应用时间序列 第二版 第五章部分习题程序
应用计量经济学时间序列分析第二版教学设计
应用计量经济学时间序列分析第二版教学设计一、课程简介本课程是应用计量经济学时间序列分析的进阶课程,为研究生课程。
本课程主要包括时间序列分析的理论、方法和应用。
学生需要掌握时间序列数据的基本性质,了解常见的时间序列分析方法,掌握时间序列建模的基本步骤,能够进行时间序列分析的实证研究。
本课程要求学生具有计量经济学基础知识,并具备一定的数理统计基本功。
二、教学目标•让学生了解时间序列建模的基本概念和原理;•培养学生分析经济数据的时间序列属性的能力;•帮助学生掌握经济时间序列分析的常用方法和技巧,提高他们的实证研究能力;•通过作业和课堂讨论,激发学生的思考和独立解决问题的能力。
三、教学内容任务一:Introduction(2学时)•时间序列的概念和特征•时间序列的建模方法和研究意义•时间序列分析软件Eviews的介绍和应用实例任务二:时间序列构建(4学时)•时间序列的构建与描述性统计•时间序列相关性的检验和解释•时间序列预处理和分析任务三:线性时间序列模型(6学时)•时间序列模型的概念和基本假设•线性时间序列模型的描述和方法•时间序列模型参数的估计和检验任务四:非线性时间序列模型(6学时)•非线性时间序列模型的概念和基本假设•ARCH、GARCH等常见非线性模型的描述和应用•时间序列模型诊断和预测方法任务五:实证研究案例(6学时)•时间序列模型在实证研究中的应用举例•学生根据给定的数据,自行构建时间序列模型并进行实证分析•学生撰写报告,展示实证研究成果四、教学方法本课程采用理论授课和案例分析相结合的方式进行。
理论授课部分重点讲解时间序列模型的理论和方法,学生需要做好笔记,深入理解模型的基本概念和假设。
案例分析部分分组进行,学生一起讨论如何构建时间序列模型、估计参数和预测结果等问题,老师进行指导和点评。
学生需要提交课后作业和学期末的实证研究报告。
五、教学评估方法•平时成绩:包括出勤和参与度,以课堂表现和课后作业完成质量为考核标准•作业成绩:课后作业的完成情况和成果,包括计算题和理论题•课程论文:学生自行选择研究主题,构建时间序列模型,撰写时间序列分析实证研究论文•期末考试:对学生全年学习情况进行考核,考查学生对时间序列模型的理论和应用情况六、参考资料•《时间序列分析基础》(高邦靖著)•《应用时间序列分析》(哈瑞·麦克菲尔兰、马克·S.哈罗德著)•《实证时间序列分析》(蒂米·温廷格、哈里·科氏著)。
MATLAB语言基础与应用(第二版)第5章 习题答案
第5章习题与答案5.1用矩阵三角分解方法解方程组123123123214453186920x x x x x x x x x +-=⎧⎪-+=⎨⎪+-=⎩ 解答:>>A=[2 1 -1;4 -1 3;6 9 -1] A =2 1 -1 4 -13 6 9 -1 >>b=[14 18 20]; b =14 18 20 >> [L, U, P]=lu(A) L =1.0000 0 0 0.6667 1.0000 0 0.3333 0.2857 1.0000 U =6.0000 9.0000 -1.0000 0 -7.0000 3.6667 0 0 -1.7143 P =0 0 1 0 1 0 1 0 0 >> y=backsub(L,P*b’) y =20.0000 4.6667 6.0000 >> x=backsub(U,y) x =6.5000 -2.5000 -3.5000 5.2 Cholesky 分解方法解方程组123121332352233127x x x x x x x ++=⎧⎪+=⎨⎪+=⎩ 解答:>> A=[3 2 3;2 2 0;3 0 12] A =3 2 32 2 03 0 12>> b=[5;3;7]b =537>> L=chol(A)L =1.7321 1.1547 1.73210 0.8165 -2.44950 0 1.7321>> y=backsub(L,b)y =-11.6871 15.7986 4.0415>> x=backsub(L',y)x =-6.7475 28.8917 49.93995.3解答:观察数据点图形>> x=0:0.5:2.5x =0 0.5000 1.0000 1.5000 2.0000 2.5000 >> y=[2.0 1.1 0.9 0.6 0.4 0.3]y =2.0000 1.1000 0.9000 0.6000 0.4000 0.3000 >> plot(x,y)图5.1 离散点分布示意图从图5.1观察数据点分布,用二次曲线拟合。
《应用时间序列分析》习题集
《时间序列分析》习题集统计学院应用统计教研室2004年8月初稿2008年4月补充第二章习题1.若序列长度为100,前12个样本自相关系数如下:该序列能否视为纯随机序列?2.表2-1数据是某公司在2004-2007年期间每月的销售量。
表2-1月份 2004年2005年2006年2007年1153 1341451172187175203178323424318914942122272141785300298295248622125622020272012372311628175165174135912312411912010104106859611858767901278747563(1)绘制该序列时序图及样本自相关图;(2)判断该序列的平稳性;(3)判断该序列的纯随机性。
3.1975年——1980年夏威夷莫那罗亚火山每月释放的CO2数据如下(单位:mm),见表2-2。
表2-2 330.45330.97331.64332.87333.61333.55331.9330.05328.58328.31329.41330.63331.63332.46333.36334.45334.82334.32333.05330.87329.24328.87330.18331.5332.81333.23334.55335.82336.44335.99334.65332.41331.32330.73332.05333.53334.66335.07336.33337.39337.65337.57336.25334.39332.44332.25333.59334.76335.89336.44337.63338.54339.06338.95337.41335.71333.68333.69335.05336.53337.81338.16339.88340.57341.19340.87339.25337.19335.49336.63337.74338.36(1)绘制该序列时序图,并判断该序列是否平稳;(2)计算该序列的样本自相关系数;(3)绘制该样本自相关图,并解释该图形。
第五章 时间序列练习题
第五章时间序列分析一、单项选择1. 时间序列是()。
a、将一系列统计指标按时间先后顺序排列起来b、将一系列不同指标数值按时间先后顺序排列起来c、将某一统计指标在不同时间的数值按时间先后顺序排列起来d、将一系列相同指标按时间先后顺序排列起来2. 时间序列中,每个指标数值可以相加的是()。
a、相对数时间序列b、时期序列c、平均数时间序列d、时间序列3. 时期数列中的每一指标数值是()。
a、定期统计一次b、连续不断统计而取得c、每隔一定时间统计一次d、每隔一月统计一次4. 在时点序列中()。
a、各指标数值之间的距离称作“间隔”b、各指标数值所属的时期长短称作“间隔”c、最初水平与最末水平之差称作“间隔”d、最初水平和最末水平之间的距离称作“间隔”5. 下列数列中哪一个属于动态序列()。
a、学生按成绩分组形成的数列b、工业企业按地区分组形成的数列c、职工人数按时间顺序先后排列形成的数列d、职工按工资水平高低顺序排列形成的数列6. 10年内每年年末国家黄金储备是()。
a、发展速度b、增长速度c、时期数列d、时点数列7. 对时间序列进行动态分析的基础数据是()。
a、发展水平b、平均发展水平c、发展速度d、平均发展速度8. 由时期序列计算平均数应按()计算。
a、算术平均法b、调和平均法c、几何平均法d、“首末折半法”9. 由日期间隔相等的间断时点序列计算平均数应按( )计算。
a、算术平均法b、调和平均法c、几何平均法d、“首末折半法”10. 由日期间隔不等的间断时点序列计算平均数应按()。
a、简单算术平均法b、加权算术平均法c、几何平均法d、“首末折半法”11. 时间序列中的平均发展速度是()。
a、各时期环比发展速度的调和平均数b、各时期环比发展速度的平均数c、各时期定基发展速度的序时平均数d、各时期环比发展速度的几何平均数12. 应用几何平均法计算平均发展速度主要是因为()。
a、几何平均计算简便b、各期环比发展速度之积等于总速度c、各期环比发展速度之和等于总速度d、是因为它和社会现象平均速度形成的客观过程一致13. 平均增长速度是()。
时间序列练习题答案
时间序列练习题答案一、选择题1. 时间序列分析中的自回归模型(AR)是指:A. 模型中的误差项B. 模型预测值依赖于自身过去的值C. 模型预测值依赖于其他变量的值D. 模型预测值依赖于未来的值2. 移动平均模型(MA)的主要特征是:A. 预测值依赖于过去的误差项B. 预测值依赖于过去的观测值C. 预测值依赖于未来的误差项D. 预测值依赖于未来的观测值3. 以下哪个不是时间序列分析中的平稳性检验方法?A. 单位根检验B. 协整检验C. KPSS检验D. 方差比检验4. 时间序列的差分操作通常用于:A. 消除季节性效应B. 消除趋势C. 消除周期性变化D. 消除随机波动5. 季节性调整的目的是:A. 消除随机波动B. 消除季节性效应C. 消除长期趋势D. 消除周期性变化二、简答题1. 简述自回归积分滑动平均模型(ARIMA)的基本组成部分。
2. 解释什么是时间序列的平稳性,并说明为什么在时间序列分析中需要考虑平稳性。
3. 描述季节性时间序列的特点,并说明如何识别和处理季节性效应。
三、计算题1. 给定以下时间序列数据:\[ y_t = \{10, 15, 20, 25, 30, 35, 40, 45, 50, 55\} \] 假设这是一个一阶自回归模型AR(1),其中自回归系数φ=0.8。
请计算下一个时间点的预测值。
2. 假设一个时间序列模型的ACF(自相关函数)在滞后1时显著不为0,而在滞后2及以后时显著为0。
根据这个信息,推测该时间序列可能属于哪种类型的模型?四、案例分析题1. 某公司销售数据呈现明显的季节性变化,如何在时间序列分析中对数据进行季节性调整?2. 一个时间序列模型的ADF(Augmented Dickey-Fuller)检验结果表明存在单位根,这意味着什么?如何对数据进行处理以消除单位根?五、论述题1. 论述时间序列分析在金融领域中的应用,并举例说明。
2. 讨论时间序列分析中的因果关系检验方法,并说明在实际应用中如何选择合适的方法。
第五章时间序列分析习题
第五章时间序列分析习题第五章时间序列分析习题⼀、填空题1.时间序列有两个组成要素:⼀是,⼆是。
2.在⼀个时间序列中,最早出现的数值称为,最晚出现的数值称为。
3.时间序列可以分为时间序列、时间序列和时间序列三种。
其中是最基本的序列。
4.绝对数时间序列可以分为和两种,其中,序列中不同时间的数值相加有实际意义的是序列,不同时间的数值相加没有实际意义的是序列。
5.已知某油⽥1995年的原油总产量为200万吨,2000年的原油总产量是459万吨,则“九五”计划期间该油⽥原油总产量年平均增长速度的算式为。
6.发展速度由于采⽤的基期不同,分为和两种,它们之间的关系可以表达为。
7.设i=1,2,3,…,n,a i为第i个时期经济⽔平,则a i/a0是发展速度,a i/a i-1是发展速度。
8.计算平均发展速度的常⽤⽅法有⽅程式法和.9.某产品产量1995年⽐1990年增长了105%,2000年⽐1990年增长了306.8%,则该产品2000年⽐1995增长速度的算式是。
10.如果移动时间长度适当,采⽤移动平均法能有效地消除循环变动和。
11.时间序列的波动可分解为长期趋势变动、、循环变动和不规则变动。
12.⽤最⼩⼆乘法测定长期趋势,采⽤的标准⽅程组是。
⼆、单项选择题1.时间序列与变量数列( )A都是根据时间顺序排列的B都是根据变量值⼤⼩排列的C前者是根据时间顺序排列的,后者是根据变量值⼤⼩排列的D前者是根据变量值⼤⼩排列的,后者是根据时间顺序排列的2.时间序列中,数值⼤⼩与时间长短有直接关系的是( )A平均数时间序列B时期序列C时点序列D相对数时间序列3.发展速度属于( )A⽐例相对数B⽐较相对数C动态相对数D强度相对数4.计算发展速度的分母是( )A报告期⽔平B基期⽔平C实际⽔平D计划⽔平5.某车间⽉初⼯⼈⼈数资料如下:A 296⼈B 292⼈C 295 ⼈D 300⼈6.某地区某年9⽉末的⼈⼝数为150万⼈,10⽉末的⼈⼝数为150.2万⼈,该地区10⽉的⼈⼝平均数为( )A150万⼈ B150.2万⼈ C150.1万⼈ D ⽆法确定 7.由⼀个9项的时间序列可以计算的环⽐发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 8.采⽤⼏何平均法计算平均发展速度的依据是( )A 各年环⽐发展速度之积等于总速度B 各年环⽐发展速度之和等于总速度C 各年环⽐增长速度之积等于总速度D 各年环⽐增长速度之和等于总速度9.某企业的科技投,3,2000年⽐1995年增长了58.6%,则该企业1996—2000年间科技投⼊的平均发展速度为( ) A5%6.58 B5%6.158 C6%6.58 D6%6.15810.根据牧区每个⽉初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采⽤的公式是( )A 简单平均法B ⼏何平均法C 加权序时平均法D ⾸末折半法 11.在测定长期趋势的⽅法中,可以形成数学模型的是( )A 时距扩⼤法B 移动平均法C 最⼩平⽅法D 季节指数法三、多项选择题1.对于时间序列,下列说法正确的有( )A 序列是按数值⼤⼩顺序排列的B 序列是按时间顺序排列的C 序列中的数值都有可加性D 序列是进⾏动态分析的基础E 编制时应注意数值间的可⽐性 2.时点序列的特点有( )A 数值⼤⼩与间隔长短有关B 数值⼤⼩与间隔长短⽆关C 数值相加有实际意义D 数值相加没有实际意义E 数值是连续登记得到的3.下列说法正确的有( )A 平均增长速度⼤于平均发展速度B 平均增长速度⼩于平均发展速度C 平均增长速度=平均发展速度-1D 平均发展速度=平均增长速度-1E 平均发展速度×平均增长速度=14.下列计算增长速度的公式正确的有( )A 增长速度=%100?基期⽔平增长量 B 增长速度=%100?报告期⽔平增长量C 增长速度= 发展速度—100%D 增长速度=%100?-基期⽔平基期⽔平报告期⽔平E 增长速度= %100?基期⽔平报告期⽔平5.采⽤⼏何平均法计算平均发展速度的公式有( ) A 1 231201-?=n n a a a a a a a a nx B 0a a nx n =C 1a a nx n = D R n x = E nx x ∑=A 第⼆年的环⽐增长速度⼆定基增长速度=10%B 第三年的累计增长量⼆逐期增长量=200万元C 第四年的定基发展速度为135%D 第五年增长1%绝对值为14万元E 第五年增长1%绝对值为13.5万元7.下列关系正确的有( )A 环⽐发展速度的连乘积等于相应的定基发展速度B 定基发展速度的连乘积等于相应的环⽐发展速度C 环⽐增长速度的连乘积等于相应的定基增长速度D 环⽐发展速度的连乘积等于相应的定基增长速度E 平均增长速度=平均发展速度-1 8.测定长期趋势的⽅法主要有( )A 时距扩⼤法B ⽅程法C 最⼩平⽅法D 移动平均法E ⼏何平均法 9.关于季节变动的测定,下列说法正确的是( ) A ⽬的在于掌握事物变动的季节周期性 B 常⽤的⽅法是按⽉(季)平均法C 需要计算季节⽐率D 按⽉计算的季节⽐率之和应等于400%E 季节⽐率越⼤,说明事物的变动越处于淡季 10.时间序列的可⽐性原则主要指( )A 时间长度要⼀致B 经济内容要⼀致C 计算⽅法要⼀致D 总体范围要⼀致E 计算价格和单位要⼀致四、判断题1.时间序列中的发展⽔平都是统计绝对数。
课后习题答案-时间序列分析及应用(R语言原书第2版)
stationary.
(b) Find the autocovariance function for {Yt}. Cov(Yt,Yt − k) = Cov(X,X) = σ2 for all t and k, free of t (and k). (c) Sketch a “typical” time plot of Yt. The plot will be a horizontal “line” (really a discrete-time horizontal line)
relation functions are the same for θ = 3 and θ = 1/3. For simplicity, suppose that the process mean is known
to be zero and the variance of Yt is known to be 1. You observe the series {Yt} for t = 1, 2,..., n and suppose that you can produce good estimates of the autocorrelations ρk. Do you think that you could determine which value of θ is correct (3 or 1/3) based on the estimate of ρk? Why or why not?
人大版时间序列分析基于R(第2版)习题答案
第一章习题答案略第二章习题答案2.1答案:(1)非平稳,有典型线性趋势(2)延迟1-6阶自相关系数如下:(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)1-24阶自相关系数如下(3)自相关图呈现典型的长期趋势与周期并存的特征2.3R命令答案(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列Box-Pierce testdata: rainX-squared = 0.2709, df = 3, p-value = 0.9654X-squared = 7.7505, df = 6, p-value = 0.257X-squared = 8.4681, df = 9, p-value = 0.4877X-squared = 19.914, df = 12, p-value = 0.06873X-squared = 21.803, df = 15, p-value = 0.1131X-squared = 29.445, df = 18, p-value = 0.04322.4答案:我们自定义函数,计算该序列各阶延迟的Q统计量及相应P值。
由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。
2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列Box-Pierce testdata: xX-squared = 36.592, df = 3, p-value = 5.612e-08X-squared = 84.84, df = 6, p-value = 3.331e-162.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。
如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列Box-Pierce testdata: xX-squared = 47.99, df = 3, p-value = 2.14e-10X-squared = 60.084, df = 6, p-value = 4.327e-11(2)差分序列平稳,非白噪声序列Box-Pierce testdata: yX-squared = 22.412, df = 3, p-value = 5.355e-05X-squared = 27.755, df = 6, p-value = 0.00010452.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。
人大版时间序列分析基于R(第2版)习题答案
第一章习题答案略第二章习题答案2.1答案:(1)非平稳,有典型线性趋势(2)延迟1-6阶自相关系数如下:(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)1-24阶自相关系数如下(3)自相关图呈现典型的长期趋势与周期并存的特征2.3R命令答案(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列Box-Pierce testdata: rainX-squared = 0.2709, df = 3, p-value = 0.9654X-squared = 7.7505, df = 6, p-value = 0.257X-squared = 8.4681, df = 9, p-value = 0.4877X-squared = 19.914, df = 12, p-value = 0.06873X-squared = 21.803, df = 15, p-value = 0.1131X-squared = 29.445, df = 18, p-value = 0.04322.4答案:我们自定义函数,计算该序列各阶延迟的Q统计量及相应P值。
由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。
2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列Box-Pierce testdata: xX-squared = 36.592, df = 3, p-value = 5.612e-08X-squared = 84.84, df = 6, p-value = 3.331e-162.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。
如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列Box-Pierce testdata: xX-squared = 47.99, df = 3, p-value = 2.14e-10X-squared = 60.084, df = 6, p-value = 4.327e-11(2)差分序列平稳,非白噪声序列Box-Pierce testdata: yX-squared = 22.412, df = 3, p-value = 5.355e-05X-squared = 27.755, df = 6, p-value = 0.00010452.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。
时间序列练习题
时间序列练习题时间序列分析是一种对随时间变化的数据进行建模和预测的统计分析方法。
它在经济学、金融学、气象学、环境科学等领域都有着广泛的应用。
为了加深对时间序列分析的理解,以下是一些时间序列练习题,帮助读者巩固相关知识和技能。
1. 下面是某城市某共享单车平台的日订单量数据(单位:订单数)。
请问这组数据属于哪种类型的时间序列数据?日期订单量1月1日 1201月2日 1601月3日 1501月4日 1801月5日 2002. 下面是某公司某产品在2020年1月至6月的月销售额数据(单位:万元)。
请根据给出数据回答以下问题:1月 802月 853月 704月 905月 956月 100(1)请计算该产品在第二季度(4月、5月、6月)的总销售额。
(2)根据给出数据,绘制该产品的销售额趋势图。
3. 下面是某超市某商品每周销量数据(单位:件)。
请计算该商品的季节性指数。
周次销量1 1002 1203 1354 1405 1506 1557 1608 1809 20010 2204. 假设一家公司的销售额数据如下(单位:万元):日期销售额2019-01 802019-02 852019-03 902019-04 1002019-05 1102019-06 115(1)请计算该公司在2019年第一季度(1月、2月、3月)的平均月销售额。
(2)根据给出数据,绘制该公司的销售额线性趋势图。
5. 下面是某餐厅某菜品2019年1月至6月的月销售量数据(单位:份)。
请根据给出数据,计算该菜品的季节指标和趋势指数。
1月 502月 553月 484月 605月 656月 70以上是时间序列练习题,通过思考和计算这些问题,读者可以进一步巩固和应用时间序列分析的相关知识和方法。
在实际应用中,时间序列分析可以用于预测未来趋势、制定合理的经营策略、评估政策实施效果等。
希望读者通过练习题的探索,能够更好地理解时间序列分析的重要性和实用性。
应用时间序列分析习题答案之欧阳家百创编
第二章习题答案欧阳家百(2021.03. 07)2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)- (3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.0130.042 -0.043 -0.179-0.251-0.0940.0248-0.068-0.0720.0140」09 0.2170.316 0.0070-0.0250.075-0.141-0.204 -0.2450.0660.0062-0.139-0.0340.206-0.010 0.080 0.118(2)平稳序列(3)白噪声序列LB=4.83, LB统计量对应的分位点为0.9634, P值为0.0363。
显著性水平芦词,序列不能视为纯随机序列。
欧阳家百创编(1) 时序图与样本自相关图如下(2) 非平稳 (3) 非纯随机 2.6(1) 平稳,非纯随机序列(拟合模型参考:ARMA( 1,2)) (2) 差分序列平稳,非纯随机 第三章习题答案3.1 解:E(x,) = 0.7-E(x,_1) + E(^/) 3.2解:对于AR (2)模型: 解得邓3.3解:根据该AR ⑵模型的形式,易得:£(x,) = 0(1 + 0」5)(1-0.15)(1-0.8 + 0.15)(1+ 0.8 + 0.15)3.4解:原模型可变形为:由其平稳域判别条件知:当|如<1, 0 +妬<1且血TV 时,模型平m 山川 山山川/沙少川川山山川 WWW■T* • *1*1 »• U® U* "T*1 ■ • *1® U* I* *1 «»••■ •Hi Hi alt Hi«pvpap«p•"沙山川山川•w*・••T<H* H*M*^T*H*■ »!• i \i • i| 11| • i| I 11| I qi i| •■山必心•丄■心*1* *!■ «(« ■!««|« <1 • «1 e «1 e f|« •!••••••••■• ■ 3山川川aw 山• n»<n<P■■ • 0•P^ " .•eHits>!■«je.■ahiiiniih ibUiiDditbibiliilBil* ibH| QIQ «■(«Q «Q «原模型可变为:x t =0・8兀『-]-0・15X _2 +祈2=1.98230Autocorrelat i ons-1 9 8 7 6 5 4 3 2 1 0 1 2 9 4 5 6 7 8 9 1由此可知 c 应满足:|ici<i|, |c-1 < 1 BfTTTTT] 即当-IvcvO 时,该AR (2)模型平稳。
应用时间序列分析第5章共12页
佛山科学技术学院应用时间序列分析实验报告实验名称第五章非平稳序列的随机分析一、上机练习通过第4章我们学习了非平稳序列的确定性因素分解方法,但随着研究方法的深入和研究领域的拓宽,我们发现确定性因素分解方法不能很充分的提取确定性信息以及无法提供明确有效的方法判断各因素之间确切的作用关系。
第5章所介绍的随机性分析方法弥补了确定性因素分解方法的不足,为我们提供了更加丰富、更加精确的时序分析工具。
5.8.1 拟合ARIMA模型【程序】data example5_1;input x@@;difx=dif(x);t=_n_;cards;1.05 -0.84 -1.42 0.202.81 6.72 5.40 4.385.52 4.46 2.89 -0.43 -4.86 -8.54 -11.54 -16.22-19.41 -21.61 -22.51 -23.51 -24.49 -25.54 -24.06 -23.44-23.41 -24.17 -21.58 -19.00 -14.14 -12.69 -9.48 -10.29-9.88 -8.33 -4.67 -2.97 -2.91 -1.86 -1.91 -0.80;proc gplot;plot x*t difx*t;symbol v=star c=black i=join;proc arima;identify var=x(1);estimate p=1;estimate p=1 noint;forecast lead=5id=t out=out;proc gplot data=out;plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay;symbol1c=black i=none v=star;symbol2c=red i=join v=none;symbol3c=green I=join v=none;2、序列difx时序图:如图1-2所示,时序图显示差分后序列difx没有明显的非平稳特征。
统计基础知识第五章时间序列分析习题及答案
A. 140 万元B.150 万元6. 下列指标中属于时点指标的是 ( A ) A. 商品库存量 C .平均每人销售额7. 时间数列中,各项指标数值可以相加的是 A. 时期数列 C. 平均数时间数列8. 时期数列中各项指标数值( A ) A. 可以相加C .绝大部分可以相加10.某校学生人数 2005年比 2004年增长了8%,2006年比 2005年增长了 15%,2007年比 2006 年增长了 18%,则 2004-2007 年学生人数共增长了( D )( 2008年 10月)A.8 % +15% +18%B.8 %X 15%X 18%C. ( 108% +115% +118%) -1D.108%X 115%X 118%-1二、多项选择题1. 将不同时期的发展水平加以平均而得到的平均数称为 ( ABD ) (2012年1月)A.序时平均数B.动态平均数C.静态平均数D.平均发展水平E. 一般平均数2. 定基发展速度和环比发展速度的关系是 ( BD ) (2011年 10月) A. 相邻两个环比发展速度之商等于相应的定基发展速度、单项选择题 第五章 时间序列分析1. 构成时间数列的两个基本要素是 ( A.主词和宾词 ) (2012年 1月)B. 变量和次数 C .现象所属的时间及其统计指标数值 2.某地区历年出生人口数是一个 ( A.时期数列 D.时间和次数2011年 10 月)B. 时点数列 C .分配数列 D .平均数数列3. 某商场销售洗衣机, 2008 年共销售 (2010年 10) A. 时期指标 C. 前者是时期指标,后者是时点指标4. 累计增长量 ( A ) ( 2010年 10) A. 等于逐期增长量之和 C.等于逐期增长量之差5. 某企业银行存款余额 4 月初为 80 万元, 6000 台,年底库存 50 台,这两个指标是 ( C )B. 时点指标D. 前者是时点指标,后者是时期指标B. 等于逐期增长量之积 D •与逐期增长量没有关系160 万元,则该企业第二季度的平均存款余额为(5 月初为 150 万元,6 月初为 210 万元,7 月初为C )( 2009年 10)C.160 万元 D .170万元( 2009年 10) B. 商品销售量 D .商品销售额 ( A )(2009年10)B.相对数时间数列 D. 时点数列2009年1月)B. 不可以相加D. 绝大部分不可以相加B. 环比发展速度的连乘积等于定基发展速度C. 定基发展速度的连乘积等于环比发展速度D .相邻两个定基发展速度之商等于相应的环比发展速度E.以上都对3. 常用的测定与分析长期趋势的方法有A. 时距扩大法( ABC )(2011年1 月)B.移动平均法C. 最小平方法4. 时点数列的特点有( BCD )A. 数列中各个指标数值可以相加D.几何平均法2010年10)E. 首末折半法B. 数列中各个指标数值不具有可加性C. 指标数值是通过一次登记取得的D. 指标数值的大小与时期长短没有直接的联系E. 指标数值是通过连续不断的登记取得的5.增长1%的绝对值等于(AC )(2010年1)A.增加一个百分点所增加的绝对量B. 增加一个百分点所增加的相对量C .前期水平除以100 D. 后期水平乘以1% E .环比增长量除以100再除以环比发展速度6. 计算平均发展速度常用的方法有( A.几何平均法(水平法) C•方程式法(累计法)E.加权算术平均法7. 增长速度(ADEA. 等于增长量与基期水平之比C.累计增长量与前一期水平之比AC )(2009年10)B.调和平均法D.简单算术平均法)(2009年1 月)B. 逐期增长量与报告期水平之比D. 等于发展速度-1E .包括环比增长速度和定基增长速度8. 序时平均数是(CE )A.反映总体各单位标志值的一般水平2008年10月)B.根据同一时期标志总量和单位总量计算C•说明某一现象的数值在不同时间上的一般水平D. 由变量数列计算E. 由动态数列计算三、判断题1. 职工人数、产量、产值、商品库存额、工资总额指标都属于时点指标。
时间序列练习题
时间序列练习题时间序列分析是一种用于研究以时间为顺序的数据变动规律的方法。
它可以帮助我们理解和预测未来的趋势,对于决策和规划具有重要的意义。
本文将通过一些时间序列练习题,帮助读者更好地理解和应用时间序列分析。
练习题一:季度销售数据分析某公司的销售数据按照季度记录如下:季度销售额Q1 100Q2 200Q3 300Q4 400请你根据这些数据,进行以下的分析和预测:1. 绘制季度销售额的时间序列图。
2. 计算季度销售额的平均值。
3. 判断季度销售额是否存在趋势性,并进行趋势线的拟合。
4. 判断季度销售额是否存在季节性,如果存在,请进行季节性分解。
5. 使用你认为最适合的模型进行未来一年季度销售额的预测,并给出预测结果。
练习题二:月度股票收益率分析某股票连续12个月的收益率数据如下:月份收益率1 0.032 0.053 -0.024 0.025 -0.016 0.047 -0.038 0.019 0.0210 -0.0511 0.0112 0.03请你根据这些数据,进行以下的分析和预测:1. 绘制月度股票收益率的时间序列图。
2. 计算月度收益率的平均值和标准差。
3. 判断股票收益率是否存在趋势性,并进行趋势线的拟合。
4. 判断股票收益率是否存在季节性,如果存在,请进行季节性分解。
5. 使用你认为最适合的模型进行未来三个月股票收益率的预测,并给出预测结果。
练习题三:年度气温分析某城市过去10年(2011年至2020年)的年度平均气温数据如下:年份平均气温(摄氏度)2011 192012 212013 202014 182015 172016 182017 202018 222019 232020 21请你根据这些数据,进行以下的分析和预测:1. 绘制年度平均气温的时间序列图。
2. 计算年度平均气温的平均值、中位数和极差。
3. 判断气温是否存在趋势性,并进行趋势线的拟合。
4. 判断气温是否存在季节性,如果存在,请进行季节性分解。
《统计学概论》第五章课后练习题答案
《统计学概论》第五章课后练习题答案一、思考题1.什么叫时间序列,构成时间序列的基本要素有哪些?P1212.序时平均数与一般平均数有何异同?P1273.时间数列与时点数列有哪些区别?P124-1254.环比增长速度与定基增长速度之间有什么关系?P1365.什么是平均发展速度?说说水平法和累计法计算平均发展速度的基本思路,各在什么情况下选用?P1386.测定长期趋势有哪些常用的方法?测定的目的是什么?P1367.实际中如何根据时间序列的发展变化的数列特征来判断合适的趋势方程形式?P145 8.影响时间序列指标数值大小的因素有哪些?这些因素共同作用的理论模型有哪些?P140二、判断题1.时间序列也称动态数列,它是变量数列的一种形式。
( × )【解析】时间序列是数列,而变量数列是静态数列。
2.时间数列和时点数列属于总量指标时间序列。
(√)3.所谓序时平均数是指将同一总体的不同时期的平均数按时间先后顺序排列起来。
(× )【解析】序时平均数是将不同时期的发展水平加以平均而得到的平均数。
4.间隔相等的时期数列计算平均发展水平时,应用首末折半法。
( × )【解析】间隔相等的时点数列计算平均发展水平时,应用首末折半法。
5.平均增长速度等于各期环比增长速度连乘积开n次方。
(× )【解析】平均发展速度等于各期环比发展速度连乘积开n次方,平均增长速度=平均发展速度-1(或100%)6.两个相邻时期的定基发展速度之比等于相应的环比发展速度。
(√)7.用移动平均法测定长期趋势时,移动平均项数越多越好。
( × )【解析】移动平均法所取项数的多少,应视资料的特点而定。
8.某一时间序列有25年的数据,若采用五项移动平均,则修匀后的数列缺少4项数据。
(√)9.如果时间序列是年度数据,则不存在季节变动。
(√)10.用相同方法拟合趋势方程时,t的取值不同,则得到的趋势方程也不同,但趋势预测值不变。
第五章 时间序列练习题及答案-推荐下载
an
an
f n1
B.
f n1
a
1 2 a1
D.
D.
c
a2
a
c c
B. n
a b
an1
n 1
af f
B.逐期增长量之积等于累计增长量
D.两者没有直接关系
C.15 万吨
D.2100 万吨
1 2
an
9.已知各期的环比增长速度为 9%、8%、10%,则定基增长速度为( C )。
C. ( y yˆ) 0
B. ( y yˆ)2 min
D. ( y yˆ) min E. ( y yˆ)2 max
8、用移动平均法测定长期趋势时,有关项数确定的正确说法是( ABCD )。 A.从理论上说:移动项数越多,修匀作用越大 B.移动的项数越多,损失的数据也越多 C.选择奇数项一次移动即可得出趋势值,而偶数项通常需作两次移动 D.如果资料显示存在自然周期,则项数的选择应与周期一致
E.移动的项数越多,得到的结果越准确
9、编制时间数列应遵循的原则有( ABCD
A、时间长短应该一致 B、总体范围应该一致
C、指标的经济内容应该一致
D、指标的计算方法、计算价格、计量单位应该一致
E、指标数值的变化幅度应该一致
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.data a;
t=_n_;
input x@@;
dif=dif(x);
lagx=lag(x);
cards;
304 303 307 299 296 293 301 293 301 295 284 286 286 287 284 282 278 281 278 277 279 278 270 268 272 273 279 279 280 275 271 277 278 279 283 284 282 283 279 280 280 279 278 283 278 270 275 273 273 272 275 273 273 272 273 272
273 271 272 271273 277 274 274 272 280
282 292 295 295 294 290 291 288 288 290 293 288 289 291 293 293 290 288 287 289 292 288 288 285 282 286 286 287 284
283 286 282 287 286 287 292 292 294 291 288 289 .
;
proc arima data=a;
identify var=x(1) nlag=24;run;
proc autoreg data=a;
model x=lagx/lagdep=lagx noint; output out=out
p=lagx;run;
proc gplot data=out; plot x*t=2 lagx*t=3 /overlay; symbol2c=black i=none v=star;
symbol3c=red i=join v=none w=2l=3;run;
proc print data=out;run;
2.
程序:proc print data=sasuser.shixu_xt572;run;
data a;
set sasuser.shixu_xt572;
dif=dif(x);
dif1_12=dif12(dif);run;
proc print data=a;run;
proc gplot data=a;
plot x*time=1 dif*time=1 dif1_12*time=1; symbol1 c=red i=join v=square;run;
proc arima data=a;
identify var=x(1,12);
estimate p=0q=(0) (12) noint;
forecast lead=12id=time out=out;run;
proc print data=out;run;
proc gplot;
where time>=2;
plot x*time=2 forecast*time=3 /overlay; symbol2c=black i=none v=star;
symbol3c=red i=join v=none;
symbol4c=green i=join v=none l=3w=1;run;
4.
程序:
proc print data=sasuser.shixu_xt574;run; data a;
set sasuser.shixu_xt574;
dif=dif(x);run;
proc gplot data=a;
plot x*time=1 dif*time=1 ;
symbol1c=red i=join v=square;run;
proc arima data=a;
identify var=dif nlag=24;
estimate p=3;run;
proc arima data=a;
identify var=dif nlag=24;
estimate q=3;run;
proc arima data=a;
identify var=dif nlag=24;
estimate p=(13) q=(13) noint;run;
proc arima data=a;
identify var=dif nlag=24;
estimate p=(3) q=(13) noint;run;
proc arima data=a;
identify var=dif nlag=24;
estimate p=(3) q=(1) noint;
forecast lead=7id=time interval=year out=out;run;
5.程序:
data a;
set sasuser.shixu575;
dif=dif(x);
r2=dif**2;
y=log(x);
dify=dif(y); run;
proc gplot;
plot x*time dif*time r2*time y*time dify*time;
symbol c=black i=join v=none;
run;
proc arima;
identify var=y(1);
estimate p=0q=0 noint;
forecast lead=0id=time out=out;run; data new;
merge a out;
by time;
estimate=exp(forecast);
run;
proc gplot;
plot x*time=1 estimate*time=2 /overlay; symbol1c=black i=none v=star;
symbol2c=red i=join v=none;
run;。