ξξϕξϕ 由数学归纳法知,当],[0000h x h x x +-∈时,有,2,1)(0=≤-n b y x n ϕ这样,我们就可以得到一个近似函数列{})(x n ϕ.2、证明近似函数列{})(x n ϕ在区间],[0000h x h x +-上一致收敛.由于无法得到{})(x n ϕ的通项公式,只知道首项和递推关系式,直接证明函数列{})(x n ϕ的收敛性比较困难,为此我们构造函数项级数+-++-+-)]()([)]()([)(1010x x x x x n n ϕϕϕϕϕ (2.4) 它的部分和是)()]()([)]()([)()(10101x x x x x x x S n n n n ϕϕϕϕϕϕ=-++-+=-+因此,证明{})(x n ϕ的收敛性转化为证明级数(2.4)的收敛性,下面我们证明级数(2.4)在区间],[0000h x h x +-上一致收敛.首先研究级数(2.4)的通项)(x n μ⎰=-xx d f x x 0))(,()()(001ξξϕξϕϕ 即⎰=-xx d y f y x 0),()(001ξξϕ 所以00010),()(x x M d y f y x x x -≤≤-⎰ξξϕ 因为⎰+=x x d f y x 0))(,()(001ξξϕξϕ,⎰+=x x d f y x 0))(,()(102ξξϕξϕ,所以 ⎰-≤-x x d f f x x 0))(,())(,()()(0112ξξϕξξϕξϕϕ由李普希兹条件,得 !2)()()()(200011200x x MN d x MN d N x x x x x x -=-≤-≤-⎰⎰ξξξξϕξϕϕϕ 下面用数学归纳法证明!)()(011n x x MN x x nn n n -≤---ϕϕ 显然,2,1=n 的时候,不等式成立(上面已经给出), 假设!)()(011n x x MN x x n n n n -≤---ϕϕ成立,那么对于1+n 的情形有 )!1(!)()())(,())(,()()(100111000+-=-≤-≤-≤-+--+⎰⎰⎰n x x MN d n x MN d N d f f x x n n x x n n xx n n x x n n n n ξξξξϕξϕξξϕξξϕξϕϕ由数学归纳法知,对一切自然数n ,均有!)()(011n x x MNx x nn n n -≤---ϕϕ 又00h x x ≤-,所以级数(2.4)的通项满足: !)(011n h MN v x n n n n -+=≤μ ( ,2,1=n ) 利用比式判别法,可知以n v 为通项的级数收敛,从而以)(x n μ为通项的级数(2.4)绝对收敛且一致收敛.又,每一个)(x n μ是连续的,所以级数(2.4)的和函数也是连续的,记为)(x ϕ,其存在区间也是],[0000h x h x +-.因此函数列{})(x n ϕ就收敛于)(x ϕ.3、证明)(lim )(x x n n ϕϕ∞→=是积分问题(2.3)的解,从而也是初值问题(2.2)的解.在⎰-+=x x n n d f y x 0))(,()(10ξξϕξϕ两端取极限,得到 ⎰-∞→∞→+=xx n n n n d f y x 0))(,(lim )(lim 10ξξϕξϕ 即⎰+=xx d f y x 0))(,()(0ξξϕξϕ 所以)(x ϕ是积分问题(2.3)的解,从而也是初值问题(2.2)的解.2.1.3 唯一性的证明下面我们证明解的唯一性.在证明唯一性之前,先介绍一个重要的不等式,即贝尔曼(Bellman )不等式.贝尔曼引理 设)(x y 为区间],[b a 上的非负连续函数,b x a ≤≤0.若存在,0≥δ 0≥k ,使得)(x y 满足不等式],[,)()(0b a x d y k x y xx ∈+≤⎰ττδ (2.5) 则有],[,)(0b a x e x y x x k ∈≤-δ证明 仅证明0x x ≥的情形,0x x ≤的情形类似.令)(x y 的原函数为⎰=xx d y x R 0)()(ττ,代入(2.5)得 δ≤-')()(x kR x R两边同时乘以积分因子)(0x x k e --,得)()(00)]()([x x k x x k e x kR x R e ----≤-'δ从0x 到x 积分得)()(00)(x x k x x k e e x kR -----≤δδ即)(0)(x x k e x kR -≤+δδ 由(2.5)知,)()(x kR x y +≤δ,所以],[,)(0b a x e x y x x k ∈≤-δ下面证明积分问题(2.3)的解的唯一性.假设积分问题(2.3)有两个解)(1x y 和)(2x y ,我们只需要证明:)(1x y )(2x y ≡,],[0000h x h x x +-∈事实上,因为⎰+=x x d y f y x y 0))(,()(101ξξξ,⎰+=xx d y f y x y 0))(,()(202ξξξ 所以有⎰-≤-xx d y f y f x y x y 0))(,())(,()()(2121ξξξξξ由李普希兹条件知⎰-≤-xx d y y N x y x y 0)()()()(2121ξξξ 令N k x y x y x y ==-=,0,)()()(21δ,由贝尔曼引理可知,0)(=x y ,即)(1x y )(2x y ≡. 这样,我们就完成了解的存在性与唯一性的证明.2.1.4 三点说明为了更好的理解和掌握解的存在唯一性定理,我们对该定理再做三点说明.1、在存在性的证明过程中,我们利用逐次逼近法构造了近似函数列{})(x n ϕ,其中首项为:00)(y x =ϕ,递推关系式为:⎰-+=xx n n d f y x 0))(,()(10ξξϕξϕ.该方法实际上给出了我们一种求初值问题(2.2)的近似解的方法,当用n 次近似解逼近精确解时,需要给出它的误差估计.事实上,有∑∑∞+=∞=+-≤-≤-101!)()()()(n k k k nk k k n k x x N N M x x x x ϕϕϕϕ 0)!1()(!)!1()(!10001010Nh n k k k n n k k k e n Nh N M k h N n Nh N M k h N N M +=+<≤+∞=+∞+=∑∑ 2、如果方程(2.1)是线性方程,即)()(x q y x p dxdy +-= 其中)(x p 和)(x q 在区间],[b a 上连续,这时,初值问题(2.2)在带型区域+∞<<-∞≤≤y b x a R ,:2满足定理2.1的条件.事实上,)()(),(x q y x p y x f +-=在2R 上连续,而且)(),(x p y x f y -='在2R 上也连续,所以),(y x f 关于变量y 满足李普希兹条件.这时,初值问题(2.2)的解存在且唯一,存在区间为],[b a .3、定理2.1中的李普希兹条件是保证解唯一的充分条件,那么这个条件是不是必要条件呢?回答是否定的,即李普希兹条件是解唯一的充分非必要条件.下面我们给出一个例子来说明李普希兹条件是解唯一的非必要条件,也就是说,即使李普希兹条件不成立,初值问题(2.2)的解也可能是唯一的.例1 试证方程0,ln ,0≠=⎩⎨⎧=y y y y dx dy 经过xOy 平面上任一点的解都是唯一的.证明 由00,ln ,0≠=⎩⎨⎧=y y y y dx dy 可得:0=y 或x Ce e y ±=. 任给xOy 平面上的一个点),(00y x ,只会对应0=y 或xCe e y ±=中的一个解,也就是说,过xOy 平面上任一点的解都是唯一的.但是,我们有0ln ln )0,(),(-==-y y y y x f y x f 因为+∞=→y y ln lim 0,所以找不到0>N ,使得 0)0,(),(-≤-y N x f y x f从而方程右端函数在0=y 的任何邻域上不满足李普希兹条件,但是初值问题(2.2)的解却是唯一的,这说明李普希兹条件是非必要条件.习 题 2.11.试判断方程y x dx dy tan =在区域 (1)π≤≤≤≤-y x R 0,11:1;(2)44,11:2ππ≤≤-≤≤-y x R上是否满足定理2.1的条件?2.讨论方程3123y dx dy =在怎样的区域中满足定理2.1的条件.并求通过)0,0(的一切解.3.试用逐次逼近法求方程2y x dxdy -=满足初值条件0)0(=y 的近似解: )(),(),(),(3210x x x x ϕϕϕϕ并在闭矩形区域11,11:2≤≤-≤≤-y x R 给出三次近似的误差估计.4.利用逐次逼近法求方程22x y dxdy -=适合初值条件1)0(=y 的近似解: )(),(),(210x x x ϕϕϕ并在闭矩形区域111,11:2≤-≤-≤≤-y x R 给出二次近似的误差估计.5.试证明定理2.1中的n 次近似解)(x n ϕ与精确解)(x ϕ有如下的误差估计式:10)!1()()(+-+≤-n n n x x n MN x x ϕϕ 6.在条形区域+∞<≤≤y b x a ,内,假设方程(2.1)的所有解都唯一,对其中任意两个解)(),(21x y x y ,如果有)()(0201x y x y <,则必有b x x x y x y ≤≤<021),()(.7.讨论方程323y dx dy = 解的唯一性.2.2 延展定理和比较定理由解的存在唯一性定理,我们知道,初值问题(2.2)的解在满足一定条件的情况下存在且唯一,但是解的存在区间不是],[00a x a x +-,而是],[0000h x h x +- 其中),(max ),,min(),(0y x f M Mb a h R y x ∈==.如果M 比较大的话,则解的存在区间就非常小,这对我们研究解的性质产生了很大的局限性,只能在很小的范围内有解,当x 超出这个范围时,解的情况就不清楚了.为了解决这个问题,我们有下面的延展定理.2.2.1 延展定理定理2.2(延展定理)如果方程(2.1)的右端函数在区域R R D ⨯⊂上连续,且关于变量y 满足局部的李普希兹条件,即对于D 内的任一闭矩形区域都满足李普希兹条件,则对任何一点D y x ∈),(00,初值问题(2.2)的解)(x y ϕ=可以向左右无限延展,直到))(,(x x ϕ任意接近区域D 的边界.在给出定理的证明之前,先对“))(,(x x ϕ任意接近区域D 的边界”进行说明.当区域D 有界时,积分曲线向左右延展可以任意接近;当区域D 无界时,积分曲线向左、右延展,或者任意接近区域D 的边界(边界存在的话),或者无限远离坐标原点.证明 首先证明区域D 有界的情形.设区域D 的边界为D D L -=(D 为D 的闭包).对于任意给定的正数ε,记L 的ε邻域为εU ,记L 的2ε邻域为2εU ,记L 的4ε邻域为4εU .则集合22εεU D D -=为闭集,且D D ⊂2ε,所以2εD 有界. 只要证明积分曲线可以到达2εD 的边界2εL ,由ε的任意性知,积分曲线就可以任意接近区域D 的边界L .事实上,以2εD 中的任意一点为中心,以4ε为半径的闭圆区域均包含在区域D 的内部.且在闭区域44εεU D D -=之内.从而,以2εD 中的任意一点为中心,以4221ε=a 为边长的正方形也在闭区域4εD 之内.记 ),(max 4),(1y x f M D y x ε∈= 则过2εD 的任意一点),(**y x 的积分曲线,必至少可在区间],[**h x h x +-上存在,其中)82,82min(),min(1111M M a a h εε==. 于是,过点),(00y x 的积分曲线)(x y ϕ=每向左或向右延展一次,其存在区间就伸长一个确定的正数h ,由于2εD 有界,)(x y ϕ=经过有限次延展后一定可以达到2εD的边界2εL .于是也就可以任意接近区域D 的边界L .其次考虑区域D 为无界的情形.这时,我们可以用闭圆区域,2,1},),{(222=≤+=n n y x y x S n与区域D 取交集,令n n S D D =,则 ∞==1n n D D .由于n D 为有界的区域,根据前面的证明,我们可知,过n D 内任一点的积分曲线能够任意接近n D 的边界.因此,过点),(00y x 的积分曲线)(x y ϕ=可以无限接近区域D 的边界.延展定理的证明,关键是第一步证明,也就是区域D 有界的时候,过点),(00y x 的积分曲线)(x y ϕ=向左向右延展的时候,一定要做等速延展,即延展步幅h 是不变的. 例1 试讨论方程2y dxdy=通过点)1,1(的解和通过点)1,3(-的解的存在区间. 解 该题目中研究问题的区域D 为整个坐标平面xOy .方程右端函数满足延展定理的条件.由2y dxdy=可以解得方程的通解为 xC y -=1代入1)1(=y 得:2=C .故通过点)1,1(的解为xy -=21 它可以向左无限延展,而当-→2x 时,+∞→y ,所以通过点)1,1(的解xy -=21的存在区间为)2,(-∞.代入1)3(-=y 得:2=C .故通过点)1,3(-的解为xy -=21它可以向右无限延展,而当+→2x 时,-∞→y ,所以通过点)1,3(-的解xy -=21的存在区间为),2(+∞.这个例子说明,尽管),(y x f 在整个坐标平面上满足延展定理的条件,解上的点))(,(x x ϕ也能无限接近区域D 的边界,但是延展的方向却不一定是无限向右和向左,可能是向上或向下,从而导致解的存在区间不是),(+∞-∞. 例2 试证明:对任意的0x 及满足条件100<<y 的0y ,方程221)1(y x y y dx dy ++-=的满足条件00)(y x y =的解)(x y y =在),(+∞-∞上存在.证明:令221)1(),(y x y y y x f ++-=,则222222)1(122),(y x x y y x y y x f y ++--++=' 显然),(),,(y x f y x f y '在xOy 平面上连续,满足解的存在唯一性条件及延展定理的条件,而1,0==y y 是),(y x f dxdy=的解, 因此,满足00)(y x y =,100<<y 的解存在,而且可以无限延展到xOy 平面的边界,且不能穿过1,0==y y ,故只能向左右无限延展,所以,)(x y y =在),(+∞-∞上存在.该例题说明,),(y x f 在整个坐标平面上满足延展定理的条件,当方程的解不能穿过1,0==y y 时,它就不能向上向下无限延展了,只能向左、向右延展,所以解的存在区间就是),(+∞-∞.在这里,1,0==y y 控制了解的延展方向,使它按照我们的要求进行延展,因此就有了下面的比较定理. 2.2.2 比较定理我们在使用延展定理的时候,通常会和比较定理配合使用,从而起到控制延展方向的作用.下面介绍一下比较定理.我们在考察方程(2.1)),(y x f dxdy=时,通常将右端函数),(y x f 进行放缩的处理,比如),(),(),(21y x F y x f y x F <<这时,我们可以同时考察),(1y x F dx dy =和),(2y x F dxdy = 我们有如下的比较定理:定理2.3 (第一比较定理)设定义在某个区域D 上的函数),(y x f ,),(1y x F 和),(2y x F 满足条件:(1)在D 满足解的存在唯一性定理及延展定理的条件,即在D 上连续,在D 上关于变量y 满足李普希兹条件;(2)在D 上有不等式),(),(),(21y x F y x f y x F <<设初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy ,⎪⎩⎪⎨⎧==001)(),(y x y y x F dx dy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解分别为)(x y ϕ=,)(1x y Φ=和)(2x y Φ=,则在它们的共同存在区间上有下列不等式:021),()()(x x x x x >Φ<<Φϕ 021),()()(x x x x x <Φ>>Φϕ证明 仅证当0x x >时,)()(2x x Φ<ϕ,其它的情形相类似. 由比较定理的条件(1),初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解在0x 的某一邻域内存在且唯一,分别记为)(x y ϕ=和)(2x y Φ=,它们满足0020)()(y x x =Φ=ϕ令)()()(2x x x h ϕ-Φ=,则0)()()(0020=-Φ=x x x h ϕ且0))(,())(,()()()(0002020020>-Φ='-Φ'='x x f x x F x x x h ϕϕ所以函数)(x h 在0x 的某一右邻域内是严格单调增加的.如果在0x x >时,0)(>x h 不是总成立,则至少存在一点01x x >,使得0)(1=x h ,且当10x x x <<时,0)(>x h ,因此在点1x 的左导数0)0(1≤-'x h ,这与0))(,())(,()()()(1112121121>-Φ='-Φ'='x x f x x F x x x h ϕϕ矛盾.因此当0x x >时,0)(>x h 总成立,即)()(2x x Φ<ϕ.比较定理的应用,关键是),(1y x F 和),(2y x F 的选取,因为初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解)(x y ϕ=的存在区间的延展,受到)(1x y Φ=和)(2x y Φ=的控制,即)(x y ϕ=夹在)(1x y Φ=和)(2x y Φ=之间.因此,我们必须能确定出)(1x y Φ=和)(2x y Φ=的存在区间,这就是我们选取),(1y x F 和),(2y x F 的标准,即⎪⎩⎪⎨⎧==001)(),(y x y y x F dxdy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解)(1x y Φ=和)(2x y Φ=必须能够求得. 下面我们给出第二比较定理.定理2.4 (第二比较定理)设定义在某个区域D 上的函数),(y x f ,),(1y x F 和),(2y x F 满足条件:(1)在D 满足解的存在唯一性定理及延展定理的条件,即在D 上连续,在D 上关于变量y 满足李普希兹条件;(2)在D 上有不等式),(),(),(21y x F y x f y x F ≤≤设初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy ,⎪⎩⎪⎨⎧==001)(),(y x y y x F dx dy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解分别为)(x y ϕ=,)(1x y Φ=和)(2x y Φ=,则在它们的共同存在区间上有下列不等式:021),()()(x x x x x >Φ≤≤Φϕ 021),()()(x x x x x <Φ≥≥Φϕ习 题 2.21.设方程为),()(22y x f a y dxdy-= 假设),(y x f 及),(y x f y '在xOy 平面上连续,试证明:对于任意的0x 及a y <0,方程满足00)(y x y =的解都在),(+∞-∞上存在.2.指出方程2)1(2xy e y dxdy -=的每一个解的最大存在区间,以及当x 趋于这个区间的右端点时解的极限.3.讨论方程xx dx dy 1cos 12-= 解的存在区间.4.设),(y x f 在整个平面上连续有界,对y 有连续偏导数,试证明方程),(y x f dxdy=的任一解)(x y ϕ=在区间+∞<<∞-x 上有定义. 5.讨论方程212-=y dx dy 的通过点)0,0(的解,以及通过点)3,2(ln -的解的存在区间.6.在方程)(y f dxdy=中,如果)(y f 在),(+∞-∞上连续可微,且 )0(0)(≠<y y yf ,求证方程满足00)(y x y =的解)(x y 在区间),[0+∞x 上存在,且有0)(lim =+∞→x y x .2.3 解对初值的连续依赖性定理和解对初值的可微性定理通过前两节的存在唯一性定理和延展定理,加上比较定理,我们知道了初值问题(2.2)在什么样的条件下,解是存在的,是唯一的,而且存在区间比较小的时候,通过延展定理和比较定理可以将解的存在区间变大,从而在实际问题中可以达到我们的要求.但是,在实际问题中,还有一个问题需要解决,那就是误差问题.我们的初始条件00)(y x y =如果产生了微小的偏差,这个偏差对我们的初值问题(2.2)的解)(x y ϕ=会有什么影响呢?下面我们来解决这个问题. 我们在研究初值问题(2.2)的时候,习惯上把0x 和0y 当作常数来看待,这样初值问题(2.2)的解)(x y ϕ=被看作x 的函数.实际上,如果0x ,0y 变化,初值问题(2.2)的解)(x y ϕ=也会发生变化.例如方程xydx dy = 经过点),(00y x 的解为x x y y 0=,可以看作00,,y x x 的函数.对于一般的情形,初值问题(2.2)的解也可以看作00,,y x x 的函数,记为),,(00y x x y ϕ=,代入00)(y x y = 得:0000),,(y y x x =ϕ.如果我们的初始条件00)(y x y =发生了微小的误差,变为了**0)(y x y =,初值问题(2.2)的解也变化不大的话,称解连续依赖于初值.下面我们给出连续依赖性的严格定义.定义2.1 设初值问题⎪⎩⎪⎨⎧==**0)(),(y x y y x f dxdy的解),,(*0*0y x x y ϕ=在区间],[b a 上存在,如果对于任意给定的正数ε,存在正数δ (δ的选取与,ε**0,y x 有关),使得对于满足δδ<-<-*00*00,y y x x (2.2)的解),,(00y x x y ϕ=都在],[b a 上存在,且有],,[,),,(),,(*0*000b a x y x x y x x ∈<-εϕϕ则称初值问题(2.2)的解),,(00y x x y ϕ=在点),(*0*0y x 连续依赖于初值,0x 0y .定理2.4 (解对初值的连续依赖性定理)设),(y x f 在区域D 内连续,且关于变量y 满足李普希兹条件.如果D y x ∈),(*0*0,初值问题(2.2)有解),,(*0*0y x x y ϕ=,且当b x a ≤≤时,D y x x x ∈)),,(,(*0*0ϕ,则对任意的正数ε,存在0>δ,使对于满δδ<-<-*00*00,y y x x的任意),(00y x ,初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解),,(00y x x y ϕ=也在区间],[b a 上存在,且有εϕϕ<-),,(),,(*0*000y x x y x x证明 对于任意给定的正数ε,取εδ<<10,使得闭区域}),,(,),{(1*0*0δϕ≤-≤≤=y x x y b x a y x U整个含在区域D 内,这是可以做到的,因为区域D 是开区域,且当b x a ≤≤时,D y x x x ∈)),,(,(*0*0ϕ,所以,只要1δ的选取足够小,以曲线),,(*0*0y x x y ϕ=为中线,宽度为12δ的带形开区域U 就整个包含在区域D 内, 选取δ满足)(110a b N e M--+<<δδ其中N 为李普希兹常数,),(max ),(y x f M Uy x ∈=,同时还要求δ的选取,必须保证闭正方形δδ≤-≤-*0*02,:y y x x R含于带形开区域U 内.由存在唯一性定理知,对于任一200),(R y x ∈,初值问题(2.2)在0x 的某邻域上存在唯一解),,(00y x x y ϕ=,而且),,(00y x x y ϕ=在0x 的该邻域上可以表示为ττϕτϕd y x f y y x x xx )),,(,(),,(000000⎰+=而),,(*0*0y x x y ϕ=可以表示为ττϕτϕd y x f y y x x xx )),,(,(),,(*0*0*0*0*0*⎰+=对上述两式做差得:ττϕτττϕτϕϕd y x f d y x f y y y x x y x x xx x x )),,(,()),,(,(),,(),,(*0*000*00*0*000*⎰⎰-+-=-ττϕτττϕτϕϕd y x f d y x f y y y x x y x x xx xx )),,(,()),,(,(),,(),,(*0*000*00*0*000*0⎰⎰-+-≤-ττϕτττϕττϕτd y x f d y x f y x f y y x x xx |)),,(,(||)),,(,()),,(,(|0000*0*0*00**0⎰⎰+-+-≤δττϕττϕτδM d y x f y x f xx +-+≤⎰|)),,(,()),,(,(|00*0*0*0ττϕτϕδd y x y x N M xx |),,(),,(|)1(00*0*0*0-++≤⎰由贝尔曼引理,得εδδδϕϕ<<+≤+≤---1)(*0*000)1()1(),,(),,(*a b N x x N e M e M y x x y x x因此,只要在),,(00y x x y ϕ=有定义的区间上,就有εϕϕ<-),,(),,(*0*000y x x y x x .下面我们证明:),,(00y x x y ϕ=在区间],[b a 上有定义.事实上,因为εϕϕ<-),,(),,(*0*000y x x y x x即解),,(00y x x y ϕ=夹在εϕ+=),,(*0*0y x x y 和εϕ-=),,(*0*0y x x y 之间,而且,初值问题(2.2)满足延展定理的条件,所以,解),,(00y x x y ϕ=可以向左向右无限延展,直到无限接近区域D 的边界,于是,它在延展的时候,必须由直线a x =和直线b x =穿出区域U ,从而),,(00y x x y ϕ=在区间],[b a 上有定义.解对初值的连续依赖性说明,初值),(00y x 无法准确得到,但是我们能得到测量数据),(*0*0y x ,只要误差比较小,即δδ<-<-*00*00,y y x x .我们就可以用),(*0*0y x 代替),(00y x 去计算,得到初值问题的解),,(*0*0y x x y ϕ=,这个解可以非常接近真实解),,(00y x x y ϕ=,即εϕϕ<-),,(),,(*0*000y x x y x x .同理,如果方程的右端函数),(y x f 不能准确得到,只能得到),(y x f 的近似函数),(~y x f ,即)),((,),(),(~D y x y x f y x f ∈<-δ我们就可以用),(~y x f 代替),(y x f 去计算,得到初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 的解),,(00~y x x y ϕ=,那么),,(00~y x x y ϕ=能否代替),,(00y x x y ϕ=呢?我们有下面的解的连续依赖性定理.定理2.5 (解对被积函数的连续依赖性定理)在区域D 上,),(y x f 和),(~y x f 都连续,而且关于变量y 满足李普希兹条件, 若初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 在b x a ≤≤上有解),,(00~y x x y ϕ=,则对任意给定的正数ε,存在0>δ,只要),(y x f 满足)),((,),(),(~D y x y x f y x f ∈<-δ则初值问题(2.2)的解),,(00y x x y ϕ=在b x a ≤≤上存在,且有εϕϕ<-),,(),,(00~00y x x y x x .证明 由解的存在唯一性定理知,初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 的解),,(00~y x x y ϕ=存在,设其存在区间为],[b a ,且有⎰+=xx d y x f y y x x 0))],,(,([),,(00~~000~ξξϕξϕ而初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解),,(00y x x y ϕ=也存在,且可以表示为⎰+=xx d y x f y y x x 0))],,(,([),,(00000ξξϕξϕ则⎰⎰-=-xx xx d y x f d y x f y x x y x x 0))],,(,([))],,(,([),,(),,(0000~~0000~ξξϕξξξϕξϕϕ从而有⎰-≤-xx d y x f y x f y x x y x x 0|)),,(,()),,(,(|),,(),,(0000~~0000~ξξϕξξϕξϕϕ⎰-+-=xx d y x f y x f y x f y x f 0|)),,(,()),,(,()),,(,()),,(,(|0000~00~00~~ξξϕξξϕξξϕξξϕξ ⎰-+-≤xx d y x f y x f y x f y x f 0|)),,(,()),,(,(||)),,(,()),,(,(|0000~00~00~~ξξϕξξϕξξϕξξϕξ⎰+-≤xx d y x y x N 0)|),,(),,((|0000~ξδξϕξϕ ⎰-+-≤xx d y x y x N a b 0|),,(),,(|)(0000~ξξϕξϕδ由贝尔曼引理,得)(0000~)(),,(),,(a b N e a b y x x y x x --≤-δϕϕ取)(a b N e ab ---<εδ,则εϕϕ<-),,(),,(0000~y x x y x x .且解),,(00y x x y ϕ=在b x a ≤≤上存在. 例1 考虑方程,ln ,0≠=⎩⎨⎧-=y y y y dx dy 解的情况.解 显然1,1,0-===y y y 是方程的解,当1,1,0-≠≠≠y y y 时,有y y dxdyln -= 这时解得上半平面的通解为x Ce e y -=,下半平面的通解为xCe e y --=.可以看到,对于Ox 轴上的初值)0,(0x ,在任意有限闭区间上解对初值连续依赖,但是,在),0[+∞上,无论),(00y x ,00≠y 如何接近)0,(0x ,只要x 充分大,过),(00y x 的积分曲线就不能与过)0,(0x 的积分曲线(即0=y )任意接近了.这个例子说明,解在有限闭区间上对初值连续依赖,不能推广到无限区间,即,在无限区间上解对初值的连续依赖定理就不成立了.我们有时不仅要求解对初值连续依赖,而且还要知道解),,(00y x x y ϕ=对初值00,y x 的偏导数00,y x ∂∂∂∂ϕϕ是否存在.下面给出解对初值的可微性定理. 定理2.6 (解对初值的可微性定理)如果函数),(y x f 以及),(y x f y '在区域D 内连续,则初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解),,(00y x x y ϕ=在它有定义的区间上有连续偏导数00,y x ∂∂∂∂ϕϕ.并且有 ⎰-=∂∂'x x y d y x f e y x f x y x x 000)),,(,(00000),(),,(ττϕτϕ 及⎰=∂∂'xx y d y x f e y y x x 000)),,(,(000),,(ττϕτϕ 习 题 2.31.若函数),(y x f ,),(y x R 在区域D 内连续且满足李普希兹条件,设初值问题⎪⎩⎪⎨⎧=+=*0*0)(),(),(y x y y x R y x f dx dy 的解为),,(*0*0~y x x y ϕ=,存在区间为],[b a .对任意的正数ε,存在0>δ,使对于满足)),((,),(D y x y x R ∈<δ的),(y x R ,以及满足δδ<-<-*00*00,y y x x的任意),(00y x ,初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解),,(00y x x y ϕ=也在区间],[b a 上存在,且有εϕϕ<-),,(),,(*0*0~00y x x y x x 2.已知方程)sin(xy dxdy = 试求0000000),,(==⎥⎦⎤⎢⎣⎡∂∂y x x y x x y 和0000000),,(==⎥⎦⎤⎢⎣⎡∂∂y x y y x x y 3.设),,(00y x x ϕ是初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解,试证明0),(),,(),,(00000000=∂∂+∂∂y x f y y x x x y x x ϕϕ 2.4 欧拉折线法在第一章,我们介绍了方程的初等解法,即用微积分的知识求得常微分方程的函数解.但是绝大多数的方程不能用初等方法求解,在第二章的前三节中,我们给出了柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 在什么样的条件下,解存在且唯一;在什么条件下,解的存在区间可以延展;在什么条件下连续依赖于初值;在什么条件下,解对初值是可微的.有了这些准备,我们就可以研究柯西初值问题的近似解.下面我们介绍求近似解的方法,欧拉折线法.假定函数),(y x f 在区域:+∞<<-∞≤≤y b x a ,上连续,且关于变量y 满足李普希兹条件,求柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 在区间],[0b x 上的近似解,我们采用的方法是:(1)等分区间],[0b x ,分点为n k kh x x k ,,1,0,0 =+=;小区间长度nx b h 0-=, (2)第一个小区间上用切线段逼近曲线:))(,(0000x x y x f y y -+=,(3)求出1x 所对应的纵坐标))(,(010001x x y x f y y -+=,(4)依次重复(2),(3)得到每个小区间上的线段,从而得到欧拉折线. 这样,我们就用欧拉折线作为柯西初值问题在区间],[0b x 近似解.欧拉折线法的前提是:柯西初值问题的解存在且唯一,而且解的存在区间是],[0b x .例1试用欧拉折线法,取步长1.0=h ,求初值问题⎪⎩⎪⎨⎧=+=1)1(22y y x dx dy 的解在4.1=x 时的近似值.解 令22),(y x y x f +=,2)1,1(=f ,这时12-=x y ,代入1.11=x 得:2.11=y ,65.2)2.1,1.1(=f ,这时2.1)1.1(65.2+-=x y , 代入2.12=x 得:465.12=y ,586225.3)465.1,2.1(=f ,这时465.1)2.1(586225.3+-=x y , 代入3.13=x 得:8236225.13=y ,0155990225.5)8236225.1,3.1(=f ,这时8236225.1)3.1(0155990225.5+-=x y ,代入4.14=x 得:53251824022.24=y 习 题 2.41. 试用欧拉折线法,取步长1.0=h ,求初值问题⎪⎩⎪⎨⎧=-=0)0(22y y x dx dy 的解在5.1=x 时的近似值.2.试用欧拉折线法,取步长1.0=h ,求初值问题 ⎪⎩⎪⎨⎧=+=2)1(22y y x dx dy 在区间]4.1,1[上的近似解.。
第2章 2-1物理系统的微分方程
![第2章 2-1物理系统的微分方程](https://img.taocdn.com/s3/m/b446f1c19ec3d5bbfd0a744f.png)
共计58页
20
此外,在工程实践中,控制系统都有一 个额定的工作状态和工作点,当变量在 工作点附近作小范围的变化,且变量在给 定的区域间有各阶导数时,便可在给定 工作点的邻域将非线性函数展开为泰勒 级数,忽略级数中高阶无穷小项后,就 可得到只包含偏差的一次项的线性方程。 这种线性化方法称为小偏差法。
共计58页 21
例如,设非线性函数y=f(x)如图所示, 其输入量为x,输出量为y,如果在给定工 作点y0=f(x0)处各阶导数均存在,则在 y0=f(x0)附近将y展开成泰勒级数:
共计58页
22
如果偏差Δx=x-x0很小,则可忽略级数中高阶无穷小项, 上式可写为
K表示y=f(x)曲线在(x0,y0)处切线的斜率。因此非线性函数在工作点处可以用该点 的切线方程线性化。
N1
2
(2 - 9)
[ f f ( N 1 ) 2 ] ( N 1 )T T [J1 J 2 ( ) ] 1 1 2 1 L M N2 N2 N2 N2 N 2 N 2 2 ) J 1 J 2 ]2 [ f 1 ( 2 ) f 2 ]2 T L ( 2 ) T M N1 N1 N1
共计58页
24
附录: 用拉普拉斯变换求解线性微分方程
建立了系统的微分方程以后,对微分方程求解 就可以得到表示系统动态性能的时间响应。微分方 程的求解可以用经典方法或借助于计算机进行,也 可以采用拉普拉斯变换法。 一、拉普拉斯变换定义:设有函数f (t), t为实变量, s=ζ+jω为复变量。 如果线性积分
共计58页 1
第二章 控制系统的数学模型
§2.1物理系统的微分方程 §2.2传递函数 §2.3系统框图及其简化 §2.4典型信号分析 §2.5信号流程图 §2.6线性系统的状态方程
数学建模 微分方程模型讲解
![数学建模 微分方程模型讲解](https://img.taocdn.com/s3/m/b4ee839fb52acfc789ebc9cd.png)
量在初始阶段的增长情况比较相符。
(2)由(3—19)式推得,t=0 时显然 x=0,这一结果自然与
事实不符。产生这一错误结果的原因在于我们假设产品是自然推
销的,然而,在最初产品还没卖出之时,按照自然推销的方式,
便不可能进行任何推销。事实上,厂家在产品销售之初,往往是
通过广告、宣传等各种方式来推销其产品的。
? 1. 新产品推销模型 ? 一种新产品问世,经营者自然要关心产
品的卖出情况。下面我们根据两种不同 的假设建立两种推销速度的模型。
模型 A 假设产品是以自然推销的方式卖出,换句话说,被卖出的产品
实际上起着宣传的作用, 吸引着未来购买的消费者。 设产品总数与时刻 t 的关
系为 x(t), 再假设每一产品在单位时间内平均吸引 k 个顾客,则 x(t) 满足微
样,从根本上解决了模型 A 的不足。 由(3—20)式易看出, dx ? 0 ,即 x(t) 是关于时刻 t 的单调增
dt
加函数,实际情况自然如此,产品的卖出量不可能越卖越少。另外,
对(3—20)式两端求导,得
d 2x dt 2
?
k(M
?
2 x)
dx dt
故令 d 2x
dt 2
?
0 ,得到 x(t0 ) ?
Nm N0
)e? n
易看出,当t→? 时,当N(t) →Nm。这个模型称为Logistic 模型,其结果 经过计算发现与实际情况比较吻合。上面所画的是 Logistic 模型的的图形。
你也可从这个图形中,观察到微分方程解的某些性态。
捕鱼问题
在鱼场中捕鱼,捕的鱼越多,所获得的经济效益越大。但捕捞的鱼过多,
根据上面的假设,我们建立模型
dS ? P ? A(t) ? ??1 ? S (t) ?? ? ? S(t )
第二章-2.3恰当微分方程与积分因子
![第二章-2.3恰当微分方程与积分因子](https://img.taocdn.com/s3/m/3c07dd325901020207409cd0.png)
3
由全微分的定义,有
u u du dx dy x y
因此,当而且仅当存在函数 u u ( x, y ),使得
u u M ( x, y ), N ( x, y ) x y (3.2)
时,方程(3.1 )是恰当微分方程,并可写成下列形式
du ( x, y) 0
结论: 关系式
sin 2 x x 2 y 2 y 2 c,
由初始条件 y(0) 2, 得 c 4,
故所求的初值问题的解为:
sin 2 x x 2 y 2 y 2 4.
18
3 曲线积分法 定理1充分性的证明也可用如下方法: M ( x, y ) N ( x, y) 由于 , y x 由数学分析曲线积分与路径无关的定理知:
§2.3. 恰当方程和积分因子
一阶常微分方程的一般形式为 dy f ( x, y ) dx 可改写成微分的形式(或对称的形式)
f ( x, y)dx dy 0 进一步把 x, y 平等看待,写成下面形式的一阶
微分方程
M(x,y)dx+N(x,y)dy=0
(3.1)
1
2.3.1 恰当微分方程 1.定义
故所给方程是恰当方程.
由于M ( x, y), N ( x, y)在 全平面上连续 ,
故取( x0 , y0 ) (0,0),则
21
M ( x, y ) y cos x 2 xe y N ( x, y ) sin x x 2 e y 2,
u( x, y)
( x, y )
2 y
2 xdx (sin x x e 2)dy
xdx ydy x y
2 2
(整理)微分方程详解
![(整理)微分方程详解](https://img.taocdn.com/s3/m/d770ef77a76e58fafab003f4.png)
第二章 微分方程本章学习目的:本章的主要目的在于:学习微分方程模型的建立、求解方法、分析结果及解决实际问题的全过程。
1.知道求解微分方程的解析法、数值解法以及图形表示解的方法;2.理解求微分方程数值解的欧拉方法,了解龙格——库塔方法的思想;3.熟练掌握使用MATLAB 软件的函数求微分方程的解析解、数值解和图形解;4.通过范例学习怎样建立微分方程模型和分析问题的思想。
§2.1 引例 在《大学物理》中,我们曾学习过简谐振动(如:弹簧振子、单摆)0222=+x dtx d ω,那就是一个典型的二阶常微分方程的模型。
这里我们讨论“倒葫芦形状容 器壁上的刻度问题”。
对于圆柱形状容器壁上的容积刻度,可以利用圆柱体体积公式:4/2H D V π=,其中容器的直径D 为常数,体积V 与相对于容器底部的任意高度H 成正比,因此在容器壁上可以方便地标出容积刻度。
而对于几何形状不规则的容器,比如“倒葫芦形状”的容器壁上如何标出容积刻度呢?如图所示,建立坐标系,由微元法分析可知:dx x D dV 2)(41π=,其中x 表示高度,直径是高度的函数,记为D (x )。
可得微分方程:0)0()(412==V x D dx dV π如果该方程中的函数D(x)无解析表达式,只给出D(x)的部分测试数据,如何求解此微分方程呢?h=0.2;d=[0.04,0.11,0.26,0.56,1.04,1.17];x(1)=0;v(1)=0;for k=1:5x(k+1)=x(k)+h;v(k+1)=v(k)+(h/2)*(pi/4)*(d(k)^2+d(k+1)^2);endx=x(1:6),v=v(1:6),plot(x,v)x =Columns 1 through 50 0.2000 0.4000 0.6000 0.8000 Column 61.0000v =Columns 1 through 50 0.0011 0.0073 0.0373 0.1469 Column 60.3393§2.2 微分方程模型的建立在工程实际问题中,“改变”、“变化”、“增加”、“减少”等关键词提示我们注意什么量在变化,关键词“速率”、“增长”、“衰变”、“边际的”等常涉及到导数。
微分方程和差分方程方法ppt课件
![微分方程和差分方程方法ppt课件](https://img.taocdn.com/s3/m/4558e090a417866fb94a8e5e.png)
ppt精选版
22
设 M 为销售饱和水平,即市场对产品的最 大容纳能力,它对应着销售速度的上限。当 销售速度达到饱和水平之后,广告已不起作 用,销售速度随时间增加而自然衰减,同样 为衰减因子, 0 ,且为常数。
ppt精选版
16
x(t t) x(t) kx(t)t
两边除以t ,令t 0 ,有
lim x(t t) x(t) kx (t)
t 0
t
即 x(t) 满足微分方程
d x kx (t) dt
其解为
(3.7)
x(t) C ekt
若已知t 0 时,x(0) x0 ,则满足初值条件的解为
ppt精选版
12
r(x)
r0
(1
x xm
)
(3.4)
这样 Malthus 模型公式(3.2)变为
d x d t
r0
x (1
x xm
)
x(0) x0
(3.5)
称为阻滞增长模型或 Logistic 模型。由分离
变量法,解得
x(t)
xm
1 ( xm 1) er0 t
x0
(3.6)
ppt精选版
8
这种为了使用数学工具的需要而对离散量进 行连续化处理的方法,在建模中经常使用,如 将道路中运动的车辆群视为连续的“流体”, 动物种群和生产产品当达到一定数量都可以 看作是连续的变量。有时建模中也会作相反的 处理,比如求微分方程近似解时,把连续量进 行离散化,通过数值格式迭代求出数值解。因 此在一定条件下,连续和离散是相对的,可以 转换的,当然这种连续化或离散化的处理必须 是合理和适当的。
微分方程第2章习题解
![微分方程第2章习题解](https://img.taocdn.com/s3/m/67d63c31a32d7375a41780fa.png)
∂( μ(xy)M ) = ∂( μ(xy)N )
∂y
∂x
即
μ(xy)(∂M − ∂N ) = N ∂μ(xy) − M ∂μ(xy)
∂y ∂x
∂x
∂y
µ(xy)(∂M − ∂N ) = ( yN − xM ) dµ(xy) ,
∂y ∂x
d (xy)
∂M ∂N −
∂y
∂x
dµ ( xy)
=
⋅
1
= g(xy) ,
µ(x, y) =
1
。
xM (x, y) + yN (x, y)
方法 3 用定义求积分因子。
由积分因子的定义,只需证明二元函数 µ(x, y) =
1
满足
xM (x, y) + yN (x, y)
∂(µM ) ∂(µN )
=
即可。为此,我们计算
∂y
∂x
∂( M )
∂(µM ) xM + yN
=
∂y
∂y
仅依赖于 x 的积分因子。 证 必要性。若方程 dy − f (x, y)dx = 0 为线性方程,则方程可写为
dy − (P(x) y + Q(x))dx = 0,令
M = −(P(x) y + Q(x)) , N = 1 ,
∂M ∂N
−
∂M
∂y
由题有 连续,
∂x = −P(x) ,
∂y
N
由定理 2-2 的结论 1 方程有积分因子 e∫ −P( x) dx ,仅依赖于 x 。
x m{[M (1,u) + N (1, u)u]dx + xN (1,u)du} = 0 ,
可以看出上方程为可分离变量的方程,只要给上式乘以积分因子
2.微分方程模型
![2.微分方程模型](https://img.taocdn.com/s3/m/92c9804ccf84b9d528ea7add.png)
牛顿冷却(加热)定律:将温度为T的物体 放入处于常温 m 的介质中时,T的变化速率 正比于T与周围介质的温度差.
分析:假设房间足够大,放入温度较低或较 高的物体时,室内温度基本不受影响,即室温 分布均衡,保持为m,采用牛顿冷却定律是一个 相当好的近似.
建立模型:设物体在冷却过程中的温度为 T(t),t≥0,
“T的变化速率正比于T与周围介质的温度差”
翻译为
dT 与T m成正比 dt
数学语言
建立微分方程
dT k (T m ), dt T (0) 60.
其中参数k >0,m=18. 求得一般解为
ln(T-m)=-k t+c,
或
T m ce
kt
, t 0,
1 16 代入条件,求得c=42 , ln , 最后得 k 3 21 1 16 ln t T(t)=18+42 e 3 21 , t ≥0.
1 16 结果 :T(10)=18+42 3 ln 21 10 =34.97℃, e
该物体温度降至30℃ 需要13.82分钟.
例2、车间空气的清洁
问题:已知一个车间体积为V立方米,其中有一 台机器每分钟能产生r立方米的二氧化碳(CO2),为 清洁车间里的空气,降低空气中的CO2含量,用一台 风量为K立方米/分钟的鼓风机通入含CO2为m%的新鲜 空气来降低车间里的空气的CO2含量。假定通入的新 鲜空气能与原空气迅速地均匀混合,并以相同的风量 排出车间。又设鼓风机开始工作时车间空气中含x0% 的CO2.问经过t时刻后,车间空气中含百分之几的CO2? 最多能把车间空气中CO2的百分比降到多少?
30000 60 24 365
这些铀约重
第二章 (2.1,2.2)控制系统的微分方程、传递函数
![第二章 (2.1,2.2)控制系统的微分方程、传递函数](https://img.taocdn.com/s3/m/b565a491b9d528ea81c77946.png)
拉氏变换的重要应用——解线性定常微分方程
求微分方程的拉氏变换,注意初值!!
求出 C ( s ) 的表达式 拉氏反变换,求得 c (t )
例1 已知系统的微分方程式,求系统的输出响应。
d 2c(t ) dc(t ) 2 2c(t ) r(t ) 2 dt dt d2 解: 在零初态下应用微分定理: 2 s 2
+
i (t )
R
–
u (t )
+
i (t )
u (t ) i (t ) R
du ( t ) 1 i (t ) dt C
di (t ) u (t ) L dt
电容
C
–
u (t )
+
ቤተ መጻሕፍቲ ባይዱi (t )
电感
u (t )
–
L
机械系统三要素的微分方程
设系统输入量为外力,输出量为位移
d 2 x (t) m f (t) 2 dt
d uc (t ) duc (t ) LC RC uc (t ) ur (t ) 2 dt dt
2
3.机械位移系统
输入量为外力: F (t ) 输出量为位移: y (t )
dy 2 (t ) 依据牛顿定律: F m dt 2
dy (t ) d y (t ) F (t ) ky (t ) f m 2 dt dt
d 2 y (t ) dy (t ) m f ky (t ) F (t ) 2 dt dt
微分方程结构一致 二阶线性定常微分方程
不同形式的物理环节和系统可以建立相同形式的数学模型。
系统微分方程由输出量各阶导数和输 入量各阶导数以及系统的一些参数构成。 n阶线性定常系统的微分方程可描述为:
第二章(微分方程)
![第二章(微分方程)](https://img.taocdn.com/s3/m/97514afe81c758f5f61f679d.png)
u1 uR1 uR 2 u2 i R1R1 i R 2R2 u2
d( u R 2 u 2 ) du 2 du 2 i R1 i C2 i R 2 C1 C2 i R 2 i C 2 C2 dt dt dt du 2 d( C 2 R 2 u2 ) du 2 dt C1 C2 dt dt
d( u R 2 u 2 ) du 2 du 2 i R1 i C2 i R 2 C1 C2 i R 2 i C 2 C2 dt dt dt du 2 d( C 2 R 2 u2 ) du 2 dt C1 C2 dt dt
d u2 du2 C1C2R1R 2 2 [(C1 C2 )R1 C2R 2 ] u2 u1 dt dt
2
第二章 物理系统的微分方程
学习要点: 2.能建立系统的微分方程(以R-C电路为例) 【例2】试列图P2-5所示R-C电路微分方程式。u1为输入量, u2为输出量。 uR du C iR iC C R 根据R、C的电流与电压关系 dt 由克希荷夫定律,列出电压方程式:
1 di u 2 i R2 C dt
第二章 自动控制系统的数学模型
学习要点: 2.能建立系统的微分方程(以R-C电路为例) 【例3】试列图P2-4所示R-C电路微分方程式。u1为输入量, u2为输出量。 uR du C iR iC C R 根据R、C的电流与电压关系 dt 由克希荷夫定律,列出电压方程式:
u1 uR1 uR 2 u2 i R1R1 i R 2R2 u2
Ri uo ui
这就是R-C串联电路微分方程式,是一阶微分方 程。
第二章 物理系统的微分方程
学习要点: 2.能建立系统的微分方程(以R-C电路为例) 【例2】试列图P2-5所示R-C电路微分方程式。u1为输入量, u2为输出量。 uR du C iR iC C R 根据R、C的电流与电压关系 dt 由克希荷夫定律,列出电压方程式:
第2章 第1讲 自动控制系统微分方程及线性化
![第2章 第1讲 自动控制系统微分方程及线性化](https://img.taocdn.com/s3/m/5991510e90c69ec3d5bb753d.png)
在工程应用中,由于电枢电路电感La较小,通常忽略不
计,因而上式可简化为
Tm
dωm (t)
dt
+ ωm (t)
=
K1ua (t)
−
K2Mc
(t)
Tm
=
Ra
Ra J m fm + CmCe
K1
=
Ra
Cm fm + CmCe
K2
=
Ra
Ra fm + CmCe
若电枢电阻Ra和电机转动惯量Jm都很小忽略不计时上式还可进一 步简化为:
电气 电感L 电容C
电阻R 电压u
机械 质量m 弹性系数的倒数1/K 摩擦阻力f 力F
相似系统揭示了不同物理现象之间的相似关系。 为我们利用简单易实现的系统去研究复杂系统提供理论依据。 复杂控制系统微分方程建立注意: ¾信号传输的单向性(即前一级的输出为下一级的输入) ¾后一级是否对前一级有影响
例量2,-电6 动列机出转所速图示ωm的(t微)为分输方出程量,,要图求中取R电a、枢La电分压别是ua(电t)枢为电输路入的
电阻和电感,Mc 是折合到电动机轴上的总负载转距。激磁磁通 为常值。
+
ua
-
La Ra
ia
-
+ Ea
ωm Jm fm
SM
负载
MC
图2-6电枢电压控制直流电动机原理图
解:直流电动机的运动方程可由以下三部分组成
A
物料( 能量) - 单位时间流出的物料( 能量)
h
Qo
Qi
− Qo
=
A
dh dt
=
dV dt
………………(1)
(3)消去中间变量Qo ,得到最终的方程
微分方程
![微分方程](https://img.taocdn.com/s3/m/ed1199c0d5bbfd0a795673df.png)
铀238
T = 45 亿年
镭226
T = 1600 年
(无放射性)
铅206
钋210
T = 22 年
铅210 (放射性)
Hale Waihona Puke T = 138 天假设 (1)镭的半衰期为1600年,我们只对17 世纪 的油画感兴趣,时经300多年,白铅中镭至少 还有原量的90%以上,所以每克白铅中每分钟 镭的衰变数可视为常数,用
( n = 0,1... 2 ) ( n = 0,1... 2 )
y( x n+1 ) = y( x n ) + ∫
x n +1
xn
2、 ∫
x n+1
xn
h f ( x , y ( x )) ≈ [ f ( x n , y ( x n )) + f ( x n + 1 , y ( x n + 1 )) 2
y n + 1 = y n + h. f ( x n , y n )
( n = 0,1... 2 )
欧拉方法的特点:易于理解,计算量小,精度低。 欧拉方法的特点 易于理解,计算量小,精度低。 易于理解
2.梯形法 .
问题: 一阶常微分方程的初值 问题: dy y′ = = f ( x, y) dx y( x0 ) = y 0
输入命令:dsolve('Du=1+u^2','t')
结
果:u = tg(t-c)
2 的通解,并验证。 例 2求微分方程 dy + 2 xy = xe − x 的通解,并验证。 求微分方程 dx
y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') syms x; diff(y)+2*x*y - x*exp(-x^2)
第二章动力学系统的微分方程模型
![第二章动力学系统的微分方程模型](https://img.taocdn.com/s3/m/d9a4841b591b6bd97f192279168884868762b830.png)
第⼆章动⼒学系统的微分⽅程模型第⼆章:动⼒学系统的微分⽅程模型利⽤计算机进⾏仿真时,⼀般情况下要给出系统的数学模型,因此有必要掌握⼀定的建⽴数学模型的⽅法。
在动⼒学系统中,⼤多数情况下可以使⽤微分⽅程来表⽰系统的动态特性,也可以通过微分⽅程可以将原来的系统简化为状态⽅程或者差分⽅程模型等。
在这⼀章中,重点介绍建系统动态问题的微分⽅程的基本理论和⽅法。
在实际⼯程中,⼀般把系统分为两种类型,⼀是连续系统;其数学模型⼀般是⾼阶微分⽅程;另⼀种是离散系统,它的数学模型是差分⽅程。
§2.1 动⼒学系统统基本元件任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。
1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或⾓加速度)产⽣单位变化所需要的⼒(或⼒矩)。
惯量(质量)=)加速度(⼒(2/)s m N 惯量(转动惯量)=)⾓加速度(⼒矩(2/)s rad m N ?2 弹性元件:它在外⼒或外⼒偶作⽤下可以产⽣变形的元件,这种元件可以通过外⼒做功来储存能量。
按变形性质可以分为线性元件和⾮线性元件,通常等效成⼀弹簧来表⽰。
对于线性弹簧元件,弹簧中所受到的⼒与位移成正⽐,⽐例常数为弹簧刚度k 。
x k F ?=这⾥k 称为弹簧刚度,x ?是弹簧相对于原长的变形量,弹性⼒的⽅向总是指向弹簧的原长位移,出了弹簧和受⼒之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受⼒和弹簧变形之间的关系是⼀⾮线性关系。
3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,⽽不储存能量,可以形象的表⽰为⼀个活塞在⼀个充满流体介质的油缸中运动。
阻尼⼒通常表⽰为:αxc R = 阻尼⼒的⽅向总是速度⽅向相反。
当1=α,为线性阻尼模型。
否则为⾮线性阻尼模型。
应注意当α等于偶数情况时,要将阻尼⼒表⽰为:||1--=αx xc R 这⾥的“-”表⽰与速度⽅向相反§2.2 动⼒学建模基本定理1 动⼒学普遍定理对于⼤多数⼒学问题,可以使⽤我们熟知的⽜顿动⼒学基本定理来解决,动⼒学普遍定理包括动量定理、动量矩定理和动能定理,以及其他变形形式,普遍定理的特点是⽐较直观,针对不同的问题可以选择不同的⼒学定理,在⼀般情况下利⽤普遍定理可以得到⼤多数动⼒学系统的数学模型。
常微分方程教案(王高雄)第二章
![常微分方程教案(王高雄)第二章](https://img.taocdn.com/s3/m/14f69aeeaeaad1f346933f23.png)
第二章目录内容提要及其它 (1)第二章一阶微分方程的初等解法(初等积分) (2)第一节变量分离方程与变量变换 (2)一、变量分离方程 (2)二、可化为变量分离方程的类型 (6)1、齐次方程 (6)2、可化为变量分离方程 (7)三、应用例题选讲 (10)第二节线性方程与常数变易法 (11)第三节恰当方程与积分因子 (15)一、恰当方程 (15)二、积分因子 (20)第四节一阶隐含方程与参数表示 (23)一、可以解出y(或x)的方程 (24)二、不显含y(或x)的方程 (25)本章小结及其它 (27)内容提要及其它授课题目(章、节)第二章:一阶微分方程的初等解法教材及主要参考书(注明页数)教材:常微分方程(第三版),王高雄等,高等教育出版社,2006年,p30-74主要参考书:[1]常微分方程,东北师范大学微分方程教研室编,高等教育出版社,2005,p1-70[2]常微分方程教程,丁同仁等编,高等教育出版社,1991,p1-20[3]偏微分方程数值解法(第2版),陆金甫关治,清华大学出版社,2004,p1-12[4]常微分方程习题解,庄万主编,山东科学技术出版社,2003,p28-169[5]微分方程模型与混沌,王树禾编著,中国科学技术大学出版社,1999,p15-158[6]差分方程和常微分方程,阮炯编著,复旦大学出版社,2002,p38-124目的与要求:掌握变量分离方程、齐次方程、线性方程、伯努利方程和恰当方程的解法.理解变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.掌握四类典型的一阶隐方程的解法.能熟练求解变量分离方程、齐次方程、线性方程、伯努利方程、恰当方程和四类典型的一阶隐方程.领会变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.教学内容与时间安排、教学方法、教学手段:教学内容:第1节变量分离方程与变量变换;第2节线性方程与常数变易法;第3节恰当方程与积分因子;第4节一阶隐方程与参数表示:可以解出(或y x)的方程、不显含(或y x)的方程.时间安排:8学时教学方法:讲解方法教学手段:传统教学方法与多媒体教学相结合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 微 分 方 程 模 型建立微分方程模型就是把物理、化学、生物科学、工程科学和社会科学中的规律和原理用含有待定函数的导数或微分的数学关系式表示出来。
这一章我们由浅入深地介绍一些微分方程模型。
2.1 简单模型例1 物体在空气中的下落与特技跳伞问题假设质量为m 的物体在空气中下落,空气阻力与物体的速度平方成正比,阻尼系数为k (>0),求物体的运动规律。
解 所谓运动规律即下落距离与时间的关系,如图2.1.1, 建立坐标系。
设x 为物体下落的距离,于是物体下落的速度为dxv dt=,加速度为22d xa dt=,根据牛顿第二定律F ma =,可以列出微分方程222d x d x m k m g d t d t ⎛⎫=-+ ⎪⎝⎭, (2.1.1)负号表示阻力方向与速度方向相反。
例2 单摆的自由振动问题。
如图2.1.2 为一个单摆,上端固定在O 点,M 为一质量为m 的质点,摆杆OM 之长为L (摆杆的质量忽略不计)。
单摆的平衡位置为铅垂线'OO 。
将质点M 拉开,使OM 与'OO 成一个角度0θ,然后放手任其自由运动,试求摆杆OM 和铅垂线'OO 的夹角θ与时间t 的关系。
解 将重力分解为径向力F 与切向力T ,T 的大小为sin mg θ,M 的切向加速度为22d a L dtθ=,于是,由牛顿第二定律,列出微分方程22s i n d m a m L m g dtθθ==,即22s i n d gdt Lθθ=-, (2.1.2)设初始时刻0t =,摆杆的初始位置为0θ,初始角速度为0,则单摆的运动规律的研究就化为微分方程的初值问题()()2200'0s i n ,,0.t t d gdt L t t θθθθθ==⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩(2.1.3)图2.1.1 图2.1.2例3 考古和地质学中文物和化石年代的测定问题。
考古、地质学等方面的专家常用14C (碳14)来估计文物或化石的年代。
它们的依据是,宇宙射线不断轰击大气层,使之产生中子,中子与氧气作用生成具有放射性的14C 。
这种放射性碳可以氧化成二氧化碳。
二氧化碳被植物所吸收,而动物又以植物为食物,于是放射性碳就被带到各种动植物体内。
由于14C 是放射性的,无论存在于空气中或生物体内它都在不断衰变,活着的生物通过新陈代谢不断地摄取14C ,使得生物体内的14C 与空气中的14C 有相同的百分含量。
生物体死后它停止摄取14C ,因而尸体内的14C 由于不断衰变而不断减少。
碳定年代法就是根据14C 的衰变减少量的变化情况来判定生物的死亡时间的。
基本假设(1)现代生物体中14C 的衰变速度与古代生物体中14C 的衰变速度相同(依据是地球周围大气中14C 的百分含量可认为基本不变,即宇宙射线照射大气层的强度自古至今基本不变);(2)14C 的衰变速度与该时刻14C 的含量成正比(这条假设的根据来自于原子物理学理论)。
下面用微分方程建模。
设在时刻t (年)生物体中14C 的存量为()x t ,由假设(2)知dxkx dt=-, (2.1.4) 其k (>0)为衰变常数,负号表示14C 的存量()x t 是随时间递减的。
这个方程的通解是()kt x t Ce -=. (2.1.5) 设生物体的死亡时间是t =0,其时14C 的含量为0x ,代入(2.1.5)有 0()kt x t x e -=. (2.1.6) 设14C 的半衰期(给定数量的14C 蜕变到一半数量所用的时间)为T (常数),则有()2x x T =, (2.1.7) 将式(2.1.7)代入(2.1.6),得 l n 2k T=, 于是l n 20()t Tx t x e-=,解出t 得0ln ln 2()x Tt x t =. (2.1.8) 由于()0,x x t 不便测量,还可以用下列办法求t . 对(2.1.5)两边求导,得 ()'0()kt x t x ke kx t -==-, 而()()'000x kx kx =-=-. 上面两式相除,得()()()'0'0x xx t x t =.代入(2.1.8)得()''0ln ln 2()x Tt x t = 。
其中由假设(1),可用()'0x 表示现代新砍伐树木的木炭中的14C 中平均原子衰变数(可测得为38.37次/分),()'x t 为测得的出土的木炭标本中14C 的平均原子衰变数(比如1972年8月在长沙市出土的马王堆一号墓测得的()'x t 为29.78次/分)。
若14C 的半衰期为5568年(也有人测定是5580或5730年), 则该墓的年代大约是 556838.37l n 2036l n 229.78t =≈(年) 。
2.2 人 口 问 题 模 型人口问题是一个复杂的生物学和社会学问题。
用数学方法来研究它,主要是研究人口或其他生物总数以什么规律增加或减少的问题。
令()N t 表示一个国家或地区在t 时刻的人口总数,严格说来,()N t 是一个不连续的阶梯函数,但是一个人的增加或减少(出生或死亡)与全体人数相比极为微小,我们就把()N t 视为连续可微的函数,从而可以用微分方法来研究。
设在[],t t dt +时间间隔内人口的增长量为()()()dN t N t dt N t dt dt+-=⋅, (2.2.1) 这里已经略去了高阶无穷小量. 这个增长量应该等于在此时间段内的出生数减去死亡数。
设λ为出生率,μ为死亡率,且假设出生数与死亡数与人口总数()N t 及时间dt 成正比,则有 ()()()d N td t N t d t N t d tdtλμ=-, 即()()()()dN t N t N t N t dtλμα=-=, (2.2.2) 其中αλμ=-为人口净增长率。
于是()N t 满足常微分方程()()dN t N t dtα=. (2.2.3) 又设已知初始时刻0t t =时人口总数为0N ,就有初始条件()00t t N t N ==. (2.2.4)不难求得常微分方程初值问题(2.2.3)和(2.2.4)的解为(设α为常数) ()0()t t N t N e α-= (2.2.5)即人口总数按指数增加,这就是Malthus 人口模型。
现在讨论问题本身的正确性。
首先承认这个模型,式中0N α和可以根据人口普查的统计数字确定出来。
0N 就是某一年统计的人口总数,αλμ=-就是每年人口的净增长率。
可以看到这个规律在一个不太长的时间中使用,还是相当精确的;但是如果在一个相当长的时间中来考虑,出入就非常大。
例如根据统计数字,取1961年为0t ,当时全球人口总数为0N =30.6亿,而1951—1961年十年中每年人口的净增长率为α=0.02,因此有90.02(19() 3.0610t N t e-=⨯⨯. (2.2.6) 将这个公式用于倒推计算在1700-1961年间的人口,和实际情况符合得较好。
在这段时间内地球上人口约每35年增加一倍;而由上述方程,可以容易地证明人口增加一倍所用的时间是34.6年。
但是对这个模型如果不加限制地使用,就会出现很不合理的情况。
到2510年,地球人口达到14210⨯亿,即如果地球上的海洋全部变成陆地,每人只有9.3平方英尺的活动范围。
而到2670年,人口达到153610⨯亿,只有一个人站到另一个的肩上了。
因此,Malthus 人口模型是不完善的。
从根本上说是不完整的,必须修正。
在上述模型中假设α是常数,从而人口方程是线性常微分方程。
这个模型在群体总数不太大时才合理。
而没有考虑总数增大时,生物群体的各成员之间由于有限的生存空间,有限的自然资源及食物等原因,就要进行生存竞争。
因此总数大了以后,不仅有一个线性增长项()N t α,还应有一个竞争项来部分地抵消这个增长。
使人口增长的指数规律不再成立。
此竞争项可以取为2N β-,相当于还存在一个与N 成正比的死亡率N μβ-=。
这样()N t 满足常微分方程及初始条件为()()()()020,.t t dN t N t N t dt N t N αβ=⎧=-⎪⎨⎪=⎩ (2.2.7)这是荷兰人Werhulst 所提出的模型,αβ和称为生命常数。
通常βα比要小得多,因此在N 不太大时,可以略去(2.2.7)中的竞争项而回到Malthus 模型。
当N增大时,竞争的影响就不能忽略,即人口总数不再按指数增长。
一个国家越发达,β的值越小。
为了说明这一点,求解上述问题(2.2.7),得到()00ln N N t t N N αβααβ⎛⎫--=⎪-⎝⎭. (2.2.8)若初值0,N N ααββ===则解常数;设初值0N αβ≠,则由(2.2.8)式,在000(),()t t N t N t N αβ>≠=时,但,因此在0t t ≤<∞时,即在解存在的范围内恒成立0N Nαβαβ->-. (2.2.9)从而(2.2.8)式可以写成()()()000ln N N t t N N αβααβ--=-. (2.2.10)故有()()()000t t N N eN N ααβαβ--=-. (2.2.11) 从(2.2.11)中解出N 得 ()()000t t N N N t N N eααβαβ--==+-. (2.2.12) 因此当(),t N t αβ→+∞→时. 这样我们看到,无论初值0N 为何,生物群体的总数在t αβ→+∞时恒趋于定值,称该值为饱和值。
在00N αβ<<时(即有实际意义的情况),00N αβ->,由(2.2.12)可知()N t 单调上升趋于αβ,从而()0dN t dt >,由于()22()()()()2()2()d N t d N td N td N t N t N t d t d t d t d tαβαβ=-=-, 因此在()N t 的增长过程中,当22()02d NN dt ααββ<>饱和值的一半时,成立,而当2202d NN dtαβ><时,成立。
因此()N N t =的的曲线形状如图2.2.1所示,为一个S 型曲线。
这说明,在人口总数达到饱和值的一半之前。
是加速增长时期;过后,为减速增长期。
图2.2.1为了利用这个模型来预测地球上的人口,必须确定αβ和这两个生命常数。
据一些生态学家估计,α可以取为0.029。
又由1961年的统计数字,在93.0610N =⨯时,人口的净增长率为0.02。
由方程1dNN N dtαβ=-, 有90.020.029 3.0610β=-⨯⨯, 从而求得122.94110β-=⨯. 故人口的饱和值应为9120.0299.86102.94110αβ-==⨯⨯。