锁相技术 (4)
机械原理 锁相
机械原理锁相
机械原理:
机械原理是机械工程学的一个分支,主要研究机械的工作原理和设计,探讨机械的运动学、动力学、静力学、材料力学等方面的原理。
机械原理应用于机械工程领域,为机械的设计、制造、维护提供理论和技术支持。
锁相:
锁相是一种信号处理技术,用于提取和恢复信号的周期性特征。
锁相技术可以通过控制周期性信号的相位,使其与参考信号保持同步,从而准确地测量信号的频率、相位和幅值等参数。
锁相技术广泛应用于光电子学、通信、控制系统、测量仪器等领域。
锁相可以通过电路实现,也可以通过软件算法实现。
在锁相技术中,通常采用相位锁定环路(PLL)实现对周期性信号的同步。
PLL 由相位检测器、低通滤波器、振荡器和分频器等组成,可以自动跟踪信号相位的变化,保持参考信号和输入信号的同步。
锁相技术还可以应用于信号调制、频率合成、降噪等方面。
锁相技术知识点总结
锁相技术知识点总结一、锁相放大器的原理锁相放大器是锁相技术的核心设备,其原理是利用相位敏感检测器(PSD)和低通滤波器实现对输入信号的相位测量和提取。
相位敏感检测器是将输入信号和参考信号相乘,然后通过低通滤波器滤除高频信号,得到一个与输入信号相位有关的直流信号。
通过对这个直流信号进行放大和数字化处理,就可以得到输入信号的相位信息。
锁相放大器的原理可以简单地用一个比喻来理解,就是通过将输入信号和参考信号进行“比对”,得到两者之间的相位差,然后通过放大和数字化处理来得到相位信息。
二、锁相放大器的工作原理锁相放大器的工作原理可以分为两个步骤:信号相位的检测和信号的放大和数字化处理。
在信号相位的检测步骤中,输入信号和参考信号经过相位敏感检测器进行相乘,并通过低通滤波器滤除高频信号,得到一个与输入信号相位有关的直流信号。
在信号的放大和数字化处理步骤中,直流信号经过放大器进行放大,然后经过模数转换器进行数字化处理,得到输入信号的相位信息。
整个过程中,锁相放大器可以通过调节参考信号的相位、频率和幅度来对输入信号进行精确的测量和控制。
三、锁相放大器的应用锁相放大器广泛应用于科学研究、通信、医学、生物化学、工业控制等领域。
在科学研究领域,锁相放大器常用于对微弱信号的测量和分析;在通信领域,锁相放大器常用于对调制信号的检测和解调;在医学领域,锁相放大器常用于生物信号的测量和分析;在生物化学领域,锁相放大器常用于对生物信号的检测和分析;在工业控制领域,锁相放大器常用于对工艺参数的测量和控制。
锁相放大器通过提高信噪比和测量精度,可以满足不同领域对信号测量和控制的需求。
四、锁相放大器的发展趋势随着科学技术的发展,锁相放大器的性能不断提高,应用领域不断拓展。
锁相放大器的发展趋势主要包括以下几个方面:一是性能的提高,包括测量精度的提高、频率范围的扩大、动态范围的增加等;二是功能的增强,包括新的信号处理算法、新的控制方式、新的接口标准等;三是应用领域的拓展,包括科学研究、通信、医学、生物化学、工业控制等领域的应用;四是结构的优化,包括体积的缩小、功耗的降低、成本的降低等。
锁相技术第4章
第4章 环路捕获性能
解决的办法: 解决的办法: 1. 牺牲环路的捕获性能,提高环路的跟踪性能。依 牺牲环路的捕获性能,提高环路的跟踪性能。 靠辅助捕获电路提高环路的捕获性能。(原则) 。(原则 靠辅助捕获电路提高环路的捕获性能。(原则) 2. 辅助捕获分为辅助频率捕获和辅助相位捕获。 辅助捕获分为辅助频率捕获 辅助相位捕获。 辅助频率捕获和 ①相位捕获:一般依靠环路自身实现 ,在高要求的 相位捕获: 数字通信系统中,设置辅助相位捕获装置。 数字通信系统中,设置辅助相位捕获装置。 ②辅助频率 捕获的方法 a.变起始频差 ∆ω o 变起始频差 b.变带宽 变带宽 c.变增益 变增益K 变增益
o H
《锁相技术》
第4章 环路捕获性能
讨论: 1. 相平面图是由相 轨迹簇构成的,不 同的起始频差有就 不同的相轨迹。 2. 相轨迹是有方向 的曲线 ɺ 上半平面:θ e (t ) > 0 → t ↑→ θ e (t ) ↑→ 相点右移 ɺ 下半平面:θ e (t ) < 0 → t ↑→ θ e (t ) ↓→ 相点左移 3. 当起始频差比较大时,相轨迹近似正弦波,但在 每个 2π 周期后,会向横轴靠近。(靠近锁定点)
F ( j 0) = 1
K >> ∆ω n时
ω n2 2τ 2 ∆ 捕获带: 捕获带: ∆ω p ≈ K ∆ω p ≈ 2 Kξω n − ω p ≈ 2 Kξω n
τ1
2
捕获时间: 捕获时间: Tp ≈
τ2 K τ1
2
∆ωo2
《锁相技术》
第4章 环路捕获性能
3. RC积分滤波器二阶环的捕获带 积分滤波器二阶环的捕获带
1 F ( s) = 1 + sτ 1 ∆ω p 1 )] = Re[ F ( j 2 1 + τ 12 ( ∆ω p / 2) 2 F ( j 0) = 1
锁相技术及频率合成
技术优势与挑战
技术优势
PLL和FS的结合可以实现快速频率切 换、低相位噪声、高分辨率等优点。
技术挑战
需要解决PLL和FS之间的相位噪声传 递和杂散抑制等问题,以确保输出信 号的质量。
实际应用案例
通信系统中的频率合成
用于产生稳定的本振信号,确保接收和发射信号的稳定性和准确 性。
雷达系统中的频率合成
锁相技术原理
锁相技术的基本原理是利用负反馈控制,将外部输入信号与 内部振荡信号进行相位比较,并根据比较结果调整内部振荡 器的参数,使两者的相位保持一致。
当外部输入信号的频率与内部振荡信号的频率相差较小时, 锁相环能够自动跟踪输入信号的频率,并保持两者之间的相 位差恒定。
锁相技术的应用
锁相技术在通信、雷达、导航 、测量等领域得到广泛应用。
智能化
利用人工智能和机器学习技术,实 现锁相技术及频率合成的智能化控 制,提高系统的自适应性。
研究热点与前沿
宽频带、高精度频率合成
01
研究宽频带、高精度频率合成技术,以满足通信、雷达、电子
对抗等领域的需求。
快速频率跳变
02
研究快速频率跳变技术,实现快速切换和灵活的通信方式,提
高通信系统的抗干扰能力和保密性。
电子对抗
在电子对抗领域,锁相技术和频率合成技术用于生成干扰信号和探测信
号,对于提高电子设备的抗干扰能力和探测能力具有重要作用。
02
锁相技术概述
锁相技术定义
Байду номын сангаас
01
锁相技术是一种通过相位比较和 调整实现信号频率跟踪和锁定相 位的电子技术。
02
它利用外部输入信号与内部振荡 信号的相位比较,自动调整内部 振荡器的参数,使两者的相位保 持一致。
锁相技术概括
锁相技术原理及应用学号:0808224030姓名:吕社钦第一章 锁相环路的基本工作原理第一节 锁定与跟踪的概念 一、相位关系描述锁相环路(PLL)是一个相位跟踪系统,方框表示如图1-1(a)。
图1-1 相位跟踪系统框图设输入信号 (1-1) 式中U i 是输入信号的幅度;ωi 是载波角频率;θi(t)是以载波相位ωit 为参考的瞬时相位。
若输入信号是未调载波,θi(t) 即为常数,是ui(t)的初始相位;若输入信号是角调制信号(包括调频调相),θi(t)即为时间的函数。
设输出信号 (1-2) 式中Uo 是输出信号的幅度;ωo 是环内被控振荡器的自由振荡角频率,它是环路的一个重要参数;θo(t)是以自由振荡的载波相位ωot 为参考的瞬时相位,在未受控制以前它是常数,在输入信号的控制之下,θo(t)即为时间的函数。
(注: 锁相环路是一个相位反馈控制系统,输入信号ui(t)对环路起作用的是它的瞬时相位,幅度通常是固定的.输出信号u0(t)的幅度Uo 通常也是固定的,只是其瞬时相位受输入信号瞬时相位的控制.因此,我们希望直接建立输出信号瞬时相位与输入信号瞬时相位之间的控制关系.我们先讨论两个不同频率信号之间的相位关系.)图1-2 输入信号和输出信号的相位关系图1-2(a)所示。
从图上可以得到两个信号的瞬时相位之差 (1-3)前面已经说到,被控振荡器的自由振荡角频率ωo 是系统的一个重要参数,它的载波相位ωot 可以作为一个参考相位。
这样一来,输入信号的瞬时相位可以改写为(1-4)令 (1-5)()sin[()]i i i i u t U t t ωθ=+()cos[()]o oo o u t U t t ωθ=+()[()][()]()()()e i i o o i o i o t t t t t t t t θωθωθωωθθ=+-+=-+-()()()i i o i o i o i o t t t t t ωθωωωθωωω+=+-+∆=-为输入信号频率与环路自由振荡频率之差,称为环路的固有频差。
精品课件-锁相技术(郑继禹)-第5章
37
第五章 数 字 锁 相 环
第三节 超前-滞后型位同步数字环 对于超前-滞后数字锁相环, 我们结合一个位同步提取加以 说明。超前-滞后数字锁相环组成如图5-16所示。
38
第五章 数 字 锁 相 环
图 5-16 超前-滞后数字锁相环基本组成
39
第五章 数 字 锁 相 环
33
Hale Waihona Puke 第五章 数 字 锁 相 环
由于(5-7)式含有时间变量不易运算,故将正弦函数uo(k)变 换成方波U(k),即
(5-8) 式中
(5-9)
34
令 式中
第五章 数 字 锁 相 环
(5-10)
(5-11)
35
而 从而有 所以
第五章 数 字 锁 相 环 36
(5-12) (5-13)
第五章 数 字 锁 相 环
代入(5-28)式, 可得 (5-29)
56
第五章 数 字 锁 相 环
从而有环路可锁定的最高频率(或速率) 环路可锁定的最低频率(或速率) 锁定(或同步)范围
57
(5-30) (5-31) (5-32)
第五章 数 字 锁 相 环
在通信过程中, 若信号发生暂时中断, 则原处于同步状态的 环路就失去控制, 由于未控制时频差为ΔB=B-BC, 因而位同步 信号相位就会相对于输入信号相位而发生偏移, 偏移的数值应为
一、电路组成与说明 电路实例是数字通信中常用的一种简单的超前-滞后位同步
环路, 未用序列滤波器, 电路组成如图5-17所示。
40
第五章 数 字 锁 相 环
图5-17 位同步数字环组成电路
41
第五章 数 字 锁 相 环
锁相技术
锁相技术--模拟调频调相的调制器通信工程(2)班一、模拟调频调相的原理1、调频与调相信号设幅度为1的单一频率Ω的调制信号)(1)t=tu)sin(Ω(ϕ+F则调频信号为[]{}t t u U t u F c c FM )(sin )(ωω∆+= (2)式中c ω为载频;c U 为载波幅度;ω∆为峰值频偏。
将(1)式带入(2)式得[]{}t t u U t u c c FM )sin(sin )(ϕωω+Ω∆+= 已调信号的幅度为常数,其瞬时频偏正比于调制信号。
调频信号也可以用频谱来表示。
单一频率Ω正弦信号调制的调频信号,其频谱不再像条幅信号那样是三条谱线,而是有无限多的谱线。
谱线的频率为Ω±Ω±Ω±n c c c ωωω,...,2,,其中n 为正整数。
第n 对谱线的幅度为(设1=c U ))()()(mf J J n A n n c =Ω∆=Ω±ωω 式中)(mf J n 是n 阶贝塞尔函数;mf 为调频指数。
调频信号可分为窄带和宽带两类。
所谓窄带调频信号是指峰值频偏ω∆远小于条调制频率Ω,即mf <<1.这时,只有n=0和n=1的内塞尔函数有值,调频信号只有三条谱线,其带宽为)(2Hz B FM πΩ±=。
所谓宽带调频信号是指mf >>1,有很多谱线。
作为一个粗略的近似,可以忽略mf n >的那些频谱,其带宽可近似为)(2Hz B FM πω∆±=。
2、调相信号调相信号的特征是其瞬时相位与调制信号成正比,可表示为)](sin[)(t u t U t u F c c PM ϕω∆+=(3) 式中ϕ∆为峰值相偏。
若调制信号仍同(1)式,则代入第(3)式得[])sin(sin )(ϕϕω+Ω∆+=t t U t u c c PM 它的频谱也包含有一组间隔为Ω的谱线。
频谱为Ω±n c ω的频谱幅度为(设1=c U ))()(ϕω∆=Ω±n c J n A 。
锁相技术课后答案
一、简答1、什么是时钟频率稳定度?分别说说RC振荡器、osc(这个中文怎么说来着,突然失忆~)、恒温osc、铷钟铯钟的频率稳定度各是多少?2、锁相环由哪几部分组成,分别简单说明并画出锁相环框图。
二、PFD鉴相器工作原理及实现方法。
(电路图我就不画了)三、1、锁相环锁定状态的数学模型是什么?在此状态下的相位传输函数和误差传输函数分别是什么?2、同步范围、拉出范围、捕捉范围、锁定范围具体含义是什么?并说明它们之间的相互关系。
四、(晕~实在想不起来了。
等想起来了再说)五、设计f=(N1V+N2)f1的分频器。
说明工作原理及其实现方法。
六、设计f=6.5f1(f1是参考频率,下标其实是ref)。
说明工作原理。
七、说明希尔伯特变换鉴相器的工作原理及其实现方法。
八、综合题用下面给出的器件,选择合适的器件,设计一个锁相环,要求频率可调。
绘出波形图,说明工作原理。
给出频率分辨率的值。
鉴相器:JK鉴相器、PFD鉴相器环路滤波器:无源超前滞后滤波器、有源超前滞后滤波器压控振荡器VCO分频器:自选。
一、选择题1、对锁相环路起作用的是:()①输入瞬时相位;②输入信号频率;③输入信号幅度2、不论采用何种滤波器的二阶环路其闭环频率响应具有:()①高通特性;②低通特性;③带通特性二、判断题(正确的打+,不正确的打-)1、锁相环路是实现信号相位自动控制的系统。
()2、全数字锁相环一般由数字鉴相器、RC积分滤波器、数字压控振荡器构成。
()三、填充题1、锁相环路的频率响应含义为:________________.2、辅助捕获的方法有:________、________、________、________等。
3、采用单环锁相频率合成器,其输入其准频率fi=100kHz,程序分频器分频比为1234,则环路锁定时输出信号频率为________________.四、简答题1、试述T4044数字鉴频鉴相器的鉴相工作原理。
2、相对于输入信号而言,锁相环路为何等效为一个带通滤波器?它于一般的带通滤波器有何不同?五、综合题1、已知一阶环的Ud=2V,Ko=15kHz/v,ωo/2π=2MHz.问当输入频率分别为1.98MHz 和2.04MHz的载波信号时,环路能否锁定?稳定相差多大?2、采用有源比例积分滤波器的窄带载波跟踪环路,其环路噪声带宽BL=18Hz,τ1=2630s,τ2=0.0834s,试确定:(1)环路阻尼系数ζ与环路自然角频率ωn;(2)环路增益K;(3)如选择电容C=0.33μF,确定R1,R2.。
《锁相技术》课件
减小功耗的措施
采用低功耗的器件
如低功耗的VCO、鉴相器等。
优化电路设计
优化电路设计,降低功耗。
开启/关闭不必要的功能
在不需要时关闭某些功能,降低功耗。
01
锁相环路的测试与 验证
测试方法与测试环境
测试方法
采用模拟信号源和频谱分析仪对锁相环路的性能进行测试。
感谢观看
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
21世纪
随着通信技术的发展,锁相技 术在移动通信、卫星通信等领
域得到广泛应用。
01
锁相环路的工作原 理
锁相环路的组成
鉴相器(PD)
VCO(压控振荡器)
用于检测输入信号与输出信号的相位 差。
用于产生可调频率的输出信号,通过 电压控制其振荡频率。
环路滤波器(LF)
用于滤除鉴相器产生的误差电压中的 高频分量,平滑输出电压。
锁相技术在其他领域的应用探索
要点一
总结词
要点二
详细描述
除了通信领域,锁相技术在其他领域也有广泛的应用前景 。
随着科技的不断发展,锁相技术的应用领域也在不断拓展 。未来,锁相技术有望在雷达、导航、电子对抗、电力系 统等领域得到广泛应用。例如,在雷达领域,锁相技术可 以实现高精度、高稳定性的频率源,提高雷达的探测精度 和距离分辨率;在电力系统领域,锁相技术可以用于实现 电网的稳定运行和故障诊断等方面。
测试环境
在实验室条件下进行,确保测试结果的准确性和可靠性。
测试结果与分析
测试结果
锁相环路在低频和高频段均表现出良 好的跟踪性能和噪声抑制能力。
锁相技术
设输出信号为:uo (t) Uo cos[ot o (t)]
PLL内部VCO的 自由振荡角频率
是在输入信号控制下,
相对于 ot的瞬时相位,
是时间 t 的函数。
锁相环路中,输入信号 ui (t) 对环路的作用是 在它的瞬时相位 i (t) i (t) 的作用下,改变输出 信号 uo (t) 的瞬时相位 o (t) o (t) ,所以对于锁相 环路来说,更关心的是它的输入和输出信号的相
不为零
数值很小 的量,但
不为零
这一过程所用的时间为捕获时间 TP
《 锁相技术》
第1章 锁相环路的基本工作原理
捕获过程中瞬时相差与瞬时频差的典型时间图分析
.
《 锁相技术》
第1章 锁相环路的基本工作原理
三、锁定状态
环路锁定状态(同步状态)的条件:
e((tt))
(t) 2n e
K0 p
整理得到:pe (t) p1(t) KoUd F ( p)sine(t)
uc (t)
环路的动态方程:
K KoUd
pe (t) p1(t) KF ( p)sine(t)
K K0Ud 为环路增益
《 锁相技术》
第1章 锁相环路的基本工作原理
锁相环路动态方程的物理概念解释:
第1章 锁相环路的基本工作原理
环路的瞬时相位差:(矢量表示方法如图所示)
e (t) 1(t) 2(t)
输入信号的 瞬时角频率
输出信号的 瞬时角频率
环路瞬时频差:
de (t)
dt
1(t)2 (t)
(t)
e (t)
16、锁相技术
锁相技术一、引言锁相,就是实现两个电信号相位同步的自动控制。
锁定放人器(LIA —L0ck —in AmDlmer)是锁相技术在微弱信号检测中的应用,本实验将研究锁定放大器的原理和应用。
实验的目的要求是:l 了解锁定放大器的工作原理,着重掌握相关器的原理。
2学会使用锁定放大器,并用它测量p .n 结势垒电容。
二、原理(一)锁定放大器的基本原理本实验采用NL 一1锁定放大器,其原理框图见图12.k 锁定放大器是一种交流电压表,它能精确地测定深埋在噪声之中的周期重复信号的幅值及相位,这种抑制噪声的作用主要是通过相关器实现的,使用时,除要输入待测信号外,还要输入参考信号。
信号输入图12—1 NL 一1锁定放大器原理框图1、相关器 锁定放大器中的相关器如图12—2所示。
它由相乘电路和低通滤波器组成,相乘电路有许多形式,如开关型、电流控制型等等,NL 一1锁定放大器采用开关型。
低通滤波器具有压缩噪声带宽,让直流信号通过的作用,它抑制噪声的能力可以用“等效噪声带宽”图12—2相关器这一参数来描述,可以求出,图12—2中的低通滤波器的等效噪声带宽f V n=1144RC T= 低通滤波器的时间常数T=Rc ,T 越长则f V n 越小,但实际上由于漂移等问题,T 是不能太长的。
下面是相关器的工作原理。
相关器采用的是所谓相关接收技术。
设输入信号为()Vi t ,参考信号为()Vr t ,由于低通滤波器实际上是一个积分器,因此相关器的输出0V 是()Vi t 和()Vr t 乘积,再对时间积分,并取平均值有0V = ()1lim ()2T i t T V t Vr t dt T τ→∞--⎰g (12-1)式中t 是参考信号相对于输入信号的延迟时间,积分时间上限T 即低通滤波器的时间常数,通常把式(12.1)所表示的0V 称为()Vi t 和()Vr t 的相关函数,实现求相关函数的电子线路称为相关器或相关接收器。
锁相技术
<<频率合成技术>>报告**:***学号:***************:***报告要求:1、锁相技术的发展历史2、频率合成技术的应用3、设计锁相电路一、锁相技术的发展历史频率源是现代电子系统的重要组成部分,被称为许多电子系统的“心脏”。
在通信、雷达和导航等设备中,它既是发射机的激励信号源,又是接收机的本地振荡器;在电子对抗设备中,它可以作为干扰信号发生器;在测试设备中,它可以作为标准信号源。
随着现代电工电子技术的不断发展,人们对频率源的要求越来越高。
性能卓越的频率源均通过频率合成技术来实现。
频率合成技术,就是将一个(或多个)基准频率变换成一个(或多个)合乎质量要求的所需频率的技术。
频率合成技术的理论形成于二十世纪三十年代左右,到现在大概经历了三代的发展过程。
1、第一代一直接模拟频率合成(DAFS)技术直接模拟频率合成(Direct Analog Frequency Synthesis)技术是一种早期的频率合成技术,原理简单,易于实现。
它由模拟振荡器产生参考频率源,再经谐波发生器产生一系列谐波,然后经混频、分频和滤波等处理产生大量的离散频率。
根据所使用的参考频率的数目不同可分为非相关合成方法和相关合成方法两种类型。
非相关合成方法使用多个晶体参考频率源,所需的各种频率分别由这些参考源提供。
它的缺点在于制作具有相同频率稳定性和精度的多个晶体参考频率源既复杂又困难,而且成本很高。
相关合成方法只是用一个晶体参考频率源,所需的各种频率都由它经过分频、混频和倍频后得到,因而合成器输出频率的稳定性和精度与参考源一样。
直接模拟频率合成方法的优点是频率转换时间短、相位噪声低,但由于采用大量的混频、分频、倍频和滤波等模拟硬件设备,使频率合成器的体积大、成本高、结构复杂、容易产生杂散分量,大多数硬件的非线性影响难于抑制。
2、第二代——基于锁相环(PLL)的间接频率合成技术锁相环是间接频率合成技术中的一个关键部分,它是一个负反馈环路,是一个实现相位自动锁定的控制系统,其输出信号与参考信号相位同步,简称PLL(Phase Locked Loop)。
锁相技术知识点
第一章锁相环路的基本工作原理:1.锁相环路是一个闭环的相位控制系统;锁相环路(PLL)是一个相位跟踪系统,它建立了输出信号顺时相位与输入信号瞬时相位的控制关系。
2. 若输入信号是未调载波,θi(t)即为常数,是u i(t)的初始相位;若输入信号时角调制信号(包括调频调相),θi(t)即为时间的函数。
3.ωo是环内被控振荡器的自由振荡角频率;θo(t)是以自由振荡的载波相位ωo t为参考的顺时相位,在未受控制以前它是常数,在输入信号控制之下,θo(t)即为时间的函数。
4. 输入信号频率与环路自由振荡频率之差,称为环路的固有频率环路固有角频差:输入信号角频率ωi与环路自由振荡角频率ωo之差。
瞬时角频差:输入信号频率ωi与受控压控振荡器的频率ωv之差。
控制角频差:受控压控振荡器的频率ωv与自由振荡频率ωo之差。
三者之间的关系:瞬时频差=固有频差-控制频差。
5. 从输入信号加到锁相环路的输入端开始,一直到环路达到锁定的全过程,称为捕获过程。
6. 对一定环路来说,是否能通过捕获而进入同步完全取决于起始频差。
7. 锁定状态又叫同步状态:①同频②相位差固定8. 锁定之后无频差,这是锁相环路独特的优点。
9. 捕获时间T p的大小除决定于环路参数之外,还与起始状态有关。
10.若改变固有频差∆ωo,稳定相差θe(∞)会随之改变。
11.锁相环路基本构成:由鉴相器(PD)、环路滤波器(LF)和电压控制振荡器(VCO)组成。
12.鉴相器是一个相位比较装置,鉴相器的电路总的可以分为两大类:第一类是相乘器电路,第二类是序列电路。
13.环路滤波器具有低通特性。
常见的环路滤波器有RC积分滤波器、无源比例积分滤波器和有源比例积分滤波器三种。
(会推导它们的传输算子)14.电压振荡器是一个电压-频率变换装置,它的振荡频率应随输入控制电压u c(t)线性的变化。
15.压控振荡器应是一个具有线性控制特性的调频振荡器。
要求压控振荡器的开环噪声尽可能低,设计电路时应注意提高有载品质因素和适当增加振荡器激励功率,降低激励级的内阻和振荡管的噪声系数。
锁相技术学习心得体会
频率跟踪和相位跟踪。
环路原理:
输入信号为中频采样信号:s(t)?Ad(t)cos(2?fit??i)?n(t) f i 为输入信号频率; n( t ) 为加性高斯白噪声。
数控振荡器的输出两路正交信号别离为: I(t)?cos(2?fct??c) Q(t)?sin(2?fct??c) 积分- 清除器以后的两路信号可别离表示为
锁相环路各组成部份:
模拟锁相环要紧由相位参考提取电路、压控振荡器、相位比较器、操纵电路等组成。压控振荡器输出的是与需要频率很接近的等幅信号,把它和由相位参考提取电路从信号中提取的参考信号同时送入相位比较器,用比较形成的误差通过操纵电路使压控振荡器的频率向减小误差绝对值的方向持续转变,实现锁相,从而达到同步。
分数分几回率合成器那么是最近几年来显现的一种新技术,它与传统的整数分几回率合成器相较具有频率分辨率高、相位噪声低等优势。
本文介绍了锁相环和频率合成技术的基础理论,并对分数分几回率合成器及其实现技术进行了探讨。
环路滤波器是频率合成器能稳固工作的输出低相位噪声、低杂散信号的关键部件,本文给出了环路滤波器的具体计算方式,并通过实验证明了其可行性。
关键词:锁相环;频率合成器;相位噪声;杂散;环路滤波器
二、设计(论文)任务和要求(包括说明书、论文、译文、计算程序、图纸、作品等数量和质量等具体要求)
锁相技术第二版(郑继禹 万心平)课后答案
第一章第二章 2-1 解: (a)(b)201012()()()()(/).()()(/).()()()()d e e U s K F s s s K s U s s K s U s s s s θθθθθθ'Ω'ΩΩ=⎧⎪=⎪⎨=⎪⎪=-⎩ =>[]0()()()e K s U s U s sθ'ΩΩ=-, 001()()()()d d K K K K F s U s F s U s s s 'ΩΩ⎡⎤+=⎢⎥⎣⎦=>00()()()()()d d U s K K F s H s U s s K K F s 'ΩΩ==+ (c) 闭环传递函数(带入F(s))21212212(1)/(1)()(1)/(1)(1)K s s H s s K s s K sK s s K Kτττττττ++=++++=+++ ==> 二阶环所以开环传递函数211()()(1)()1()(1)o H s KF s K s H s H s s s s ττ+===-+==>1型环2-2 分析方法:(电流节点法,I=I1+I2,求I:复频域Laplace 变换 c=>1/(sc),Uc(s)=-AUi(s), 虚短虚断的概念:Ui(t)=0)12I=I o iI U KU +⎧⎨=-⎩==> 123(1/)i d o io i o i U U U U U U R R R sC U KU ---⎧=+⎪+⎨⎪=-⎩==>12212()(1)o d U s R F s KU s R K R ττ+==-+++ ==>[]223112323(1)()R R C R K R R R R Cττ=⎧⎨=+++⎩环路闭环传递函数0012022220//()()2d d d d n n K K sK K K K K KR H s s K K F s s s τττξωω+==++⋅+==>n ω=ξ=2-5 见P34 例题2-8 由Ui ==> Ω=102<Ωc=103 ==>调制跟踪 Ω=102<Ωc=10 ==>载波跟踪2-9 理想二阶环 闭环传递函数2222()2n n n n s H s s s ξωωξωω+=++==> 频率响应2n 22n 2()2n n j H j j ωξωωξω+ΩΩ=-Ω+Ω引入/n x ω=Ω ==> 212()12j xH jx x j xξξ+=-+ 令2|()|1/2H jx ===>1/2221cc n x ξωΩ⎡==++⎣当 0.5ξ= ==>cnωΩ=1.82 ==> 33.6410c πΩ=⨯ (rad/s)3.1有源比例积分滤波器。
锁相技术期末总结
锁相技术期末总结一、引言锁相技术是一种广泛应用于现代电子技术中的信号处理方法,主要用于提取信号中的相位信息。
它通过对输入信号与本地参考信号进行比较和修正,实现对信号相位的精确测量和调整。
锁相技术的应用领域非常广泛,包括无线通信、激光测距、声纳系统、医学影像等。
在本次课程学习中,我们深入了解了锁相技术的原理、应用和实现方法,并通过实践操作进一步巩固了对锁相技术的理解。
二、锁相技术的原理和基本概念锁相技术的原理是基于反馈控制和频率调制的,通过频率调制输入信号和本地参考信号,实现对信号相位的精确测量和调整。
1. 相位差测量原理通过将输入信号与本地参考信号进行乘法运算,并通过低通滤波器和放大器对乘积信号进行处理,最终得到与相位差成正比的直流电压。
根据这个原理,我们可以通过测量这个直流电压来得到输入信号与参考信号之间的相位差。
2. 锁相循环原理锁相循环是指通过反馈控制将输入信号的相位差调整到指定值的过程。
锁相循环由相位比较器、环路滤波器、VCO(Voltage Controlled Oscillator)和反馈网络等组成。
相位比较器用于比较输入信号的相位差和参考信号的相位差,输出误差信号;环路滤波器用于对误差信号进行滤波;VCO用于将滤波后的误差信号转换成频率信号,并与参考信号进行混频;反馈网络将VCO的输出作为参考信号送回相位比较器,形成一个闭环控制系统。
三、锁相技术的应用锁相技术在各个领域中都有广泛的应用,下面主要介绍其中几个典型的应用。
1. 通信领域锁相技术在通信领域中的应用主要包括载波恢复、时钟恢复和时钟同步。
在接收端,通过锁相环的频率跟踪功能可以自适应地追踪和调整接收信号的频率,从而实现载波恢复。
而由于通信系统中的时钟信号也是通过调制到信号中进行传输的,因此通过锁相循环也可以实现对时钟信号的恢复和同步。
2. 激光测距锁相技术在激光测距领域中被广泛应用。
激光测距的原理是利用激光光束射到目标上并接收反射光,通过测量光传播的时间来计算目标的距离。
锁相技术复习要求
锁相技术复习要点第1章 锁相环路的基本工作原理一、考核知识点(一)锁相环路的基本工作原理;(二)锁相环路的相位数字模型及其微分方程;(三)锁相环路的基本性能。
二、考核要求(一)锁定与跟踪的概念1、识记:(1)相位的概念;(2)锁相环路的定义;(3)环路的捕获带(4)环路的同步带。
2、领会:(1)锁相环路是一个相位跟踪系统,它建立了输出信号瞬时相位与输入信号瞬时相位的控制关系(2)几个重要参数:载波相位、瞬时相位、自由振荡角频率、瞬时相差、移稳态相差;(3)环路的两种基本工作状态:捕获过程、锁定状态。
3、应用:(1)环路是处于锁定状态的判定依据;(2)一阶环稳态相差的计算。
(二)环路组成1、识记:(1)环路的基本部件;(2)鉴相器的作用与数学模型;(3)鉴相器的分类:模拟乘法器鉴相器、序列电路(数字鉴相器);(4)环路滤波器的作用与数学模型;(5)压控振荡器的作用与数学模型;(6)压控灵敏度;(7)压控振荡器的种类。
2、领会:(1)锁相环路的组成及框图;(2)正弦鉴相器及数学模型;(3)几种常用的环路滤波器及传递函数;(4)锁相环路的相位数学模型。
3、应用;(1)理想积分滤波器分析;(2)非常用环路滤波器的传递函数求解。
(三)环路的动态方程1、 识记:(1)瞬时频差;(2)控制频差;(3)固有频差;(4)环路增益K。
2、 领会:(1)锁相环路动态方程3、应用:(1)锁相环路动态方程的含意;(2)稳态相差的求解。
(四)一阶环路的捕获、锁定与失锁。
1、识记:(1)一阶环路;(2)相点;(3)相轨迹(4)相平面。
2、领会:(1)一阶环路的非线性微分方程;(2)相轨迹上相点的含义。
3、应用:(1)频率牵引现象;(2)一阶环路的捕获带、同步带、快捕带。
第二章 环路跟踪性能一、考核知识点(一)锁相环路的线性相位模型及传递函数;(二)锁相环路的性能指标;(三)二阶环路在典型输入下的响应;(四)环路的频率响应。
锁相技术
• • • •
锁相技术
测量用信号源技术专题
锁相环概述
• 锁相环(PLL)是一个闭路锁定之后,稳态频差等于零;稳态相 差通常总是存在的,等于一个固定值,反 映环路跟踪的精度,是一个重要指标。存 在剩余误差是误差控制系统的特点。
鉴相器
(1)模拟乘法器(MC1496/1596,XR-2208) (2)数字鉴相器 边沿触发式:MC4044 电平比较式: CD4046 (或门,异或门鉴相器)
-鉴相特性:三角形鉴相特性 -鉴频特性:近似阶跃曲线
压控振荡器
• • • • 积分-施密特型:NE566,XR-2206 射级耦合多谐振荡器:MC1658 LC负阻型(变容二极管):E1648 数字门电路型:CD4046内部VCO
环路滤波器
具有低通滤波特性,对锁相环路参数调 整起着决定作用。 RC积分滤波器 无源比例积分滤波器 有源比例积分滤波器 其他…
锁相技术课件PPT(完整版)
FSK 输入
锁定 指示
NE567方框图
NE567 拨号音解码 电路实现
一、概述
§6.3 频率合成
1. 概念
频率合成器是将一个高精确度和高稳定度的标准
参考频率,经过混频、倍频与分频等对它进行加、
减、乘、除的四则运算,最终产生大量的具有同样
精确度和稳定度的频率源。
2. 应用 频率合成器在雷达、通信、遥控遥测、电视广
§6.1 跟踪滤波器 概念:跟踪滤波器的中心频率自动的跟踪输入信号 载波频率的变化,但相对带宽不变。
锁相环路可以实现跟踪滤波
VCO输出的 信号就是经 过滤波后的
输入信号
当n时,uo (t)是ui (t) 的复制品。 当n时,uo (t)是提纯的载波,但有90 o 的相差。
一、跟踪特性的测量 跟踪特性:环路uo(t) 和ui (t) 瞬时频率的变化关系。
uc (t)
1 Ko
d dt
2
(t
)
1 H ( j) sin{t Arg[H ( j)]}
Ko
电路实现: 5G4046实现FM解调电路
确定振荡 频率和FM 载频一致
NE562实现FM解调器电路
三、数字调频和调相信号的调制与解调 1. 移频键控(FSK)和移相键控(PSK)
2. FSK调制器的电路实现(XR-215)
解调器用锁相环实现调幅信号解调lpftuamturtuftuturam?ttmtmtuccacacc??????sincos2cos2sin??????????锁相技术221sincos222caacummtt?????sin22sin22acacmtmt????????????调制信号成分载波的二次谐波载波的二次谐波经lpf后输出调制信号第6章锁相环路的应用am信号的pll同步解调原理锁相技术第6章锁相环路的应用am信号pll同步解调电路实现ne561锁相技术rut90度移相第6章锁相环路的应用90移相网络lf锁相技术tuamvco频率调整第6章锁相环路的应用二模拟调频和调相信号的调制与解调1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19
第四章 环路捕获性能
(3) 交流分量被比例衰减后, 对压控振荡器进行调频。但随 着控制电压直流分量的不断增长, 交流分量的频率和幅度都不 断减小, 到环路进入锁定时, 交流分量消失。所以二阶环的捕获 过程是一个牵引过程, 而一阶环的捕获过程则是一个渐近稳定 过程。
(4) 当Δωo>Δωp时, 一阶和非理想二阶环都不能锁定, 而是 出现稳定的差拍状态。差拍波中的直流分量会牵引 向ωi靠拢一些, 但不能使之相等, 即存在牵引效应。必须指出, 对于具有理想积分滤波器的二阶环, 无论Δωo多么大, 亦即差拍 波中的直流分量多么小, 经过长时间的积分, 直流控制电压可增 到任意大, 而使环路进入锁定。
0.7<ζ<1时, 允许的最大捕获扫描速率的经验公式为
(4-24)
47
第四章 环路捕获性能
二、辅助鉴频 利用附加的模拟鉴频环路可以加宽整个环路的捕获范围。
其组成如图4-10所示。
48
第四章 环路捕获性能
图4-10 具有模拟鉴频环路的锁相环方框图
49
第四章 环路捕获性能
图4-11 具有数字鉴频环路的锁相环方框图
(2) 使用两种不同的环路带宽或增益, 捕获时使环路具有较 大的带宽或增益, 锁定以后使环路带宽或增益减小。这就是所 谓变带宽和变增益法。
37
第四章 环路捕获性能
一、起始频差控制 当环路起始频差较大时, 若给压控振荡器提供一个控制电
压, 改变压控振荡器的固有振荡器, 以便减小起始频差。当起始 频差减小到进入快捕带时, 可通过环路本身的牵引作用, 使环路 立即快捕锁定。
第四章 环路捕获性能
不稳定平衡点:
式中n=0, 1, 2, … 。由(4-3)式可以看出, 当n=0时,
12
(4-3) (4-4) (4-5)
第四章 环路捕获性能
尽管在相平面图上没有明显地表示出时间, 但是却隐含着
θe与 随时间运动的信息。因此, 根据相平面图描绘出
θe~t与
曲线, 首先必须把θe或 变化对应的时间间
面图如图4-1所示(只画出了相平面图的两个周期)。所以图4-1 实际上是具有无源比例积分滤波器的二阶环在给定环路参数的 条件下环路方程的图解表示。图中实际的纵坐标为
9
第四章 环路捕获性能 10
第四章 环路捕获性能
由图4-1可以看出:
(1) 相轨迹是有方向的曲线。在上半平面,
故随
着时间的增加相点
从左向右运动; 在下半平面,
隔计算出来:
(4-6)
13
第四章 环路捕获性能 14
第四章 环路捕获性能
注意, 在应用(4-6)式时, 的不合理结果。
不要取为零, 否则将得到Δt=∞
根据θe~t曲线, 由关系式
(4-7)
可画出鉴相器输出电压随时间的变化曲线, 如图4-2(c)所示。
15
第四章 环路捕获性能
又从第一章的分析知道, 在固定频率输入的情况下, 存在关 系
35
第四章 环路捕获性能 36
第四章 环路捕获性能
第四节 辅助捕获方法
辅助频率捕获方法很多, 由于环路使用场合不同, 辅助捕获 设备的复杂程度是大不一样的。辅助频率捕获的基本出发点是:
(1) 减小作用到环路上的起始频差, 使之尽快地落入快捕带 内, 达到快捕锁定。属于这方面的有辅助扫描、辅助鉴频和鉴 频鉴相等;
差值。换句话说, 也就是保证环路不出现稳定的差拍状态所允 许的最大固有频差值。基于这种考虑, 使用准线性近似的方法 可求得捕获带的一般表达式为
(4-13)
24
第四章 环路捕获性能
1. 使用有源比例积分滤波器的二阶环 环路滤波器的传递函数为 可求得
25
第四章 环路捕获性能
代入(4-13)式, 得理想二阶环的捕获带为 与前面定性分析的结果完全一致。
(4-20)
在高增益条件下, 用Kt2/t1≈ 2ξwn代入(4-20)式得到的结果
与(4-19)式完全相同, 因此(4-19)式可作为高增益二阶环捕获时 间的通用工程计算式。上述捕获时间的准线性近似分析结果与 用相平面法分析得到的结果也是一致的。
33
第四章 环路捕获性能
【 计算举例 】
具有环路滤波器传递函数F(s)=(1+st2)/(1+st1)的二阶环路,
(4-23)
45
第四章 环路捕获性能
图4-9 阻尼系数对扫描捕获概率的影响
46
第四章 环路捕获性能
当环路有噪时, 可预料到噪声将使得捕获信号变得更困难。
实验表明, 如果存在噪声, 要保持一个合适的高捕获概率, 则扫
描速率应减小
倍。这说明当rL=0 dB时, 捕获
是不可能的。综合各种研究结果, 可以得到在有噪声条件下,
3
第四章 环路捕获性能
3. 自捕获与辅助捕获 如果环路依靠自己的控制能力达到捕获锁定, 称这种捕获 过程为自捕获。若环路借助于辅助电路才能实现捕获锁定, 则 称这种捕获过程为辅助捕获。
4
第四章 环路捕获性能
4. 捕获性能的分析方法 在捕获过程中, 瞬时相差将在大范围内变化, 甚至有多个2π 的周期跳越。 (1) 相平面法。 (2) 准线性法。
26
第四章 环路捕获性能
2. 使用无源比例积分滤波器的二阶环 环路滤波器的传递函数为 可求得
27
第四章 环路捕获性能
将此式代入(4-13)式, 得到非理想二阶环的捕获带为
由于
代入上式得到
(4-14)
(4-15)
28
第四章 环路捕获性能
进一步满足K>>ωn时, 又可简化成 (4-16)
这一结果与用相平面法分析得到的结果完全一致。
其参量为:
ωn=100 rad/s, K=2×105 rad/2,
Δfo=600 Hz。计算 ΔwH, ΔwL, TL max, 环路捕获性能
而
可见Δwo>>ΔwL, Δwo<<K, 满足(4-16)式和(4-19)式的近似条件。
因此利用(4-16)式和(4-19)式, 可算得
第四章 环路捕获性能
第四章 环路捕获性能
第一节 第二节 第三节 第四节 习题
捕获的基本概念 捕获过程与捕获特性 捕获带与捕获时间 辅助捕获方法
1
第四章 环路捕获性能
第一节 捕获的基本概念
1. 捕获 在前面各章的分析中, 都是在假定环路已经锁定的前提下 来讨论环路的跟踪和过滤性能, 因为失锁的环路是不可能表现 出这些性能的。但是在实际工作中, 例如开机、换频或由开环 到闭环, 一开始环路总是失锁的, 因此环路需经由失锁进入锁定 的过程。通常把使环路进入锁定的过程称为捕获。
5
第四章 环路捕获性能
第二节 捕获过程与捕获特性
一、捕获过程 在环路非线性微分方程的一般形式(1-30)式中, 将
和
6
代入, 可得
第四章 环路捕获性能
(4-1)
7
第四章 环路捕获性能
再将上式两边除以
得相轨迹方程
或
式中
(4-2) 为环路高频总增益。
8
第四章 环路捕获性能
根据(4-2)式, 给定环路参数 用计算机辅助作出的非理想二阶环的相平
51
第四章 环路捕获性能
图4-12 具有非线性环路滤波器的锁相环方框图
52
第四章 环路捕获性能
图4-13 具有开关环路滤波器的锁相环方框图
2
第四章 环路捕获性能
2. 相位捕获与频率捕获 如前所述, 在一阶环中, 没有环路滤波器, 只有压控振荡器 一个固有积分环节, 所以一阶环只有相位捕获, 即在捕获过程中, 相位差没有2π的周期跳越。二阶环是应用最多的一种环路, 环 路中除有一个压控振荡器固有积分环节外, 还包含有一个接近 理想的(有源滤波器)或非理想的(无源滤波器)一阶环路滤波器, 共有两个积分环节。
(4-21)
42
第四章 环路捕获性能
用相平面法研究环路捕获时发现, 在无噪声条件下, 即使 R<ωn2, 也不一定能捕获入锁。锁定与否取决于频率相位的初 始随机条件。用图解法计算ζ=0.707的高增益二阶环路的锁定 概率, 得出锁定概率与扫描速率的关系曲线如图4-8所示, 由图 可以看出, 要保证可靠的扫描捕获入锁, 必须要求捕获扫描速率
故随着时间的增加相点从右向左运动。
(2) 在θe的每个2π周期内, 横轴上有两个特殊的点(又称 奇点), 其中一个点许多相轨迹都卷向它, 这就是环路的稳定平
衡点(即锁定点)。另一个点有两条轨迹趋向它, 还有两条相轨迹
离开它, 这就是环路的不稳定平衡点(又称鞍点)。令方程(4-1)
式中
可得
11
稳定平衡点:
29
第四章 环路捕获性能
3. 使用RC积分滤波器的二阶环
环路滤波器的传递函数为 可求得
30
代入(4-13)式, 在 为
第四章 环路捕获性能
的条件下, 得到该二阶环的捕获带
由于1/τ=2xwn, 上式又可写成
可见与(4-16)式近似, 只是系数稍有差别。
(4-17) (4-18)
31
第四章 环路捕获性能
向ωi方向靠拢。当
减小到小于ΔωL时, 频率捕获
过程即告结束, 并进入相位捕获过程, θe(t)的变化不再超越2π,
最终达到锁定。一阶环由于没有环路滤波器, 故不可能对差拍
波中的直流分量进行积分, 因此没有频率捕获过程, 只有相位捕
获过程。在相位捕获过程中, 环路频差仍在向减小的方向变化,
等到环路锁定时, 才为零。
38
第四章 环路捕获性能
图4-5 具有交流检波器和扫描发生器的锁相环方框图
39
第四章 环路捕获性能