从视觉感知智能到视觉认知智能

邓志东教授/博士生导师

清华大学智能技术与系统国家重点实验室

清华大学计算机科学与技术系

清华大学人工智能研究院

michael@https://www.360docs.net/doc/694891293.html,

从视觉感知智能到视觉认知智能

2019.10.31 成都2019年第七届输电技术年会

邓志东

清华大学智能技术与系统国家重点实验室教授,

人工智能研究院视觉智能研究中心主任

清华大学计算机系教授,博士生导师。现为中国

自动化学会会士,中国人工智能产业创新联盟专

家委主任,中国自动化学会智能自动化专委会主

任,新兴产业百人会专家等。

?致力于视觉人工智能研究;

?积极推动“智能+”的跨界融

合发展与产业落地应用实践

提纲O UTLINES

1、人工智能产业生态

2、视觉感知智能成为通用赋能工具与研究范式

3、数据驱动的视觉感知智能面临的主要挑战

4、探索结合数据与知识驱动的视觉认知智能

提纲O UTLINES

1、人工智能产业生态

2、视觉感知智能成为通用赋能工具与研究范式

3、数据驱动的视觉感知智能面临的主要挑战

4、探索结合数据与知识驱动的视觉认知智能

涉及四个维度:

大数据,大计算,算法和应用场景

上游/基础层:大数据,AI 芯片,AI 基础算法,开源代码

框架,AI 基础设施(云-边-端,5G 等)

中游/技术层:视觉引擎,语音引擎,知识引擎

下游/应用层:AI +行业或行业+AI

人工智能产业链划分:

公开评测数据集:视觉物体检测、识别与分割-ImageNet ,MS COCO ,PASCAL VOC-2007 /VOC-2012,Caltech-101,Caltech-256,CIFAR-10,CIFAR-100,MNIST ,US-PS ,SVHN 等;

人脸识别-LFW ,PubFig ,MTFL ,Caltech 人脸数据库,FDDB ,CelebA ,CK+,FER-2013,JAFFE 等;交通标识识别-GTSRB ,TRoM 等

-开放的大数据资源:公开评测数据集是完备大数据,算法性能

仅反映了深度神经网络本身达到甚至超过人类水平的感知能力

产业上游:开放的大数据资源

大数据:真实条件下

有标签的巨量数据

其重要性如同原油一样,巨头企业视之为

AI时代的战略资源!

-落地应用中,开放环境下不存在完备大数据。对大多数长尾应用场景,需要使用尽可能多的高质量大数据(数据“暴力”)。

产业上游:专有的大数据资源

-离线训练;

-基于云平台的在线推断应用;

-基于边缘平台的在线推断应用;

-终端在线推断应用

产业上游:AI加速芯片

-计算能力的大幅度提升,有力地推动新一轮人工智能的发展。大数据深度学习直接得益于计算“暴力”。

产业上游:AI基础算法

★算法:深度监督学习(如深度卷积神经网络,LSTM)★算法:深度强化学习

★算法:对抗性神经网络

★算法:图卷积神经网络,无监督学习

产业上游:开源代码框架

深度学习的开源代码框架:

-谷歌的TensorFlow;-Chollet的Keras;

-Facebook的Pytorch;-微软的CNTK;

-Amazon的MXNet;-加州伯克利的Caffe;-Bengio的Theano;-百度的PaddlePaddle;-华为的MindSpore

产业中游:视觉、语音、知识引擎/OS+平台核心技术

渗透更多垂直应用领域:智能制造,智能安防,智能交通,智能物流,智能金融,智能医疗,智能教育,智能写作,无人零售,智能家居,智能司法,智能农业,智慧城市,智能政务,智能流程自动化/RPA, 5G ,产业物联网,产业互联网,自动驾驶,智能机器人,无人自主系统,生命科学,

AI 产业生态:应用场景

产业下游:AI+

提纲O UTLINES

1、人工智能产业生态

2、视觉感知智能成为通用赋能工具与研究范式

3、数据驱动的视觉感知智能面临的主要挑战

4、探索结合数据与知识驱动的视觉认知智能

智能机器人的现状和发展趋势

智能移动机器人的现状和发展 姓名 学号 班级:

智能移动机器人的现状及其发展 摘要:本文扼要地介绍了智能移动机器人技术的发展现状,以及世界各国智能移动机器人的发展水平,然后介绍了智能移动机器人的分类,从几个典型的方面介绍了智能移动机器人在各行各业的广泛应用,讨论了智能移动机器人的发展趋势以及对未来技术的展望,最后提出了自己的建议和设想,分析我国在智能移动机器人方面发展并提出期望。 关键词:智能移动机器人;发展现状;应用;趋势 1引言 机器人是一种可编程和多功能的,用来搬运材料、零件、工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统。智能移动机器人则是一个在感知 - 思维 - 效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。一部智能移动机器人应该具备三方面的能力:感知环境的能力、执行某种任务而对环境施加影响的能力和把感知与行动联系起来的能 力。智能移动机器人与工业机器人的根本区别在于,智能移动机器人具有感知功 能与识别、判断及规划功能[1] 。 随着智能移动机器人的应用领域的扩大,人们期望智能移动机器人在更多领 域为人类服务,代替人类完成更复杂的工作。然而,智能移动机器人所处的环境 往往是未知的、很难预测。智能移动机器人所要完成的工作任务也越来越复杂; 对智能移动机器人行为进行人工分析、设计也变得越来越困难。目前,国内外对 智能移动机器人的研究不断深入。 本文对智能移动机器人的现状和发展趋势进行了综述,分析了国内外的智能 移动机器人的发展,讨论了智能移动机器人在发展中存在的问题,最后提出了对 智能移动机器人发展的一些设想。 1

视觉注意机制理论分析

第2章视觉注意机制理论分析 2.1 引言 随着信息技术的快速发展,数字图像、视频成为信息的重要载体。如何高效地处理和分析图像数据,理解图像内容已经成为当前的研究热点。众所周知,人类可以从复杂的场景中快速地找到我们感兴趣的区域,容易地完成对场景的理解。这是因为人类视觉系统(Human Visual System/HVS)的信息选择策略,利用视觉注意机制引导人眼在海量数据中注视到显著的区域,并分配资源对重要区域优先进行处理[10]。多数情况下,当我们的眼睛接收到来自外界的大量的视觉信息,大脑并不能对所有的视觉信息进行同时,而是删除大部分无用信息,筛选出少许感兴趣的重要信息,优先对这些视觉信息进行处理。 计算机作为目前处理信息最快的工具之一,在计算机图像处理中引入视觉注意机制,不仅可以提高数据筛选能力和计算机的运算速度,还在物体识别、目标跟踪、图像分析与理解等领域具有重要的应用价值,这就为汽车车牌的快速处理提供了一个很好的解决方法。但是目前的计算机视觉与人类的视觉在能力上存在着巨大的差异。视觉注意机制是涉及生物视觉处理等学科交叉领域,生物视觉与计算机视觉进行的学科交流为理论创新带来了新的思路:一个可行的方法是从研究人类的视觉系统(大脑)如何感知和识别外界视觉刺激出发,模拟人的视觉注意机制,建立一种有效的视觉注意计算模型,使计算机拥有人类所具备的观察和理解世界的能力,并将其应用于静态场景、动态场景的感兴趣区域检测及场景分类中。 2.2 人类视觉感知系统 关于人类的视觉感知系统,尤其是人类自身的视觉神经系统,心理学等相关领域专家已经进行了长期的探索和研究。通过深入研究探索,人们发现人类视觉神经系统中的视觉感官信息在人脑中是按照某一固定路径来进行传递的,其输入的是视觉刺激,输出的是视觉感知,主要是由视觉感官、视觉通路、视感觉中枢组织和视知觉中枢组织组成的,其分别负责视觉信息的生成、传送和分析。其中视觉信息分析过程可分为视感觉分析和视知觉分析,如图 2.1所示。

机器人视觉系统介绍

机器人视觉(Robot Vision)简介 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号

机器视觉测量技术

机器视觉测量技术 杨永跃 合肥工业大学 2007.3

目录第一章绪论 1.1 概述 1.2 机器视觉的研究内容 1.3 机器视觉的应用 1.4 人类视觉简介 1.5 颜色和知觉 1.6 光度学 1.7 视觉的空间知觉 1.8 几何基础 第二章图像的采集和量化 2.1 采集装置的性能指标 2.2 电荷藕合摄像器件 2.3 CCD相机类 2.4 彩色数码相机 2.5 常用的图像文件格式 2.6 照明系统设计 第三章光学图样的测量 3.1 全息技术 3.2 散斑测量技术 3.3 莫尔条纹测量技术 3.4 微图像测量技术 第四章标定方法的研究 4.1 干涉条纹图数学形成与特征 4.2 图像预处理方法 4.3 条纹倍增法 4.4 条纹图的旋滤波算法 第五章立体视觉 5.1 立体成像

5.2 基本约束 5.3 边缘匹配 5.4 匹域相关性 5.5 从x恢复形状的方法 5.6 测距成像 第六章标定 6.1 传统标定 6.2 Tsais万能摄像机标定法 6.3 Weng’s标定法 6.4 几何映射变换 6.5 重采样算法 第七章目标图像亚像素定位技术 第八章图像测量软件 (多媒体介绍) 第九章典型测量系统设计分析9.1 光源设计 9.2 图像传感器设计 9.3 图像处理分析 9.4 图像识别分析 附:教学实验 1、视觉坐标测量标定实验 2、视觉坐标测量的标定方法。 3、视觉坐标测量应用实验 4、典型零件测量方法等。

第一章绪论 1.1 概述 人类在征服自然、改造自然和推动社会进步的过程中,面临着自身能力、能量的局限性,因而发明和创造了许多机器来辅助或代替人类完成任务。智能机器或智能机器人是这种机器最理想的模式。 智能机器能模拟人类的功能、能感知外部世界,有效解决问题。 人类感知外部世界:视觉、听觉、嗅觉、味觉、触觉 眼耳鼻舌身 所以对于智能机器,赋予人类视觉功能极其重要。 机器视觉:用计算机来模拟生物(外显或宏观)视觉功能的科学和技术。 机器视觉目标:用图像创建或恢复现实世界模型,然后认知现实世界。 1.2 机器视觉的研究内容 1 输入设备成像设备:摄像机、红外线、激光、超声波、X射线、CCD、数字扫描仪、 超声成像、CT等 数字化设备 2 低层视觉(预处理):对输入的原始图像进行处理(滤波、增强、边缘检测),提取角 点、边缘、线条色彩等特征。 3 中层视觉:恢复场景的深度、表面法线,通过立体视觉、运动估计、明暗特征、纹理 分析。系统标定 4 高层视觉:在以物体为中心的坐标系中,恢复物体的完整三维图,识别三维物体,并 确定物体的位置和方向。 5 体系结构:根据系统模型(非具体的事例)来研究系统的结构。(某时期的建筑风格— 据此风格设计的具体建筑) 1.3 机器视觉的应用 工业检测—文件处理,毫微米技术—多媒体数据库。 许多人类视觉无法感知的场合,精确定量感知,危险场景,不可见物感知等机器视觉更显其优越十足。 1 零件识别与定位

机器视觉测量技术

机器视觉测量技术杨永跃合肥工业大学 2007.3 目录 第一章绪论 1.1 概述 1.2 机器视觉的研究内容 1.3 机器视觉的应用 1.4 人类视觉简介 1.5 颜色和知觉 1.6 光度学 1.7 视觉的空间知觉 1.8 几何基础 第二章图像的采集和量化 2.1 采集装置的性能指标 2.2 电荷藕合摄像器件 2.3 CCD 相机类 2.4 彩色数码相机 2.5 常用的图像文件格式

2.6 照明系统设计 第三章光学图样的测量 3.1 全息技术 3.2 散斑测量技术 3.3 莫尔条纹测量技术 3.4 微图像测量技术 第四章标定方法的研究 4.1 干涉条纹图数学形成与特征4.2 图像预处理方法 4.3 条纹倍增法 4.4 条纹图的旋滤波算法 第五章立体视觉 5.1 立体成像 2 5.2 基本约束 5.3 边缘匹配 5.4 匹域相关性 5.5 从 x 恢复形状的方法 5.6 测距成像

第六章标定 6.1 传统标定 6.2 Tsais 万能摄像机标定法 6.3 Weng ’ s 标定法 6.4 几何映射变换 6.5 重采样算法 第七章目标图像亚像素定位技术第八章图像测量软件 (多媒体介绍 第九章典型测量系统设计分析9.1 光源设计 9.2 图像传感器设计 9.3 图像处理分析 9.4 图像识别分析 附:教学实验 1、视觉坐标测量标定实验 2、视觉坐标测量的标定方法。 3、视觉坐标测量应用实验 4、典型零件测量方法等。

3 第一章绪论 1.1 概述 人类在征服自然、改造自然和推动社会进步的过程中,面临着自身能力、能量的局限性, 因而发明和创造了许多机器来辅助或代替人类完成任务。智能机器或智能机器人是这种机器最理想的模式。 智能机器能模拟人类的功能、能感知外部世界,有效解决问题。 人类感知外部世界:视觉、听觉、嗅觉、味觉、触觉 眼耳鼻舌身 所以对于智能机器,赋予人类视觉功能极其重要。 机器视觉:用计算机来模拟生物(外显或宏观视觉功能的科学和技术。 机器视觉目标:用图像创建或恢复现实世界模型,然后认知现实世界。 1.2 机器视觉的研究内容 1 输入设备成像设备:摄像机、红外线、激光、超声波、 X 射线、 CCD 、数字扫描仪、超声成像、 CT 等 数字化设备 2 低层视觉(预处理 :对输入的原始图像进行处理(滤波、增强、边缘检测 ,提取角点、边缘、线条色彩等特征。 3 中层视觉:恢复场景的深度、表面法线,通过立体视觉、运动估计、明暗特征、纹理分析。系统标定

大脑皮层的感知机理

大脑皮层的感知机理 当动物萎靡不振,昏昏欲睡时,它们的大脑是否也处于混沌状态?以色列研究人员在研究了猫的大脑活动后提出,动物即使是闭着眼睛打盹,其大脑也许仍会下意识地产生视觉图像。研究人员称,如果人类也是如此的话,那么,人们喜欢看自己期望看到的东西的这种倾向,也许出自大脑中不断产生的虚幻感觉。 通常,眼睛在察觉到一个细小的斑点时,动物大脑皮层大约几毫米大的区域会兴奋起来,该区域中成千上万的神经细胞立即开始详细了解斑点的性质。垂直的斑点会导致某些神经细胞十分兴奋,而水平或斜向斑点会让另一些神经细胞十分兴奋。于是,不同的斑点在大脑皮层的兴奋区域产生了不同的高度兴奋图案,神经学家称这些大脑皮层图案为“定位图”。人们一直认为,动物合上双眼后,大脑皮层中将不会出现“定位图”,取而代之的是神经细胞的随机活动。 据10月30日英国《自然》杂志网络版报道,以色列魏茨曼科学院塔尔·肯奈特和他的同事通过一项高水平的实验惊奇地发现,猫在昏迷时,其大脑却似乎在系统地扫描内在的图像。实验中,研究人员将电压敏感染料涂在昏迷猫的大脑皮层,利用显微镜,研究人员观察到,染料颜色随着大脑皮层神经细胞电刺激的状态变化而改变,并记录下了猫在昏迷时大脑皮层中自然发生的神经活动。通过比较他们发现,猫昏迷时的神经活动同它在清醒时观察实际景色引起的大脑皮层神经活动类似。 研究人员强调,他们记录的神经活动不是梦,因为该现象发生在大脑初级视觉皮层,这里被认为是被动记录视觉刺激的区域,也就是说,记录的神经活动发生在大脑进行信息处理链的低级阶段,它正好是动物大脑对眼前情景的反映。美国加州大学研究人员达理奥·瑞格奇表示,目前占主导地位的是“自下而上”观点,该观点认为信息只能从眼睛流向大脑中更高的处理中心。肯奈特他们的发现对“自上而下”的感知机制理论是强有力的支持。 然而,研究人员表示,他们还不清楚大脑皮层内在图像的含义,它们也许是最值得注意的记忆、期望或物体的反映。但对人类而言,这种内在的图像甚至可能代表着我们大脑中对周围环境最理想的猜测,但睁开眼后,我们获得的感官刺激也许会随之更新大脑中的猜测。

机器人视觉系统

机器人视觉系统 ——人脸识别技术 优势 1 不被察觉,不会引起人的反感。 2 非接触性,不需要和设备接触即可识别 3 自然性 4 准确,可靠,灵活。 原理 在检测到人脸并定位面部关键特征点之后,主要的人脸区域就可以被裁剪出来,经过预处理之后,馈入后端的识别算法。识别算法要完成人脸特征的提取,并与库存的已知人脸进行比对,完成最终的分类。 主要过程 一般分三步: (1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。 (2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。(智械科技) (3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辩认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。 实现方法 基于OpenCv人脸识别设计方案 1 系统组成 以OpenCV 图像处理库为基础,利用库中提供的相关功能函数进行各种处理:通过相机对图像数据进行采集,人脸检测主要是调用已训练好的Haar 分类器来对采集的图像进行模

式匹配,检测结果利用PCA 算法可进行人脸图像训练与身份识别,而人脸表情识别则利用了Camshift 跟踪算法和Lucas–Kanade 光流算法。

视觉感知与智能视频监控技术培训

视觉感知和智能视频监控技术培训 课程大纲: 第1章视频监控系统 1h 1.1 模拟视频监控系统 1.2 数字视频监控系统 1.3 网络视频监控系统 1.4 智能视频监控系统 1.5 视频监控系统抗干扰方法 1.6 视频监控系统防雷设计 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司第2章视频传感器 2h 2.1 传感器视频信号 2.2 CCD视频传感器 2.2.1 特种CCD传感器 2.2.2 360度全景摄像机 2.2.3 红外CCD热像仪 2.2.4 CCD传感器镜头 2.2.5 CCD视频时空域采样 2.2.6 ITU656-601规范 2.2.7 ITU1120规范

2.3 CMOS视频传感器 2.4 CIS视频传感器 2.5 视频传感器比较 第3章物理传感器 1h 3.1 雷达传感器 3.2 超声波传感器 3.3 红外传感器 3.4 声音传感器 3.5 振动传感器 3.6 磁开关传感器 3.7 气体传感器 3.8 温度传感器 3.9 湿度传感器 3.10 光电感烟传感器 第4章视频监控网络 1h 4.1 视频远程传输 4.2 视频控制总线 4.3 IP视频传输 4.3.1 流媒体技术 4.3.2 RTP协议 4.3.3 RTSP协议

4.3.4 DDNS协议 4.4 网络摄像机 第5章智能视频监控 1h 5.2 智能视频监控的功能 5.3 智能视频监控的体系结构5.4 智能视频监控的关键技术5.4.1 运动目标检测 5.4.2 运动目标分类 5.4.3 运动目标跟踪 5.4.4 行为分析和识别 5.5 智能视频监控的使用 5.6 智能视频监控的发展趋势第6章运动侦测和目标判别 2h 6.1 运动目标侦测 6.2 运动估计和运动矢量提取6.3 目标判断和分类 6.4 基于物体形状的目标判别第7章人脸检测和识别 2h 7.1 人脸区域检测 7.2 人脸特征提取 7.3 人脸特征匹配 第8章车牌检测和识别 2h

智能机器人论文

智能机器人的发展与应用前景 摘要 本文介绍了智能机器人的发展概况、机器人的感官系统、机器人运动系统及人工智能技术在机器人中的应用,智能机器人是一个在感知-思维-效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。 关键词: 智能机器人感官仿生人工智能 1.引言 人们通常把机器人划分为三代。第一代是可编程机器人。这种机器人一般可以根据操作人员所编的程序,完成一些简单的重复性操作。这一代机器人是从60年代后半叶开始投入实际使用的,目前在工业界已得到广泛应用。第二代是“感知机器人”,又叫做自适应机器人,它在第一代机器人的基础上发展起来的,能够具有不同程度的“感知”周围环境的能力。这类利用感知信息以改善机器人性能的研究开始于70年代初期,到1982年,美国通用汽车公司为其装配线上的机器人装配了视觉系统,宣告了感知机器人的诞生,在80年代得到了广泛应用。第三代机器人将具有识别、推理、规划和学习等智能机制,它可以把感知和行动智能化结合起来,因此能在非特定的环境下作业,称之为智能机器人。智能机器人与工业机器人的根本区别在于,智能机器人具有感知功能与识别、判断及规划功能。而感知本身,就是人类和动物所具有的低级智能。因此机器的智能分为两个层次:①具有感觉、识别、理解和判断功能; ②具有总结经验和学习的功能。所以,人们通常所说的第二代机器人可以看作是第一代智能机器人。 2.智能机器人的感官系统 2.1触觉传感器 英国近几年在阵列触觉传感方面开展了相当广泛的研究。例如:Sussex大学和Shack-leton系统驱动公司研制的基于运动的介电电容传感的阵列;由威尔士大学和软件科学公司研制的采用压强技术的装在机器人夹持器上的传感器。 2.2视觉传感 在机器人视觉方面,目前市场上销售的有以下6类传感器:①隔开物体的二维视觉:双态成像;②隔开物体的二维视觉:灰度标成像;③触觉或叠加物体的二维视觉;④二维观察;⑤二维线跟踪;⑥使用透视、立体、结构图示或范围找寻技术从隔开物体中提取三维信息。在这类系统方面,它们只能做一些很简单的操作。例如:为了使机器人具有某种程度的人眼功能,已进行大量的研究工作并向如下两类系统发展:①从一维物体中提取三维信息;②活动机器人导航、探路和躲避障碍物的现场三维分析。伦敦大学目前正在研究一种双目视觉机器人的实时图像处理机。还有正在研究机器人视觉系统的教育机构有:考文垂工业大学、爱丁堡大学、格拉斯哥大学、格温特大学;而伯明翰大学则专门研究惯性传感器。另外,还有许多从事传感系统开发的单位,都进行了传感反馈研究。如米德尔塞克斯工业大学致力于使机器人能组织和使用来自不同类型传感器的数据。这种机器人能“看”、“感”和“听”,它更接近于人。 2.3听觉传感

视觉检测系统的反馈机制研究

—197— 视觉检测系统的反馈机制研究 罗三定,孙喜梅 (中南大学信息科学与工程学院,长沙 410083) 摘 要:针对现有计算机视觉理论框架在指导视觉问题中很难克服精度差、受噪声影响大、计算复杂性高的问题,提出仿人的闭环视觉系统模型,引入反馈机制和高层知识的指导,并将其应用到车牌定位系统中。研究结果表明,以该模型实现的仿人视觉车牌定位系统容错性好、准确率高,可以有效地解决光照不均、牌照褪色,以及复杂背景干扰等情况下的车牌定位问题。 关键词:计算机视觉;人类视觉;反馈机制;车牌定位 Feedback Mechanism Investigation on Visual Detection System LUO San-ding, SUN Xi-mei (School of Information Science and Engineering, Central South University, Changsha 410083) 【Abstract 】Aiming at poor accuracy affected by noise and high complexity of calculating in computer vision theoretical framework guiding vision,a new humanoid vision of the closed-loop system model is put forward, a feedback mechanism and the guidance of high-level knowledge is introduced, and they are applied to vehicle license plate location system. Results show that the system not only can accurately locate vehicle license plate and have high fault tolerance, but also can effectively solve location problem under the circumstance of uneven illumination, depigmentation or complex environments interferences. 【Key words 】computer vision; humanoid vision; feedback mechanism; vehicle license plate location 计 算 机 工 程Computer Engineering 第36卷 第1期 Vol.36 No.1 2010年1月 January 2010 ·人工智能及识别技术·文章编号:1000—3428(2010)01—0197—04 文献标识码:A 中图分类号:N945.12 1 概述 计算机视觉理论和视觉系统技术之间存在较大距离。现有的视觉系统都是在特定条件或特定知识的指导下,检测特定目标的特征,完成对特定世界的认知。然而,这种从特定认知任务出发的视觉系统对开发者的经验和应用条件过分依赖,适应性和鲁棒性不高。 计算机视觉理论经过40多年的发展,相继出现了一些计算机视觉的理论框架,计算机视觉的研究也从二维发展到三维,从串行发展到并行。文献[1]的视觉计算理论立足于计算机科学,系统地概括了心理生理学、神经生理学等方面已取得的所有重要成果,但该理论并不完善,其所建立的视觉处理框架基本上是一个自下而上、完全由资料驱动的、单向无反馈的系统,并没有足够重视知识的应用。另外,视觉研究是否真的需要重建、信息处理是否全部需要定量完成等,也是存在的问题之一。相对于前者,Lowe 提出了基于知识的视觉理论框架;基于后者有学者提出了基于目的的主动视觉理论框架。基于知识的视觉理论框架尽管引入了反馈,强调高层知识对视觉的指导作用,但它否认计算视觉理论,认为人类视觉只是一个识别过程。主动视觉理论框架是根据Gibson 的生态学理论[2]提出的。主动视觉强调视觉系统应该基于一定的任务和目的,同时视觉系统应该具有主动感知的能力。虽然在目的视觉系统框架中以视觉任务为先导,引入了知识的学习和利用,但是目的视觉理论框架中也缺乏反馈和高层知识的指导。这种无反馈的结构不符合生物视觉系统,同时在视觉问题中将很难克服精度差、受噪声影响大、计算复杂性高的问题,也缺乏对问题和环境的自适应性。 本文从分析人类视觉的特点入手,给出人类视觉系统的并行处理机制模型,在分析该模型及计算机视觉与人类视觉 的差别的基础上,提出仿人的闭环视觉系统模型,并将其应用到车牌分割系统中。 2 闭环反馈视觉检测系统结构 2.1 人类视觉的特点 人类的视觉系统是一个闭环的多重反馈信息处理系统。作为人类视觉的核心,大脑具有高度的视觉信息理解知识与智慧,其特点是能够运用丰富的知识、经验与方法,具备针对性很强的有效信息选择和灵活的处理手段调节能力,能够在先验知识的指导下对信息进行主动获取、合理利用、适时取舍、方法试探、分析评价、实时反馈指导。 人类视觉感知是一个鲁棒性很强的、能抵御实际中各种变形和噪声干扰的具有良好容错性的识别系统。英国科学家Zeki 指出人类视觉系统使用精巧的策略或办法来统一不同性质的信息,即在几个不同水平上相互作用来多级地处理复杂的视觉信息,感知周围多彩生动的视觉世界。在物体某些信息缺失(如褪色、形状残缺)的情况下,人类仍然能够准确无误地识别物体。这是因为人类有先验知识的指导且在其指导下能够进行缺失信息的补充或者依据其他信息进行判断。 虽然当前人类通过视觉感知世界的机理尚不完全清楚,在计算机视觉系统理论中引入知识指导、综合、反馈机制却是非常必要的。 2.2 闭环反馈视觉系统 仿人计算机视觉并不是机械地模仿人类视觉,而是要从系统的处理目的出发,模仿实现人类识别事物的信息处理模 作者简介:罗三定(1955-),男,教授,主研方向:图像处理,工业视觉系统;孙喜梅,硕士研究生 收稿日期:2009-11-05 E-mail :ruiping_sun@https://www.360docs.net/doc/694891293.html,

机器人视觉系统(Robot Vision)简介

机器人视觉系统(Robot Vision)简介 【字体:大中小】时间:2014-08-28 11:00:06 点击次数:23次 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号

浅谈机器人视觉技术

浅谈机器人视觉技术 摘要 机器人视觉是使机器人具有视觉感知功能的系统,是机器人系统组成的重要部分之一。机器人视觉可以通过视觉传感器获取环境的二维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置。机器人视觉广义上称为机器视觉,其基本原理与计算机视觉类似。计算机视觉研究视觉感知的通用理论,研究视觉过程的分层信息表示和视觉处理各功能模块的计算方法。而机器视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。本文介绍了机器人的发展以及视觉计算理论和视觉的关键技术。 关键词:机器人、视觉、计算、关键技术 一、机器人发展概述 科学技术的发展,诞生了机器人。社会的进步也提出要求,希望创造出一种能够代替人进行各种工作的机器,甚至从事人类不能及的事情。自从1959年诞生第一台机器人以来,机器人技术取得了很大的进步和发展,至今已成为一门集机械、电子、计算机、控制、传感器、信号处理等多学科门类为一体的综合性尖端科学。当今机器人技术的发展趋势主要有两个突出的特点:一个是在横向上,机器人的应用领域在不断扩大,机器人的种类日趋增多;另一个是在纵向上,机器人的性能不 断提高,并逐步向智能化方向发展。前者是指应用领域的横向拓宽,后者是在性能及水平上的纵向提高。机器人应用领域的拓宽和性能水平的提高,二者相辅相成、相互促进。 智能机器人是具有感知、思维和行动功能的机器,是机构学、自动控制、计算机、人工智能、微电子学、光学、通讯技术、传感技术、仿生学等多种学科和技术的综合成果阎。智能机器人可获取、处理和识别多种信息,自主地完成较为复杂的操作任务,比一般的工业机器人具有更大的灵活性、机动性和更广泛的应用领域。要使机器人拥有智能,对环境变化做出反应,首先,必须使机器人具有感知

3D显示视觉感知特性研究

3D显示视觉感知特性研究 人们的日常生活中从外界接收的信息有80%是通过视觉系统获得的。随着信息技术的迅猛发展,人们自然而然地将图像传递作为信息传输的主体。3D显示技术不仅能够为观众提供更逼真震撼的视觉体验,也能为需要立体显示的行业和环境提供极大的便利和支持,例如3D远程手术,3D地图等。3D显示是一个比较广泛的研究领域,涉及到3D显示设备的设计和3D内容的制作等。 对3D显示效果的评价也多集中于显示参数的提高和优化,如超高分辨率,超大视角,高清晰度等等。然而3D显示的最终受众是人类,并且3D技术发展的目标是逼真准确的再现真实场景,因此,应该在提高3D显示性能的同时关注人眼对3D 显示的视觉感知特性,使3D显示更符合人的生理视觉特点,从而让这一技术真正的被大众接纳,进而有更长远的发展。本文针对3D显示视觉感知特性进行研究,主要研究内容和创新点如下:(1)基于3D显示环境的视觉感知特性研究研究要点1:在观看3D内容时,观看者总是处于一种特定的观看环境中,包括观看距离、观看角度、屏幕大小,以及室内的光线设置等。视觉刺激的参数也复杂多变,如色彩亮度、3D内容的复杂程度等。 在以往的研究中这些因素对立体视觉感知的影响通常是由被试者的主观感 受得出(如问卷调查),这种方法虽然在一定程度上可以反映观看环境设置对视觉感知系统的影响,但被试者心理或经验方面的差异会对统计结果造成一定的影响。针对这个问题本文首次提出了用垂直视差的融合能力作为定量评估指标,快速便捷的评估外界观看环境(包括光照、观看距离、屏幕尺寸)以及视觉刺激参数设置(包括背景亮度、3D内容复杂度)对人眼视觉系统造成的影响。通过分析各个因 素间的相关性及对视觉感知能力影响的显著性,为优化3D显示环境提供更贴近 实际显示情况的参考。研究要点2:以往研究中给出的关于垂直视差对立体视觉 感知影响的取值范围比较笼统,并没有充分考虑观看环境对人眼垂直视差融合能力的影响。 本文根据在研究要点1中找出的观看环境对人眼感知造成影响的关键因素(亮度和视网膜成像大小),进行了数据拟合建模,从而使对垂直视差融合能力的 预测更贴近真实测试情况,使评估更具有针对性。(2)人眼对多视点裸眼3D显示器深度信息感知阈值的研究研究要点3:在日常生活中,人眼接收到的视点数是

2020年智能机器人的现状及其发展趋势

作者:空青山 作品编号:89964445889663Gd53022257782215002 时间:2020.12.13 智能机器人的现状及其发展趋势 摘要:本文扼要地介绍了智能机器人技术的发展现状,以及世界各国智能机器人的发展水平,然后介绍了智能机器人的分类,从几个典型的方面介绍了智能机器人在各行各业的广泛应用,讨论了智能机器人的发展趋势以及对未来技术的展望,最后提出了自己的建议和设想,分析我国在智能机器人方面发展并提出期望。 关键词:智能机器人;发展现状;应用;趋势 The status and trends of intellectual robot Abstract: This paper briefly discusses the development, status of intellectual robot, development of intellectual robot in many countries. And then it presents the categories of intellectual robot, talks about the extensive applications in all works of life from several typical aspects and trends of intellectual robot. After that, it puts forward prospects for future technology, suggestion and a tentative idea of myself, and analyses the development of intellectual robot in China. Finally, it raises expectations of intellectual robot in China. Key words: intellectual robot; development status; application; trend 1 引言 机器人是一种可编程和多功能的,用来搬运材料、零件、工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统。智能机器人则是一个在感知- 思维- 效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全

人类视觉系统

人类视觉系统,即Human visual system。人类视觉系统只有3种视锥细胞,因此在缤纷的世界中,即使面对似锦的繁花,我们也可能犹如色盲,常常对一些色彩“视而不见”;而鸟类独特的视觉系统,拥有4种视锥细胞,能辨别出更多色彩,看见的世界也更加绚丽多彩,远远超越了人类。 对颜色/亮度的感知 人类对光的感知是依靠视网膜(retina)细胞。cones(圆锥细胞)负责感知光度(较强光)和色彩, rods(杆状细胞)仅能感知光度,不能感知颜色,但其对光的敏感度是cones的一万倍。在微弱光环境下rods起主要作用,因此我们不能在暗环境中分辨颜色。一些数码相机的夜光拍摄模式也模拟了这一特性。 视网膜中三种圆锥细胞(cones) 有重叠的频率响应曲线,但响应强度有所不同,他们分别对红(570nm), 绿(535nm), 蓝(445nm)光有最敏感,共同决定了色彩感觉。光度(luminance) 正比于视网膜细胞接受到的光强度能量,但人类对相同强度不同波长的光具有不同的敏感度。可感知的波长范围380nm~780nm,称为可见光。其中对绿色(550nm)光产生最大的光强敏感度。 视力 眼睛的空间分辨能力,即视力,通常用可分辨视角(degree)的倒

数为单位。正常人的最少可辨视觉阀值约0.5”,最大视觉范围200度(宽)×135度(高)。 空间频率 即影像在空间中的变化速度。用亮度呈空间正弦变化的条纹做测试,亮度Y(x,y) = B(1+mcos2πfx), 给定条纹频率f为一固定值(看作是宽度),改变振幅m(看作对比度),测试分辨能力。显然m越大分辨越清楚,测试不同条件下(不同cpd)可分辨的最少m值,定义1/mmin为对比敏感度(contrast sensitivity)。定义人眼的对空间感觉的角度频率:cpd: cycle / degree ,表示眼球每转动一度扫过的黑白条纹周期数。对给定的条纹,这个值与人眼到显示屏的距离有关,对于同样大小的屏幕,离开越远,cpd越大。 通常人眼对空间的感觉相当于一个带通滤波器。最敏感在2~5个cpd ,空间截止频率为30cpd。比如我们看油画和电视机屏幕时,当距离离开一定远,cpd增大,人的眼睛就分辨不了象素点细节,便感觉不到颗粒感了。 当人观察一个静止影像时,眼球不会静止一处(精神病人除外), 通常停留在一处几百毫秒完成取像后,移到别处取像,如此持续不断。这种运动称为跳跃性运动(saccadic eye movement)。研究表明跳跃性运动可以增大对比敏感度,但敏感度峰值却减少。 对时间频率的感知

从视觉感知智能到视觉认知智能

邓志东教授/博士生导师 清华大学智能技术与系统国家重点实验室 清华大学计算机科学与技术系 清华大学人工智能研究院 michael@https://www.360docs.net/doc/694891293.html, 从视觉感知智能到视觉认知智能 2019.10.31 成都2019年第七届输电技术年会

邓志东 清华大学智能技术与系统国家重点实验室教授, 人工智能研究院视觉智能研究中心主任 清华大学计算机系教授,博士生导师。现为中国 自动化学会会士,中国人工智能产业创新联盟专 家委主任,中国自动化学会智能自动化专委会主 任,新兴产业百人会专家等。 ?致力于视觉人工智能研究; ?积极推动“智能+”的跨界融 合发展与产业落地应用实践

提纲O UTLINES 1、人工智能产业生态 2、视觉感知智能成为通用赋能工具与研究范式 3、数据驱动的视觉感知智能面临的主要挑战 4、探索结合数据与知识驱动的视觉认知智能

提纲O UTLINES 1、人工智能产业生态 2、视觉感知智能成为通用赋能工具与研究范式 3、数据驱动的视觉感知智能面临的主要挑战 4、探索结合数据与知识驱动的视觉认知智能

涉及四个维度: 大数据,大计算,算法和应用场景 上游/基础层:大数据,AI 芯片,AI 基础算法,开源代码 框架,AI 基础设施(云-边-端,5G 等) 中游/技术层:视觉引擎,语音引擎,知识引擎 下游/应用层:AI +行业或行业+AI 人工智能产业链划分:

公开评测数据集:视觉物体检测、识别与分割-ImageNet ,MS COCO ,PASCAL VOC-2007 /VOC-2012,Caltech-101,Caltech-256,CIFAR-10,CIFAR-100,MNIST ,US-PS ,SVHN 等; 人脸识别-LFW ,PubFig ,MTFL ,Caltech 人脸数据库,FDDB ,CelebA ,CK+,FER-2013,JAFFE 等;交通标识识别-GTSRB ,TRoM 等 -开放的大数据资源:公开评测数据集是完备大数据,算法性能 仅反映了深度神经网络本身达到甚至超过人类水平的感知能力 产业上游:开放的大数据资源 大数据:真实条件下 有标签的巨量数据

智能机器人的现状及其发展

智能机器人的现状及其发展 学院:电气信息学院姓名:张琪学号:1143031172 摘要:本文主要介绍了智能机器人的发展现状、关键技术及其在各个领域的应用。然后总结了智能机器人在发展中存在的一些问题。最后提出了自己的建议和设想。 关键词:智能机器人;发展现状;传感器技术;智能控制;人机接口;应用 1.引言 机器人是一种可编程和多功能的,用来搬运材料、零件、工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统。智能机器人则是一个在感知- 思维- 效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。一部智能机器人应该具备三方面的能力:感知环境的能力、执行某种任务而对环境施加影响的能力和把感知与行动联系起来的能力。智能机器人与工业机器人的根本区别在于,智能机器人具有感知功能与识别、判断及规划功能。 随着智能机器人的应用领域的扩大,人们期望智能机器人在更多领域为人类服务,代替人类完成更复杂的工作。然而,智能机器人所处的环境往往是未知的、很难预测。智能机器人所要完成的工作任务也越来越复杂;对智能机器人行为进行人工分析、设计也变得越来越困难。目前,国内外对智能机器人的研究不断深入。 本文对智能机器人的现状和发展趋势进行了综述,分析了国内外的智能机器人的发展,讨论了智能机器人在发展中存在的问题,最后提出了对智能机器人发展的一些设想。 2.国内外在该领域的发展现状综述 智能机器人是第三代机器人,这种机器人带有多种传感器,能够将多种传感器得到的信息进行融合,能够有效的适应变化的环境,具有很强的自适应能力、学习能力和自治功能。 目前研制中的智能机器人智能水平并不高,只能说是智能机器人的初级阶段。智能机器人研究中当前的核心问题有两方面:一方面是,提高智能机器人的自主性,这是就智能机器人与人的关系而言,即希望智能机器人进一步独立于人,具有更为友善的人机界面。从

人的视觉系统主要由什么组成.

人的视觉系统主要由什么组成? 视觉系统 (一)眼睛的构造与功能 眼睛的构造如图所示。人的眼睛是一个直径大约23㎜(毫米)的球状体。 角膜:是眼球的正前方有一层透明组织,角膜好似眼睛的玻璃窗户,光线通过它射入人眼内。角膜具有屈光能力,如果角膜发生病变,会影响视觉能力。它的特点是没有血液供应,无需血管而从水样液即房水中获得营养,角膜实际上和身体的其它部分分隔开来。正因为这样,角膜发生病变或脱落时,有可能从其他个体进行移植。 虹膜:位于角膜之后,呈圆环状,与睫状体相连接。虹膜中央有一圆孔,叫瞳孔。虹膜具有伸缩性,可使瞳孔放大或缩小,以便调节进入眼内的光量。 水晶体:位于瞳孔后面,它的形状与功能相当于凸透镜。水晶体的周围是睫状肌,睫状肌具有伸缩特性,它的收缩和松弛可使水晶体的厚薄发生变化,以改变其屈光能力。它能使远近不同的对象在视网膜上形成清楚的视像。看远距离的物体时,调节处于放松状态,水晶体成扁平形;看近距离物体时,调节处于紧张状态,水晶体的厚度加大,表面的弧度加大。它起透镜的作用,保证视像聚焦在视网膜上,以造成清晰的影像。 眼睛中间的广大部分充满着玻璃状液,又称玻璃体。它为透明胶状物,其功能是经常维持足够的眼压,以防止眼球凹陷,从而保持眼球的正常形状。 由角膜、虹膜、房水、晶状体、玻璃体等组成的眼睛是一套完整的光路系统,它们共同起着透光和折光的作用。 眼球最内一层为视网膜,它是眼睛最重要的部分,因为它具有感光和对光学信息进行处理的能力。视网膜的感光和对光学信息进行处理的能力主要是由感光细胞、双极细胞、神经节细胞组成的纵向传递通路和水平细胞、无足细胞形成的横向联系所构成的网膜复杂的神经网络所完成的。 感光细胞由视锥细胞和视杆细胞组成。人的视网膜大约有659万锥体细胞和1亿杆体细胞,它们具有不同的结构,分布在视网膜的不同部位,属于同一个眼睛中两个具有不同功能的系统。视锥细胞主要分布在网膜中央部分,特别是中央窝,形状粗短,含有颜色视觉所需的化学物质,因而能分辨物体的颜色和细节,是明视器官,在暗光中不起作用;视杆细胞主要分布在网膜的边缘部分,形状细长,含有对弱光极为敏感的化学物质,在暗光中起作用,不能分辨物体的颜色和细节,对不定波长的光只能感觉到明度差别,而无色调的变化。同时,视杆细胞还负责觉察物体的运动。网膜边缘的视杆细胞对红光不很敏感,而对短波端的蓝、绿光敏感;中央视觉对红光较为敏感。 视神经穿出眼球的地方没有感光细胞,所以不能感受光刺激,因而称为盲点。

相关文档
最新文档