介绍一个开关电源仿真的实例

合集下载

一款基于UC3842的开关电源设计与仿真

一款基于UC3842的开关电源设计与仿真

图 4 变 压 器 电 路 图
使j _ { j _ U C 3 8 4 2束 挎 制 开 关 电 源 的 占空 比时 , 本
没i { 一 巾把光 祸 的 C极 接 连到 U C 3 8 4 2的脚 l 作 为 输} } I 的电 反馈 , 脚 2直 接接 地 U C 3 8 4 2的脚 2是 其 内部 误 箍放 大器 的反 向输 入 端 , 脚 l是 误 差 放 大 器 的输 出端 这 种接法 略过 了 U C 3 8 4 2内部 的放 大
经采样 电 阻采集 列 电 流进 行 比较 , 从 州 输 f { 端
2 开 关 电 源 电 路 的 设 计
本文 设计 了 一 款 基 丁 U C 3 8 4 2的 开 关 电源 。 能将输 入 交 流 电 2 2 0 V / 5 0 H z转 换 成 稳 定 的 1 2 V直 流 电 输 - L t . , , 按 照 开 关电源 T作 原理 框 『 皋 l 、 电路 冈创
2 . 3 UC 3 8 4 2控 制 电 路 设 计
为使 电路 1 作 在 预定 的 _ 1 作状念 , 嵫设

片的外 部 元 件 参数 本 文设 计 的 父 电 源 f 怍f 1
5 0 k H z , 根据 芯 片的 数 据 手 册 可 . 芯 片的 1 作; 顷 率:
摘要 : 本文 基 U C 3 8 4 2芯片设 汁并仿真 _ r 一款开关电源 , 详细分 析 r I 乜 路的 1 作原理及控制 电路 的 汁, J 1 f 『 J
真软 件 Mu h i s i m 巾搭 建 了仿 真 电路 , 验 证 了 没汁 的正 确 性 。 关键 词 : U C 3 8 4 2 : 精密稳压源 T L 4 3 1 ; Mi d t i s i m; 仿

用uc3845b 设计开关电源实例

用uc3845b 设计开关电源实例

用uc3845b 设计开关电源实例Switching power supplies are widely used in various applications due to their high efficiency and compact design. One of the most common and popular control ICs used for designing switching power supplies is the UC3845B. This IC is known for its versatility and ease of use in various topologies such as flyback, forward, and boost.开关电源由于高效率和紧凑的设计而被广泛应用于各种领域。

在设计开关电源时常用的一个控制IC是UC3845B。

这个IC以其在飞行、正转和升压等各种拓扑结构中的通用性和易用性而闻名。

The UC3845B is a current mode PWM controller that operates at a fixed frequency and has a voltage feedforward design for improved transient response. It also has built-in soft start and frequency jitter features for reduced EMI emissions. These advanced features make the UC3845B a popular choice for designing efficient and reliable switch mode power supplies.UC3845B是一个固定频率工作的电流模式PWM控制器,具有电压前馈设计以提高瞬态响应。

开关电源的环路设计及仿真

开关电源的环路设计及仿真

1 基本理论开关电源的输出电压Vo是由一个控制电压Vc来控制的,即由Vc与锯齿波信号比较,产生PWM波形。

根据锯齿波产生的方式不同,开关电源的控制方式可分为电压型控制和电流型控制。

电压型的锯齿波是由芯片内部产生的,如LM5025,电流型的锯齿波是输出电感的电流转化成电压波形得到的,如UC3843。

对于反激电路,变压器原边绕组的电流就是产生锯齿波的依据。

输出电压Vo与控制电压Vc的比值称为未补偿的开环传递函数Tu,Tu=Vo/Vc。

一般按频率的变化来反映Tu的变化,即Bode图。

电压型控制的电源其Tu是双极点,以非隔离的BUCK为例,形式为:电流型控制的电源其Tu是单极点,以非隔离的BUCK为例,形式为:各种电路的未补偿的开环传递函数Tu可以从资料中找到。

本讲座的目的是提供一种直观的环路设计手段。

2 计算机仿真开关电源未补偿的开环传递函数Tu2.1 开关平均模型开关电源的各个量经平均处理后,去掉高频开关分量,得到低频(包括直流)的分量。

开关电源的建模、静态工作点、反馈设计、动态分析等都是基于平均模型基础之上的。

若要得到实际的工作波形,应按实际电路进行时域仿真(Time Transient Analysis)。

将开关电路中的开关器件经平均化处理后,就得到开关平均模型,用开关平均模型可以搭建各种电路。

以下是几个开关电源的平均模型仿真例子,从电路波形中看不到开关量,只是平均量,比如电感中流过的电流是实际电感中的电流平均值,电容两端的电压是实际电容两端电压的平均值等等。

2.1.1 CCM BUCK(连续模式BUCK)先直流扫描Vc,得到所需的输出电压,即得到了电路的静态工作点。

然后交流扫描,得到Tu的Bode图。

Tu为双极点。

此处Vc等同于占空比d。

2.1.2 DCM BUCK(断续模式BUCK)按以上方法得到Tu,在DCM下,Tu变成单极点函数。

模型CCM-DCM即可用于连续模式,也可用于断续模式。

此处Vc仍等同于占空比d。

Saber仿真电源案例详解

Saber仿真电源案例详解

file://E:\设计相关\saber专辑\Saber Power.htm
2006-3-19
Saber Power
页码,3/5
电源变压器设计的三种解决方案:
·器件模型法:Saber软件自带大量的变压器模型,以适应不同的磁心材料 (如3c2、3c6、3c8 等)、
磁心形状 (如EC、EP、EI、POT、SQUARE、TOROID、UI、UU、ETD等) 以及线圈的不同端口数目。
协同仿真功能:
Saber 的协同仿真器将 Saber 的混合信号分析同 Mentor Graphics 公司 ModelSim、Mo delSim/PLUS 或 Cadence 的 Verilog-XL 的纯数字仿真能力结合起来。这个接口使得 Avant! 的 Saber 仿真器拥有同其它设计环境中用的工业标准 VHDL 及 Verilog 仿真器协同仿真的优势。 这些设计环境包括 Avant!的 SaberSketch、Mentor Graphics、Cadence 和 Innoveda 等。 仿真输出的结果在 SaberScope 波形分析器中按时间排列起来,这使你更容易观察并对照模拟及 数字信号的数据。
模拟/数字边界的接口:
Saber 混合仿真产品在模拟/数字边界应用了 Avant!特殊的 Hypermodel 接口模型来使设计 的数字部分在数模接口处有着正确的电路特性。Hypermodel 是在网表产生时自动加到设计中去 的,使得同模拟器件相连的数字管脚具有精确的模拟电路仿真特性。对于 TTL,CMOS,ECL 等 各种不同工艺的标准逻辑管脚,Saber 提供给您至少 3500 多种 Hypermodel。这些 Hypermo del 可以被修改来同用户自定义的数字特性相匹配。Hypermodel 都是用 MAST 语言来完成的(而 不象其竞争产品一样将数模接口写死在设计中),这就意味着如果库中不存在,你可以创建自己的 Hypermodel 库。

开关电源典型设计实例精选

开关电源典型设计实例精选

开关电源典型设计实例精选
开关电源是一种常见的电源设计,它能够将输入电压转换为稳定的输出电压,常用于各种电子设备中。

以下是一些典型的开关电源设计实例:
1. Buck转换器,Buck转换器是一种常见的开关电源设计,它能够将高电压降低为稳定的较低电压。

这种设计常用于需要较低输出电压的应用,例如移动设备充电器和电源适配器。

2. Boost转换器,Boost转换器则是将输入电压升高为稳定的输出电压,常用于需要较高输出电压的场合,比如LED驱动器和太阳能电池充电器。

3. Buck-Boost转换器,Buck-Boost转换器能够实现输入电压的升压和降压,因此在需要输出电压高低变化范围较大的场合下应用广泛,比如电动汽车充电器和太阳能储能系统。

4. Flyback转换器,Flyback转换器是一种常见的离线开关电源设计,适用于输出功率较低的应用,例如家用电子设备和通信设备。

5. LLC谐振转换器,LLC谐振转换器结构简单,具有高效率和低电磁干扰等优点,适用于中高功率的电源设计,例如工业设备和服务器电源。

以上是一些典型的开关电源设计实例,每种设计都有其适用的场合和特点,工程师在实际设计中需要根据具体要求选择合适的设计方案。

希望以上信息能够对你有所帮助。

开关电源的pspice仿真_原创

开关电源的pspice仿真_原创

传递函数:
波特图:
那补偿时到底 如何放置零极点?
SWJTU
24
2009
SMPS Pspice Simulations
环路补偿K因子算法在PSpice中的应用
1980年Dean Venalbe提出了k因子的概念。算法的思想是让零极点保持必 要的距离,通过预先设定的交越频率 fc,并且在交越频率点得到设定的相 位裕度。 设计目标:带宽 5KHz 相位裕度 >45°
40
0
SEL>> -40 DB(V(R:2)) 0d DB(V(LAPLACE1:OUT))
-100d
-200d 1.0Hz P(V(R:2))
10Hz P(V(LAPLACE1:OUT))
100Hz
1.0KHz Frequency
10KHz
100KHz
1.0MHz
12
2009
SWJTU
SMPS Pspice Simulations
18
2009
SWJTU
SMPS Pspice Simulations
电压模闭环控制分析
19
2009
SWJTU
SMPS Pspice Simulations
� 电压模闭环控制原理图(开关模型)
L Qp Rf1 Vg(t) Qn C Rf2 R
Slope
Out +
Vc
C(s) R(s) Vref
20
� 参数扫描 ----只需在原理分析的基础上添加扫描项
40
0
-40 DB(V(R:2)) 0d
-100d
SEL>> -200d 1.0Hz P(V(R:2))
10Hz

开关电源 之BUCK变换器工作原理及Multisim实例仿真

开关电源 之BUCK变换器工作原理及Multisim实例仿真
I(f req): 22.3 kHz
D1 1N5824
A PR1
PR3
V
3
V: 5.71 V V(p-p): 29.3 mV V(rms): 5.73 V V(dc): 5.70 V V(f req): 22.3 kHz
C1
R1
22பைடு நூலகம்µF

根据上图仿真结果,则有:
1.14 5.7 0.58 12
93.36%
其中,开关 K1 代表三极管或 MOS 管之类的开关管(本文以 MOS 管为例),通过矩形波 控制开关 K1 只工作于截止状态(开关断开)或导通状态(开关闭合),理想情况下,这两种 状态下开关管都不会有功率损耗,因此,相对于线性电源的转换效率有很大的提升。
开关电源调压的基本原理即面积等效原理,亦即冲量相等而形状不同的脉冲加在具有惯 性环节上时其效果基本相同,如下图所示:
理想的 MOS 管在工作时(即导通或截止)的压降及流过其中的电流应如下图所示:
9
All rights reserved, NO Spreading without Authorization
DS
Author: Jackie Long
D
其中,VDS 表示 MOS 管两端的压降,而 ID 表示流经 MOS 管的电流,在任意时刻,VDS 与 ID 都会有一个参数为 0,因此消耗的功率 P=U×I 也应当是 0,但是实际 MOS 管的开关与 闭合都是需要过渡时间的,真实的开/关状态如下图所示:
同样是从输入电源 10V 中获取 5V 的输出电压,线性稳压电源的有效面积为 5×T,而对 应在开关稳压电源的单个有效周期内,其有效面积为 10×T×50%(占空比)=5×T,这样只要 在后面加一级滤波电路,两者的输出电压有效值(平均值)是相似的。

开关电源中Saber仿真设计实例

开关电源中Saber仿真设计实例

经常在论坛上看到变压器设计求助,包括:计算公式,优化方法,变压器损耗,变压器饱和,多大的变压器合适啊?其实,只要我们学会了用Saber这个软件,上述问题多半能够获得相当满意的解决。

一、 Saber在变压器辅助设计中的优势:1、由于Saber相当适合仿真电源,因此对电源中的变压器营造的工作环境相当真实,变压器不是孤立地被防真,而是与整个电源主电路的联合运行防真。

主要功率级指标是相当接近真实的,细节也可以被充分体现。

2、Saber的磁性材料是建立在物理模型基础之上的,能够比较真实的反映材料在复杂电气环境中的表现,从而可以使我们得到诸如气隙的精确开度、抗饱和安全余量、磁损这样一些用平常手段很难获得的宝贵设计参数。

3、作为一种高性能通用仿真软件,Saber并不只是针对个别电路才奏效,实际上,电力电子领域所有电路拓扑中的变压器、电感元件,我们都可以把他们置于真实电路的仿真环境中来求解。

从而放弃大部分繁杂的计算工作量,极大地加快设计进程,并获得比手工计算更加合理的设计参数。

4、由于变压器是置于真实电路的仿真环境中求解的,所有与变压器有关的电路和器件均能够被联合仿真,对变压器的仿真实际上成了对主电路的仿真,从而不仅能够获得变压器的设计参数,还同时获得整个电路的运行参数以及主要器件的最佳设计参数。

二、 Saber 中的变压器我们用得上的 Saber 中的变压器是这些:(实际上是我只会用这些 )分别是:xfrl 线性变压器模型,2~6绕组xfrnl 非线性变压器模型,2~6绕组单绕组的就是电感模型: 也分线性和非线性2种线性变压器参数设置(以2绕组为例):其中:lp 初级电感量ls 次级电感量np、ns 初级、次级匝数,只是显示用,不是真参数,可以不设置rp、rs 初级、次级绕组直流电阻值,默认为0,实际应该是该绕组导线的实测或者计算电阻值,在没有得到准确数据前,建议至少设置一个非0值,比如1p(1微微欧姆)k 偶合(互感)系数,建议开始设置为1,需要考虑漏感影响时再设置为低于1的值。

采用UC3842的反激开关电源调试及仿真

采用UC3842的反激开关电源调试及仿真

采用UC3842的反激开关电源调试及仿真1、反激电路的工作原理开关变换器是指利用半导体功率器件作为开关,将一种电源形态转变为另一种形态的主电路。

反激式开关电源是开关变换器的一种,其主电路如图1所示。

由于变压器同名端在一侧,故输出电压上负下正。

当驱动信号为高电平时,开关管导通,电压源给原边电感充电,电感电流线性上升,直到开关管关断时刻,原边电流达到最大值。

开关管导通期间,由于二极管承受反向电压,副边没有电流通过。

当驱动信号为低电平时,开关管关断,副边二极管承受正向电压开始导通。

给电容充电,同时电容通过电阻放电。

电容电压为上负下正。

反激式变换器有两种工作模式,一种为连续工作模式,一种为非连续工作模式。

在下一个周期的驱动信号来临前,变压器副边电感中的电流已经降低为0,这种工作模式成为电流非连续工作模式。

如果在下一个周期的驱动信号来临前,变压器副边电感中的电流没有降低为0,此种工作模式成为电流断续模式。

处于连续模式和断续模式之间的是临界模式,此种状态下,当下一个周期信号来临时,电感电流刚好减少为0.为了避免变压器磁芯饱和,通常设计变压器工作在非连续工作模式。

反激式变换器主要有以下特点:(1)高频变压器一次绕组的同名端与二次绕组的同名端极性相反,一次绕组非同名端和开关管的驱动端共地,一次绕组的同名端接电压源的正端。

(2)高频变压器相当于一个储能电感,在开关管导通时变压器储存能量,在开关管截止时,将能量传给二次侧。

(3)可在连续模式下或非连续模式下工作。

(4)可以构成直流输入端的变换器,也可以构成交流输入的AC/DC变换器。

(5)输出电压低于或高于输入电压取决于高频变压器的匝数比。

(6)增加二次绕组和相关电路可以获得多路输出。

(7)反激式变换器一般不需要在输出整流二极管与滤波电容之间串联低频滤波电感。

2、UC3842的工作原理UC3842是一种高性能、单端输出、频率可调的电流型PWM调制。

基于pi控制方式的a开关电源multisim仿真研究大学论文(1)

基于pi控制方式的a开关电源multisim仿真研究大学论文(1)

基于pi控制方式的a开关电源multisim仿
真研究大学论文(1)
本论文通过对基于PI控制方式的A开关电源的Multisim仿真研究,探讨了该控制方式在电源设计中的作用,并分析了电源设计中的问题及其解决方法。

一、介绍
A开关电源是一种高效、快速响应的DC-DC转换器,广泛应用于各种应用领域,尤其是电子设备中。

本论文的研究对象是基于PI控制方式的A开关电源,在这种控制方式下,开关管的开关频率可以调节,从而实现电源输出端电压的稳定。

二、PI控制方式
PI控制方式是一种常用的闭环调节控制方法,它由比例(P)和积分(I)两个部分组成。

PI控制器可以对电源输出电压进行精确控制,并且具有响应速度快、稳定性高等优点。

三、A开关电源的Multisim仿真
Multisim是一款常用的电路仿真软件,可以帮助电源设计师设计和验证电路的功能及性能。

本论文使用Multisim对基于PI控制方式的A 开关电源进行了仿真,通过调节开关频率和PI控制器的参数等,调整电源输出端的电压,达到稳定的状态。

四、电源设计中的问题及其解决方法
在电源设计中,会遇到一些问题,如:开关频率不稳定、电源输出电压波动等。

为了解决这些问题,本论文提出了以下解决方法:
1.调整开关频率,使其在一定范围内稳定,从而保证电源输出端电压
的稳定性。

2.调整PI控制器的比例和积分参数,使其更加精准地控制电源输出端电压。

3.添加稳压管等器件,以保护电源免受短路等故障的影响。

五、结论
本文通过对基于PI控制方式的A开关电源的Multisim仿真研究,探讨了该控制方式在电源设计中的作用,并提出了解决方案,可以为电源设计工程师提供参考。

高手教仿真 全桥开关电源中变压器的仿真

高手教仿真 全桥开关电源中变压器的仿真

高手教仿真全桥开关电源中变压器的仿真全桥是一种由四个三极管或着MOS管组成的振荡,与全桥电路相比,半桥在进行电路的振荡转换时会很容易产生干扰,容易使波形变坏。

全桥虽然成本低,容易形成,但是相对的电路设计就较为复杂。

在电子电力设计当中,全桥经常作为开关电源的搭配出现,这两种高效率低成本设计的结合,极大的推动了目前电源设计领域的进步。

本篇文章将为大家介绍一种12V1000W的全桥开关电源中变压器仿真设计。

以12V1000W全桥为例,介绍一下主要设计参数:输入电压为前级PFC输出的直流母线,最低波谷电压为350VDC;输出电压12VDC,输出功率1000W;PWM频率F=100KHz,即PWM周期10us;最大占空4.5us,即最小死区500ns;图1仿真电路如图1所示。

其中变压器先采用3绕组线性模型,初步设置的参数如图2所示:图2第一步:调整变压器及电路初步参数,将变压器耦合系数k12=k13=k23=1(紧耦合,无漏感)。

仿真调整副边电感l2、l3,使输出为12V,得到l2、l3=1.6uH。

观察变压器原边电流:图3图4在图4中,电流表现出富裕且连续的特性,这就说明可以对原边电感进行减少。

观察输出储能电感L1电流波形。

纹波很小,说明L1还可以减小。

保持输出12V,调整变压器电感,直到原边电感接近临界模式,调整L1电感,直到电流纹波系数大致为30%。

最后得到变压器l1=400uH、 l2、l3=640nH,L1=180nH。

校验一下各部电压应力,并没有出现超压的情况,最后校验一下死区。

图5如果远无直通可能,电流也是连续的,那么就意味着正常,可以开始下一阶段的设计。

第二步:调整吸收参数将变压器耦合系数设定为k=0.995,对应1%典型漏感。

调整副边吸收RC,直到满足二极管反压要求。

得到C=15nF、R=2.2Ω为最佳,二极管反压<32.3V,吸收功率3.54W。

图6改变变压器耦合系数:图7这就意味着,只要漏感<2%,二极管反压即可<35V。

基于Saber的开关电源设计仿真

基于Saber的开关电源设计仿真

• 9•本文介绍了开关电源的设计原理和saber 仿真软件,在开关电源主电路部分采用半桥结构,控制芯片采用美国Sllicon General 公司生产的电压模式PWM 控制器SG3525,最后通过Saber 仿真软件得到了多个输出参考点的仿真波形,由波形可见仿真效率高且设计满足开关电源稳定输出直流7.5V 电压的指标。

随着电子信息产业的不断进步,开关电源技术也在日新月异的发生变化。

目前,开关电源主要应用于生活中一些常见的电子设备中,具有体积小、可靠性好和高效率等特点,已经逐步发展为当代电子信息产业中一种不可或缺的电源设备。

开关电源通过不同种类的拓扑结构,将标准电压转换为各种设备所需求的电压的电能转换装置。

在电力电子中,开关电源的拓扑结构有好多种,常用的电路拓扑有单端正激、单端反激、推挽、全桥和半桥等结构。

在设计过程中,我们可以利用仿真软件对开关电源进行设计和验证,从而能够节约成本、减少工作量等。

在本论文中,主电路采用半桥结构,控制电路选用PWM 控制芯片SG3525,最后利用Saber 仿真软件进行建模和仿真,设计了一款将220V 交流电压降为7.5V 直流电压输出,在Saber 软件中分析直流工作点和瞬态分析工作过程的仿真输出波形进行参数的调整,从而在一定程度上验证了该款电源具有良好的稳定性,满足设计指标。

1 设计原理主电路采用半桥拓扑结构,其工作原理是:当开关S 1开通后,二极管VD1处于导通状态,S2开通后,二极管VD2处于导通状态;当两个开关都处于关断状态时,变压器绕组W1中的电流值为零,此时绕组W2和W3中电流幅值大小相等,方向相反,二极管VD1和VD2处于导通状态。

半桥变换电路变压器励磁方式为双向,可靠性低且需要复杂的隔离驱动电路。

其拓扑结构如图1所示:图1 半桥变换电路原理图控制电路部分选用PWM 控制芯片SG3525,SG3525芯片是由美国Sllicon General 公司研发,是一款电压模式控制的PWM 控制芯片。

《开关电源仿真设计》课件

《开关电源仿真设计》课件

由MathWorks公司开发,适用于多种领域的系统仿真,包括电 力电子、控制系统等。
专门针对电力电子系统的仿真软,具有强大的元件库和模型 库。
由Mentor Graphics公司开发,适用于电子系统的仿真,具有 广泛的元件库和模型库。
由National Instruments公司开发,适用于电子电路的仿真, 具有直观的用户界面和丰富的元件库。
05
开关电源仿真设计常见问题与解决方

仿真结果不准确的原因与解决方法
01
仿真模型建立不准 确
确保电路模型参数准确,元件参 数和实际电路一致,考虑寄生参 数和耦合效应。
02
仿真算法选择不当
根据电路特性和精度要求选择合 适的仿真算法,如时域仿真、频 域仿真等。
03
初始条件设置不合 理
为电路元件设置合理的初始条件 ,以避免仿真结果出现不稳定或 错误。
提高仿真效率的方法与技巧
使用合适的仿真算法
选择高效、精确的仿真算法,如快速傅里叶 变换、有限元法等。
优化电路模型
简化电路模型,去除不必要的元件和连接, 减少仿真计算量。
合理设置仿真参数
调整仿真时间步长、收敛精度等参数,以提 高仿真速度和准确性。
常见电路模型建立问题与解决方法
1 2
元件模型不准确
查找元件的准确模型,或根据实际测试数据建立 元件模型。
重复仿真
在优化设计后,重复仿真过程,直至达到满 意的设计效果。
记录和整理
将每次仿真的结果进行记录和整理,以便后 续的总结和归纳。
04
开关电源仿真设计案例分析
案例一:Boost电路仿真设计
总结词
Boost电路是一种常用的开关电源拓扑结 构,通过改变开关管的占空比来调节输 出电压。

90W反激型开关电源的仿真设计

90W反激型开关电源的仿真设计

摘要开关电源不但能够节省资源保护环境,还为人们带来巨大的经济效益,这使得开关电源的发展成为一种必然趋势。

而反激型开关电源使用到的元器件的个数少、电路简单、成本低、可靠性高,伴随着人们对小型化消费类电子产品的需求日益增高,小功率开关电源的需求也随之增高,所以反激型开关电源得到了广泛的应用。

反激型开关电源主要由4个部分组成,即主电路、控制电路、检测及保护电路和其他电路。

主电路也就是反激型电路,控制电路采用UC3842这种PWM集成控制芯片组成。

在确定了反激型开关电源的整体拓扑后,联系需要达到的技术指标,通过计算可以得到主要元器件母线电容、变压器、MOSFET的相关参数。

对于一些辅助型器件的参数可以在仿真软件中进行调试得到。

功率因数的校正使用有源功率因数校正,可以达到0.99以上。

在Multisim仿真软件中对设计出的电路拓扑进行调试和仿真验证,在整体仿真图中可以看到输出电压为20V左右,等待输出电压稳定之后电压波形为一条直线,其输出负载的电流为4.2A左右,在需要达到的技术指标中输出电压为20V,输出电流为4.5A,结果与实际需要达到的指标有一定的误差,误差在允许的范围之内,所以90W反激型开关电源的仿真设计完成。

关键词:开关电源;反激;仿真;调试AbstractSwitching power supply will not only be able to save resources to protect the environment, but also bring huge economic benefits for people, which makes the development of the switching power supply has become an inevitable trend. The number of flyback switching power supply using fewer components to the circuit is simple, low cost, high reliability, along with the demand for miniaturization of consumer electronics products of the increasing demand for small switching power supply also will increased, so the flyback type switching power supply has been widely used.Flyback switching power supply is mainly composed of four parts, namely the main circuit, control circuit, detection and protection circuits and other circuits. The main circuit is a flyback circuit, PWM control circuit using UC3842 this integrated control chips. In determining the overall topology flyback switching power supply after contact technical indicators need to reach, you can get the main components bus capacitor, transformer, MOSFET related parameters by calculation. For some parameters of the device can be assisted in the simulation software debug obtained. Power factor correction using active power factor correction, can reach more than 0.99.In Multisim software to design a circuit topology for debugging and simulation, the overall figure can be seen in the simulation output voltage of about 20V, output voltage stability after waiting voltage waveform is a straight line, the output load current is 4.2A about the need to meet the technical specifications of the output voltage is 20V, output current is 4.5A, and the actual results of the indicators needed to achieve a certain error, the error is within the allowable range, so the 90W flyback switching power supply design simulation completed.Key Words: Switching power supply, Flyback, Simulation, Debugging目录摘要 (I)Abstract (II)目录 (III)1 绪论 (4)1.1 开关电源的研究意义 (4)1.2 开关电源的发展现状和前景 (4)1.3 反激型开关电源的研究 (4)2 反激型开关电源系统设计 (4)2.1 电源系统的整体框架 (4)2.2 反激变换电路工作拓扑及其工作原理 (5)2.3 依据技术指标设计相应的反激型电路 (6)2.3.1 对于母线上电容的计算 (6)2.3.2 变压器的计算..................................................................... 错误!未定义书签。

开关电源的仿真分析

开关电源的仿真分析

开关电源的仿真分析建立了开关电源的Pspice仿真电路模型,着重仿真了开关电路及输出电路的电压、电流,较直观地揭示了开关电源中电磁干扰产生及存在的本质,提出了解决其电磁干扰问题的措施。

标签:开关电源;仿真;电磁干扰在开关电源中,开关管的电压接近方波,含有丰富的高次谐波,同时,由于开关变压器的漏电感及分布电容以及开关器件的工作状态非理想,在高频开或关时,常常会产生高频、高压的尖峰高次谐波振荡,该谐波通过开关管的散热器对地之间的分布电容传送到输入端;也可以通过变压器初次级间的耦合电容及变压器的对地电容通过输出回路传送到输入端。

因此,开关电源中存在着较严重的电磁干扰。

本文以12V、0.85A的反激式开关电源为例,见图1,应用仿真软件Pspice 进行研究,仿真分析了开关电源中的电流和电压的特点,探究了电源的EMC问题的解决策略。

图1 12V,0.85A的反激式开关电源图2 反激式开关电源的Pspice仿真电路1 开关电路的电流、电压下图3依次是开关管漏源电压、漏极电流、高频变压器原边电流、RCD吸收电路的电流、漏极对地电容的电流:图3由图3可以总结出此反激式开关电源波形的几个特点:(1)波形均為脉冲波形,频率为40KHz;(2)开关管的导通时间极短,此电路参数下为6uS左右。

(3)除开关管的电流,都叠加着振荡波形,即文献资料中所说的“振铃”。

2 由漏电感引起的开关管的电压尖峰及高频振荡图4是无RCD钳位电路时开关管漏源电压的波形。

图中,开关管截止瞬间的电压尖峰和高频振荡由高频变压器的漏感引起,产生了659.055V的瞬间电压,这同有RCD钳位电路(图3)相比(最高电压为500V左右),高出了159V。

此开关管的额定电压为600V,且工作在高频状态,如果不采取措施,开关管很容易损坏,造成整个电源不能正常工作,作为设备的驱动装置,这是不允许的。

3 开关管漏极电压突变引起的干扰电流由于开关管的漏源电压极高,且导通和截止的时间极短,使开关管漏极对地等效电容Cp产生了较大的干扰电流。

电源电路仿真实例

电源电路仿真实例

电源电路仿真实例
一、建立工程文件以及原理图文件
二、先绘制好原理图
1、在安装目录下,找到library中的两个常用的库(因为它们绝大部分由simulation的参数)添加到库中
2、在Miscellaneous Devices.IntLib库中添加滑动变阻器,并把designer中的R?改为R1,
3、在Miscellaneous Devices.IntLib库中添加电感并双击元器件把designer中的L?改为L1,10mh改为1mh
4、在仿真栏中放置电容并改变电容的相关参数

5、在仿真栏放置正弦信号激励源
双击正弦信号激励源将designer中的1HZ改为60HZ,然后双击type中的simulation,然后点paramenters,把1Hz改为60HZ
6、将原理图链接好如图所示
7、在所要测量的点上放置网络标号
三、检查每个元器件是否有simulation的属性
四、点design——>simulation——>Mixed sim
点击ok仿真结果如图所示。

基于PID控制方式的4A开关电源-multisim仿真

基于PID控制方式的4A开关电源-multisim仿真

基于PID控制方式的4A开关电源Multisim仿真研究学院: xxxxx专业:xxxxxxxxxx班级:xxxxxx姓名:xxx学号:xxxxxx时间:xxxxxx引言开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM )控制IC 和MOSFET 构成。

随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,开关电源向高频化、小型化发展。

在开关电源中,变换器占据着重要地位。

Buck 变换器是最常用的变换器,工程上常用的拓扑如正激、半桥、全桥。

本文就是对Buck 变换器的主电路、控制方式以及补偿电路进行设计研究仿真,得出波特图和负载的电压电流仿真(控制方式为PID ,负载电流为4A ,仿真软件为Multisim )。

1.主电路设计1.1 主电路参数 输入直流电压V in =15V 输出直流电压V 0=5V 输出电流I N =4A 输出电压纹波V rr =50mV 基准电压V ref =1.5V 开关频率f s =100kHz 。

图1 Buck 主电路1.2主电路参数计算 ①滤波电容参数设计如下:输出纹波电压只与电容的容量以及ESR 有关,即Ω=⨯===∆.5m 624.2050.20V rr V rr Rc I i N L由于电解电容生产厂家很少给出ESR ,而且ESR 随着电容的容量和耐压变化很大,但是C 与RC的乘积趋于常数,约为50~80F *Ωμ,故F 100062.5m F.562Rc Rc C C μμ=ΩΩ•=•=②滤波电感参数设计如下:开关闭合和导通的基尔霍夫电压方程如下:图2等效电路onLon L 0in T i L V V V V ∆•=--- (1) OFFLD L 0T i L V V V ∆•=++ (2) ms 1001T T OFF on =+ (3) 假设二极管的通态压降0.5V V D =,电感中的电阻压降为.1V 0V L =,开关管的导通压降.5V 0V on =,根据等式(1)、(2)、(3)可得:H .843L μ=,s 3.73T on μ=,故取H 74L μ=。

hk-008c开关电源仿真

hk-008c开关电源仿真

hk-008c开关电源仿真
开关电源系统的仿真步骤:
建立系统的仿真模型,从而获得描述系统的方程式;构造求解系统方程的算法。

当系统比较简单或者系统的阶数较低时,通常可以得到系统的解析解;但当系统较复杂或系统的阶数较高时,一般只有借助于计算机仿真方法,才能够对系统设计进行仿真。

开关电源电路的建模方法:
1、状态变量法:以电路中的某些支路电压和电流作为状态变量,建立开关电源电路的状态方程。

2、节点分析法:EMTP、ATP、PECAN等程序。

3、非线性代数微分方程转换为一组非线性差分方程,应用牛顿拉夫逊法迭代求解方程组,利用稀疏LU分解技术连续求解线性代数方程组。

4、状态空间平均法:利用一周期内平均状态变量,将一个非线性、时变、开关电路转变为一个等效的非线性、时不变的连续电路,因而可对开关转换器作大信号瞬态分析,并可决定其小信号传递函数及零、极点配置,建立一个状态空间平均电路模型。

,SPICE和IsSPICE 仿真程序 SPICE是一种通用集成电路计算机分析程序,可用其对电路进行非线性直流分析、非线性瞬态时域分析和交流小信号时域和频域分析等。

SPICE应用了一组电路模型方程,基本分析工具是牛顿拉夫逊迭代法。

SPICE的仿真结果以数据文件形式表示,可以将它
输入其他软件如MATLAB等,以便进一步对电路性能进行评估和寻优。

MATLAB语言在开关电源仿真中的应用。

开关电源(1)之BUCK降压变换器工作原理及Multisim实例仿真

开关电源(1)之BUCK降压变换器工作原理及Multisim实例仿真

开关电源(1)之BUCK降压变换器⼯作原理及Multisim实例仿真开关电源(Switching Mode Power Supply)即开关稳压电源,是相对于线性稳压电源的⼀种的新型稳压电源电路,它通过对输出电压实时监测并动态控制开关管导通与断开的时间⽐值来稳定输出电压。

由于开关电源效率⾼且容易⼩型化,因此已经被⼴泛地应⽤于现代⼤多数电⼦产品中。

如果说每个现代家庭都⾄少有⼀个开关电源都不为过,如电视机(彩⾊的)、电脑、笔记本、电磁炉等等内部都有开关电源,虾⽶?这些东西你们家都没有?我去!那⼿机有没有?⼿机充电器也是⼀个⼩型的开关电源,中招了吧!⼿机也没有,那就是古代家庭了,忽略之!如下图所⽰为线性稳压电源电路的基本原理图:之所以称其为线性电源,是因为其稳定输出电压的基本原理是:通过调节调整管(如三极管)的压降V D来稳定相应的输出电压V O,也因调整管处于线性放⼤区⽽得名。

如果某些因素使得输出电压V O下降了,则控制环路降低调整管的压降V D,从⽽保证输出电压V o不变,反之亦然,但这样带来的缺点是调整管消耗的功率很⼤,使得该电路转换效率低下,当然,线性电源的优点是电路简单,纹波⼩,但是在很多应⽤场合下,转换效率才是⾄关重要的。

为了进⼀步提升稳压电路中的转换效率,提出⽤处于开关状态的调整管来代替线性电源中处于线性状态中的调整管,⽽BUCK变换器即开关电源基本拓扑之⼀,如下图所⽰:其中,开关K1代表三极管或MOS管之类的开关管(本⽂以MOS管为例),通过矩形波控制开关K1只⼯作于截⽌状态(开关断开)或导通状态(开关闭合),理想情况下,这两种状态下开关管都不会有功率损耗,因此,相对于线性电源的转换效率有很⼤的提升。

开关电源调压的基本原理即⾯积等效原理,亦即冲量相等⽽形状不同的脉冲加在具有惯性环节上时其效果基本相同,如下图所⽰:同样是从输⼊电源10V中获取5V的输出电压,线性稳压电源的有效⾯积为5×T,⽽对应在开关稳压电源的单个有效周期内,其有效⾯积为10×T×50%(占空⽐)=5×T,这样只要在后⾯加⼀级滤波电路,两者的输出电压有效值(平均值)是相似的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

介绍一个开关电源仿真的实例
 为大家介绍一个开关电源仿真的实例。

由于开关电源具有很强的非线性,并且经常是双环乃至多环反馈,因此无论用哪种仿真工具,对其进行仿真分析都是一件很困难的事情,相信用Saber进行开关电源分析的网友,也有过类似的经验。

这个仿真实例中使用了TI的UC3844做为控制器,实现一个反激电路。

验证电路源于TI公司的UC3844 数据手册(data sheet) 第七页所提供的反激变换器设计电路,如下图所示:
 在SaberSketch根据对该原理图进行适当修改,具体修改情况如下:
 1.输出由双路±12V/0.3A 的负载改为24V/0.6A负载.
 2.输出滤波电容C12/C13 由2200u 改为141u. C11 由4700u 改为3000u
 3.去掉负载绕组供电的复杂滤波网络, 改为RC充电模式, 其中R=10, C=C2=100u.
 4.将输出部分的滤波器由π型改为电容直接滤波.
 5.去掉MOSFET (UFN833)的缓冲电路( SNUBBER).。

相关文档
最新文档