单片机4×4矩阵键盘设计方案教学文案
4×4矩阵式键盘的课程设计
“电子创新设计与实践”课程期中课题设计报告姓名:张思源,学:20102121026,年级:2010,专业:电信报告内容设计一个4*4矩阵键盘,并编写相关程序摘要1.4×4矩阵式键盘程序识别原理。
2.4×4矩阵式键盘按键的设计方法。
报告正文:一、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。
(2)键盘中对应按键的序号排列如图14.1所示。
二、参考电路图14.2 4×4矩阵式键盘识别电路原理图图14.1 4×4键盘0-F显示图14.3 4×4矩阵式键盘识别程序流程图三、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。
(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。
四、程序设计内容(1)4×4矩阵键盘识别处理。
(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
五、程序流程图(如图14.3所示)六、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHRETIORG 0013HRETIORG 001BHRETIRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100HSTART: LCALL CHUSHIHUALCALL PANDUANLCALL XIANSHILJMP START;;;;;;;;;;初始化程序;;;;;;;;;; CHUSHIHUA: MOV COUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;; PANDUAN: MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW1LCALL DELAY10MSJZ SW1ANL A,#0FHCJNE A,#0EH,K1 MOV COUNT,#0LJMP DKK1: CJNE A,#0DH,K2 MOV COUNT,#4LJMP DKK2: CJNE A,#0BH,K3 MOV COUNT,#8LJMP DKK3: CJNE A,#07H,K4 MOV COUNT,#12K4: NOPLJMP DKSW1: MOV P3,#0FFH CLR P3.5MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW2LCALL DELAY10MSMOV A,P3ANL A,#0FHCJNE A,#0EH,K5 MOV COUNT,#1LJMP DKK5: CJNE A,#0DH,K6 MOV COUNT,#5LJMP DKK6: CJNE A,#0BH,K7 MOV COUNT,#9LJMP DKK7: CJNE A,#07H,K8 MOV COUNT,#13K8: NOPLJMP DKSW2: MOV P3,#0FFH CLR P3.6MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW3LCALL DELAY10MSJZ SW3MOV A,P3ANL A,#0FHCJNE A,#0EH,K9 MOV COUNT,#2LJMP DKK9: CJNE A,#0DH,KA MOV COUNT,#6LJMP DKKA: CJNE A,#0BH,KB MOV COUNT,#10 LJMP DKKB: CJNE A,#07H,KC MOV COUNT,#14 KC: NOPLJMP DKSW3: MOV P3,#0FFH CLR P3.7MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW4LCALL DELAY10MSJZ SW4MOV A,P3ANL A,#0FHCJNE A,#0EH,KDMOV COUNT,#3LJMP DKKD: CJNE A,#0DH,KEMOV COUNT,#7LJMP DKKE: CJNE A,#0BH,KFMOV COUNT,#11LJMP DKKF: CJNE A,#07H,KGMOV COUNT,#15KG: NOPLJMP DKSW4: LJMP PANDUANDK: RET;;;;;;;;;;显示程序;;;;;;;;;;XIANSHI: MOV A,COUNTMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ALCALL DELAYSK: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ SKRET;;;;;;;;;;10ms延时程序;;;;;;;;;; DELAY10MS: MOV R6,#20D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;; DELAY: MOV R5,#20LOOP: LCALL DELAY10MSDJNZ R5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07HDB 7FH,6FH,77H,7CH,39H,5EH,79H,71H ;;;;;;;;;;结束标志;;;;;;;;;;END八、C语言源程序#include<AT89X51.H>unsigned char code table[]={0x3f,0x66,0x7f,0x39, 0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};void main(void){ unsigned char i,j,k,key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个//{ case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:key=3;break;}P0=table[key]; //送数到P0口显示//}}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有,显示相应的按键// { case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=8;break;case 0x0d:key=9;break;case 0x0b:key=10;break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12;break;case 0x0d:key=13;break;case 0x0b:key=14;break;case 0x07:key=15;break;}P0=table[key];}}}}参考文献:百度百科。
课程设计-制作单片机的4X4矩阵键盘
1.2.1矩阵式键盘介绍
矩阵式键盘(或者叫行列式键盘)常应用在按键数量比较多的系统之中。这种键盘由行线和列线组成,按键设置在行、列结构的交叉点上,行、列线分别接在按键开关的两端。行列式键盘可分为非编码键盘和编码键盘两大类。编码键盘内部设有键盘编码器,被按下键的键号由键盘编码器直接给出,同时具有防抖和解决重键的功能。非编码键盘通常采用软件的方法,逐行逐列检查键盘状态,当有键按下时,通过计算或查表的方法获取该键的键值,通常,计算机通过程序控制对键盘扫描,从而获取键值,根据计算机扫描的方法可以分为定时扫描法和中断扫描法两种。
XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
XTAL2:来自反向振荡器的输出。
振荡器特性:
XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。
P3.1 TXD(串行输出口)
P3.2 /INT0(外部中断0)
P3.3 /INT1(外部中断1)
P3.4 T0(记时器0外部输入)
P3.5 T1(记时器1外部输入)
P3.6 /WR(外部数据存储器写选通)
P3.7 /RD(外部数据存储器读选通)
P3口同时为闪烁编程和编程校验接收一些控制信号。
RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
课程设计-制作单片机的4X4矩阵键盘
第一章硬件部分
第一节AT89C51
AT89C51是一种带4K字节FLASH存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。引脚如图所示
单片机课程设计---4×4矩阵式键盘识别显示电路的设计
《单片机原理及应用》课程设计题目:4×4矩阵式键盘与单片机连接与编程专业:测控技术与仪器班级:机电082-1 姓名:学号:指导老师:组员:( 2011.7 .13)目录第1节引言 (2)1.1 4*4矩阵式键盘系统概述 (2)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (4)2.1 单片机控制系统原理 (4)2.2 单片机主机系统电路 (5)2.2.1 时钟电路 (8)2.2.2 复位电路 (8)2.2.3 矩阵式键盘电路 (8)2.3 译码显示电路 (9)第3节系统软件设计 (13)3.1 软件流程图 (13)3.2 系统程序设计 (14)第4节结束语 (17)参考文献 (18)第一节引言矩阵式键盘乃是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N个按键,即时在LED数码管上。
单片机控制的据这是键盘显示系统,该系统可以对不同的按键进行实时显示,其核心是单片机和键盘矩阵电路部分,主要对按键与显示电路的关系、矩阵式技术及设备系统的硬件、软件等各个部分进行实现。
1.1 4*4矩阵式键盘识别显示系统概述矩阵式键盘模式以N个端口连接控制N*N个按键,实时在LED数码管上显示按键信息。
显示按键信息,既降低了成本,又提高了精确度,省下了很多的I/O端口为他用,相反,独立式按键虽编程简单,但占用I/O口资源较多,不适合在按键较多的场合应用。
并且在实际应用中经常要用到输入数字、字母、符号等操作功能,如电子密码锁、电话机键盘、计算器按键等,至少都需要12到16个按键,在这种情况下如果用独立式按键的话,显然太浪费I/O端口资源,为了解决这一问题,我们使用矩阵式键盘。
矩阵式键盘简介:矩阵式键盘又称行列键盘,它是用N条I/O线作为行线,N条I/O线作为列线组成的键盘。
在行线和列线的每个交叉点上设置一个按键。
这样键盘上按键的个数就为N*N个。
这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。
基于msc51单片机实现的四位4乘4矩阵键盘计算器的C语言程序及其PROTUES电路和仿真_课程设计
单片机原理及接口技术课程设计报告设计题目:计算器设计信息与电气工程学院二零一三年七月计算器设计单片机体积小,功耗小,价钱低,用途灵活,无处不在,属专用运算机。
是一种特殊器件,需通过专门学习方能把握应用,应用中要设计专用的硬件和软件。
最近几年来,单片机以其体积小、价钱廉、面向操纵等独特优势,在各类工业操纵、仪器仪表、设备、产品的自动化、智能化方面取得了普遍的应用。
与此同时,单片机应用系统的靠得住性成为人们愈来愈关注的重要课题。
阻碍靠得住性的因素是多方面的,如组成系统的元器件本身的靠得住性、系统本身各部份之间的彼此耦合因素等。
其中系统的抗干扰性能是系统靠得住性的重要指标。
数学是科技进步的重要工具,数据的运算也随着科技的进步越发变得繁琐复杂,计算器的显现能够大大解放人在设计计算进程中的工作量,使计算的精度、速度取得改善,通过msc51单片机,矩阵键盘和LED数码管能够实现简单的四位数的四那么运算和显示,并当运算结果超出范围时予以报错。
注:这一部份要紧描述题目的背景和意义,对设计所采取的要紧方式做一下简要描述。
字数不要太多,300-500字。
另注:本文要当做模板利用,不要随意更改字体、字号、行间距等,学会利用格式刷。
文中给出的各项内容都要在大伙儿的报告中表现,可采纳填空的方式利用本模板。
1. 设计任务结合实际情形,基于AT89C51单片机设计一个计算器。
该系统应知足的功能要求为:(1) 实现简单的四位十进制数字的四那么运算;(2) 按键输入数字,运算法那么;(3) LED数码管移位显示每次输入的数据和运算结果;(4) 当运算结果超出范围时实现报错。
要紧硬件设备:AT89C51单片机、LED数码管、矩阵键盘。
注:这一部份需要写明系统功能需求,用到的要紧硬件(参考实验箱的说明书)。
2. 整体方案设计计算器以AT89C51单片机作为整个系统的操纵核心,应用其壮大的I/O功能和计算速度,组成整个计算器。
通过矩阵键盘输入运算数据和符号,送入单片机进行数据处置。
实验四4×4键盘输入
实验四: 4 × 4键盘输入实验一、实验目的:1.学习非编码键盘的工作原理和键盘的扫描方式。
2.学习键盘的去抖方法和键盘应用程序的设计。
二、实验原理:键盘是单片机应用系统接受用户命令的重要方式。
单片机应用系统一般采用非编码键4*4矩阵盘,需要由软件根据键扫描得到的信息产生键值编码,以识别不同的键。
本板采用键盘,行信号分别为P1.0-P1.3 ,列信号分别为P1.4-P1.7 。
具体电路连接见下图对于键的识别一般采用逐行(列)扫描查询法,判断键盘有无键按下,由单片机I/O口向键盘送全扫描字,然后读入列线状态来判断。
程序及流程图:ORG 0000HAJMP MAINORG 0000HAJMP MAINORG 0030HMAIN:MOV P2,#0F7HMOV P1,#0F0HMOV R7,#100DJNZ R7,$MOV A,P1ANL A,#0F0HXRL A,#0F0HJZ MAINLCALL D10MSMOV A,#00HMOV R0,AMOV R1,AMOV R2,#0FEH SKEY0:MOV A,R2MOVP1,AMOVR7,#10DJNZ R7,$MOVA,P1ANLA,#0F0HXRLA,#0F0HJNZ LKEYINC R0MOVA,R2RL AMOVR2,AMOVA,R0CJNE A,#04H,SKEY0AJMP MAIN LKEY:JNB ACC,4,NEXT1MOVA,#00HMOVR1,AAJMP DKEYNEXT1:JNB ACC.5,NEXT2MOVA,#01HMOVR1,AAJMP DKEYNEXT2:JNB ACC.6,NEXT3MOVA,#02HMOVR1,AAJMP DKEYNEXT3:JNB ACC.7,MAINMOVA,#03HMOVR1,AAJMP DKEY DKEY:MOV A,R0MOVB,#04HMULABADDA,R1AJMP SQRSQR:MOVDPTR,#TABMOVC A,@A+DPTRMOVP0,AAJMP MAINTAB:DB0C0H,0F9H,0A4H,0B0H,99H, 92H, 82H, 0F8H DB 80H, 90H, 88H, 83H, 0C6H,0A1H,86H, 8EH D10MS:MOV R6,#10L1:MOV R5,#248DJNZ R5,$DJNZ R6,L1RETEND流程图:结束三、思考题:总结 FPGA是如何识别按键的?与单片机读取键值有何不同?答:FPGA的所有 I/O 控制块允许每个 I/O 引脚单独配置为输入口 , 不过这种配置是系统自动完成的。
单片机实现4X4矩阵键盘控制项目PPT课件
-
5
• 在矩阵按键处理过程中,一旦检测到有按 键闭合与确认按键已经稳定闭合期间,通 过调用10-20ms延时子程序避开按键抖动问 题。由于按键是机械器件,按下或者松开 时有固定的机械抖动,抖动图如图所示。
-
6
• 按键去抖分为硬件去抖和软件去抖,硬件去抖最简单的是 按键两端并联电容,容量根据实验而定。软件去抖使用方 便不增加硬件成本,容易调试,所以现在处理按键抖动问 题大部分选择软件去抖。软件去抖操作步骤如下:
-
10
13.4 项目软件程序设计
• 矩阵键盘行线P20~P23为输出线,列线 P24~P27为输入线。单片机将行线(P20~P23) 全部输出低电平,此时读入列线数据,若列线 全为高电平则没有键按下,当列线有出现低电 平时调用延时程序以此来去除按键抖动。延时 完成后再判断是否有低电平,如果此时读入列 线数据还是有低电平,则说明确实有键按下, 再来进一步确定键值。
51单片机
VC C P0. 0 P0. 1 P0. 2 P0. 3 P0. 4 P0. 5 P0. 6 P0. 7 EA/VPP PROG/ ALE PSEN A15/P2. 7 A14/P2. 6 A13/P2. 5 A12/P2. 4 A11/P2. 3 A10/P2. 2 A9/P2. 1 A8/P2. 0
•
case 0xdd:P0=table[5];break; //显示按键码“5”
•
case 0xbd:P0=table[6];break; //显示按键码“6”
•
case 0x7d:P0=table[7];break; //显示按键码“7”
•
case 0xeb:P0=table[8];break; //显示按键码“8”
单片机课程设计报告---数码管显示4X4矩阵键盘按键号
课程设计报告书设计名称:单片机原理与应用题目:数码管显示4X4矩阵键盘按键号专业:计算机科学与技术日期:2012 年6月 11日一.设计目的:1) 了解单片机系统实现LED动态显示的原理及方法;2) 较为详细了解8051芯片的性能;3) 能够了解到单片机系统的基本原理,了解单片机控制原理;4) 掌握AT89C51程序控制方法;5) 掌握AT89C51 C语言中的设计和学会分析程序,进而能够根据自己的需要编写代码;6) 掌握4X4矩阵式键盘程序识别原理;7) 掌握4X4矩阵式键盘的设计方法;8) 学习键盘的扫描方式和应用程序设计;9) 培养根据课题需要选学参考书籍、查阅手册和文献资料的能力;10) 能够按课程设计的要求编写课程设计报告,能够正确反映设计和实验成果。
二.设计要求与主要内容:设计要求:单片机的P1口P1.0~P1.7连接4X4矩阵键盘,P0口控制一只P0口控制一只数码管,当4×4矩阵键盘中的某一按键按下时,数码管上显示对应的键号。
例如,1号键按下时,数码管显示“1”,二号按下的时候,数码管显示“2”,14号键按下时,数码管显示“E”等等。
主要内容:1)4×4矩阵键盘程序识别原理。
2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线都连接到AT89C51中,通过按键K0~K16,来在数码管显示不同的值。
实验步骤:1) 启动keiuvision3 2)新建工程命名为单片机的C语言设计与应用3)新建文件并另存为C51c.c 4)在SourceGroop1导入文件 5)编写代码,并生成C语言设计与应用.hex文件。
6)在Proteus中设计电路图7) 将keil与Proteus联机调试,记下实验记录,得出实验结果。
三.设计程序原理:(包含仿真图和流程图)1)主程序流程图2)程序流程图 若无按键按下若无按键按下若无按键按下若无按键按下结束,返回3)仿真图四.程序代码#include<reg51.h>#define uchar unsigned char#define uint unsigned int//段码ucharcodeDSY_CODE[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90, 0x88,0x83,0xc6,0xa1,0x86,0x8e,0x00};sbit BEEP=P3^7;//上次按键和当前按键的序号,该矩阵中序号范围 0~15,16 表示无按键uchar Pre_KeyNo=16,KeyNo=16;//延时void DelayMS(uint x){ uchar i;while(x--) for(i=0;i<120;i++);}//矩阵键盘扫描void Keys_Scan(){ uchar Tmp;P1=0x0f; //高 4 位置 0,放入 4 行DelayMS(1);Tmp=P1^0x0f; //按键后 0f 变成 0000XXXX,X 中一个为 0,3 个仍为1,通过异或把3个1变为 0,唯一的0变为1switch(Tmp) //判断按键发生于 0~3 列的哪一列{ case 1: KeyNo=0;break;case 2: KeyNo=1;break;case 4: KeyNo=2;break;case 8: KeyNo=3;break;default:KeyNo=16; //无键按下}P1=0xf0; //低 4 位置 0,放入 4 列DelayMS(1);Tmp=P1>>4^0x0f; //按键后 f0 变成 XXXX0000,X 中有 1 个为 0,三个仍为 1;高4位转移到低 4 位并异或得到改变的值switch(Tmp) //对 0~3 行分别附加起始值 0,4,8,12{case 1: KeyNo+=0;break;case 2: KeyNo+=4;break;case 4: KeyNo+=8;break;case 8: KeyNo+=12;}}//蜂鸣器void Beep(){uchar i;for(i=0;i<100;i++){ DelayMS(1);BEEP=~BEEP;}BEEP=0; }//主程序void main(){ P0=0x00;BEEP=0;while(1){ P1=0xf0;if(P1!=0xf0) Keys_Scan(); //获取键序号if(Pre_KeyNo!=KeyNo){ P0=~ DSY_CODE[KeyNo];Beep();Pre_KeyNo=KeyNo;}DelayMS(100);} }五.实验结果:当按键按下k0,显示管显示0,当按键按下k1时显示1,显示管可以显示1,2,3,4,5,6,7,8,9,A,B,C,D,F.六.实验体会:这次的实验提高了我的设计能力与对电路的分析能力。
单片机4×4矩阵键盘设计方案
1、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。
(2)键盘中对应按键的序号排列如图14.1所示。
2、参考电路图14.2 4×4矩阵式键盘识别电路原理图3、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。
(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。
4、程序设计内容(1)4×4矩阵键盘识别处理。
(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
5、程序流程图(如图14.3所示)6、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHRETIORG 0013HRETIORG 001BHRETIORG 0023HRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100HSTART: LCALL CHUSHIHUALCALL PANDUANLCALL XIANSHILJMP START;;;;;;;;;;初始化程序;;;;;;;;;;CHUSHIHUA: MOV COUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;;PANDUAN: MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHJZ SW1LCALL DELAY10MS JZ SW1MOV A,P3ANL A,#0FHCJNE A,#0EH,K1 MOV COUNT,#0 LJMP DKK1: CJNE A,#0DH,K2 MOV COUNT,#4 LJMP DKK2: CJNE A,#0BH,K3 MOV COUNT,#8 LJMP DKK3: CJNE A,#07H,K4 MOV COUNT,#12K4: NOPLJMP DKSW1: MOV P3,#0FFH CLR P3.5MOV A,P3ANL A,#0FHJZ SW2LCALL DELAY10MS JZ SW2MOV A,P3ANL A,#0FHCJNE A,#0EH,K5 MOV COUNT,#1 LJMP DKK5: CJNE A,#0DH,K6 MOV COUNT,#5 LJMP DKK6: CJNE A,#0BH,K7 MOV COUNT,#9 LJMP DKK7: CJNE A,#07H,K8 MOV COUNT,#13K8: NOPLJMP DKSW2: MOV P3,#0FFH CLR P3.6MOV A,P3ANL A,#0FHJZ SW3LCALL DELAY10MS JZ SW3MOV A,P3ANL A,#0FHCJNE A,#0EH,K9 MOV COUNT,#2 LJMP DKK9: CJNE A,#0DH,KA MOV COUNT,#6 LJMP DKKA: CJNE A,#0BH,KB MOV COUNT,#10 LJMP DKKB: CJNE A,#07H,KC MOV COUNT,#14 KC: NOPLJMP DKSW3: MOV P3,#0FFH CLR P3.7MOV A,P3ANL A,#0FHJZ SW4LCALL DELAY10MSJZ SW4MOV A,P3ANL A,#0FHCJNE A,#0EH,KDMOV COUNT,#3LJMP DKKD: CJNE A,#0DH,KE MOV COUNT,#7LJMP DKKE: CJNE A,#0BH,KF MOV COUNT,#11 LJMP DKKF: CJNE A,#07H,KG MOV COUNT,#15KG: NOPLJMP DKSW4: LJMP PANDUAN DK: RET ;;;;;;;;;;显示程序;;;;;;;;;; XIANSHI: MOV A,COUNTMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ALCALL DELAYSK: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ SKRET;;;;;;;;;;10ms延时程序;;;;;;;;;;DELAY10MS: MOV R6,#20D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;;DELAY: MOV R5,#20LOOP: LCALL DELAY10MSDJNZ R5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H DB 7FH,6FH,77H,7CH,39H,5EH,79H,71H;;;;;;;;;;结束标志;;;;;;;;;;END7、C语言源程序#includeunsigned char code table[]={0x3f,0x66,0x7f,0x39,0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};void main(void){ unsigned char i,j,k,key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个// { case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:key=3;break;}P0=table[key]; //送数到P0口显示//}}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有,显示相应的按键//{ case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=8;break;case 0x0d:key=9;break;case 0x0b:key=10;break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下//i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--) for(k=200;k>0;k--); i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12;break;case 0x0d:key=13;break;case 0x0b:key=14;break;case 0x07:key=15;break;}P0=table[key];}}}}8、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。
机电单片机课程设计--4乘4矩阵键盘-汇编语言
目录1 引言 (2)2 4×4矩阵键盘控制LED工作原理及软硬件设计、仿真调试 (2)2.1 4×4矩阵式键盘识别显示系统概述 (2)2.2 4×4矩阵式键盘原理 (3)2.3 4×4矩阵式键盘控制LED显示方法 (3)2.4 电路设计及电路图 (3)2.5 4×4矩阵式键盘软件编程 (6)2.6 4×4矩阵式键盘软件仿真调试分析 (9)3 结论 (10)4参考文献 (10)1 引言随着现代科技日新月异的发展,作为新兴产业,单片机的应用越来越广。
单片机以其体积小、重量轻、功能强大、功耗低等特点而备受青睐。
键盘作为一种最为普遍的输入工具在单片机项目应用上显得尤为重要。
用MCS51系列的单片机并行口P1接4×4矩阵键盘,以P1.0-P1.3 作输入线,以P1.4-P1.7作输出线;在数码管上显示每个按键的0-F序号。
2 4×4矩阵键盘控制LED工作原理及软硬件设计、仿真调试2.1 4×4矩阵式键盘识别显示系统概述矩阵式键盘模式以4个端口连接控制4*4个按键,实时在LED数码管上显示按键信息。
显示按键信息,省下了很多的I/O端口为他用,相反,独立式按键虽编程简单,但占用I/O口资源较多,不适合在按键较多的场合应用。
矩阵式键盘简介:矩阵式键盘又称行列键盘,它是用4条I/O线作为行线,4条I/O线作为列线组成的键盘。
在行线和列线的每个交叉点上设置一个按键。
这样键盘上按键的个数就为4*4个。
这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。
最常见的键盘布局如图1所示。
一般由16个按键组成,在单片机中正好可以用一个P 口实现16个按键功能,这也是在单片机系统中最常用的形式,本设计就采用这个键盘模式。
2.2 4×4矩阵式键盘原理在占用相同的I/O端口的情况下,行列式键盘的接法会比独立式接法允许的按键数量多。
单片机4×4矩阵键盘设计方案
1、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。
(2)键盘中对应按键的序号排列如图14.1所示。
2、参考电路图14.24×4矩阵式键盘识别电路原理图3、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。
(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。
4、程序设计内容(1)4×4矩阵键盘识别处理。
(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
5、程序流程图(如图14.3所示)6、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNTEQU30H;;;;;;;;;;入口地址;;;;;;;;;;ORG0000HLJMPSTARTORG0003HRETIORG000BHRETIORG0013HRETIORG001BHRETIORG0023HRETIORG002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG0100HSTART:LCALLCHUSHIHUALCALLPANDUANLCALLXIANSHILJMPSTART;;;;;;;;;;初始化程序;;;;;;;;;; CHUSHIHUA:MOVCOUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;; PANDUAN:MOVP3,#0FFHCLRP3.4MOVA,P3ANLA,#0FHXRLA,#0FHJZSW1LCALLDELAY10MSJZSW1MOVA,P3ANLA,#0FHCJNEA,#0EH,K1MOVCOUNT,#0LJMPDKK1:CJNEA,#0DH,K2MOVCOUNT,#4 LJMPDKK2:CJNEA,#0BH,K3 MOVCOUNT,#8 LJMPDKK3:CJNEA,#07H,K4 MOVCOUNT,#12K4:NOPLJMPDKSW1:MOVP3,#0FFH CLRP3.5MOVA,P3ANLA,#0FH XRLA,#0FHJZSW2 LCALLDELAY10MS JZSW2MOVA,P3ANLA,#0FH CJNEA,#0EH,K5 MOVCOUNT,#1LJMPDKK5:CJNEA,#0DH,K6 MOVCOUNT,#5 LJMPDKK6:CJNEA,#0BH,K7 MOVCOUNT,#9 LJMPDKK7:CJNEA,#07H,K8 MOVCOUNT,#13K8:NOPLJMPDKSW2:MOVP3,#0FFH CLRP3.6MOVA,P3ANLA,#0FH XRLA,#0FHJZSW3 LCALLDELAY10MS JZSW3MOVA,P3ANLA,#0FHCJNEA,#0EH,K9 MOVCOUNT,#2 LJMPDKK9:CJNEA,#0DH,KA MOVCOUNT,#6 LJMPDKKA:CJNEA,#0BH,KB MOVCOUNT,#10 LJMPDKKB:CJNEA,#07H,KC MOVCOUNT,#14 KC:NOPLJMPDKSW3:MOVP3,#0FFH CLRP3.7MOVA,P3ANLA,#0FH XRLA,#0FHJZSW4 LCALLDELAY10MS JZSW4ANLA,#0FHCJNEA,#0EH,KD MOVCOUNT,#3LJMPDKKD:CJNEA,#0DH,KE MOVCOUNT,#7LJMPDKKE:CJNEA,#0BH,KF MOVCOUNT,#11LJMPDKKF:CJNEA,#07H,KG MOVCOUNT,#15KG:NOPLJMPDKSW4:LJMPPANDUANDK:RET;;;;;;;;;;显示程序;;;;;;;;;; XIANSHI:MOVA,COUNT MOVDPTR,#TABLEMOVCA,@A+DPTRLCALLDELAYSK:MOVA,P3ANLA,#0FHXRLA,#0FHJNZSKRET;;;;;;;;;;10ms延时程序;;;;;;;;;; DELAY10MS:MOVR6,#20D1:MOVR7,#248DJNZR7,$DJNZR6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;; DELAY:MOVR5,#20LOOP:LCALLDELAY10MSDJNZR5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE:DB3FH,06H,5BH,4FH,66H,6DH,7DH,07H DB7FH,6FH,77H,7CH,39H,5EH,79H,71H7、C语言源程序#includeunsignedcharcodetable[]={0x3f,0x66,0x7f,0x39,0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};voidmain(void){unsignedchari,j,k,key;while(1){P3=0xff;//给P3口置1//P3_4=0;//给P3.4这条线送入0//i=P3;i=i&0x0f;//屏蔽低四位//if(i!=0x0f)//看是否有按键按下//{for(j=50;j>0;j--)//延时//for(k=200;k>0;k--);if(i!=0x0f)//再次判断按键是否按下//{switch(i)//看是和P3.4相连的四个按键中的哪个// {case0x0e:key=0;break;case0x0d:key=1;break;case0x0b:key=2;break;case0x07:key=3;break;}P0=table[key];//送数到P0口显示//}}P3=0xff;P3_5=0;//读P3.5这条线//i=P3;i=i&0x0f;//屏蔽P3口的低四位//if(i!=0x0f)//读P3.5这条线上看是否有按键按下// {for(j=50;j>0;j--)//延时//for(k=200;k>0;k--);i=P3;//再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){switch(i)//如果有,显示相应的按键// {case0x0e:key=4;break;case0x0d:key=5;break;case0x0b:key=6;break;case0x07:key=7;break;}P0=table[key];//送入P0口显示//}}P3=0xff;P3_6=0;//读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){switch(i){case0x0e:key=8;break;case0x0d:key=9;break;case0x0b:key=10;break;case0x07:key=11;}P0=table[key];}}P3=0xff;P3_7=0;//读P3.7这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){switch(i){case0x0e:key=12;break;case0x0d:key=13;case0x0b:key=14;break;case0x07:key=15;break;}P0=table[key];}}}}8、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。
4x4矩阵键盘
XTAL1
19
XTAL2
18
RST
9
PSEN ALE EA
29 30 31
P1.0/T2 P1.1/T2EX P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
1 2 3 4 5 6 7 8
一、矩阵键盘义定 单片机外部设备中使用的排布类似于矩阵形式 的按键组。
0
Y0
1
2
3
4
Y1
5
6
7
8
Y2
9
A
B
C
Y3
D
E
F
Y4 Y5 Y6 Y7
二、使用矩阵键盘优点 在按键数量较多时,减少I/O口资源的占用, 通常采用矩阵键盘。
三、教学任务: 设计一个4×4矩阵键盘,其键值为0---F,按 下按键 ,数码管显示相应键值,要求用行扫描法 识别键盘,且键盘要有去抖动功能。
//键值表
//共阳极数码管编码表
// 定义变量类型 //大循环 //置行为低电平0,列为高电平1,读列值。 //判断有,无键盘按下 //去抖延迟 //如果if的值为真,这时可以确定有键盘按下 //存储列读入的值 //置列为0,行为1,读行值。 //位或运算,求键值,赋给key //查找键值表,确定所按键的序号
P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7 P2.0/A8 P2.1/A9 P2.2/A10 P2.3/A11 P2.4/A12 P2.5/A13 P2.6/A14 P2.7/A15 P3.0/RXD P3.1/TXD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD AT89C52
数码管显示4×4矩阵键盘
《单片机原理及应用课程设计》报告——数码管显示4×4矩阵键盘的键盘号专业:自动化班级: 1106姓名:王佳俊学号: 110240171指导教师:卜旭芳2014年 10月15日1、课程设计目的1.1巩固和加深对单片机原理和接口技术知识的理解;1.2培养根据课题需要选学参考书籍、查阅手册和文献资料的能力;1.3学会方案论证的比较方法,拓宽知识,初步掌握工程设计的基本方法;1.4掌握常用仪器、仪表的正确使用方法,学会软、硬件的设计和调试方法;1.5能按课程设计的要求编写课程设计报告,能正确反映设计和实验成果,能用计算机绘制电路图和流程图。
2、课程设计要求单片机的P1口的P1.0~P1.7连接4×4矩阵键盘,P0口控制一只数码管,当4×4矩阵键盘中的某一按键按下时,数码管上显示对应的键号。
例如,1号键按下时,数码管显示“1”, 14号键按下时,数码管显示“E”等等。
3、硬件设计3.1 设计思想分析本任务的要求,在课程设计的基础上,添加要求,使设计能够完成当4×4矩阵键盘中的某一按键按下时,数码管上显示对应的键号。
3.2主要元器件介绍:AT89C51单片机 LED数码管 4X4矩阵键盘3.3 功能电路介绍AT89C51单片机:控制器。
程序中将单片机的引脚置高电平低电平,单片机通过读取IO引脚的电平,在根据读取的数据去查找数组中相应的按键值,然后在送到数码管也就是P0口去显示.(51单片机通过IO口来读取键盘的电平,再通过程序来查找对应的数值,在送到数码管去显示)LED数码管 :输出设备4X4矩阵键盘:输入设备4、软件设计4.1 设计思想通过对矩阵键盘的逐行扫描,来获得所按下键的键盘号,最终通过数码管显示出来。
4.2软件流程图开始初始化结束,返回若有按键按下,显示键盘号扫描键盘第一行若无按键按下扫描键盘第二行若无按键按下扫描键盘第三行若无按键按下扫描键盘第四行若无按键按下结束,返回4.3源程序#include<reg52.h>#define uchar unsigned char#define uint unsigned intuchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71};//定义显示段码uchar num,temp;void delay(uchar k)//定义延时函数uchar i,j;for(i=k;i>0;i--)for(j=110;j>0;j--);}void disp(char num1)//定义显示函数{P0=table[num1];//将段码值送入P0口显示}char keyscan()//定义键盘检测函数{P1=0xfe;//给P1口送检测信号11111110,即先检测第一列有无按键被按下(key1~key4)temp=P1;//将检测信号赋给变量temptemp=temp&0xf0;//与11110000相“与”去除低四位检测部分while(temp!=0xf0)//判断是否有按键被按下,即key1-key4有任意按键被按下temp便不等于0xff{delay(5);//按键防抖动延时(时间要求不严格)while(temp!=0xf0)//延时之后再次判断{temp=P1;//进入函数说明有按键被按下,再将p1值赋给temp进行判断是哪位被按下switch(temp)//利用switch函数判断temp值{case 0xee://若P0等于0xee,即11101110,则由判断为0的位被按下即第四位(最低位),则应赋值num为0;num=0;break;case 0xde://11011110同理判断其为第三位被按下(该行第二位)num=1num=1;break;case 0xbe://同上则num=2num=2;break;case 0x7e://同上num=3num=3;break;}while(temp!=0xf0)//判断按键是否松开,循环判断直至按键松开{temp=P1;temp=temp&0xf0;}}}P1=0xfd;//给P1口再次送检测信号11111101,来检测第二列有无按键被按下(key5~key8),以下几步同上temp=P1;temp=temp&0xf0;while(temp!=0xf0){delay(5);while(temp!=0xf0){temp=P1;switch(temp){case 0xed:num=4;break;case 0xdd:num=5;break;case 0xbd:num=6;break;case 0x7d:num=7;break;}while(temp!=0xf0){temp=P1;temp=temp&0xf0;}}}P1=0xfb;//给P1口再次送检测信号11111011,来检测第三列有无按键被按下(key9~key12),以下几步同上temp=P1;temp=temp&0xf0;while(temp!=0xf0){delay(5);while(temp!=0xf0){temp=P1;switch(temp){case 0xeb:num=8;break;case 0xdb:num=9;break;case 0xbb:num=10;break;case 0x7b:num=11;break;}while(temp!=0xf0){temp=P1;temp=temp&0xf0;}}}P1=0xf7;//给P1口再次送检测信号11110111,来检测第四列有无按键被按下(key13~key16),以下几步同上temp=P1;temp=temp&0xf0;while(temp!=0xf0){delay(5);while(temp!=0xf0){temp=P1;switch(temp){case 0xe7:num=12;break;case 0xd7:num=13;break;case 0xb7:num=14;break;case 0x77:num=15;break;}while(temp!=0xf0){temp=P1;temp=temp&0xf0;}}}return num;//子函数最后返回num值}void main(){P0=0x00;//清屏delay(5);//延时while(1)//主循环{disp(keyscan());//检测并显示}}}5、调试运行电路图依次按下开关k1-k16,数码管会对应显示出0—f的16个数字K=5的数码管显示4.K=16时的数码管显示F:6、设计心得体会硬件设计方面,此课题所需的硬件并不负责,只许少量的导线、简单的电路便可以完成。
单片机课程设计---4×4矩阵式键盘识别显示电路的设计
数理与信息工程学院《单片机原理及应用》期末课程设计题目:4×4矩阵式键盘识别显示电路的设计专业:电子信息工程班级:电信061班*名:***学号:********指导老师:***成绩:( 2008.12 )目录第1节引言 (2)1.1 4*4矩阵式键盘系统概述 (2)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (4)2.1 单片机控制系统原理 (4)2.2 单片机主机系统电路 (5)2.2.1 时钟电路 (4)2.2.2 复位电路 (5)2.2.3 矩阵式键盘电路 (5)2.3 译码显示电路 (6)第3节系统软件设计 (11)3.1 软件流程图 (8)3.2 系统程序设计 (9)第4节结束语 (12)参考文献 (13)4*4矩阵式键盘识别显示电路的设计数理与信息工程学院电信061 姜铮铮指导教师:余水宝第一节引言矩阵式键盘乃是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N个按键,即时在LED数码管上。
单片机控制的据这是键盘显示系统,该系统可以对不同的按键进行实时显示,其核心是单片机和键盘矩阵电路部分,主要对按键与显示电路的关系、矩阵式技术及设备系统的硬件、软件等各个部分进行实现。
4*4矩阵式键盘采用AT89S51单片机为核心,主要由矩阵式键盘电路、译码电路、显示电路等组成,软件选用汇编语言编程。
单片机将检测到的按键信号转换成数字量,显示于LED显示器上。
该系统灵活性强,易于操作,可靠性高,将会有更广阔的开发前景。
1.1 4*4矩阵式键盘识别显示系统概述矩阵式键盘模式以N个端口连接控制N*N个按键,实时在LED数码管上显示按键信息。
显示按键信息,既降低了成本,又提高了精确度,省下了很多的I/O端口为他用,相反,独立式按键虽编程简单,但占用I/O口资源较多,不适合在按键较多的场合应用。
并且在实际应用中经常要用到输入数字、字母、符号等操作功能,如电子密码锁、电话机键盘、计算器按键等,至少都需要12到16个按键,在这种情况下如果用独立式按键的话,显然太浪费I/O端口资源,为了解决这一问题,我们使用矩阵式键盘。
X4扫描式矩阵键盘课程设计
4X4扫描式矩阵键盘课程设计课程设计名称: 4_4扫描式矩阵键盘设计姓名:DUKE班级:电子1008班学号:10086成绩:日期:2014年1月6日摘要随着21世纪的到来,电子信息行业将是人类社会的高科技行业之一,式设施现代化的基础,也是人类通往科技巅峰的直通路。
电子行业的发展从长远来看很重要,但最主要的还是科技问题。
矩阵式键盘提高效率进行按键操作管理有效方法,它可以提高系统准确性,有利于资源的节约,降低对操作者本身素质的要求。
是它能准时、实时、高效地显示按键信息,以提高工作效率和资源利用率。
矩阵式键盘乃是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N个按键,显示在LED数码管上。
单片机控制依据这是键盘显示系统,该系统可以对不同的按键进行实时显示,其核心是单片机和键盘矩阵电路部分,主要对按键与显示电路的关系、矩阵式技术及设备系统的硬件、软件等各个部分进行实现。
4*4矩阵式键盘采用AT89C51单片机为核心,主要由矩阵式键盘电路、译码电路、显示电路等组成,软件选用C语言编程。
单片机将检测到的按键信号转换成数字量,显示于LED显示器上。
该系统灵活性强,易于操作,可靠性高,将会有更广阔的开发前景。
目录第一章:系统功能要求-------------------------------------------------------- 4*4 矩阵式键盘系统概述------------------------------------------------本设计任务和主要内容---------------------------------------------------第二章:方案论证--------------------------------------------------------------- 第三章:系统硬件电路的设计------------------------------------------------ 单片机控制系统原理-----------------------------------------------------原理图绘制说明----------------------------------------------------------画出流程图----------------------------------------------------------------原理图绘制---------------------------------------------------------------第四章:系统程序的设计------------------------------------------------------ 程序的编写步骤-----------------------------------------------------------编写的源程序--------------------------------------------------------------第五章:调试及性能分析------------------------------------------------------ 第六章:心得体会--------------------------------------------------------------- 参考文献----------------------------------------------------------------------------第一章:系统功能要求4*4 矩阵式键盘系统概述AT89C51单片机对4*4矩阵键盘进行动态扫描,当有按键盘的键时,可将相应按键值(0~F)实时显示在数码管上。
44矩阵键盘课程设计
4 4矩阵键盘课程设计一、课程目标知识目标:1. 学生能够理解4x4矩阵键盘的基本原理,掌握其电路连接方式和扫描原理。
2. 学生能够运用所学知识,设计并搭建一个简单的4x4矩阵键盘电路。
3. 学生了解矩阵键盘在嵌入式系统中的应用和重要性。
技能目标:1. 学生能够运用编程软件(如Arduino)编写程序,实现对4x4矩阵键盘的扫描和按键识别。
2. 学生能够运用调试工具,对矩阵键盘电路进行故障排查和优化。
3. 学生具备团队协作能力,共同完成矩阵键盘电路设计和程序编写。
情感态度价值观目标:1. 学生通过动手实践,培养对电子技术和编程的兴趣,增强学习动力。
2. 学生在团队合作中,学会沟通、协作、分享,培养团队精神和责任感。
3. 学生认识到科技发展对社会进步的重要性,激发为我国科技事业贡献力量的志向。
本课程针对高中年级学生,结合电子技术和编程知识,以实用性为导向,旨在培养学生的动手实践能力和创新精神。
课程内容紧密联系课本知识,通过设计4x4矩阵键盘电路,使学生在实践中掌握相关原理和方法。
课程目标具体、可衡量,为后续教学设计和评估提供明确方向。
二、教学内容1. 矩阵键盘基础知识:介绍矩阵键盘的原理、电路连接方式及其在嵌入式系统中的应用。
- 相关章节:课本第三章第二节“矩阵键盘及其应用”2. 4x4矩阵键盘电路设计:讲解如何搭建4x4矩阵键盘电路,包括硬件连接、电路图绘制等。
- 相关章节:课本第三章第三节“矩阵键盘电路设计”3. 矩阵键盘编程:介绍如何使用Arduino编程软件编写程序,实现对4x4矩阵键盘的扫描和按键识别。
- 相关章节:课本第四章第一节“Arduino编程基础”及第四节“矩阵键盘编程实例”4. 矩阵键盘电路调试与优化:教授学生如何运用调试工具进行故障排查,以及如何对电路和程序进行优化。
- 相关章节:课本第五章“电路调试与优化”5. 团队合作与展示:学生分组进行项目实践,共同完成矩阵键盘电路设计与程序编写,并进行成果展示。
4矩阵按键课程设计
4矩阵按键课程设计一、课程目标知识目标:1. 理解矩阵按键的基本概念,掌握矩阵按键的排列方式和编码原理;2. 学会运用4×4矩阵按键进行电路设计和搭建;3. 了解矩阵按键在嵌入式系统中的应用和重要性。
技能目标:1. 能够运用所学知识,独立完成4×4矩阵按键电路的设计与搭建;2. 掌握矩阵按键的编程方法,实现对按键的识别和功能分配;3. 提高实际操作能力,培养动手实践和解决问题的技能。
情感态度价值观目标:1. 培养学生对电子技术和嵌入式系统的兴趣,激发学习热情;2. 培养学生的团队协作精神,提高沟通与交流能力;3. 增强学生的创新意识,鼓励敢于尝试和挑战的精神。
课程性质:本课程属于电子技术实践课程,以理论为基础,实践为核心,注重培养学生的实际操作能力和创新意识。
学生特点:学生在本年级已经具备一定的电子技术基础知识,具有较强的学习能力和动手欲望,对新鲜事物充满好奇心。
教学要求:结合学生特点,采用理论讲解与实践操作相结合的方式,注重启发式教学,引导学生主动探究,提高学生的实践能力和创新能力。
通过本课程的学习,使学生能够掌握矩阵按键的相关知识,为后续课程打下坚实基础。
二、教学内容1. 矩阵按键原理介绍:包括矩阵按键的排列方式、编码原理以及扫描方法;- 教材章节:第二章第四节“矩阵键盘的设计与应用”2. 4×4矩阵按键电路设计与搭建:讲解如何设计电路图,选择合适的元器件,并进行电路搭建;- 教材章节:第二章第五节“矩阵键盘的电路设计与搭建”3. 矩阵按键编程方法:介绍如何使用编程语言对矩阵按键进行编程,实现对按键的识别和功能分配;- 教材章节:第三章第一节“矩阵键盘的编程方法”4. 实践操作:安排学生进行4×4矩阵按键电路的设计、搭建和编程实践,巩固所学知识;- 教材章节:实践环节5. 应用案例分析:分析矩阵按键在嵌入式系统中的应用实例,了解其实际应用场景;- 教材章节:第四章“矩阵键盘在实际应用中的案例分析”6. 课程总结与拓展:对本章所学内容进行总结,并提出一些拓展问题,激发学生深入学习的兴趣;- 教材章节:本章总结与拓展教学内容安排与进度:第一课时:矩阵按键原理介绍第二课时:4×4矩阵按键电路设计与搭建第三课时:矩阵按键编程方法第四课时:实践操作(含讨论与指导)第五课时:应用案例分析及课程总结与拓展三、教学方法本课程将采用以下多样化的教学方法,以充分激发学生的学习兴趣和主动性:1. 讲授法:教师通过生动的语言、形象的比喻和具体的案例,为学生讲解矩阵按键的基本原理、电路设计与搭建方法以及编程技巧。
数码管显示4×4矩阵键盘
2013年1月1.课程设计目的1.1巩固和加深对单片机原理和接口技术知识的理解;1.2培养根据课题需要选学参考书籍、查阅手册和文献资料的能力;1.3学会方案论证的比较方法,拓宽知识,初步掌握工程设计的基本方法;1.4掌握常用仪器、仪表的正确使用方法,学会软、硬件的设计和调试方法;1.5能按课程设计的要求编写课程设计报告,能正确反映设计和实验成果,能用计算机绘制电路图和流程图。
2.课程设计要求单片机的P1口的P1.0~P1.7连接4×4矩阵键盘,P0口控制一只数码管,当4×4矩阵键盘中的某一按键按下时,数码管上显示对应的键号。
例如,1号键按下时,数码管显示“1”, 14号键按下时,数码管显示“E”等等。
3.硬件设计3.1 设计思想分析本任务的要求,使设计能够完成当4*4矩阵键盘中的某一按键按下时,数码管上显示对应的键盘号。
则本系统主要由以下几大模块构成:显示模块,共阴极LED数码管;输入模块,4*4矩阵键盘;3.2主要元器件介绍矩阵键盘又称为行列式键盘,它是用4条I/O线作为行线,4条I/O线作为列线组成的键盘。
在行线和列线的每一个交叉点上,设置一个按键。
这样键盘中按键的个数是4×4个。
这种行列式键盘结构能够有效地提高单片机系统中I/O 口的利用率。
数码管不同位显示的时间间隔可以通过调整延时程序的延时长短来完成。
数码管显示的时间间隔也能够确定数码管显示时的亮度,若显示的时间间隔长,显示时数码管的亮度将亮些,若显示的时间间隔短,显示时数码管的亮度将暗些。
若显示的时间间隔过长的话,数码管显示时将产生闪烁现象。
所以,在调整显示的时间间隔时,即要考虑到显示时数码管的亮度,又要数码管显示时不产生闪烁现象。
4.1 设计思想按键采用线反转法先把列线置成低电平,行线置成输入状态,读行线;再把行线置成低电平,列线输入状态,读列线。
当有键按下时,由两次所读状态即可确定所按键的位置,不需扫描,键盘响应速度大大加快。
单片机课程设计——数码管显示4×4矩阵键盘
《单片机原理及应用课程设计》报告——数码管显示4*4矩阵键盘的键盘号设计专业:班级:姓名:学号:2013年1月1.课程设计目的1.1巩固和加深对单片机原理和接口技术知识的理解;1.2培养根据课题需要选学参考书籍、查阅手册和文献资料的能力;1.3学会方案论证的比较方法,拓宽知识,初步掌握工程设计的基本方法;1.4掌握常用仪器、仪表的正确使用方法,学会软、硬件的设计和调试方法;1.5能按课程设计的要求编写课程设计报告,能正确反映设计和实验成果,能用计算机绘制电路图和流程图。
2.课程设计要求单片机的P1口的P1.0~P1.7连接4×4矩阵键盘,P0口控制一只数码管,当4×4矩阵键盘中的某一按键按下时,数码管上显示对应的键号。
例如,1号键按下时,数码管显示“1”, 14号键按下时,数码管显示“E”等等。
3.硬件设计3.1 设计思想分析本任务的要求,使设计能够完成当4*4矩阵键盘中的某一按键按下时,数码管上显示对应的键盘号。
则本系统主要由以下几大模块构成:显示模块,共阴极LED数码管;输入模块,4*4矩阵键盘;3.2主要元器件介绍矩阵键盘又称为行列式键盘,它是用4条I/O线作为行线,4条I/O线作为列线组成的键盘。
在行线和列线的每一个交叉点上,设置一个按键。
这样键盘中按键的个数是4×4个。
这种行列式键盘结构能够有效地提高单片机系统中I/O 口的利用率。
数码管不同位显示的时间间隔可以通过调整延时程序的延时长短来完成。
数码管显示的时间间隔也能够确定数码管显示时的亮度,若显示的时间间隔长,显示时数码管的亮度将亮些,若显示的时间间隔短,显示时数码管的亮度将暗些。
若显示的时间间隔过长的话,数码管显示时将产生闪烁现象。
所以,在调整显示的时间间隔时,即要考虑到显示时数码管的亮度,又要数码管显示时不产生闪烁现象。
4.1 设计思想按键采用线反转法先把列线置成低电平,行线置成输入状态,读行线;再把行线置成低电平,列线输入状态,读列线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。
(2)键盘中对应按键的序号排列如图14.1所示。
2、参考电路图14.2 4×4矩阵式键盘识别电路原理图3、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。
(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。
4、程序设计内容(1)4×4矩阵键盘识别处理。
(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
5、程序流程图(如图14.3所示)6、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHRETIORG 0013HRETIORG 001BHRETIORG 0023HRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100HSTART: LCALL CHUSHIHUALCALL PANDUANLCALL XIANSHILJMP START;;;;;;;;;;初始化程序;;;;;;;;;; CHUSHIHUA: MOV COUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;; PANDUAN: MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW1LCALL DELAY10MSJZ SW1MOV A,P3ANL A,#0FHCJNE A,#0EH,K1 MOV COUNT,#0LJMP DKK1: CJNE A,#0DH,K2 MOV COUNT,#4LJMP DKK2: CJNE A,#0BH,K3 MOV COUNT,#8LJMP DKK3: CJNE A,#07H,K4 MOV COUNT,#12K4: NOPLJMP DKSW1: MOV P3,#0FFH CLR P3.5MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW2LCALL DELAY10MSJZ SW2MOV A,P3ANL A,#0FHCJNE A,#0EH,K5 MOV COUNT,#1LJMP DKK5: CJNE A,#0DH,K6 MOV COUNT,#5LJMP DKK6: CJNE A,#0BH,K7 MOV COUNT,#9LJMP DKK7: CJNE A,#07H,K8 MOV COUNT,#13K8: NOPLJMP DKSW2: MOV P3,#0FFH CLR P3.6MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW3LCALL DELAY10MSJZ SW3MOV A,P3ANL A,#0FHCJNE A,#0EH,K9 MOV COUNT,#2LJMP DKK9: CJNE A,#0DH,KA MOV COUNT,#6LJMP DKKA: CJNE A,#0BH,KB MOV COUNT,#10 LJMP DKKB: CJNE A,#07H,KC MOV COUNT,#14 KC: NOPLJMP DKSW3: MOV P3,#0FFH CLR P3.7MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW4LCALL DELAY10MSJZ SW4MOV A,P3ANL A,#0FHCJNE A,#0EH,KD MOV COUNT,#3LJMP DKKD: CJNE A,#0DH,KE MOV COUNT,#7LJMP DKKE: CJNE A,#0BH,KFLJMP DKKF: CJNE A,#07H,KGMOV COUNT,#15KG: NOPLJMP DKSW4: LJMP PANDUANDK: RET;;;;;;;;;;显示程序;;;;;;;;;; XIANSHI: MOV A,COUNTMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ALCALL DELAYSK: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ SKRET;;;;;;;;;;10ms延时程序;;;;;;;;;; DELAY10MS: MOV R6,#20DJNZ R7,$DJNZ R6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;;DELAY: MOV R5,#20LOOP: LCALL DELAY10MSDJNZ R5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07HDB 7FH,6FH,77H,7CH,39H,5EH,79H,71H;;;;;;;;;;结束标志;;;;;;;;;;END7、C语言源程序#includeunsigned char code table[]={0x3f,0x66,0x7f,0x39, 0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};void main(void){ unsigned char i,j,k,key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个// { case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:break;}P0=table[key]; //送数到P0口显示//}}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有,显示相应的按键//{ case 0x0e:key=4;break;case 0x0d:break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;{ switch(i){ case 0x0e:key=8;break;case 0x0d:key=9;break;case 0x0b:key=10;break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下// i=P3;if(i!=0x0f){ for(j=50;j>0;j--) for(k=200;k>0;k--); i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12;break;case 0x0d:key=13;break;case 0x0b:key=14;break;case 0x07:key=15;break;}P0=table[key];}}}}8、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。