高中数学概率与统计知识点
高中数学统计与概率知识点
高中数学统计与概率知识点一、统计学基础1. 数据收集- 普查与抽样调查- 数据的类型(定量数据与定性数据)2. 数据整理与展示- 频数分布表- 直方图- 饼图- 条形图3. 中心趋势的度量- 平均数(算术平均数)- 中位数- 众数4. 离散程度的度量- 极差- 四分位距- 方差与标准差5. 相关性分析- 相关系数- 散点图二、概率论基础1. 随机事件- 事件的定义- 必然事件与不可能事件- 互斥事件与独立事件2. 概率的计算- 单次试验的概率- 多次试验的概率- 条件概率- 贝叶斯定理3. 随机变量- 离散随机变量与连续随机变量 - 概率分布- 概率密度函数与概率分布函数4. 期望值与方差- 随机变量的期望值- 随机变量的方差5. 常见概率分布- 二项分布- 泊松分布- 正态分布三、统计与概率的应用1. 假设检验- 零假设与备择假设- 显著性水平- 第一类错误与第二类错误 - t检验与卡方检验2. 回归分析- 线性回归- 相关系数与决定系数3. 抽样与估计- 抽样误差- 置信区间- 最大似然估计四、综合练习题1. 选择题- 统计图表解读- 概率计算- 假设检验2. 填空题- 计算平均数、中位数、众数 - 计算方差、标准差- 概率分布的应用3. 解答题- 解释统计概念- 概率问题的求解- 应用统计方法解决实际问题五、附录1. 公式汇总- 统计学公式- 概率论公式2. 重要概念索引- 术语解释- 概念间的关系3. 参考资料- 推荐阅读书籍- 在线资源链接请根据需要对上述内容进行编辑和调整。
这篇文章是为了提供一个关于高中数学统计与概率的知识点概览,适用于教育目的。
每个部分都包含了关键的子标题和简短的描述,以便于理解和使用。
(最全)高中数学概率统计知识点总结
高中数学-概率与统计一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。
2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。
4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+- 二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=;三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。
2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。
4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。
3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。
五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值)。
分析:ˆi e 越小越好; 2、残差平方和:21ˆ()ni i i y y=-∑, 分析:①意义:越小越好; ②计算:222211221ˆˆˆˆ()()()()ni i n n i y yy y y y y y =-=-+-+⋅⋅⋅+-∑ 3、拟合度(相关指数):22121ˆ()1()ni i i ni i y yR y y ==-∑=--∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高;4、相关系数:()()nni i i i x x y y x y nx yr ---⋅∑∑==分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.22()()()()()n ad bc k a b c d a c b d -=++++②.犯错误上界P 对照表3、独立性检验步骤①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++;②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k ;③.下结论:0k k ≥:即犯错误概率不超过P 的前提下认为: ,有1-P 以上的把握认为: ; 0k k <:即犯错误概率超过P 的前提认为: ,没有1-P 以上的把握认为: ;【经典例题】题型1 与茎叶图的应用例1(2014全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50位市民。
高中数学论与概率与统计知识点总结
高中数学论与概率与统计知识点总结在高中数学学习过程中,概率与统计是重要的一部分内容。
本文将对概率与统计的相关知识点进行总结,以帮助同学们更好地掌握这一部分内容。
一、概率基础知识1. 随机事件与样本空间:随机事件是指在相同条件下,可能发生也可能不发生的事件;样本空间是指随机试验的所有可能结果的集合。
2. 事件的概率:事件A发生的概率是指在相同条件下,事件A发生的可能性大小。
概率的取值范围在0和1之间,其中0表示不可能事件,1表示必然事件。
3. 事件的互斥与独立:如果两个事件A和B不能同时发生,称它们互斥;如果事件A发生与否不影响事件B发生的概率,称它们独立。
二、概率计算方法1. 相对频率法:通过大量重复实验,计算事件A发生的频率来估计概率。
2. 等可能概型法:当样本空间中各个基本事件发生的机会相等时,可以通过事件A包含的基本事件数除以总的基本事件数来计算概率。
3. 排列与组合:排列是指从n个不同元素中取出m个元素按一定顺序排列的可能性数量;组合是指从n个不同元素中取出m个元素的可能性数量,不考虑元素的顺序。
三、离散和连续型随机变量1. 随机变量:随机变量是定义在样本空间上的实值函数,用来描述随机试验的结果。
2. 离散随机变量:在有限次试验中只取有限个或可列个值的随机变量,称为离散随机变量。
离散随机变量的概率分布可以通过概率质量函数来表示。
3. 连续型随机变量:在某一区间内可以取到任意值的随机变量,称为连续型随机变量。
连续型随机变量的概率分布可以通过概率密度函数来表示。
四、概率分布1. 二项分布:是n个独立重复的伯努利试验中成功次数的离散概率分布。
2. 泊松分布:是描述单位时间或单位面积内随机事件发生次数的离散概率分布。
3. 正态分布:又称为高斯分布,是实数上最常见的连续概率分布之一,具有钟形曲线的特点。
五、统计分析方法1. 参数估计:通过样本数据来估计总体的某些未知参数,如均值、方差等。
2. 假设检验:根据采集的样本数据,对总体的某个特征或假设进行判断和推断。
高中数学概率统计知识点总结大全
概率统计一,统计初步1.简单随机抽样简单随机抽样是不放回抽样,被抽取样本的个体数有限,从总体中逐个地进行抽取,使抽样便于在实践中操作.每次抽样时,每个个体等可能地被抽到,保证了抽样的公平性.实施方法主要有抽签法和随机数法.2.系统抽样(1)定义:当总体元素个数很大时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样,也称作等距抽样.(2)系统抽样的步骤:①编号.采用随机的方式将总体中的个体编号.②分段.先确定分段的间隔k.当Nn(N为总体中的个体数,n为样本容量)是整数时,k=Nn;当Nn不是整数时,通过从总体中随机剔除一些个体使剩下的总体中个体总数N′能被n整除,这时k=N′n.③确定起始个体编号.在第1段用简单随机抽样确定起始的个体编号S.④按照事先确定的规则抽取样本.通常是将S加上间隔k,得到第2个个体编号S +k,再将(S+k)加上k,得到第3个个体编号S+2k,这样继续下去,获得容量为n 的样本.其样本编号依次是:S,S+k,S+2k,…,S+(n-1)k.3.分层抽样(1)定义:当总体由有明显差别的几部分组成时,按某种特征在抽样时将总体中的各个个体分成互不交叉的层,然后按照各层在总体中所占的比例,从各层独立地抽取一定数量的个体合在一起作为样本,这种抽样的方法叫做分层抽样.分层抽样使用的前提是总体可以分层,层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体数在总体中所占比例抽取.分层抽样要求对总体的内容有一定的了解,明确分层的界限和数目,分层要恰当.(2)分层抽样的步骤①分层;②按比例确定每层抽取个体的个数;③各层抽样(方法可以不同);④汇合成样本.(3)分层抽样的优点分层抽样充分利用了己知信息,充分考虑了保持样本结构与总体结构的一致性.使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,因此分层抽样在实践中有着非常广泛的应用.4.绘制频率分布直方图把横轴分成若干段,每一段对应一个组距,然后以线段为底作一矩形,它的高等于该组的频率组距,这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率.这些矩形就构成了频率分布直方图.在频率分布直方图中,纵轴表示“频率/组距”,数据落在各小组内的频率用小矩形的面积表示,各小矩形的面积总和等于1.5.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图.茎是指中间的一列数,叶是从茎的旁边生长出来的数.在样本数据较少、较为集中,且位数不多时,用茎叶图表示数据的效果较好,它较好的保留了原始数据信息,方便记录与表示,但当样本数据较多时,茎叶图就不太方便.6.平均数、中位数和众数(1)平均数:一组数据的总和除以数据的个数所得的商就是平均数.(2)中位数:如果将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的一个数是这组数据的中位数;当数据有偶数个时,处在最中间两个数的平均数,是这组数据的中位数.(3)众数:出现次数最多的数(若有两个或几个数据出现得最多,且出现的次数一样,这些数据都是这组数据的众数;若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数).(4)在频率分布直方图中,最高小长方形的中点所对应的数据值即为这组数据的众数.而在频率分布直方图上的中位数左右两侧的直方图面积应该相等,因而可以估计其近似值.平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.7.方差、标准差(1)设样本数据为x1,x2,…,x n样本平均数为x-,则s2=1n[(x1-x-)2+(x2-x-)2+…+(x n-x-)2]=1n[(x12+x22+…+x n2)-n x2]叫做这组数据的方差,用来衡量这组数据的波动大小,一组数据方差越大,说明这组数据波动越大.把样本方差的算术平方根叫做这组数据的样本标准差.(2)数据的离散程度可以通过极差、方差或标准差来描述,其中极差反映了一组数据变化的最大幅度.方差则反映一组数据围绕平均数波动的大小.8.两个变量的线性相关(1)散点图将样本中n个数据点(xi,yi)(i=1,2,…,n)描在平面直角坐标系中,表示具有相关关系的两个变量的一组数据的图形叫做散点图.利用散点图可以判断变量之间有无相关关系.(2)正相关、负相关如果散点图中各点散布的位置是从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.反之,如果两个变量的散点图中点散布的位置是从左上角到右下角的区域,即一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.9.回归分析对具有相关关系的两个变量进行统计分析的方法叫回归分析.其基本步骤是:①画散点图,②求回归直线方程,③用回归直线方程作预报.(1)回归直线:观察散点图的特征,如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归直线方程的求法——最小二乘法.设具有线性相关关系的两个变量x、y的一组观察值为(x i,y i)(i=1,2,…,n),则回归直线方程y^=a^+b^x的系数为:⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧ b ^=∑i =1n x i y i -n x ·y ∑i =1n x i 2-n x 2=∑i =1n (x i -x -)(y i -y -)∑i =1n (x i -x -)2a^=y --b ^x 其中x -=1n ∑i =1n x i ,y -=1n ∑i =1n y i ,(x -,y -)称作样本点的中心. a ^,b ^表示由观察值用最小二乘法求得的a ,b 的估计值,叫回归系数.10.独立性检验(1)若变量的不同“值”表示个体所属的不同类别,则这些变量称为分类变量.(2)两个分类变量X 与Y 的频数表,称作2×2列联表.二.随机事件的概率1.随机事件和确定事件:在一定的条件下所出现的某种结果叫做事件.(1)在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件.(2)在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件.(3)必然事件与不可能事件统称为确定事件.(4)在条件S 下可能发生也可能不发生的事件,叫做随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母,,,A B C 表示. 2.频率与概率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n=为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率()n f A 稳定在某个常数上,把这个常数记作()p A ,称为事件A 的概率,简称为A 的概率.3.互斥事件与对立事件互斥事件的定义:在一次试验中,不可能同时发生的两个事件叫做互斥事件.即A B 为不可能事件(A B φ=),则称事件A 与事件B 互斥,其含义是:事件A 与事件B 在任何一次试验中不会同时发生.一般地,如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥.对立事件:若不能同时发生,但必有一个发生的两个事件叫做互斥事件;即A B 为不可能事件,而A B 为必然事件,那么事件A 与事件B 互为对立事件,其含义是:事件A 与事件B 在任何一次试验中有且仅有一个发生.互斥事件和对立事件的区别和联系:对立事件是互斥事件,但是互斥事件不一定是对立事件.两个事件互斥是两个事件对立的必要非充分条件.4.事件的关系与运算 B 或A B +) B (或AB ) B 为不可能事件B φ= B 为不可能事件B 为必然事件与事件B 互为对立事件 B φ=且B =Ω5.随机事件的概率事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率nm 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()p A . 由定义可知()01p A ≤≤,显然必然事件的概率是1,不可能事件的概率是0.5.概率的几个基本性质(1)概率的取值范围:()01p A ≤≤.(2)必然事件的概率:()1p A =.(3)不可能事件的概率:()0p A =.(4)互斥事件的概率加法公式:①()()()p A B p A p B =+(,A B 互斥),且有()()()1p A A p A p A +=+=. ②()()()()1212n n p A A A p A p A p A =+++ (12,,,n A A A 彼此互斥).(5)对立事件的概率:()()1P A P A =-.三.古典概型1. 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1.如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=n m . 基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件都可以表示成基本事件的和(除不可能事件).2.古典概型:具有以下两个特点的概率模型称为古典概率模型,简称古典概型. ①试验中所有可能出现的基本事件只有有限个,即有限性.②每个基本事件发生的可能性相等,即等可能性.概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.四.几何概型1.(1)随机数的概念:随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.(2)随机数的产生方法①利用函数计算器可以得到0~1之间的随机数;②在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数.2.几何概型(1)定义:如果某个事件发生的概率只与构成该事件区域的长度(面积或体积等)成比例,则称这样的概率模型为为几何概率模型,简称几何概型.(2)特点:①无限性:在一次试验中,可能出现的结果有无限多个; ②等可能性:每个结果的发生具有等可能性.(3)几何概型的解题步骤:首先是判断事件是一维问题还是二维、三维问题(事件的结果与一个变量有关就是一维的问题,与两个变量有关就是二维的问题,与三个变量有关就是三维的问题);接着,如果是一维的问题,先确定试验的全部结果和事件A 构成的区域长度(角度、弧长等),最后代公式()p A =构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积;如果是二维、三维的问题,先设出二维或三维变量,再列出试验的全部结果和事件A 分别满足的约束条件,作出两个区域,最后计算两个区域的面积或体积代公式.(4)求几何概型时,注意首先寻找到一些重要的临界位置,再解答.一般与线性规划知识有联系.3.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积。
高中数学概率与统计知识点
高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。
2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。
3、互斥事件不可能同时发生的两个事件叫互斥事件。
如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。
4、对立事件对立事件是指两个事件必有一个发生的互斥事件。
例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。
而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。
对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。
2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。
5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。
相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。
2)必然事件与任何事件都是相互独立的。
3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。
6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。
如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。
(完整版)高中数学统计与概率知识点归纳(全)
高中数学统计与概率知识点(文)的平均数就是中位数。
③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平 均数。
四、 中位数与众数的特点。
⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据;⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若 这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数;⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单 位相同; (6) 众数可能是一个或多个甚至没有;(7) 平均数、众数和中位数都是描述一组数据集中趋势的量。
五、 平均数、中位数与众数的异同:⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位; ⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系, 所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
六、 对于样本数据 X i , X 2,…,X n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散 程度,那么这个平均距离如何计算?|X i - x| + |X 2- X| + L + |X n - x|思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差, 一般用s 表示•假设样本数据X i , X 2,…,X n 的平均数为X ,则标准差的计算公式是:(X i - X)2 + (X 2 - x)2 + L +(x n - X)2七、简单随即抽样的含义一般地,设一个总体有 N 个个体,从中逐个不放回地抽取 n 个个体作为样本(n W N ),如果每次 抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样•八、 根据你的理解,简单随机抽样有哪些主要特点?一、 众数:一组数据中出现次数最多的那个数据。
高中数学概率与统计知识点归纳
高中数学概率与统计知识点归纳一、概率概率是数学中一个重要的概念,用来描述事件发生的可能性大小。
在高中数学中,概率主要涉及以下几个知识点:1. 事件与样本空间- 事件是指某种结果的集合,样本空间是指所有可能结果的集合。
- 事件的概率可以通过计算事件出现的次数与样本空间的大小的比值来求得。
2. 事件的运算- 事件的运算包括并、交、差、余等操作。
- 并的概率等于两个事件概率之和减去交的概率。
- 交的概率等于两个事件概率之和减去并的概率。
- 差的概率等于一个事件概率减去另一个事件概率。
- 余的概率等于样本空间的概率减去一个事件的概率。
3. 条件概率- 条件概率是指在给定某个条件下,发生某个事件的概率。
- 条件概率可以通过计算事件在给定条件下的概率与给定条件的概率的比值来求得。
4. 独立事件- 独立事件是指事件之间互不影响,一个事件的发生不会影响另一个事件的发生。
- 独立事件的概率可以通过计算各个事件概率之积来求得。
5. 伯努利试验与二项分布- 伯努利试验是指只有两种可能结果的试验,每次试验的结果独立且概率不变。
- 伯努利试验的概率可以通过二项分布来计算。
二、统计统计是一门研究数据收集、分析和解释的学科,在高中数学中,统计主要涉及以下几个知识点:1. 数据的收集和整理- 数据的收集可以通过观察、实验或调查等方式获取。
- 数据的整理包括数据的分类、汇总和统计量的计算等操作。
2. 图表的制作和分析- 图表是一种直观展示数据的方式,包括条形图、折线图、饼图等。
- 图表的制作需要根据数据的特点选择合适的类型,并设置合理的比例尺和坐标轴。
- 图表的分析可以通过观察图表的形状、趋势和比较来理解数据的规律和关系。
3. 描述统计和统计推断- 描述统计是通过统计量对数据进行概括和描述,包括均值、中位数、众数、标准差等。
- 统计推断是根据样本数据对总体进行推断,包括估计总体参数和检验假设等。
4. 相关与回归分析- 相关分析用于研究两个变量之间的相关关系,可以通过计算相关系数来衡量。
(完整版)高中数学概率统计知识点总结
高中数学概率统计知识点总结一、抽样方法1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法.3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模)4.分层抽样:二、样本估计总体的方式1、用样本的频率分布估计总体分布(1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。
化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。
2、用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数的算法;(2)标准差、方差公式.3、样本均值:nx x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 222212)()()(-++-+-==三、两个变量的线性相关1、正相关2、负相关正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减)四、概率的基本概念(1)必然事件(2)不可能事件(3)确定事件(4)随机事件(5)频数与频率(6)频率与概率的区别与联系必然事件和不可能事件统称为确定事件1他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值4、频率值一般容易得到,所以一般用来代替概率进行定量分析,首先要知道系统各元件发生故障的频率或概率.事件的频率与概率是度量事件出现可能性大小的两个统计特征数.频率是个试验值,或使用时的统计值,具有随机性,可能取多个数值。
因此,只能近似地反映事件出现可能性的大小概率是个理论值,是由事件的本质所决定的,只能取唯一值,它能精确地反映事件出现可能性的大小虽然概率能精确反映事件出现可能性的大小,但它通过大量试验才能得到,这在实际工作中往往是难以做到的.所以,从应用角度来看,频率比概率更有用,它可以从所积累的比较多的统计资料中得到需要指出的是用频率代替概率,并不否认概率能更精确、更全面地反映事件出现可能性的大小,只是由于在目前的条件下,取得概率比取得频率更为困难。
高中数学概率与统计知识点总结
高中数学概率与统计知识点总结概率与统计是高中数学中的重要内容,为了帮助大家更好地理解和掌握这一部分知识,下面将对高中数学概率与统计的主要知识点进行总结和梳理。
一、概率基本概念概率是指事件发生的可能性大小,通常用一个介于0到1之间的数表示。
在计算概率时,我们需要先确定样本空间,即所有可能的结果组成的集合,并且需要利用概率公式进行计算。
1.1 样本空间与事件样本空间是指一个随机试验中所有可能结果组成的集合。
样本空间中的元素称为样本点。
事件是指样本空间的子集,即某些样本点的集合。
1.2 子事件与互斥事件子事件是指事件的子集,即由某些样本点组成的事件。
互斥事件是指两个事件不可能同时发生的事件。
1.3 事件的概率事件A的概率表示为P(A),计算方式为事件A的样本点数除以样本空间的样本点数。
概率的取值范围在0到1之间,且所有可能事件的概率之和为1。
二、概率计算方法概率的计算方法主要包括古典概型、频率概率和条件概率等几种常用方法。
2.1 古典概型古典概型适用于随机试验的样本点数有限且相等的情况。
在古典概型中,事件A的概率计算公式为P(A) = m/n,其中m为事件A中样本点的个数,n为样本空间中样本点的总个数。
2.2 频率概率频率概率适用于大量重复试验的情况。
频率概率是指事件A发生的频率,计算公式为P(A) = lim(N→∞) (m/N),其中m为事件A发生的次数,N为试验进行的总次数。
2.3 条件概率条件概率是指在一个事件已经发生的条件下,另一个事件发生的概率。
条件概率的计算公式为P(A|B) = P(A∩B)/P(B),其中P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
三、排列与组合排列与组合是概率与统计中常用的计数方法,用于求解事件发生的可能性个数。
3.1 排列排列是指将若干个不同的元素按照一定的顺序排列的方式。
排列的计算公式为A(n, m) = n!/(n-m)!,其中n为元素个数,m为选取的元素个数。
高中概率统计知识点_高三概率知识点总结范文
《高中概率统计知识点总结》高中概率统计是数学中的重要组成部分,它不仅在高考中占据着重要的地位,而且在实际生活中也有着广泛的应用。
本文将对高中概率统计的知识点进行全面总结,帮助高三学生更好地掌握这部分内容。
一、随机事件与概率1. 随机事件随机事件是在一定条件下可能发生也可能不发生的事件。
必然事件是在一定条件下必然发生的事件,不可能事件是在一定条件下不可能发生的事件。
2. 概率的定义概率是对随机事件发生可能性大小的度量。
对于一个随机事件A,它的概率 P(A)满足0≤P(A)≤1。
当 P(A)=1 时,事件 A 为必然事件;当 P(A)=0 时,事件 A 为不可能事件。
3. 概率的基本性质(1)概率的加法公式:对于任意两个互斥事件 A 和 B,P(A∪B)=P(A)+P(B)。
(2)对立事件的概率:若事件 A 的对立事件为\(\overline{A}\),则 P(A)+P(\(\overline{A}\))=1。
二、古典概型1. 古典概型的特点(1)试验中所有可能出现的基本事件只有有限个。
(2)每个基本事件出现的可能性相等。
2. 古典概型的概率计算公式如果一次试验中共有 n 个基本事件,事件 A 包含其中的 m 个基本事件,则事件 A 的概率 P(A)=\(\frac{m}{n}\)。
三、几何概型1. 几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个。
(2)每个基本事件出现的可能性相等。
2. 几何概型的概率计算公式一般地,在几何区域 D 中随机地取一点,记事件“该点落在其内部一个区域 d 内”为事件 A,则事件 A 发生的概率P(A)=\(\frac{d 的测度}{D 的测度}\)。
这里测度可以是长度、面积、体积等。
四、互斥事件与独立事件1. 互斥事件若事件 A 与事件 B 不能同时发生,则称事件 A 与事件 B 为互斥事件。
互斥事件的概率加法公式为P(A∪B)=P(A)+P(B)(A、B 互斥)。
高中数学统计与概率知识点
高中数学统计与概率知识点高中数学统计与概率知识点第一部分:统计一、众数众数是一组数据中出现次数最多的数据。
它反映了数据的集中趋势,但当数据大小差异很大时,众数的准确值难以判断。
此外,当众数出现次数不具明显优势时,用它来反映数据的典型水平是不可靠的。
二、中位数中位数是一组数据中位于最中间的数据,当数据为偶数个时,为最中间两个数据的平均数。
求中位数时,需要先将数据排序,然后根据数据的个数来确定中位数。
三、众数、中位数及平均数的求法众数由所给数据可直接求出;求中位数时,需要先排序,然后根据数据的个数来确定中位数;求平均数时,需要将各数据的总和除以数据的个数。
四、中位数与众数的特点中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是;众数考察的是一组数据中出现的频数,它的大小只与这组数据的个别数据有关,可能是一个或多个,甚至没有。
五、平均数、中位数与众数的异同平均数、中位数和众数都是描述一组数据集中趋势的量,都有单位。
平均数反映数据的平均水平,与每个数据都有关系,应用最广;中位数不受个别偏大或偏小数据的影响;众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
六、样本数据的分散程度对于样本数据x1,x2,…,xn,可以通过各数据到其平均数的平均距离来反映样本数据的分散程度。
平均距离的计算公式为12n。
本文介绍了统计学中常用的标准差,以及简单随机抽样的定义和特点。
其中,简单随机抽样的主要特点包括总体个体数有限、逐个抽取、不放回、公平性。
抽签法是一种简单易行的抽样方法,但在总体个数较多时可能会导致样本代表性差。
随机数表法是另一种常用的抽样方法,其步骤包括编号、选定起始位置和依次读取。
最后,对于从100个个体中抽取一个容量为10的样本,可以采用抽签法或随机数表法进行编号。
十三、系统抽样的一般步骤在使用系统抽样从总体中抽取样本时,首先需要将总体中的所有个体进行编号。
举例来说,如果要从605件产品中抽取60件进行质量检查,由于605件产品不能均衡分成60部分,因此需要先从总体中随机剔除5个个体,再均衡分成60部分。
高中数学统计与概率知识点归纳全
高中数学统计与概率知识点归纳全统计与概率是数学中重要的一部分,出现在中学数学和高中数学的教学中。
它涵盖了很多基本的概念和方法,并且在实际生活中有广泛的应用。
本文将全面归纳高中数学统计与概率的知识点,以帮助读者更好地理解和掌握这一领域的内容。
一、基本概念1. 数据与统计:数据是通过观察、测量或实验获得的信息,统计是对数据进行收集、整理、分析和解释的过程。
2. 总体与样本:总体是指研究对象的全体,样本是从总体中选取的一部分。
3. 参数与统计量:参数是描述总体的数值特征,统计量是根据样本数据计算得到的总体参数的估计值。
4. 随机事件与样本空间:随机事件是指一个结果不确定、以概率形式描述的事件,样本空间是随机事件可能发生的所有结果的集合。
5. 概率:概率是用来描述随机事件发生可能性大小的数值。
它可以通过实验、几何、统计推理等方法进行计算。
二、统计方法1. 数据收集与处理:包括数据的收集、整理和清洗,以及计算数据的频数、频率、中位数、平均数等。
2. 描述统计和推断统计:描述统计通过图表、图像和数值等形式展示数据的分布特征;推断统计则通过样本数据进行参数估计、假设检验等,从而对总体进行推断。
3. 频数分布与频率分布:频数分布是指将数据按照取值范围划分成若干组,并统计每组中数据出现的频数;频率分布则是统计每组数据出现的频率。
三、概率相关知识1. 事件的概率:事件A发生的概率记为P(A),它满足0≤P(A)≤1。
2. 基本事件与复合事件:基本事件是样本空间中的单个事件,复合事件由一个或多个基本事件组成。
3. 互斥事件与相对事件:互斥事件是指两个事件不可能同时发生,相对事件是指两个事件都能够发生,或者都不能发生。
4. 概率的计算:通过等可能原理、频率法、古典概型等方法计算事件的概率。
5. 条件概率与独立事件:条件概率是指在已知事件B发生的条件下,事件A发生的概率,记为P(A|B);独立事件是指事件A和事件B的发生与否互不影响。
高中数学 概率与统计知识点总结
高中数学概率与统计知识点总结概率与统计一、概率及随机变量的分布列、期望与方差1.概率及其计算概率是指某个事件发生的可能性大小,可以用数值表示。
计算概率时,可以采用几个互斥事件和事件概率的加法公式。
如果事件A与事件B互斥,则P(AB)=P(A)+P(B)。
如果事件A1,A2,…,An两两互斥,则事件A1+A2+…+An发生的概率等于这n个事件分别发生的概率的和,即P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。
如果事件B与事件A互为对立事件,则P(A)=1-P(B)。
2.随机变量的分布列、期望与方差随机变量是指在随机试验中可能出现的各种结果所对应的变量。
常用的离散型随机变量的分布列包括二项分布和超几何分布。
二项分布指在n次独立重复试验中,事件A发生k次的概率为C(n,k)p^k(1-p)^(n-k),事件A发生的次数是一个随机变量X,其分布列为X~B(n,p)。
超几何分布指在含有M件次品的N件产品中,任取n件,其中恰有X件次品的概率为C(M,k)C(N-M,n-k)/C(N,n),其中m=min(M,n),且n,N,M,N∈N*,称随机变量X的分布列为超几何分布列,称随机变量X服从超几何分布。
2.条件概率及相互独立事件同时发生的概率条件概率是指在已知事件A发生的条件下,事件B发生的概率。
一般地,设A,B为两个事件,且P(A)>0,则P(B|A)=P(AB)/P(A)。
在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B|A)=n(AB)/n(A)。
相互独立事件是指两个或多个事件之间互不影响,即其中一个事件的发生不会影响其他事件的发生。
如果A,B相互独立,则P(AB)=P(A)P(B)。
如果A与B相互独立,则A与B,A与B,A与B也都相互独立。
3.独立重复试验与二项分布独立重复试验是指在一系列相互独立的试验中,每个试验的结果只有两种可能,即成功或失败。
在n次独立重复试验中,事件A发生k次的概率为C(n,k)p^k(1-p)^(n-k),事件A发生的次数是一个随机变量X,其分布列为X~B(n,p)。
高中数学统计知识点高中数学概率与统计
高中数学统计知识点高中数学概率与统计
高中数学统计知识点包括以下内容:
1. 数据的收集和整理:包括原始数据的收集和整理,如问卷调查、实验结果等。
2. 描述统计:用于对数据进行总结和描述的方法,包括平均数、中位数、众数、极差、标准差等。
3. 概率:研究随机事件发生的可能性的数学分支,包括基本概念、概率的计算方法和
性质。
4. 概率分布:描述随机变量取值与相应概率的分布,包括离散型随机变量和连续型随
机变量的分布。
5. 统计推断:从样本数据中推断总体的特征的方法,包括点估计和区间估计。
6. 假设检验:用于推断总体参数的假设检验方法,包括单样本检验、双样本检验和相
关性检验等。
7. 相关分析:研究两个或多个变量之间关系的方法,包括相关系数和回归分析等。
8. 抽样调查:从总体中随机选择样本进行调查和统计分析的方法,包括简单随机抽样、系统抽样和分层抽样等。
以上是高中数学概率与统计的主要知识点,通过掌握这些知识,可以进行数据的整理
和分析,并进行相关的统计推断和假设检验。
高中数学概率统计知识点总结
高中数学概率统计知识点总结一、基本概念随机事件:在条件S下可能发生也可能不发生的事件,称为相对于条件S的随机事件。
必然事件:在条件S下,一定会发生的事件,称为相对于条件S的必然事件。
不可能事件:在条件S下,一定不会发生的事件,称为相对于条件S的不可能事件。
确定事件:必然事件和不可能事件统称为相对于条件S的确定事件。
频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数。
对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,则把这个常数记作P(A),称为事件A的概率。
二、概率的计算互斥事件的概率加法公式:如果事件A与事件B互斥,则P(AB)=P(A)+P(B)。
独立事件的概率乘法公式:如果事件A与事件B独立,则P(AB)=P(A)P(B)。
古典概型及其概率计算公式:如果试验的样本空间S只包含有限个样本点,且每个样本点发生的可能性相同,则称这种概率模型为古典概型。
在古典概型中,事件A的概率P(A)等于事件A包含的样本点个数除以样本空间S中样本点的总数。
三、随机变量及其分布随机变量:在随机试验中可能出现的各种结果所对应的变量称为随机变量。
随机变量可以是离散型或连续型。
离散型随机变量的分布列:对于离散型随机变量X,其所有可能取值的概率组成的列表称为X的分布列。
期望与方差:随机变量的期望值表示随机变量取值的平均水平,方差表示随机变量取值与其期望值的离散程度。
四、几何概型几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。
几何概型的概率计算:在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A发生的概率P(A)等于区域d的测度与区域D的测度的比值。
以上是高中数学概率统计的主要知识点。
掌握这些知识点并灵活应用于解题中,是学好数学概率统计的关键。
高中数学《统计》与《概率》知识点
高中数学《统计》与《概率》知识点高中数学的《统计》和《概率》是数学领域中的两个重要分支,它们是数据分析、预测和决策制定等实际问题中必不可少的工具。
下面将详细介绍这两个知识点。
一、统计学是研究数据收集、整理、分析和解释的学科。
统计学的主要任务是从已有的数据中得出结论,进而得到有关总体的信息。
统计学的主要内容包括:1.描述统计:通过数值特征描述数据的中心位置、离散程度等。
描述统计包括以下几个方面:(1)集中趋势:主要有均值、中位数和众数。
均值是一组数据的平均值,中位数是一组数据中处于中间位置的数值,众数是一组数据中出现频率最高的数值。
(2)离散程度:主要有极差、方差和标准差。
极差是一组数据中最大数与最小数的差值,方差是各个数据与均值的差值的平方的平均值,标准差是方差的平方根。
(3)分布形状:主要有正态分布、偏态分布和峰态分布等类型。
2.探索性数据分析:根据数据特征进行初步探索,主要包括绘制直方图、饼图、箱线图等工具来分析数据分布和异常值。
3.概率论:概率是描述随机事件发生可能性的数值,涉及到概率的计算、随机变量及其分布、大数定律和中心极限定理等概念。
(1)概率的定义与性质:概率的定义有经典概率和条件概率等。
经典概率是指在等可能的情况下,一些事件发生的概率。
条件概率是指在已知一事件发生的条件下,另一事件发生的概率。
(2)随机变量与概率分布:随机变量是具有随机性的数值,可分为离散随机变量和连续随机变量。
离散随机变量取有限或可数个数值,其概率分布函数称为概率分布列;连续随机变量在一些区间上取值,其概率分布函数称为概率密度函数。
(3)大数定律与中心极限定理:大数定律是指随着试验次数的增加,频率逼近概率。
中心极限定理是指多个独立随机变量之和的分布近似于正态分布。
4.统计推断:通过样本数据推断总体特征,主要有参数估计和假设检验。
(1)参数估计:根据样本数据估计总体参数,主要有点估计和区间估计。
点估计是用一个数值来估计总体参数,区间估计是用一个区间来估计总体参数,有置信水平的概念。
高中数学《统计》与《概率》知识点
4)互斥事件与对立事件的区别与联系,互斥事件是指事件
A 与事件 B 在一次试验中不会同时发生,其具体包括三
种不同的情形: ( 1)事件 A 发生且事件 B 不发生;( 2)事件 A 不发生且事件 B 发生;( 3)事件 A 与事件 B 同时不
发生,而对立事件是指事件 A 与事件 B 有且仅有一个发生,其包括两种情形; (1)事件 A 发生 B 不发生;( 2)事件
( 2)若 A ∩B 为不可能事件,即 A ∩ B= ф ,那么称事件 A 与事件 B 互斥;
( 3)若 A ∩ B 为不可能事件,且 A ∪B 为必然事件,那么称事件 A 与事件 B 互为对立事件;注意:对立事件一定是互
斥事件,但互斥事件 不一定是 对立事件!
( 4)当事件 A 与 B 互斥时,满足加法公式: P(A ∪ B)= P(A)+ P(B) ;若事件 A 与 B 为对立事件,则 A ∪ B 为必然事件,
( 2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不 同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权
处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。 四、用样本的数字特征估计总体的数字特征
nA 与试验总次数 n 的比值 n A ,它具有一定的 n
稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随
机事件的概率, 概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作
为这个事件的概率 二、 概率的基本性质 1、基本概念: ( 1)事件的包含、并事件、交事件、相等事件;
高中概率统计考点归纳
高中概率统计考点归纳一、概率的基本概念与性质概率的定义:概率是一个衡量事件发生可能性的数值,通常用P(A)表示事件A发生的概率。
概率的取值范围为0到1之间,其中P(A) = 0表示事件A不可能发生,P(A) = 1表示事件A必然发生。
举例:抛掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率也为0.5。
概率的性质:非负性:对于任意事件A,有P(A) ≥0;归一性:对于必然事件S,有P(S) = 1;可加性:对于互斥事件A和B(即A和B不能同时发生),有P(A ∪B) = P(A) + P(B)。
举例:一个袋子中有3个红球和2个白球,随机抽取一个球为红球的概率是3/5,为白球的概率是2/5。
由于红球和白球是互斥事件,所以抽取到红球或白球的概率是3/5 + 2/5 = 1。
二、古典概型与几何概型古典概型:在有限个等可能的基本事件中,通过计算事件包含的基本事件个数与总基本事件个数的比值来求概率。
举例:抛掷两颗骰子,求点数之和为7的概率。
总的基本事件个数为6×6=36,点数之和为7的基本事件有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共6种。
因此,点数之和为7的概率为6/36=1/6。
几何概型:在某一度量(长度、面积、体积等)下,通过计算事件占有的度量与样本空间占有的度量的比值来求概率。
举例:在长度为1的线段上随机取一点,求该点位于线段前1/3部分的概率。
样本空间为整个线段,其长度为1;事件空间为线段前1/3部分,其长度为1/3。
因此,该点位于线段前1/3部分的概率为1/3。
三、条件概率与全概率公式条件概率:在已知事件B发生的条件下,事件A发生的概率,记为P(A|B)。
计算公式为P(A|B) = P(AB) / P(B),其中P(AB)表示事件A和B同时发生的概率。
举例:一个班级中有40名学生,其中25名男生和15名女生。
已知某学生是女生,求该学生数学成绩优秀的概率。
高中概率与统计知识点总结
高中概率与统计知识点总结概率与统计是高中数学中的重要内容,涉及到随机现象的研究以及数据的收集、整理和分析。
掌握概率与统计的基本知识和方法,对于学生在高中阶段的数学学习和日常生活中的决策都具有重要意义。
本文将对高中概率与统计的知识点进行总结,包括概率基本概念、常见的概率分布以及统计学中的统计量等。
一、概率基本概念1. 试验与样本空间:试验是指具有不确定性的随机现象,样本空间是指试验所有可能结果的集合。
2. 事件与事件的概率:事件是样本空间的子集,而事件的概率是指某事件出现的可能性大小,介于0和1之间。
3. 概率的性质:概率具有非负性、规范性、可加性等性质,在计算概率时需要运用这些性质。
4. 条件概率:条件概率是指在已知事件B发生的条件下,事件A发生的概率,记作P(A|B)。
5. 独立事件:若事件A和事件B的发生没有关联性,称事件A和事件B是相互独立的。
6. 乘法定理和全概率公式:乘法定理和全概率公式是概率计算中常用的工具,可用于计算复杂事件的概率。
二、常见的概率分布1. 二项分布:二项分布是指在n次独立重复试验中,成功事件发生k次的概率分布。
它的概率质量函数是二项式系数的乘积。
2. 泊松分布:泊松分布是描述单位时间内随机事件发生的次数的概率分布。
它的概率质量函数是由λ的幂指数和一个阶乘项组成。
3. 正态分布:正态分布是自然界中许多随机变量的分布模式。
其概率密度函数呈钟形曲线,对称分布。
三、统计学中的统计量1. 样本均值与总体均值:样本均值是指从总体中抽取的一组样本数据的平均值,总体均值是指所有可能样本数据的均值。
2. 样本方差与总体方差:样本方差是指从总体中抽取的一组样本数据的方差,总体方差是指所有可能样本数据的方差。
3. 样本标准差与总体标准差:样本标准差是指从总体中抽取的一组样本数据的标准差,总体标准差是指所有可能样本数据的标准差。
4. 相关系数:相关系数是衡量两个变量之间相关关系强弱的统计量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.高中数学之概率与统计求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:card(A)m(1)等可能性事件(古典概型)的概率:P(A)=card(I)=n; 等可能事件概率的计算步骤:计算一次试验的基本事件总数n;设所求事件A,并计算事件A包含的基本事件的个数m;mP(A)n求值;依公式答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P(A+B)=P(A)+P(B);特例:对立事件的概率:P(A)+P(A)=P(A+A)=1. (3)相互独立事件同时发生的概率:P(A·B)=P(A)·P(B);特例:独立重复试验的概率:Pn(k)=kknkC n p(1p).其中P为事件A在一次试验中发生的概率,此式为二项式[(1-P)+P]n展开的第k+1项.(4)解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:等可能事件互斥事件独立事件n次独立重复试验第一步,确定事件性质即所给的问题归结为四类事件中的某一种.和事件积事件第二步,判断事件的运算即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.等可能事件: P(A) mn互斥事件:P(AB)P(A)P(B)独立事件:P(AB)P(A)P(B)第三步,运用公式n次独立重复试验:P(k)Cp(1p)求解kknknn第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).P1C333354C105.2[解答过程]0.3提示:例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,.... 则指定的某个个体被抽到的概率为.1. [解答过程]20提示: P5110020.例3.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)[考查目的]本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.[解答提示]至少有3人出现发热反应的概率为3324455C50.800.20C50.800.20C50.800.94.故填0.94.离散型随机变量的分布列1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量.2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量可能取的值为x1,x,⋯,2 xi,⋯⋯,取每一个值x i(i1,2,⋯⋯)的概率P(x i)= P,则称下表.ixx2⋯x i⋯1PP1P2⋯P i⋯为随机变量的概率分布,简称的分布列. 由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质:(1)P0,i1,2,⋯;(2)i P⋯=1. 1P2②常见的离散型随机变量的分布列:(1)二项分布n次独立重复试验中,事件A发生的次数是一个随机变量,其所有可能的取值为0,1,2,⋯n,并且kknkP k P(k)Cpq,其中0kn,q1p,随机变量的分布列如下:n01⋯k⋯nP00n11n1C n pqC n pq⋯Ckknn pqk nnCn0pq称这样随机变量服从二项分布,记作~B(n,p),其中n、p为参数,并记:kknkCpqb(k;n,p)n.(2)几何分布....在独立重复试验中,某事件第一次发生时所作的试验的次数是一个取值为正整数的离散型随机变量,“k”表示在第k次独立重复试验时事件第一次发生.随机变量的概率分布为:123⋯k⋯Ppqp2qp⋯k1qp⋯例1.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1 件是合格的概率;(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件. 都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数的分布列及期望E,并求出该商家拒收这批产品的概率.[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A用对立事件A来算,有4 PA1PA10.20.9984(Ⅱ)可能的取值为0,1,2.P02C136 172C,190 20P111 CC51 3172C190,20P22C32C203190012P136190511903190E 136513301219019019010 .记“商家任取2件产品检验,都合格”为事件B,则商家拒收这批产品的概率P1PB1 1362719095.2795.所以商家拒收这批产品的概率为例12.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被....423淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为5、5,且各轮问题、5能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为,求随机变量的分布列与数学期望.(注:本小题结果可用分数表示)[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i轮的问题”的事件为A(i1,2,3),则iP(A)1 45 ,P(A)235 ,P(A)325,该选手被淘汰的概率PP(AAAAAA)P(A)P(A)P(A)P(A)P(A)P(A) 112223112123142433101555555125.P(1)P(A)1 1 5(Ⅱ)的可能值为1,2,3,,P(2)P(AA)P(A)P(A)1212 4285525,P(3)P(AA)P(A)P(A)1212 4312 5525.的分布列为123P 158251225E 1812571235252525 .P(A)解法二:(Ⅰ)记“该选手能正确回答第i轮的问题”的事件为A(i1,2,3),则1i 4 5,P(A)2 35 ,P(A)325.该选手被淘汰的概率P1P(A1A2A3)1P(A1)P(A2)P(A3) 1432101555125.(Ⅱ)同解法一.离散型随机变量的期望与方差随机变量的数学期望和方差(1)离散型随机变量的数学期望:Ex1p1x2p2⋯;期望反映随机变量取值的平均水平.22D(x1E)p(xE)p⋯⑵离散型随机变量的方差:2122 (x n E)p⋯;n....方差反映随机变量取值的稳定与波动,集中与离散的程度. 2⑶基本性质:E(ab)aEb;Dab)aD(.(4)若~B(n,p),则Enp;D=npq(这里q=1-p);1E如果随机变量服从几何分布,P(k)g(k,p),则p ,D= qp2其中q=1-p.例1.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:ε012η012P63P5132101010101010则比较两名工人的技术水平的高低为.思路:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.解答过程:工人甲生产出次品数ε的期望和方差分别为:E0610111023103.,D(00.7) 2610(1 0.7) 2110(2 0.7) 23100.891;工人乙生产出次品数η的期望和方差分别为:E0 510131022100.7,D(0 20.7)510(1 0.7) 2310(2 20.7)2100.664由Eε=Eη知,两人出次品的平均数相同,技术水平相当,但Dε>Dη,可见乙的技术比较稳定.小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度.例2.某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250 元;分4期或5期付款,其利润为300元.表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求的分布列及期望E.[解答过程](Ⅰ)由A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A表示事件“购买该商品的3位顾客中无人采用1期付款”....2P(A)(10.4)0.216,P(A)1P(A)10.2160.784.(Ⅱ)的可能取值为200元,250元,300元.PP,(200)(1)0.4PPP,(250)(2)(3)0.20.20.4PPP.(300)1(200)(250)10.40.40.2的分布列为200250300P0.40.40.2E240(元).2000.42500.43000.2抽样方法与总体分布的估计抽样方法1.简单随机抽样:设一个总体的个数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线.典型例题例1.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n=.解答过程:A种型号的总体是2101680 10,则样本容量n=2.例2.一个总体中有100个个体,随机编号0,1,2,⋯,99,依编号顺序平均分成10个小组,组号依次为1,2,3,⋯,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与mk的个位数字相...同,若m6,则在第7组中抽取的号码是.解答过程:第K组的号码为(k1)10,(k1)101,⋯,(k1)109,当m=6时,第k组抽取的号的个位数字为m+k的个位数字,所以第7组中抽取的号码的个位数字为3,所以抽取号码为63.正态分布与线性回归4.正态分布的概念及主要性质(1)正态分布的概念如果连续型随机变量的概率密度函数为f(x)12e(x22)2,xR其中、为常数,并且>0,则称服从正态分布,记为~N(, 2).(2)期望E=μ,方差2 D.(3)正态分布的性质正态曲线具有下列性质:①曲线在x轴上方,并且关于直线x=μ对称.②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.③曲线的对称轴位置由μ确定;曲线的形状由确定,越大,曲线越“矮胖”;反之越“高瘦”.三σ原则即为数值分布在(μ—σ,μ+σ)中的概率为0.6526数值分布在(μ—2σ,μ+2σ)中的概率为0.9544数值分布在(μ—3σ,μ+3σ)中的概率为0.9974(4)标准正态分布当=0,=1时服从标准的正态分布,记作~N(0,1)(5)两个重要的公式①(x)1(x),②P(ab)(b)(a).(6)2N与N(0,1)二者联系. (,)若2~N(,),则~N(0,1);②若2~N(,),则baP(ab)()().5.线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n个样本数据(x1,y1),(x2,y2),⋯,(x,y),其回归直线方程,或经验公式nn...n为:y?bxa.其中bixynxyiii1aybx,,n22xn(x)i1,其中x,y分别为| x|、|iy|的平均数.i例1.如果随机变量ξ~N(μ,σ2),且Eξ=3,Dξ=1,则P(-1<ξ≤1=等于()A.2Φ(1)-1B.Φ(4)-Φ(2)C.Φ(2)-Φ(4)D.Φ(-4)-Φ(-2)解答过程:对正态分布,μ=Eξ=3,σ2=Dξ=1,故P(-1<ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2).答案:B例2.将温度调节器放置在贮存着某种液体的容器内,调节器设定在d℃,液体的温度ξ(单位:℃)是一个随机变量,且ξ~N(d,0.52).(1)若d=90°,则ξ<89的概率为;(2)若要保持液体的温度至少为80℃的概率不低于0.99,则d至少是?(其中若η~N(0,1),则Φ(2)=P(η<2)=0.9772,Φ(-2.327)=P(η<-2.327)=0.01).8990解答过程:(1)P(ξ<89)=F(89)=Φ(0.5)=Φ(-2)=1-Φ(2)=1-0.9772=0.0228. (2)由已知d满足0.99≤P(ξ≥80),即1-P(ξ<80)≥1-0.01,∴P(ξ<80)≤0.01.80d∴Φ(0.5)≤0.01=Φ(-2.327).80d∴0.5≤-2.327.∴d≤81.1635.故d至少为81.1635.小结:(1)若ξ~N(0,1),则η=~N(0,1).(2)标准正态分布的密度函数f(x)是偶函数,x<0时,f(x)为增函数,x>0时,f(x)为减函数.。