卡尔曼滤波器及matlab代码
rssi卡尔曼滤波matlab代码
rssi卡尔曼滤波matlab代码RSSI (Received Signal Strength Indicator) 是一种常见的无线通信信号强度测量方法。
在无线传感器网络中,RSSI常用于距离和位置估计。
卡尔曼滤波器是一种高效递归滤波器,可用于在有噪声的情况下,根据一系列测量值来估计状态变量。
在无线传感器网络中,卡尔曼滤波器可用于RSSI测量值的滤波和校正。
以下是一个简单的RSSI卡尔曼滤波器的MATLAB代码示例:```matlab% 假设你已经有了原始的RSSI测量值 rssi_measurements% 初始位置和速度x0 = [0, 0]; % 初始位置P0 = 1; % 初始位置的不确定性Q = 0.01; % 过程噪声协方差R = 1; % 测量噪声协方差% 卡尔曼滤波器参数dt = 0.1; % 时间间隔x = x0; % 当前位置P = P0; % 当前位置的不确定性K = zeros(2,1); % 卡尔曼增益for i = 1:length(rssi_measurements)% 预测步骤:状态转移方程x_pred = x + dt * x; % 预测位置P_pred = P + Q; % 预测位置的不确定性% 更新步骤:测量更新方程Z = rssi_measurements(i) + x_pred(2)^2 / (x_pred(1)^2 + x_pred(2)^2) - x_pred(1)^2 / (x_pred(1)^2 + x_pred(2)^2); % 计算测量值K = P_pred / (P_pred + R); % 计算卡尔曼增益x = x_pred + K * (Z - x_pred(1)); % 更新位置P = (1 - K) * P_pred; % 更新位置的不确定性end```请注意,这个代码只是一个简单的示例,并没有考虑所有可能的情况和参数。
在实际应用中,你可能需要根据具体的需求和环境条件来调整和优化这个代码。
卡尔曼滤波在船舶gps导航定位系统中的应用的matlab代码
卡尔曼滤波是一种在信号处理和预测领域中广泛应用的技术,尤其在船舶导航定位系统中。
下面是一个简单的卡尔曼滤波器的MATLAB代码示例,它可能被用于船舶GPS导航定位系统。
请注意,这只是一个基础的例子,实际的系统可能需要更复杂的卡尔曼滤波器,例如考虑多路径效应、大气干扰、风速变化等。
```matlab% 初始化time = 0:0.01:10; % 时间向量x = randn(size(time)); % 初始状态P = randn(size(time)); % 初始协方差矩阵Q = randn(size(time)); % 过程噪声协方差R = randn(size(time)); % 过程噪声协方差矩阵K = zeros(size(time)); % 卡尔曼增益矩阵x_est = zeros(size(time)); % 估计状态P_est = zeros(size(time)); % 估计协方差矩阵% 卡尔曼滤波循环for i = 1:length(time)% 当前时间观测z = x + sqrt(Q)*randn(); % 假设GPS信号是一个白噪声过程K = P_est ./ (P_est + R); % 卡尔曼增益x_est(i) = x(i) + K * (z - P_est(:,i)); % 估计状态更新P_est(i,:) = (I - K * P_est(:,i)') * P; % 估计协方差矩阵更新K = zeros(size(time)); % 重置卡尔曼增益矩阵end% 绘制结果figure; plot(time, x); hold on;figure; plot(time, x_est); hold off;legend('真实值', '估计值');```这个代码主要实现了一个简单的卡尔曼滤波器,用于对船舶GPS导航定位系统的数据进行滤波处理。
自适应扩展卡尔曼滤波matlab
自适应扩展卡尔曼滤波matlab自适应扩展卡尔曼滤波(Adaptive Extended Kalman Filter,AEKF)是一种用于非线性系统状态估计的滤波算法。
本文将介绍AEKF算法的原理、步骤和实现方法,并结合MATLAB 编写代码进行演示。
一、扩展卡尔曼滤波原理扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波算法。
它通过使用线性化系统模型的方式将非线性系统转换为线性系统,在每个时间步骤中用线性卡尔曼滤波器进行状态估计。
然而,EKF仅限于具有凸多边形测量特性的问题,并且对线性化过程误差敏感。
为了解决这些问题,AEKF通过自适应更新协方差矩阵的方式提高了滤波器的性能。
AEKF通过测量残差的方差更新协方差矩阵,从而提高了滤波器对非线性系统的适应能力。
AEKF算法的步骤如下:1. 初始化状态向量和协方差矩阵。
2. 根据系统的非线性动力学方程和测量方程计算预测状态向量和协方差矩阵。
3. 计算测量残差,即测量值与预测值之间的差值。
4. 计算测量残差的方差。
5. 判断测量残差的方差是否超过预设阈值,如果超过,则更新协方差矩阵。
6. 利用更新后的协方差矩阵计算最优滤波增益。
7. 更新状态向量和协方差矩阵。
8. 返回第2步,进行下一次预测。
二、AEKF算法的MATLAB实现下面,我们将使用MATLAB编写AEKF算法的代码,并通过一个实例进行演示。
首先,定义非线性系统的动力学方程和测量方程。
在本例中,我们使用一个双摆系统作为非线性系统模型。
```matlabfunction x_next = nonlinear_dynamics(x_current, u)% Nonlinear system dynamicstheta1 = x_current(1);theta2 = x_current(2);d_theta1 = x_current(3);d_theta2 = x_current(4);g = 9.8; % Gravitational accelerationd_theta1_next = d_theta1 + dt * (-3*g*sin(theta1) - sin(theta1-theta2) ...+ 2*sin(theta1-theta2)*(d_theta2^2 + d_theta1^2*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));d_theta2_next = d_theta2 + dt * (2*sin(theta1-theta2)*(2*d_theta2^2 ...+ d_theta1^2*cos(theta1-theta2) + g*cos(theta1) +g*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));theta1_next = theta1 + dt * d_theta1_next;theta2_next = theta2 + dt * d_theta2_next;x_next = [theta1_next; theta2_next; d_theta1_next;d_theta2_next];endfunction y = measurement_model(x)% Measurement model, measure the angles of the double pendulumtheta1 = x(1);theta2 = x(2);y = [theta1; theta2];end```然后,定义AEKF算法的实现。
扩展卡尔曼滤波算法的matlab程序
clear allv=150; %%目标速度v_sensor=0;%%传感器速度t=1; %%扫描周期xradarpositon=0; %%传感器坐标yradarpositon=0; %%ppred=zeros(4,4);Pzz=zeros(2,2);Pxx=zeros(4,2);xpred=zeros(4,1);ypred=zeros(2,1);sumx=0;sumy=0;sumxukf=0;sumyukf=0;sumxekf=0;sumyekf=0; %%%统计的初值L=4;alpha=1;kalpha=0;belta=2;ramda=3-L;azimutherror=0.015; %%方位均方误差rangeerror=100; %%距离均方误差processnoise=1; %%过程噪声均方差tao=[t^3/3 t^2/2 0 0;t^2/2 t 0 0;0 0 t^3/3 t^2/2;0 0 t^2/2 t]; %% the input matrix of process G=[t^2/2 0t 00 t^2/20 t ];a=35*pi/180;a_v=5/100;a_sensor=45*pi/180;x(1)=8000; %%初始位置y(1)=12000;for i=1:200x(i+1)=x(i)+v*cos(a)*t;y(i+1)=y(i)+v*sin(a)*t;endfor i=1:200xradarpositon=0;yradarpositon=0;Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror,1,1); Zmeasure(2,i)=sqrt((y(i)-yradarpositon)^2+(x(i)-xradarpositon)^2)+random('Normal',0,rangeerror,1,1);xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%%观测值yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i));measureerror=[azimutherror^2 0;0 rangeerror^2];processerror=tao*processnoise;vNoise = size(processerror,1);wNoise = size(measureerror,1);A=[1 t 0 0;0 1 0 0;0 0 1 t;0 0 0 1];Anoise=size(A,1);for j=1:2*L+1Wm(j)=1/(2*(L+ramda));Wc(j)=1/(2*(L+ramda));endWm(1)=ramda/(L+ramda);Wc(1)=ramda/(L+ramda);%+1-alpha^2+belta; %%%权值if i==1xerror=rangeerror^2*cos(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*sin(Zmeasure(1,i))^2; yerror=rangeerror^2*sin(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*cos(Zmeasure(1,i))^2; xyerror=(rangeerror^2-Zmeasure(2,i)^2*azimutherror^2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i));P=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]'; endcho=(chol(P*(L+ramda)))';%for j=1:LxgamaP1(:,j)=xestimate+cho(:,j);xgamaP2(:,j)=xestimate-cho(:,j);endXsigma=[xestimate xgamaP1 xgamaP2];F=A;Xsigmapre=F*Xsigma;xpred=zeros(Anoise,1);for j=1:2*L+1xpred=xpred+Wm(j)*Xsigmapre(:,j);endNoise1=Anoise;ppred=zeros(Noise1,Noise1);for j=1:2*L+1ppred=ppred+Wc(j)*(Xsigmapre(:,j)-xpred)*(Xsigmapre(:,j)-xpred)';endppred=ppred+processerror;chor=(chol((L+ramda)*ppred))';for j=1:LXaugsigmaP1(:,j)=xpred+chor(:,j);XaugsigmaP2(:,j)=xpred-chor(:,j);endXaugsigma=[xpred XaugsigmaP1 XaugsigmaP2 ];for j=1:2*L+1Ysigmapre(1,j)=atan(Xaugsigma(3,j)/Xaugsigma(1,j)) ;Ysigmapre(2,j)=sqrt((Xaugsigma(1,j))^2+(Xaugsigma(3,j))^2);endypred=zeros(2,1);for j=1:2*L+1ypred=ypred+Wm(j)*Ysigmapre(:,j);endPzz=zeros(2,2);for j=1:2*L+1Pzz=Pzz+Wc(j)*(Ysigmapre(:,j)-ypred)*(Ysigmapre(:,j)-ypred)';endPzz=Pzz+measureerror;Pxy=zeros(Anoise,2);for j=1:2*L+1Pxy=Pxy+Wc(j)*(Xaugsigma(:,j)-xpred)*(Ysigmapre(:,j)-ypred)';endK=Pxy*inv(Pzz);xestimate=xpred+K*(Zmeasure(:,i)-ypred);P=ppred-K*Pzz*K';xukf(i)=xestimate(1,1);yukf(i)=xestimate(3,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% EKF PRO%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if i==1ekf_p=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];ekf_xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]';ekf_xpred=ekf_xestimate;end;F=A;ekf_xpred=F*ekf_xestimate;ekf_ppred=F*ekf_p*F'+processerror;H=[-ekf_xpred(3)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(1)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0;ekf_xpred(1)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(3)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0];ekf_z(1,1)=atan(ekf_xpred(3)/ekf_xpred(1)) ;ekf_z(2,1)=sqrt((ekf_xpred(1))^2+(ekf_xpred(3))^2);PHHP=H*ekf_ppred*H'+measureerror;ekf_K=ekf_ppred*H'*inv(PHHP);ekf_p=(eye(L)-ekf_K*H)*ekf_ppred;ekf_xestimate=ekf_xpred+ekf_K*(Zmeasure(:,i)-ekf_z);traceekf(i)=trace(ekf_p);xekf(i)=ekf_xestimate(1,1);yekf(i)=ekf_xestimate(3,1);errorx(i)=xx(i)+xradarpositon-x(i);errory(i)=yy(i)+yradarpositon-y(i);ukferrorx(i)=xestimate(1)+xradarpositon-x(i);ukferrory(i)=xestimate(3)+yradarpositon-y(i);ekferrorx(i)=ekf_xestimate(1)+xradarpositon-x(i); ekferrory(i)=ekf_xestimate(3)+yradarpositon-y(i);aa(i)=xx(i)+xradarpositon-x(i);;bb(i)=yy(i)+yradarpositon-y(i);sumx=sumx+(errorx(i)^2);sumy=sumy+(errory(i)^2);sumxukf=sumxukf+(ukferrorx(i)^2);sumyukf=sumyukf+(ukferrory(i)^2);sumxekf=sumxekf+(ekferrorx(i)^2);sumyekf=sumyekf+(ekferrory(i)^2);mseerrorx(i)=sqrt(sumx/(i-1));%噪声的统计均方误差mseerrory(i)=sqrt(sumy/(i-1));mseerrorxukf(i)=sqrt(sumxukf/(i-1));%UKF的统计均方误差mseerroryukf(i)=sqrt(sumyukf/(i-1));mseerrorxekf(i)=sqrt(sumxekf/(i-1));%EKF的统计均方误差mseerroryekf(i)=sqrt(sumyekf/(i-1));endfigure(1);plot(mseerrorxukf,'r');hold on;plot(mseerrorxekf,'g');hold on;plot(mseerrorx,'.');hold on;ylabel('MSE of X axis','fontsize',15);xlabel('sample number','fontsize',15);legend('UKF','EKF','measurement error');figure(2)plot(mseerroryukf,'r');hold on;plot(mseerroryekf,'g');hold on;plot(mseerrory,'.');hold on;ylabel('MSE of Y axis','fontsize',15); xlabel('sample number','fontsize',15); legend('UKF','EKF','measurement error');figure(3)plot(x,y);hold on;plot(xekf,yekf,'g');hold on;plot(xukf,yukf,'r');hold on;plot(xx,yy,'m');ylabel(' X ','fontsize',15);xlabel('Y','fontsize',15);legend('TRUE','UKF','EKF','measurements');。
matlab扩展卡尔曼滤波实例
matlab扩展卡尔曼滤波实例在MATLAB中实现卡尔曼滤波的过程。
第一步:准备数据要使用卡尔曼滤波算法,首先需要准备尽可能准确的测量数据。
我们假设我们正在跟踪一个匀速运动的物体,我们使用一个简单的模型来生成数据。
以下是一个MATLAB代码示例:matlab生成匀速运动数据t = 0:0.1:10; 时间范围v = 2; 速度x_true = 5 + v*t; 真实位置x_meas = x_true + 0.5*randn(size(t)); 测量位置(加入噪声)上述代码生成了10秒钟内物体的真实位置(x_true)和加入高斯噪声的测量位置(x_meas)。
第二步:初始化卡尔曼滤波器在开始使用卡尔曼滤波器之前,需要初始化滤波器的状态估计和协方差矩阵。
以下是一个示例代码:matlab初始化卡尔曼滤波器参数x_est = 0; 状态估计P_est = 1; 协方差矩阵Q = 1; 过程噪声方差R = 0.5; 测量噪声方差在上述代码中,我们初始化了状态估计(x_est)、协方差矩阵(P_est)、过程噪声方差(Q)和测量噪声方差(R)。
第三步:卡尔曼滤波迭代卡尔曼滤波的核心是迭代过程,其中包含两个关键步骤:预测和更新。
预测步骤是使用系统模型来预测下一时刻的状态和协方差矩阵。
更新步骤将测量值与预测结果进行比较,以改进状态估计和协方差矩阵。
以下是一个MATLAB代码示例:matlab卡尔曼滤波迭代for k = 1:length(t)预测步骤x_pred = x_est;P_pred = P_est + Q;更新步骤K = P_pred / (P_pred + R);x_est = x_pred + K*(x_meas(k) - x_pred);P_est = (1 - K)*P_pred;保存状态估计结果x_est_hist(k) = x_est;end在上述代码中,我们首先进行预测步骤,计算预测状态(x_pred)和预测协方差矩阵(P_pred)。
维纳、卡尔曼滤波简介及MATLAB实现
现代数字信号处理课程作业维纳、卡尔曼、RLS、LMS算法matlab实现维纳滤波从噪声中提取信号波形的各种估计方法中,维纳(Wiener)滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形),而不只是它的几个参量。
设维纳滤波器的输入为含噪声的随机信号。
期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。
因此均方误差越小,噪声滤除效果就越好。
为使均方误差最小,关键在于求冲激响应。
如果能够满足维纳-霍夫方程,就可使维纳滤波器达到最佳。
维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。
维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声为非平稳的随机过程的情况,对于向量情况应用也不方便。
因此,维纳滤波在实际问题中应用不多。
下面是根据维纳滤波器给出的图像处理matlab实例,在下面实例中维纳滤波和均值滤波相比较,并且做了维纳复原、边缘提取、图像增强的实验:%****************维纳滤波和均值滤波的比较*********************I=imread('lena.bmp');J=imnoise(I,'gaussian',0,0.01);Mywiener2 = wiener2(J,[3 3]);Mean_temp = ones(3,3)/9;Mymean = imfilter(J,Mean_temp);figure(1);subplot(121),imshow(Mywiener2),title('维纳滤波器输出');subplot(122),imshow(uint8(Mymean),[]),title('均值滤波器的输出');%***********************维纳复原程序********************figure(2);subplot(231),imshow(I),title('原始图像');LEN = 20;THETA =10;PSF = fspecial('motion',LEN,THETA);Blurred = imfilter(I,PSF,'circular');subplot(232),imshow(Blurred),title('生成的运动的模糊的图像');noise = 0.1*randn(size(I));subplot(233),imshow(im2uint8(noise)),title('随机噪声');BlurredNoisy=imadd(Blurred,im2uint8(noise));subplot(234),imshow(BlurredNoisy),title('添加了噪声的模糊图像');Move=deconvwnr(Blurred,PSF);subplot(235),imshow(Move),title('还原运动模糊的图像');nsr = sum(noise(:).^2)/sum(im2double(I(:)).^2);wnr2 = deconvwnr(BlurredNoisy,PSF,nsr);subplot(236),imshow(wnr2),title('还原添加了噪声的图像');%****************维纳滤波应用于边缘提取*********************N = wiener2(I,[3,3]);%选用不同的维纳窗在此修改M = I - N;My_Wedge = im2bw (M,5/256);%化二值图像BW1 = edge(I,'prewitt');BW2 = edge(I,'canny');BW3 = edge(I,'zerocross');BW4 = edge(I,'roberts');figure(3)subplot(2,4,[3 4 7 8]),imshow(My_Wedge),title('应用维纳滤波进行边沿提取'); subplot(241),imshow(BW1),title('prewitt');subplot(242),imshow(BW2),title('canny');subplot(245),imshow(BW3),title('zerocross');subplot(246),imshow(BW4),title('roberts');%*************************维纳滤波应用于图像增强***************************for i = [1 2 3 4 5] K = wiener2(I,[5,5]);end K = K + I; figure(4);subplot(121),imshow(I),title('原始图像'); subplot(122),imshow(K),title('增强后的图像');维纳滤波器输出均值滤波器的输出原始图像生成的运动的模糊的图像随机噪声添加了噪声的模糊图像还原运动模糊的图像还原添加了噪声的图像卡尔曼滤波卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列预测出物体的坐标位置及速度。
无损卡尔曼滤波UKF Matlab程序
ukf(无迹卡尔曼滤波)算法的matlab程序. function [x,P]=ukf(fstate,x,P,hmeas,z,Q,R)% UKF Unscented Kalman Filter for nonlinear dynamic systems% [x, P] = ukf(f,x,P,h,z,Q,R) returns state estimate, x and state covariance, P% for nonlinear dynamic system (for simplicity, noises are assumed as additive): % x_k+1 = f(x_k) + w_k% z_k = h(x_k) + v_k% where w ~ N(0,Q) meaning w is gaussian noise with covariance Q% v ~ N(0,R) meaning v is gaussian noise with covariance R% Inputs: f: function handle for f(x)% x: "a priori" state estimate% P: "a priori" estimated state covariance% h: fanction handle for h(x)% z: current measurement% Q: process noise covariance% R: measurement noise covariance% Output: x: "a posteriori" state estimate% P: "a posteriori" state covariance%% Example:%{n=3; %number of stateq=0.1; %std of processr=0.1; %std of measurementQ=q^2*eye(n); % covariance of processR=r^2; % covariance of measurementf=@(x)[x(2);x(3);0.05*x(1)*(x(2)+x(3))]; % nonlinear state equationsh=@(x)x(1); % measurement equations=[0;0;1]; % initial statex=s+q*randn(3,1); %initial state % initial state with noiseP = eye(n); % initial state covraianceN=20; % total dynamic stepsxV = zeros(n,N); %estmate % allocate memorysV = zeros(n,N); %actualzV = zeros(1,N);for k=1:Nz = h(s) + r*randn; % measurmentssV(:,k)= s; % save actual statezV(k) = z; % save measurment[x, P] = ukf(f,x,P,h,z,Q,R); % ekfxV(:,k) = x; % save estimates = f(s) + q*randn(3,1); % update processendfor k=1:3 % plot resultssubplot(3,1,k)plot(1:N, sV(k,:), '-', 1:N, xV(k,:), '--')end%}%% By Yi Cao at Cranfield University, 04/01/2008%L=numel(x); %numer of statesm=numel(z); %numer of measurementsalpha=1e-3; %default, tunableki=0; %default, tunablebeta=2; %default, tunablelambda=alpha^2*(L+ki)-L; %scaling factorc=L+lambda; %scaling factorWm=[lambda/c 0.5/c+zeros(1,2*L)]; %weights for meansWc=Wm;Wc(1)=Wc(1)+(1-alpha^2+beta); %weights for covariancec=sqrt(c);X=sigmas(x,P,c); %sigma points around x[x1,X1,P1,X2]=ut(fstate,X,Wm,Wc,L,Q); %unscented transformation of process % X1=sigmas(x1,P1,c); %sigma points around x1% X2=X1-x1(:,ones(1,size(X1,2))); %deviation of X1[z1,Z1,P2,Z2]=ut(hmeas,X1,Wm,Wc,m,R); %unscented transformation of measurmentsP12=X2*diag(Wc)*Z2'; %transformed cross-covarianceK=P12*inv(P2);x=x1+K*(z-z1); %state updateP=P1-K*P12'; %covariance updatefunction [y,Y,P,Y1]=ut(f,X,Wm,Wc,n,R)%Unscented Transformation%Input:% f: nonlinear map% X: sigma points% Wm: weights for mean% Wc: weights for covraiance% n: numer of outputs of f% R: additive covariance%Output:% y: transformed mean% Y: transformed smapling points% P: transformed covariance% Y1: transformed deviationsL=size(X,2);y=zeros(n,1);Y=zeros(n,L);for k=1:LY(:,k)=f(X(:,k));y=y+Wm(k)*Y(:,k);endY1=Y-y(:,ones(1,L));P=Y1*diag(Wc)*Y1'+R;function X=sigmas(x,P,c)%Sigma points around reference point%Inputs:% x: reference point% P: covariance% c: coefficient%Output:% X: Sigma pointsA = c*chol(P)';Y = x(:,ones(1,numel(x))); X = [x Y+A Y-A];。
卡尔曼滤波器实现代码
VectorXd k = Cal_kalmen_gain_1_2(P_predict_i, H, Rnoise);
VectorXd x_predict_calibration_i = Correctpredcit_x_2_1(y, x_predict_i, k);//F is the relation of this time and next time
printf("hello world\n"); VectorXd my_vector(2); my_vector << 10, 20; MatrixXd my_matrix(2, 2); my_matrix << 1, 2, 3, 4; cout << my_matrix << endl; cout << my_vector << endl;
R = MatrixXd(1, 1); R << 1;
I = MatrixXd::Identity(2, 2);
Q = MatrixXd(2, 2); Q << 0, 0, 0, 0;
//create a list of measurements VectorXd single_meas(1); single_meas << 1; measurements.push_back(single_meas); single_meas << 5; measurements.push_back(single_meas); single_meas << 9; measurements.push_back(single_meas); single_meas << 13; measurements.push_back(single_meas); single_meas << 17; measurements.push_back(single_meas); single_meas << 21; measurements.push_back(single_meas); single_meas << 25; measurements.push_back(single_meas); single_meas << 29; measurements.push_back(single_meas); filter(x, P,u,F,H,R,I, Q,8); ; }
(整理)卡尔曼滤波简介及其算法MATLAB实现代码.
式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k)=A X(k-1)+B U(k)+W(k)
再加上系统的测量值:
Z(k)=H X(k)+V(k)
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R)………(4)
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。
matlab simulink 拓展卡尔曼滤波
matlab simulink 拓展卡尔曼滤波概述
拓展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波器。
在MATLAB Simulink中,可以使用EKF进行状态估计和参数估计。
下面是一个简单的步骤来说明如何在MATLAB Simulink中实现拓展卡尔曼滤波:
1. 打开MATLAB Simulink并创建一个新模型。
2. 在模型中添加一个EKF模块。
在Simulink库中找到EKF模块,并将其拖动到模型中。
3. 配置EKF模块的参数。
打开EKF模块的参数对话框,配置以下参数:
* 状态转移矩阵A:根据系统模型进行设置。
* 测量矩阵H:根据传感器测量模型进行设置。
* 过程噪声协方差矩阵Q:根据系统噪声模型进行设置。
* 测量噪声协方差矩阵R:根据传感器测量噪声模型进行设置。
4. 添加输入和输出模块。
在模型中添加输入模块(如模拟输入模块)来接收系统的输入信号,并添加输出模块(如模拟输出模块)来输出
估计结果。
5. 连接输入和输出模块到EKF模块。
将输入模块的输出信号连接到EKF模块的输入端口,将EKF模块的输出信号连接到输出模块的输入端口。
6. 运行模型并进行仿真。
点击Simulink窗口中的“运行”按钮,运行模型并进行仿真。
在仿真期间,输入信号将被处理并通过EKF进行状态估计和参数估计,最终输出估计结果。
需要注意的是,拓展卡尔曼滤波器的参数设置对于估计结果的准确性和稳定性至关重要。
因此,需要仔细选择合适的参数并根据实际系统进行验证和调整。
matlab卡尔曼滤波函数
matlab卡尔曼滤波函数概述卡尔曼滤波是一种广泛应用于控制工程、信号处理、计算机视觉和机器人等领域的优化方法,其主要作用是对已知量和未知量的联合分布进行估计。
在matlab中,卡尔曼滤波函数已经被封装好,不需要用户手动构建卡尔曼滤波器。
本文主要介绍matlab中卡尔曼滤波函数的使用方法。
基础知识在介绍卡尔曼滤波函数之前,需要先了解一些与卡尔曼滤波相关的基础知识。
卡尔曼滤波的基本思想是利用系统的数学模型和观测量之间存在的关系来数学建模,采用贝叶斯估计方法,通过迭代逐步优化状态估计值和估计误差协方差矩阵。
卡尔曼滤波主要分为两个步骤:1. 预测在卡尔曼滤波中,预测过程可以通过系统模型对当前状态进行推测。
通常将这个过程称之为时间更新。
这个过程可以同步化到系统的时钟上,使其在系统中能够很好的集成。
2. 更新在得到新观测值之后,就需要将预测的状态值调整到观测值。
这个过程被称为测量更新。
这个过程可以将状态估计误差协方差矩阵逐渐调整为最小值。
卡尔曼滤波的数学公式,即状态估计公式,如下所示:$x_k=\hat{x}_{k|k-1}+K_k(z_k-H_{k}\hat{x}_{k|k-1})$$x_k$为当前状态的估计值;$\hat{x}_{k|k-1}$为预测状态的估计值;$K_k$为卡尔曼增益;$z_k$为当前状态的观测值;$H_{k}$为状态量和观测量的转换矩阵。
使用matlab卡尔曼滤波函数的步骤如下。
1. 定义系统模型在使用卡尔曼滤波函数进行数据处理之前,需要先定义系统模型。
这包括:状态转移模型观测模型过程噪声测量噪声在matlab中,通常使用StateSpace模型定义卡尔曼滤波系统模型。
2. 建立卡尔曼滤波器在定义好系统模型之后,需要调用kalman函数建立卡尔曼滤波器。
语法如下:[x,P]=kalman(sys,z)sys为matlab中定义的StateSpace模型;z为输入数据序列。
返回值x为状态估计值,P为估计值的协方差矩阵。
扩展卡尔曼滤波算法的matlab程序
clear all v=150; %% 目标速度v_sensor=0;%% 传感器速度t=1; %% 扫描周期xradarpositon=0; %% 传感器坐标yradarpositon=0; %%ppred=zeros(4,4);Pzz=zeros(2,2);Pxx=zeros(4,2); xpred=zeros(4,1); ypred=zeros(2,1);sumx=0; sumy=0;sumxukf=0;sumyukf=0; sumxekf=0;sumyekf=0; %%% 统计的初值L=4; alpha=1; kalpha=0; belta=2; ramda=3-L;azimutherror=0.015; %% 方位均方误差rangeerror=100; %% 距离均方误差processnoise=1; %% 过程噪声均方差tao=[t A3/3 22/2 0 0;22/2 tO 0;0 0 tA3/3 tA2/2;0 0 tA2/2 t]; %% the input matrix of processG=[tA2/2 0t 00 tA2/20 t ];a=35*pi/180; a_v=5/100;a_sensor=45*pi/180; x(1)=8000; %% 初始位置y(1)=12000;for i=1:200 x(i+1)=x(i)+v*cos(a)*t; y(i+1)=y(i)+v*sin(a)*t; end for i=1:200xradarpositon=0;yradarpositon=0;Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror ,1,1);Zmeasure(2,i)=sqrt((y(i)-yradarpositon)A2+(x(i)-xradarpositon)A2)+random('Normal',0,rangeerror ,1,1);xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%% 观测值yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i));measureerror=[azimutherror A2 0;0 rangeerror A2];processerror=tao*processnoise;vNoise = size(processerror ,1);wNoise = size(measureerror ,1);A=[1 t 0 0;0 1 0 0;0 0 1 t;0 0 0 1];Anoise=size(A,1);for j=1:2*L+1Wm(j)=1/(2*(L+ramda));Wc(j)=1/(2*(L+ramda));endWm(1)=ramda/(L+ramda);Wc(1)=ramda/(L+ramda);%+1-alphaA2+belta; %%% 权值if i==1xerror=rangeerrorA2*cos(Zmeasure(1,i))A2+Zmeasure(2,i)A2*azimutherrorA2*sin(Zmeasure(1,i))A2; yerror=rangeerrorA2*sin(Zmeasure(1,i))A2+Zmeasure(2,i)A2*azimutherrorA2*cos(Zmeasure(1,i))A2; xyerror=(rangeerrorA2-Zmeasure(2,i)A2*azimutherrorA2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i)); P=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(tA2) xyerror/t 2*xyerror/(tA2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t A2) yerror/t 2*yerror/(t A2)];xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]'; endcho=(chol(P*(L+ramda)))';%for j=1:LxgamaP1(:,j)=xestimate+cho(:,j);xgamaP2(:,j)=xestimate-cho(:,j);endXsigma=[xestimate xgamaP1 xgamaP2];F=A;Xsigmapre=F*Xsigma;xpred=zeros(Anoise,1);for j=1:2*L+1xpred=xpred+Wm(j)*Xsigmapre(:,j);endNoise1=Anoise;ppred=zeros(Noise1,Noise1);for j=1:2*L+1 ppred=ppred+Wc(j)*(Xsigmapre(:,j)-xpred)*(Xsigmapre(:,j)-xpred)';endppred=ppred+processerror;chor=(chol((L+ramda)*ppred))';for j=1:LXaugsigmaP1(:,j)=xpred+chor(:,j);XaugsigmaP2(:,j)=xpred-chor(:,j);endXaugsigma=[xpred XaugsigmaP1 XaugsigmaP2 ];for j=1:2*L+1Ysigmapre(1,j)=atan(Xaugsigma(3,j)/Xaugsigma(1,j)) ; Ysigmapre(2,j)=sqrt((Xaugsigma(1,j))A2+(Xaugsigma(3,j))A2); endypred=zeros(2,1);for j=1:2*L+1ypred=ypred+Wm(j)*Ysigmapre(:,j);endPzz=zeros(2,2);for j=1:2*L+1Pzz=Pzz+Wc(j)*(Ysigmapre(:,j)-ypred)*(Ysigmapre(:,j)-ypred)';endPzz=Pzz+measureerror;Pxy=zeros(Anoise,2);for j=1:2*L+1Pxy=Pxy+Wc(j)*(Xaugsigma(:,j)-xpred)*(Ysigmapre(:,j)-ypred)';endK=Pxy*inv(Pzz); xestimate=xpred+K*(Zmeasure(:,i)-ypred);P=ppred-K*Pzz*K';xukf(i)=xestimate(1,1);yukf(i)=xestimate(3,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% EKF PRO%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if i==1ekf_p=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t A2) xyerror/t 2*xyerror/(t A2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(tA2) yerror/t 2*yerror/(tA2)];ekf_xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]';ekf_xpred=ekf_xestimate;end;F=A;ekf_xpred=F*ekf_xestimate;ekf_ppred=F*ekf_p*F'+processerror;H=[-ekf_xpred(3)/(ekf_xpred(3)A2+ekf_xpred(1)A2) 0 ekf_xpred(1)/(ekf_xpred(3)A2+ekf_xpred(1)A2)0;ekf_xpred(1)/sqrt(ekf_xpred(3)A2+ekf_xpred(1)A2) 0ekf_xpred(3)/sqrt(ekf_xpred(3)A2+ekf_xpred(1)A2) 0];ekf_z(1,1)=atan(ekf_xpred(3)/ekf_xpred(1)) ;ekf_z(2,1)=sqrt((ekf_xpred(1))A2+(ekf_xpred(3))A2);PHHP=H*ekf_ppred*H'+measureerror;ekf_K=ekf_ppred*H'*inv(PHHP);ekf_p=(eye(L)-ekf_K*H)*ekf_ppred;ekf_xestimate=ekf_xpred+ekf_K*(Zmeasure(:,i)-ekf_z);traceekf(i)=trace(ekf_p);xekf(i)=ekf_xestimate(1,1);yekf(i)=ekf_xestimate(3,1);errorx(i)=xx(i)+xradarpositon-x(i);errory(i)=yy(i)+yradarpositon-y(i);ukferrorx(i)=xestimate(1)+xradarpositon-x(i); ukferrory(i)=xestimate(3)+yradarpositon-y(i);ekferrorx(i)=ekf_xestimate(1)+xradarpositon-x(i); ekferrory(i)=ekf_xestimate(3)+yradarpositon-y(i);aa(i)=xx(i)+xradarpositon-x(i);; bb(i)=yy(i)+yradarpositon-y(i);sumx=sumx+(errorx(iF2);sumy=sumy+(errory(i)A2); sumxukf=sumxukf+(ukferrorx(iF2); sumyukf=sumyukf+(ukferrory(i)A2); sumxekf=sumxekf+(ekferrorx(i)A2); sumyekf=sumyekf+(ekferrory(i)A2);mseerrorx(i)=sqrt(sumx/(i-1));% 噪声的统计均方误差mseerrory(i)=sqrt(sumy/(i-1));mseerrorxukf(i)=sqrt(sumxukf/(i-1));%UKF 的统计均方误差mseerroryukf(i)=sqrt(sumyukf/(i-1));mseerrorxekf(i)=sqrt(sumxekf/(i-1));%EKF 的统计均方误差mseerroryekf(i)=sqrt(sumyekf/(i-1));endfigure(1);plot(mseerrorxukf,'r');hold on;plot(mseerrorxekf,'g');hold on;plot(mseerrorx,'.');hold on; ylabel('MSE of X axis','fontsize',15); xlabel('sample number','fontsize',15);legend('UKF','EKF','measurement error');figure(2) plot(mseerroryukf,'r');hold on;plot(mseerroryekf,'g'); hold on;plot(mseerrory,'.');hold on; ylabel('MSE of Y axis','fontsize',15); xlabel('sample number','fontsize',15);legend('UKF','EKF','measurement error');figure(3) plot(x,y); hold on; plot(xekf,yekf,'g'); hold on; plot(xukf,yukf,'r'); hold on; plot(xx,yy,'m'); ylabel(' X ','fontsize',15); xlabel('Y','fontsize',15); legend('TRUE','UKF','EKF','measurements');。
卡尔曼滤波matlab代码
卡尔曼滤波matlab代码
卡尔曼滤波(Kalman Filter)是一种有效融合测量数据的算法,由德国工程师卡尔曼博士发明,能够处理从随机过程中获得的非完全信息,将历史数据和测量信息进行综合的面向状态的算法。
它利用模型估计和更新未知状态,以达到估计未知状态的目的。
步骤1:设定卡尔曼滤波器:卡尔曼滤波器是利用上一时刻状态估计结果和当前测量值来对当前状态继续估计,因此每次只需输入一个新的测量值,即可完成所有的风险估计。
步骤2:确定状态转移模型:卡尔曼滤波用于处理非完全信息,从未知状态开始,将先验状态估计与新数据进行融合,在此过程中,必须根据状态转移模型确定状态转移参数。
步骤3:建立测量模型:通过测量模型将状态变量转换为可度量的测量量,即各状态变量与其输出测量变量之间的函数关系。
步骤4:在滤波器中实现卡尔曼滤波:。
卡尔曼滤波原理及应用matlab
卡尔曼滤波原理及应用matlab卡尔曼滤波是一种最优线性滤波算法,经常应用于估计系统的状态,特别是在有观测误差和系统动态噪声的情况下。
它是由卡尔曼于1960年提出的,常用于航天、制导导航控制等领域。
卡尔曼滤波的核心思想是通过将系统的测量值与模型预测值进行加权平均,得到对系统状态的最优估计。
它的主要特点是能够自适应地估计系统的状态,并且对于含有噪声的测量值具有较好的抗扰动能力。
在卡尔曼滤波中,系统的状态通常用状态向量表示,用一个线性方程组表示系统的动态演化,如下所示:x(k) = A * x(k-1) + B * u(k-1) + w(k-1)其中,x(k)表示系统的状态向量,A和B是状态转移矩阵和输入控制矩阵,u(k-1)表示输入控制向量,w(k-1)表示系统动态噪声。
系统的测量模型可以表示为:z(k) = H * x(k) + v(k)其中,z(k)为测量值,H为测量矩阵,v(k)表示观测噪声。
卡尔曼滤波的基本步骤如下:1. 预测状态:根据上一时刻的状态估计值和状态转移矩阵进行预测,得到对当前状态的预测估计。
x^(k k-1) = A * x^(k-1 k-1) + B * u(k-1)P(k k-1) = A * P(k-1 k-1) * A' + Q(k-1)2. 更新观测:根据当前的测量值和测量模型进行更新,得到对当前状态的最优估计。
K(k) = P(k k-1) * H' * inv(H * P(k k-1) * H' + R(k))x^(k k) = x^(k k-1) + K(k) * (z(k) - H * x^(k k-1))P(k k) = (I - K(k) * H) * P(k k-1)3. 输出最优估计:使用更新后的状态估计和协方差矩阵作为当前时刻的最优估计结果。
x(k) = x^(k k)P(k) = P(k k)其中,P(k k-1)和P(k k)是协方差矩阵,Q(k-1)和R(k)是系统动态噪声和观测噪声的协方差矩阵。
卡尔曼滤波器及maab代码
信息融合大作业——维纳最速下降法滤波器,卡尔曼滤波器设计及Matlab仿真时间:2010-12-6专业:信息工程班级:09030702学号:姓名:马志强1.滤波问题浅谈估计器或滤波器这一术语通常用来称呼一个系统,设计这样的系统是为了从含有噪声的数据中提取人们感兴趣的,接近规定质量的信息。
由于这样一个宽目标,估计理论应用于诸如通信、雷达、声纳、导航、地震学、生物医学工程、金融工程等众多不同的领域。
例如,考虑一个数字通信系统,其基本形式由发射机、信道和接收机连接组成。
发射机的作用是把数字源(例如计算机)产生的0、1符号序列组成的消息信号变换成为适合于信道上传送的波形。
而由于符号间干扰和噪声的存在,信道输出端收到的信号是含有噪声的或失真的发送信号。
接收机的作用是,操作接收信号并把原消息信号的一个可靠估值传递给系统输出端的某个用户。
随着通信系统复杂度的提高,对原消息信号的还原成为通信系统中最为重要的环节,而噪声是接收端需要排除的最主要的干扰,人们也设计出了针对各种不同条件应用的滤波器,其中最速下降算法是一种古老的最优化技术,而卡尔曼滤波器随着应用条件的精简成为了普适性的高效滤波器。
2.维纳最速下降算法滤波器最速下降算法的基本思想考虑一个代价函数J(J),它是某个未知向量J的连续可微分函数。
函数J(J)将J的元素映射为实数。
这里,我们要寻找一个最优解J。
使它满足如下条件J(J0)≤J(J)这也是无约束最优化的数学表示。
特别适合于自适应滤波的一类无约束最优化算法基于局部迭代下降的算法:从某一初始猜想J(0)出发,产生一系列权向量J(1),J(2),?,使得代价函数J(J)在算法的每一次迭代都是下降的,即J(J(J+1))<J(J(J))其中J(J)是权向量的过去值,而J(J+1)是其更新值。
我们希望算法最终收敛到最优值J0。
迭代下降的一种简单形式是最速下降法,该方法是沿最速下降方向连续调整权向量。
为方便起见,我们将梯度向量表示为J=?J(J)=?J(J)J因此,最速下降法可以表示为J(J+1)=J(J)−12J J(J)其中J代表进程,J是正常数,称为步长参数,1/2因子的引入是为了数学上处理方便。
卡尔曼滤波入门、简介及其算法MATLAB实现代码
卡尔曼滤波入门:卡尔曼滤波是用来进行数据滤波用的,就是把含噪声的数据进行处理之后得出相对真值。
卡尔曼滤波也可进行系统辨识。
卡尔曼滤波是一种基于统计学理论的算法,可以用来对含噪声数据进行在线处理,对噪声有特殊要求,也可以通过状态变量的增广形式实现系统辨识。
用上一个状态和当前状态的测量值来估计当前状态,这是因为上一个状态估计此时状态时会有误差,而测量的当前状态时也有一个测量误差,所以要根据这两个误差重新估计一个最接近真实状态的值。
信号处理的实际问题,常常是要解决在噪声中提取信号的问题,因此,我们需要寻找一种所谓有最佳线性过滤特性的滤波器。
这种滤波器当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制。
维纳(Wiener)滤波与卡尔曼(Kalman)滤波就是用来解决这样一类从噪声中提取信号问题的一种过滤(或滤波)方法。
(1)过滤或滤波 - 从当前的和过去的观察值x(n),x(n-1),x(n-2),…估计当前的信号值称为过滤或滤波;(2)预测或外推 - 从过去的观察值,估计当前的或将来的信号值称为预测或外推; (3)平滑或内插 - 从过去的观察值,估计过去的信号值称为平滑或内插;因此,维纳过滤与卡尔曼过滤又常常被称为最佳线性过滤与预测或线性最优估计。
这里所谓“最佳”与“最优”是以最小均方误差为准则的。
维纳过滤与卡尔曼过滤都是解决最佳线性过滤和预测问题,并且都是以均方误差最小为准则的。
因此在平稳条件下,它们所得到的稳态结果是一致的。
然而,它们解决的方法有很大区别。
维纳过滤是根据全部过去的和当前的观察数据来估计信号的当前值,它的解是以均方误差最小条件下所得到的系统的传递函数H(z)或单位样本响应h(n)的形式给出的,因此更常称这种系统为最佳线性过滤器或滤波器。
而卡尔曼过滤是用前一个估计值和最近一个观察数据(它不需要全部过去的观察数据)来估计信号的当前值,它是用状态方程和递推的方法进行估计的,它的解是以估计值(常常是状态变量值)形式给出的。
卡尔曼滤波 matlab代码
卡尔曼滤波 matlab代码【实用版】目录一、卡尔曼滤波简介二、卡尔曼滤波算法原理三、MATLAB 代码实现卡尔曼滤波四、总结正文一、卡尔曼滤波简介卡尔曼滤波是一种线性高斯状态空间模型,主要用于估计动态系统的状态,具有良好的实时性、鲁棒性和准确性。
它广泛应用于导航、定位、机器人控制等领域。
二、卡尔曼滤波算法原理卡尔曼滤波主要包括两个部分:预测阶段和更新阶段。
预测阶段:1.初始化状态变量和协方差矩阵。
2.根据系统动态模型,预测系统的状态变量和协方差矩阵。
更新阶段:1.测量系统的状态变量,得到观测数据。
2.根据观测数据和预测的状态变量,计算卡尔曼增益。
3.使用卡尔曼增益,更新状态变量和协方差矩阵。
三、MATLAB 代码实现卡尔曼滤波以下是一个简单的卡尔曼滤波 MATLAB 代码示例:```MATLABfunction [x, P] = kalman_filter(x, P, F, Q, H, R, z)% 初始化x = 初始状态向量;P = 初始协方差矩阵;% 预测阶段F = 系统动态矩阵;Q = 测量噪声协方差矩阵;H = 观测矩阵;R = 观测噪声协方差矩阵;z = 观测数据;% 预测状态变量和协方差矩阵[x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R);% 更新阶段[x_upd, P_upd] = update(x_pred, P_pred, z);% 输出结果x = x_upd;P = P_upd;endfunction [x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R)% 预测状态变量和协方差矩阵x_pred = F * x;P_pred = F * P * F" + Q;endfunction [x_upd, P_upd] = update(x_pred, P_pred, z)% 更新状态变量和协方差矩阵S = H" * P_pred * H;K = P_pred * H" * S^-1;x_upd = x_pred + K * (z - H * x_pred);P_upd = (I - K * H") * P_pred;end```四、总结卡尔曼滤波是一种高效、准确的状态估计方法,适用于各种线性高斯动态系统。
卡尔曼滤波简介及其算法实现代码(C++_C_MATLAB)
卡尔曼滤波简介及其算法实现代码(C++/C/MATLAB)卡尔曼滤波器简介近来发现有些问题很多人都很感兴趣。
所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。
现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。
因为这里不能写复杂的数学公式,所以也只能形象的描述。
希望如果哪位是这方面的专家,欢迎讨论更正。
卡尔曼滤波器– Kalman Filter1.什么是卡尔曼滤波器(What is the Kalman Filter?)在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。
跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。
1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。
1957年于哥伦比亚大学获得博士学位。
我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
如果对这编论文有兴趣,可以到这里的地址下载:/~welch/media/pdf/Kalman1960.pdf。
简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。
对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。
他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
2.卡尔曼滤波器的介绍(Introduction to the Kalman Filter)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。
卡尔曼滤波器matlab代码
卡尔曼滤波器matlab代码卡尔曼滤波器是一种常用的状态估计算法,它能够根据系统的状态方程和测量方程,以及预测的误差和测量的误差,计算出最优的状态估计值和误差协方差矩阵,从而提高系统的精度和鲁棒性。
以下是卡尔曼滤波器的matlab代码:% 系统模型:% x(k) = A * x(k-1) + B * u(k) + w(k)% y(k) = H * x(k) + v(k)% 初始化模型参数:% 状态转移矩阵:A = [1, 1; 0, 1];% 控制输入矩阵:B = [0.5; 1];% 系统噪声方差:Q = [0.01, 0; 0, 0.1];% 测量噪声方差:R = 1;% 观测矩阵:H = [1, 0];% 初始化状态向量和协方差矩阵:x0 = [0; 0];P0 = [1, 0; 0, 1];% 设置时间和增量:dt = 0.1;t = 0:dt:10;u = sin(t);% 初始化输出向量和卡尔曼增益矩阵:x = zeros(2,length(t));y = zeros(1,length(t));K = zeros(2,length(t));% 执行卡尔曼滤波算法:x(:,1) = x0;for k = 2:length(t)% 预测状态和协方差:x_pre = A * x(:,k-1) + B * u(k-1);P_pre = A * P0 * A' + Q;% 计算卡尔曼增益:K(:,k) = P_pre * H' / (H * P_pre * H' + R);% 更新状态和协方差:x(:,k) = x_pre + K(:,k) * (y(k-1) - H * x_pre); P0 = (eye(2) - K(:,k) * H) * P_pre;% 计算输出:y(k) = H * x(:,k);end% 绘制结果:subplot(2,1,1)plot(t,x(1,:),'r',t,x(2,:),'b')legend('位置','速度')title('状态估计')subplot(2,1,2)plot(t,y,'g',t,u,'m')legend('测量值','控制输入')title('卡尔曼滤波')。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息融合大作业——维纳最速下降法滤波器,卡尔曼滤波器设计及Matlab仿真时间:2010-12-6专业:信息工程班级:09030702学号:71姓名:马志强1.滤波问题浅谈估计器或滤波器这一术语通常用来称呼一个系统,设计这样的系统是为了从含有噪声的数据中提取人们感兴趣的,接近规定质量的信息。
由于这样一个宽目标,估计理论应用于诸如通信、雷达、声纳、导航、地震学、生物医学工程、金融工程等众多不同的领域。
例如,考虑一个数字通信系统,其基本形式由发射机、信道和接收机连接组成。
发射机的作用是把数字源(例如计算机)产生的0、1符号序列组成的消息信号变换成为适合于信道上传送的波形。
而由于符号间干扰和噪声的存在,信道输出端收到的信号是含有噪声的或失真的发送信号。
接收机的作用是,操作接收信号并把原消息信号的一个可靠估值传递给系统输出端的某个用户。
随着通信系统复杂度的提高,对原消息信号的还原成为通信系统中最为重要的环节,而噪声是接收端需要排除的最主要的干扰,人们也设计出了针对各种不同条件应用的滤波器,其中最速下降算法是一种古老的最优化技术,而卡尔曼滤波器随着应用条件的精简成为了普适性的高效滤波器。
2.维纳最速下降算法滤波器最速下降算法的基本思想考虑一个代价函数,它是某个未知向量的连续可微分函数。
函数将的元素映射为实数。
这里,我们要寻找一个最优解。
使它满足如下条件这也是无约束最优化的数学表示。
特别适合于自适应滤波的一类无约束最优化算法基于局部迭代下降的算法:从某一初始猜想出发,产生一系列权向量,使得代价函数在算法的每一次迭代都是下降的,即其中是权向量的过去值,而是其更新值。
我们希望算法最终收敛到最优值。
迭代下降的一种简单形式是最速下降法,该方法是沿最速下降方向连续调整权向量。
为方便起见,我们将梯度向量表示为因此,最速下降法可以表示为其中代表进程,是正常数,称为步长参数,1/2因子的引入是为了数学上处理方便。
在从到的迭代中,权向量的调整量为为了证明最速下降算法满足式,在处进行一阶泰勒展开,得到此式对于较小时是成立的。
在式中设为负值向量,因而梯度向量也为负值向量,所以使用埃尔米特转置。
将式用到式中,得到此式表明当为正数时,。
因此,随着的增加,代价函数减小,当时,代价函数趋于最小值。
最速下降算法应用于维纳滤波器考虑一个横向滤波器,其抽头输入为,对应的抽头权值为。
抽头输入是来自零均值、相关矩阵为的广义平稳随机过程的抽样值。
除了这些输入外,滤波器还要一个期望响应,以便为最优滤波提供一个参考。
在时刻抽头输入向量表示为,滤波器输出端期望响应的估计值为,其中是由抽头输所张成的空间。
空过比较期望响应及其估计值,可以得到一个估计误差,即这里是抽头权向量与抽头输入向量的内积。
可以进一步表示为同样,抽头输入向量可表示为如果抽头输入向量和期望响应是联合平稳的,此时均方误差或者在时刻的代价函数是抽头权向量的二次函数,于是可以得到其中,为目标函数的方差,抽头输入向量与期望响应的互相关向量,及为抽头输入向量的相关矩阵。
从而梯度向量可以写为其中在列向量中和分别是代价函数对应第个抽头权值的实部和虚部的偏导数。
对最速下降算法应用而言,假设式中相关矩阵和互相关向量已知,则对于给定的抽头权向量为它描述了为那滤波中最速下降法的数学表达式。
3.卡尔曼滤波器卡尔曼滤波器的基本思想卡尔曼滤波器是用状态空间概念描述其数学公式的,另外新颖的特点是,他的解递归运算,可以不加修改地应用于平稳和非平稳环境。
尤其是,其状态的每一次更新估计都由前一次估计和新的输入数据计算得到,因此只需存储前一次估计。
除了不需要存储过去的所有观测数据外,卡尔曼滤波计算比直接根据滤波过程中每一步所有过去数据进行估值的方法都更加有效。
+ +图线性动态离散时间系统的信号流图表示“状态”的概念是这种表示的基础。
状态向量,简单地说状态,定义为数据的最小集合,这组数据足以唯一地描述系统的自然动态行为。
换句话说,状态由预测系统未来特性时所素要的,与系统的过去行为有关的最少的数据组成。
典型地,比较有代表性的情况是,状态是未知的。
为了估计它,我们使用一组观测数据,在途中用向量表示。
成为观测向量或者简称观测值,并假设它是维的。
在数学上,图表示的信号流图隐含着一下两个方程:(1)过程方程式中,向量表示噪声过程,可建模为零均值的白噪声过程,且其相关矩阵定义为(2)测量方程其中是已知的测量矩阵。
向量称为测量噪声,建模为零均值的白噪声过程,其相关矩阵为测量方程确立了可测系统输出与状态之间的关系,如图所示。
新息过程为了求解卡尔曼滤波问题,我们将应用基于新息过程的方法。
根据之前所述,用向量表示时刻到时刻所有观测数据过去值给定的情况下,你时刻观测数据的最小均方估计。
过去的值用观测值表示,他们张成的向量空间用表示。
从而可以定义新息过程如下:其中向量表示观测数据的新息。
应用新息过程进行状态估计下面,我们根据信息过程导出状态的最小均方估计。
根据推导,这个估计可以表示成为新息过程序列的线性组合,即其中是一组待定的矩阵。
根据正交性原理,预测状态误差向量与新息过程正交,即将式代入式,并利用新息过程的正交性质,即得因此,式两边同时右乘逆矩阵,可得的表达式为最后,将式带入式,可得最小军方差估计故对于,有然而,时刻的状态与时刻的状态的关系式由式可以推导出对于,有其中只与观测数据有关。
因此可知,与彼此正交(其中)。
利用式以及当时的计算公式,可将式右边的求和项改写为为了进一步讨论,引入如下基本定义。
卡尔曼增益定义矩阵其中是状态向量和新息过程的互相关矩阵。
利用这一定义和式的结果,可以将式简单重写为式具有明确的物理意义。
它标明:线性动态系统状态的最小均方估计可以由前一个估计求得。
为了表示对卡尔曼开创性贡献的认可,将矩阵称为卡尔曼增益。
现在剩下唯一要解决的问题是,怎样以一种便于计算的形式来表示卡尔曼增益。
为此,首先将与乘积的期望表示为式中利用了状态与噪声向量互不相关这一事实。
其次,由于预测状态误差向量与估计正交,因此与乘机的期望为零。
这样,用预测状态误差向量代替相乘因子,将不会引起式变化,故有由此,可将上式进一步变化为现在我们重新定义卡尔曼增益。
为此,将式代入式得现在我们已经了解了卡尔曼滤波的整个过程和相应的参数设置,为了能够更为方便利用计算机仿真实现,特将其中参数变量进行小结。
卡尔曼变量和参数小结变量定义维数时刻状态时刻状态值从时刻到时刻的转移矩阵时刻的测量矩阵过程噪声的相关矩阵过程噪声的相关矩阵给定观测值在时刻状态的预测估计给定观测值在时刻状态的滤波估计时刻卡尔曼增益矩阵时刻新息向量新息向量的相关矩阵中误差相关矩阵中误差相关矩阵基于单步预测的卡尔曼滤波器的小结观测值=转移矩阵=测量矩阵=过程噪声的相关矩阵=测量噪声的相关矩阵=4 Matlab仿真为了简化,这里只讨论简单的一维单输入—单输出线性系统模型,其中加入白噪声作为系统的扰动,具体仿真结果可以获得如下维纳最速下降法滤波器仿真结果以上为最速下降法中不同的递归步长所导致的跟踪效果变化,对于最速下降法中的步长是影响其算法稳定的关键,最速下降算法稳定的充分必要条件是条件步长因子为小于输入自相关矩阵的最大特征值倒数的2倍。
上面的序列分别从相关矩阵的随大特征之2倍的倍开始变化至其1倍,最后一幅图象能够看出其已经不再收敛,下面是大于输入相关矩阵的最大特征值2倍步长时所表现的跟踪结果可以看出其已经明显发散,不再是我们所期望的滤波算法。
因此可以总结出,对于最速下降法来说,步长的选取是很重要的,根据不同条件的需求,选取正确的步长,能为算法的快速高效提供基础。
卡尔曼滤波器仿真结果从图中可以发现,卡尔曼滤波器能够非常有效地在比较大的干扰下比较准确地反映真实值,如果观测端加入干扰较大时,卡尔曼滤波器能够较为有效地进行滤波,不过当状态端的干扰增大时,卡尔曼滤波器的滤波效果也会随之下降。
如下图,是加大了状态端的干扰,所呈现的滤波效果。
如上图所示,状态端的干扰导致状态不稳定,卡尔曼滤波器的估计值也出现了比较大的波动。
如果将状态端的干扰再增大,则会出现更为严峻的滤波考验,滤波效果如下。
这是的状态已经很勉强了,所以,研究更为有效的多方法卡尔曼滤波器也显得十分必要了。
一种不需初始化的卡尔曼滤波器仿真这种滤波器只是实现了无需对部分变量进行初始化的设计,没有特别意义上的改进经典卡尔曼滤波器本身性能的特点。
仿真图如下后联平滑滤波的卡尔曼滤波器仿真只是在经典卡尔曼滤波器后端联接了平滑滤波器,对性能改进的效果并不特别明显,仿真图如下如图中所表示,即使平滑过的估值与观测值之间的差别也不是特别令人满意,所以,对于经典卡尔曼滤波的研究还需要更深一步进行,由于时间和能力有限,本次的作业对于卡尔曼及其他滤波器的研究只能达到这种程度,希望在以后的学习中,能发现更好的对经典卡尔曼滤波器的改进方法。
5 Matlab源代码(部分参考自互联网)经典卡尔曼滤波器clearN=200;w(1)=0;x(1)=5;a=1;c=1;Q1 = randn(1,N)*1;%过程噪声Q2 = randn(1,N);%测量噪声for k=2:N;x(k)=a*x(k-1)+Q1(k-1); end%状态矩阵for k=1:N;Y(k)=c*x(k)+Q2(k);endp(1)=10;s(1)=1;for t=2:N;Rww=cov(Q1(1:t));Rvv=cov(Q2(1:t));p1(t)=a.^2*p(t-1)+Rww;b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);%kalman增益s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));p(t)=p1(t)-c*b(t)*p1(t);endt=1:N;plot(t,s,'r',t,Y,'g',t,x,'b');%红色卡尔曼,绿色观测值,蓝色状态值legend('kalman estimate','ovservations','truth');最速下降法clcclear allN=30;q=;%q>1&&q<2/Ryx最大特征值hn=zeros(1,N);hn(:)=5;vg=0;Rxx=xcorr(1);Ryx=min(min(corrcoef(1, 1+randn))); echo offfor i=1:N-1;%vg=2*Rxx*hn(:,i)-2*Ryx;%hn(:,i+1)=hn(:,i)-1/2*q*vg;vg=2*Rxx*hn(i)-2*Ryx;hn(i+1)=hn(i)-1/2*q*vg;m(i)=1;endt=1:N-1;plot(t,hn(t),'r-',t,m(t),'b-');后联平滑滤波器的卡尔曼滤波器clearclc;N=300;CON = 5;x = zeros(1,N);x(1) = 1;p = 10;Q = randn(1,N)*;%过程噪声协方差R = randn(1,N);%观测噪声协方差y = R + CON;%加过程噪声的状态输出for k = 2 : NQ1 = cov(Q(1:k-1));%过程噪声协方差Q2 = cov(R(1:k-1));x(k) = x(k - 1);%预估计k时刻状态变量的值p = p + Q1;%对应于预估值的协方差kg = p / (p + Q2);%kalman gainx(k) = x(k) + kg * (y(k) - x(k));p = (1 - kg) * p;endFilter_Wid = 10;smooth_res = zeros(1,N);kalman_p = zeros(1,N);for i = Filter_Wid + 1 : Ntempsum = 0;kalman_m = 0;for j = i - Filter_Wid : i - 1tempsum = tempsum + y(j);kalman_m = kalman_m+x(j);endkalman_p(i) = kalman_m/Filter_Wid;smooth_res(i) = tempsum / Filter_Wid;%平滑滤波end% figure(1);% hist(y);t=1:N;figure(1);expValue = zeros(1,N);for i = 1: NexpValue(i) = CON;endplot(t,expValue,'r',t,x,'g',t,y,'b',t,smooth_res,'k',t,kalman_p,'m'); legend('truth','estimate','measure','smooth result','smooth kalman'); %axis([0 N 0 30])xlabel('Sample time');ylabel('Room Temperature');title('Smooth filter VS kalman filter');。