2019-2020学年八年级数学第18届“希望杯”第1试试题
最新历届(1-24)希望杯数学竞赛初一七年级真题及答案
“希望杯”全国数学竞赛(第1-24届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 015-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 021-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 028-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 033-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 042-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 049-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 056-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 062-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 069-08012希望杯第六届(1995年)初中一年级第二试试题........................................... 076-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 085-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 90-10515.希望杯第八届(1997年)初中一年级第一试试题............................................. 98-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 105-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 113-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 122-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 129-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 142-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 149-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 153-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 157-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 163-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 167-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 174-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 178-20029.希望杯第十五届(2004年)初中一年级第一试试题 (182)30.希望杯第十五届(2004年)初中一年级第二试试题 (183)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (183)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 270-27323.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 270-273 23.希望杯第二十四届(2013年)初中一年级第二试试题 ................................... 274-281 23.希望杯第二十四届(2013年)初中一年级第二试试题 ................................... 274-281希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.10.如图: ,数轴上标出了有理数a,b,c的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n -1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
第一届“枫叶新希望杯”全国数学大赛八年级试题(初赛)
第一届“枫叶新希望杯”全国数学大赛八年级试题(初赛)一、填空题1521a a +有意义,则a 的取值范围是2.若x y 、为实数,且y 34x y +=3a ,小数部分为b ,则334a b a b+=++- 4.ABC V 的三边长为a b c 、、,且满足等式222a b c ab bc ac ++=++,则ABC V 的形状是三角形.5.已知1abc =,则111111ab a bc b ac c ++=++++++ 6.如图,在ABC V 中,50,,BAC BE BD CF CD ∠=︒==,则EDF ∠=7.若关于m 的方程255m b +-=恰有两个不同的解,则b 的取值范围为8.凸n 边形内角与外角和的总和为1440︒,则n 等于;这个凸n 边形有条对角线. 9.有四个数每次任选3个,算出它们的平均数,再加上剩下的一个数,用这样的方法计算了4次,分别得到46403226、、、,原来四个数分别是、、、.101m =-,则m =二、解答题11.已知:如图,把矩形ABCD 对折,设折痕为MN ,再把B 点叠在折痕线上,得到Rt ABE △,沿着EB 线折叠,所得到的EAF △是什么三角形?请说明理由.12.如图所示,在矩形ABCD 中,126AB cm BC cm =,=,点P 沿AB 边从点A 开始向点B 以2/cm s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1/cm s 的速度移动,如果点P Q ,同时出发,用t s 表示移动的时间(06t ≤≤).(1)当t 为何值时,QAP ∆为等腰三角形?(2)求四边形QAPC 的面积,并探索一个与计算结果有关的结论.13.某校初二年级有甲、乙、丙三个班,甲班比乙班多4名女同学,乙班比丙班多1名女同学.期中考试后,学校重新分班,按要求甲班一部分同学被分到乙班,乙班一部分同学被分到丙班,丙班一部分同学被分到甲班,分完后发现三个班女同学的人数恰好相等.已知丙班被分到甲班的同学中有2名女同学.甲、乙两班分别有多少名女同学被分到其他班? 14.张老师家的电话号码是八位数,这个数的前四位数字相同,后面五位数字是连续的自然数,这八个数字之和恰好等于号码的最后二位数.请你根据上述条件写出张老师家的电话号码.15.将正偶数按下表排成五列.根据上面排列规律,2004应在第几行第几列?说明理由.。
八年级数学第10届“希望杯”第1试试题
山东省滨州市无棣县埕口中学八年级数学第10届“希望杯”第1试试题 一、选择题:(每小题6分,共60分)1.下列各式中,正确的是 [ ]A.21193⎛⎫= ⎪⎝⎭;B.112142=;C.9342164+=+;D. 2217710-=. 2.1与30313031+-的关系是[ ]A .相等B .互为相反数.C .互为倒数D .互为负倒数3.代数式 3.14163.1415ππ--的值[ ] A .是零.B .在0与1之间.C .在-1与0之间.D .等于1或-14.某工厂到车站的路程为m 千米,现有一辆汽车从工厂到车站拉货,去时的速度为3a 千米/小时,返回时的速度为2a 千米/小时,那么这辆车往返一次的平均速度为[ ] 52千米/小时; B. 25ma 千米/小时;73 千米/小时;D. 125a 千米/小时; 5.两个数a ,b ,且a <b ,把a 到b 的所有数记做[1,4],如果515m ≤≤,2030n ≤≤,那么的一切值包含在[ ]内.A.[5,30];B.13,44⎡⎤⎢⎥⎣⎦;C.12,63⎡⎤⎢⎥⎣⎦;D.17,68⎡⎤⎢⎥⎣⎦. ,y 为实数,设a=,b=,c=,则a,b,c 的大小关系为[ ]A .a <b <c.B .b <a <c.C .b <c <a.D .a =b >c7.如果三角形的一个外角大于这个三角形的某两个内角的和的2倍,那么这个三角形一定是[ ]A .锐角三角形 ;B .钝角三角形;C.直角三角形;D .直角或钝角三角形. 8.在四边形ABCD 中,若两条对角线AC =BD 且AC ⊥BD ,则这个四边形 [ ]A .一定是正方形;B .一定是菱形;C .一定是平行四边形;D .可能不是平行四边形.9.如图1,△ABC 中,AB =AC ,D 、E 、F 分别在BC 、AC 、AB 上,若BD=CE ,CD=BF ,则∠EDF=[ ] 12A∠; A∠; A∠; D. 1800-2A∠.10.如果三角形的重心在它的一条高线上,则这个三角形一定是[ ] A.等腰三角形 B.直角三角形.C.等边三角形 D.等腰直角三角形.二、A组填空题(每小题6分,共60分)11.分解因式:xy-1-x+y=______.12.计算:11083222++=_________.13.已知:x=3-1,那么2232421x xx x--+-=__________.14.计算:19971999 (19971999)(19972001)(19992001)(19991997)+----+2001(20011997)(20011999)--=___________.15.若x3+3x2-3x+k有一个因式是x+1,则k=______.16.给出四个自然数a,b,c,d,其中每三个数之和分别是180,197,208,222,那a,b,c,d中最大的数的值是______.17.如果一个三角形的两条角平分线又是它的两条高线,那么这个三角形的形状是____.18.如图2,直线l1平行l2△ABC是直角三角形,∠A=90°∠ABF=25°,则∠ACE=______.19.在纸上画一个正六边形,在六边形外画一条直线l,从六个顶点分别向直线l引垂线可以得到k个不同的垂足,那么k的值在3,4,5,6这四个数中不可能取得的是______.20.圆的内接矩形的周长与圆周长之比的最大值是______.三、B组填空题(每小题6分,共30分)21.一个矩形的长为15cm,宽为8cm,以矩形的四边中点为顶点的四边形的周长=______,面积=______.22.实数a满足丨a丨+a=0,且a≠-1,那么11aa-+______或________.23. 实数a,b满足(2a+b)2+22323aa--=0, 那么a=_______,b=________.24.方程组91143xyx y=+=⎧⎪⎨⎪⎩的解是_________或________.25.某班男女同学分别参加植树劳动,要求男女同学各种8行树,男同学种的树比女同学种的树多,如果每行都比预定的多种一棵树,那么男女同学种树的数目都超过100棵;如果每行都比预定的少种一棵树,那么男女同学植树的数目都达不到100棵.这样原来预定男同学种树______棵;女同学种树______棵.答案一、选择题b bcd d c b d d a二、A组填空题11、(x+y)(y-1)13、-114、015、-516、8917、等边三角形18、65°19、5三、B组填空题21、34cm;60cm222、-1;123、-4;825、104;96。
第19届希望杯全国数学邀请赛初二第1试试题
A C第19届希望杯全国数学邀请赛初二第1试试题一、选择题(每小题4分,满分40分)1.下列说法中正确的是( )A 、1的平方根和1的立方根相同B 、0的平方根和0的立方根相同C 、4的平方根是2±D 、8的立方根是2±2.若单项式x x b a 52-和xb a -3223的次数相同,则x 的整数值等于( )A 、1B 、-1C 、1±D 、1±以外的数3.若b a ,和b a +都是有理数,则( )A 、b a ,都是有理数B 、b a ,都是无理数C 、b a ,都是有理数或都是无理数D 、b a ,中有理数和无理数各一个4.使不等式12>+x 成立的x 的值为( )A 、比-1大的数B 、比-3小的数C 、大于-1或小于-3的数D 、-2以外的数5.设e d c b a ,,,,只能从-3,-2,-1中取值,又22222,e d c b a y e d c b a x +-+-=+-+-=,则( )A 、x 的最大值比y 的最大值小B 、x 的最小值比y 的最小值小C 、x 的最大值比y 的最小值小D 、x 的最小值比y 的最大值大 6.In the figure1, ABCD is a diamond, pointsE andF lie on its sides AB and BC respectively, such that CF BFBE AE =, and DEF ∆ is a regular triangle. Then BAD ∠ is equal to ( )A 、400B 、600C 、800D 、1000((英汉小词典:diamond 菱形;regular triangle 正三角形)7.已知ABC ∆的三边长分别为c b a ,,,且ac b c b c a b a -++=+,则ABC ∆ 一定是( )A 、等边三角形B 、腰长为a 的等腰三角形C 、底边长为a 的等腰三角形D 、等腰直角三角形8.初二(1)班有48名同学,其中有男同学n 名,将他们编成1号、2号、…,n 号。
小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
初二希望杯1-6届大题及解答
1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即a b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即a b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD和A'B'C'D',且正方形A'B'C'D'的顶点A'在正方形ABCD的中心.当正方形A'B'C'D'绕A'转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n之和被7除余数都不为1,将所有满足上述条件的自然数n由小到大排成一列n1<n2<n3<n4……,试求:n1·n2之值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.1.已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≢2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≢1,→a>2b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≢2.即本题的结论是正确的.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.2.本题以图33为准.由图34知OK ∥AB ,延长EO 和FK ,即得所求新渠.这时,HG=GM (都等于OK ),且OK ∥AB ,故△OHG 的面积和△KGM 的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM 这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH ,FG .②过O 作EH 平行线交AB 于N ,过K 作FG 平行线交于AB 于M .③连结EN 和FM ,则EN ,FM 就是新渠的两条边界线.又:EH ∥ON∴△EOH 面积=△FNH 面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
15到20届希望杯初二第一试试题及培训题
第十五届希望杯初二第1试试题一、选择题:(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。
1、小伟自制了一个孔成像演示仪,如图1所示,在一个圆纸筒的两端分别用半秀明纸和黑纸封住,并用针在黑纸的中心刺出一个小孔。
小伟将有黑纸的一端正对着竖直放置的“”形状的光源,则他在半透明纸上观察到的像的形状是( )(A)(B)(C)(D)2、代数式的化简结果是( )(A)(B)(C)(D)3、已知是实数,且,那么( )(A)31(B)21(C)13(D)13或21或314、已知(>)是两个任意质数,那么下列四个分数( )①;②;③;④中总是最简分数的有( )(A)1个(B)2个(C)3个(D)4个5、Given are real numbers, and , then the valueof is ( )(A)4(B)6(C)3(D)4or66、某出版社计划出版一套百科全书,固定成本为8万元,每印制一套需增加成本20元。
如果每套定价100元,卖出后有3成给承销商,出版社要盈利10%,那么该书至少应发行(精确到千位)( )(A)2千套(B)3千套(C)4千套(D)5千套7、△ABC的三个内角∠A、∠B、∠C,满足3∠A>5∠B,3∠C≤∠B,则这个三角形是( )(A)锐角三角形(B)直角三角形(C)钝角三角形(D)等边三角形8、如图2,正方形ABCD的面积为256,点E在AD上,点F在AB的延长线上,EC⊥FC,△CEF的面积是200,则BF的长是( )(A)15(B)12(C)11(D)109、如图3,在四边形ABCD中,∠ABC=∠ADC=90°,点E、F分别是对角线AC、BD的中点,则( )(A)(B)(C)(D)10、表示不大于的最大整数,如[3.15]=3,[-2.7]=-3,[4]=4,则( )( )(A)1001(B)2003(C)2004(D)1002二、A组填空题(每小题4分,共40分。
第18届希望杯全国数学竞赛初二决赛试题与答案--WORD
第十八届“希望杯”全国数学邀请赛初二 第二试年4月15日 上午8:30至10:30一、 选择题(本大题共10小题,每小题4分,菜40分。
)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。
1、红丝带是关注艾滋病防治问题的国际性标志,人胶将红丝带剪成小段,并用别针将折叠好的红丝带加紧在胸前,如图1所示,红丝带重叠部分形成的图形是( )(A )正方形 (B )矩形 C )菱形 (D )梯形2、设a 、b 、C 是不为零的实数,那么||||||a b c x a b c =+-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3、ABC ∆的边长分别是21a m =-,21b m =+,()20c m m =>,则ABC ∆是( ) (A )等边三角形 (B )钝角三角形 (C )直角三角形(D )锐角三角形4、古人用天干和地支记序,其中天干有10个;甲乙丙丁戊己庚辛壬癸,地支有12个;子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行; 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁……子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,我国的农历纪年就是按这个顺序得来的,如公历年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年在公历中( )(A )是, (B )是2031年, (C )是2043年,(D )没有对应的年号5、实数 a 、b 、m 、n 满足a<b, -1<n<m, 若1a mb M m +=+,1a nb N n+=+, 则M 与N 的大小关系是( )(A )M>N (B)M=N (C)M<N (D)无法确定的。
6、若干个正方形和等腰直角三角形拼接成如图2所示的图形,若最大的正方形的边长是7cm ,则正方形A 、B 、C 、D 的面积和是( )(A )214cm (B )242cm (C )249cm (D )264cm7cmDC B A7、已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( ) (A )23≤a ≤32 (B)43≤a ≤32 (C)43<a ≤32 (D)43≤a <328 、The number of intersection point of the graphs of function||k y x= and function (0)y kx k =≠ is( ) (A)0 (B)1 (C)2 (D)0 or 2.9、某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( )(A )16小时 (B )7158小时 (C )151516小时 (D )17小时 图3y=m/ty=ktO t (小时)y(毫克)4321110、某公司组织员工一公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后内参有一只船不空也不满,参加划船的员工共有( )(A )48人 (B )45人 (C )44人 (D )42人二、填空题(本大题共10小题,每小题4分,共40分)11、已知a b c ⋅⋅o 为ABC ∆三边的长,则化简|a b c -+|+2()a b c -+的结果是___12、自从扫描隧道显微镜发明后,世界上便诞生了一间新科学,这就是“纳米技术”,已知1毫米微米,1微米纳米,那么纳米的长度用科学记数法表示为__米。
希望杯数学八年级竞赛真题及答案(1-23届)
1、第一届希望杯初二第1试试题2、第一届希望杯初二第2试试题3、第二届希望杯初二第1试试题4、第二届希望杯初二第2试试题5、第三届希望杯初二第1试试题6、第三届希望杯初二第2试试题7、第四届希望杯初二第1试试题8、第四届希望杯初二第2试试题9、第五届希望杯初二第1试试题10、第五届希望杯初二第2试试题11、第六届希望杯初二第1试试题12、第六届希望杯初二第2试试题13、第七届希望杯初二第1试试题14、第七届希望杯初二第2试试题15、第八届希望杯初二第1试试题16、第八届希望杯初二第2试试题17、第九届希望杯初二第1试试题18、第九届希望杯初二第2试试题19、第十届希望杯初二第1试试题20、第十届希望杯初二第2试试题21、第十一届希望杯初二第1试试题22、第十一届希望杯初二第2试试题23、第十二届希望杯初二第1试试题24、第十二届希望杯初二第2试试题25、第十三届希望杯初二第1试试题26、第十三届希望杯初二第2试试题27、第十四届希望杯初二第1试试题28、第十四届希望杯初二第2试试题28、第十五届希望杯初二第1试试题30、第十五届希望杯初二第2试试题31、第十六届希望杯初二第1试试题32、第十六届希望杯初二第2试试题33、第十七届希望杯初二第1试试题34、第十七届希望杯初二第2试试题35、第十八届希望杯初二第1试试题36、第十八届希望杯初二第2试试题37、第十九届希望杯初二第1试试题38、第十九届希望杯初二第2试试题39、第二十届希望杯初二第1试试题40、第二十届希望杯初二第2试试题41、第二十一届希望杯初二第1试试题42、第二十一届希望杯初二第2试试题43、第二十二届希望杯初二第1试试题44、第二十二届希望杯初二第2试试题45、第二十三届希望杯初二第1试试题46、第二十三届希望杯初二第2试试题希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ] (A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。
2023年第二十二届希望杯数学竞赛一试试题
第二十二届“希望杯”全国数学邀请赛初二 第一试2023年3月13日 上午8:30至10:00 得分一、选择题(每小题4分,共40分。
)以下每题的四个选项中,仅有一个是对的的,请将对的答案前的英文字母写在下面的表格内。
1、 将a 公斤含盐10﹪的盐水配制成含盐15﹪的盐水,需加盐x 公斤,则由此可列出方程( )(A )()()().0015100101-+=-x a a (B )().00150010•+=•x a a(C ).00150010•=+•a x a (D )()().0015100101-=-x a 2、一辆汽车从A 地匀速驶往B 地,假如汽车行驶的速度增长a ﹪,则所用的时间减少b ﹪,则a 、b 的关系是( ) (A )001100a a b +=(B )001100a b += (C )a a b +=1 (D )a a b +=100100 3、当1≥x 时,不等式211--≥-++x m x x 恒成立,那么实数m 的最大值是( ) (A )1. (B )2。
(C )3。
(D )4。
4、在平面直角坐标系中,横、纵坐标都是整数的点称为整点,已知k 为整数,若函数12-=x y 与k kx y +=的图象的交点是整点,则k 的值有( )个(A )2. (B )3。
(C )4。
(D )5。
5、(英语意译)已知整数x 满足不等式6122≤-≤x ,则x 的值是( ) (A )8. (B )5。
(C )2。
(D )0。
6、若三角形的三条边的长分别为a 、b 、c ,且.03222=-+-b c b c a b a 则这个三角形一定是( )(A )等腰三角形 (B )直角三角形 (C )等边三角形 (D )等腰直角三角形7、如图1,点C 在线段BG 上,四边形ABCD 点E 和F ,假如AE=5,EF=3,则FG=( ) (A )316。
(B )38。
(C )4。
(D )5。
2019-2020学年八年级数学第17届“希望杯”第1试试题
2019-2020学年八年级数学第17届“希望杯”第1试试题一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内.1.实数m =20053-2005,下列各数中不能整除m 的是( ) (A )2006 (B )2005 (C )2004 (D )20032.a ,b ,c ,d 是互不相等的正整数,且abcd =441,那么a +b +c +d 的值是( ) (A )30 (B )32 (C )34 (D )363.三角形三边的长都是正整数,其中最长边的长为10,这样的三角形有( ) (A )55种 (B )45种 (C )40种 (D )30种4.已知m ,n 是实数,且满足m 2+2n 2+m -34n +3617=0,则-mn 2的平方根是( )(A )62 (B )±62 (C )61 (D )±615.某校初一、初二年级的学生人数相同,初三年级的学生人数是初二年级学生人数的54.已知初一年级的男生人数与初二年级的女生人数相同,初三年级男生人数占三个年级男生人数的41,那么三个年级女生人数占三个年级学生人数的( ) (A )199 (B )1910(C )2111 (D )106.如图1,点E 、F 、G 、H 、M 、N 分别在△ABC 的BC 、AC 、AB 边上,且NH ∥MG ∥BC ,ME ∥NF ∥AC ,GF ∥EH ∥AB .有黑、白两只蚂蚁,它们同时同速从F 点出发,黑蚁沿路线F →N →H →E →M →G →F 爬行,白蚁沿路线F →B →A →C →F 爬行,那么( )(A )黑蚁先回到F 点 (B )白蚁先回到F 点 (C )两只蚂蚁同时回到F 点 (D )哪只蚂蚁先回到F 点视各点的位置而定 7.一个凸多边形截去一个角后形成的多边形的内角和是2520°,则原多边形的边数是( ) (A )14 (B )15 (C )15或16 (D )15或16或178.Let a be integral part of 2 and b be its decimal part .Let c be the integral part of π and d be the decimal part..if ad -bc =m ,th en ( ) (A )-2<m <-1 (B )-1<m <0 (C )0<m <1 (D )1<m <2(英汉词典:integral part 整数部分;decimal part 小数部分)9.对a ,b ,定义运算“*”如下:a *b =⎩⎨⎧∙≥时<,当时,,当b a ab b a b a 22已知3*m =36,则实数m 等于( )(A )23 (B )4 (C )±23 (D )4或±2310.将连续自然数1,2,3,…,n (n ≥3)的排列顺序打乱,重新排列成a 1,a 2,a 3,…,a n .若(a 1-1)(a 2-2)(a 3-3)…(a n -n )恰为奇数,则n ( ) (A )一定是偶数 (B )一定是奇数(C )可能是奇数,也可能是偶数 (D )一定是2m-1(m 是奇数) 二、A 组填空题(每小题4分,共40分)11.已知a 、b 都是实数,且a =43+x ,b =312+x ,b <37<2a ,那么实数x 的取值范围是图1_________.12.计算12008200720062005+⨯⨯⨯-20062的结果是__________.13.已知x =22+1,则分式15119232----x x x x 的值等于__________.14.一个矩形各边的长都是正整数,而且它的面积的数量等于其周长的量数的2倍,这样的矩形有__________个.15.Suppose that in Fig.2,the length of side of square ABCD is 1,E andF are mid -points of CD and AD respectively ,BE and CFintersect at a point P .Then the length of line segment CP is __________.(英汉词典:figure (缩写Fig.)图;length 长度;square 正方形;mid -point 中点;intersect 相交;line segment 线段) 16.要使代数式2113|--||+-|x x 有意义,实数x 的取值范围是____________.17.图3的梯形ABCD 中,F 是CD 的中点,AF ⊥AB ,E 是BC 边上的一点,且AE =BE .若AB =m (m 为常数),则EF 的长为__________. 18.A ,n 都是自然数,且A =n 2+15n +26是一个完全平方数,则n 等于__________.19.一个长方体的长、宽、高均为整数,且体积恰好为2006cm 3,现将它的表面积涂上红色后,再切割成边长为1cm 的小正方体,如果三面为红色的小正方体有178个,那么恰好有两面为红色的小正方体有________个.20.一条信息可以通过如图4所示的网络按箭头所指方向由上往下传送,例如到达点C 2的信息可经过B 1或B 2送达,共有两条途径传送,则信息由A 点传送到E 1、E 2、E 3、E 4、E 5的不同途径共有________条. 三、B 组填空题(每小题8分,共40分.每小题两个空,每空4分.)21.某学校有小学六个年级,每个年级8个班;初中三个年级,每个年级8个班;高中三个年级,每个年级12个班.现要从中抽取27个班做调查研究,使得各种类型的班级抽取的比例相同,那么小学每个年级抽取________个班,初中每个年级抽取________个班. 22.矩形ABCD 中,AB =2,AB ≠BC ,其面积为S ,则沿其对称轴折叠后所得的新矩形的对角线长为__________或__________.23.已知m ,n ,l 都是两位正整数,且它们不全相等,它们的最小公倍数是385,则m +n +l的最大值是__________,最小值是__________.24.某工程的施工费用不得超过190万元.该工程若由甲公司承担,需用20天,每天付费10万元;若由乙公司承担,需用30天,每天付费6万元.为缩短工期,决定由甲公司先工作m 天,余下的工作由乙公司完成,那么m =________,完工共需要__________天. 25.将2006写成n (n ≥3)个连续自然数的和,请你写出两个表达式:(1)__________________________________;(2)__________________________________.A BCD E FP图2ABCDEFm图31B A 2B 1C 2C3C 1D 2D 3D 4D 1E 2E 3E 4E 5E 图4第十七届“希望杯”全国数学邀请赛答案·评分标准初二第1试1.答案(1)选择题(2)A组填空题19(3)B组填空题5002.评分标准(1)第 1~10题:答对得4分;答错或不答,得0分.(2)第11~20题:答对得4分;答错或不答,得0分.(2)第21~25题:答对得8分,每个空4分;答错或不答,得0分.。
历年初中希望杯数学竞赛试题大全
历年初中希望杯数学竞赛试题大全][ 真诚为您服务试试题希望杯”全国数学邀请赛初二第 2 ·2009 年第20 届“次·161 ·[4-30]★ 详细简介请参考下载页]·[ 竞赛 2 试试题届“希望杯”全国数学邀请赛初一第年第·200920 次·153 ·[4-28]详细简介请参考下载页★]·[ 竞赛数学大赛初赛试卷(扫描版)届5“希望杯”年湖北省黄冈市第·2009 ·76 次·[4-17]★ 详细简介请参考下载页]·[ 竞赛试试题”全国数学邀请赛初二第1·2009 年第20 届“希望杯次·133 ·[4-7]对不起,尚无简介☆]竞赛·[ 试试题全国数学邀请赛初一第 1 届“希望杯”20 ·2009年第·122 次·[4-7]详细简介请参考下载页★]·[ 竞赛全国数学邀请赛初二训练题”第十四届“希望杯·次·44 ·[9-9]详细简介请参考下载页★]竞赛·[ 2 试试题“希望杯”全国数学邀请赛初一第19 ·2008年第届次·203 ·[9-4]详细简介请参考下载页★]·[ 竞赛 1 ”“19 ·2008 年第届希望杯全国数学邀请赛初一第试试题次·169 ·[9-4]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第219 年第届“希望杯”·2008 次·156 ·[9-2]详细简介请参考下载页★]·[ 竞赛 1 试试题希望杯”全国数学邀请赛初二第“·2008 年第19 届·146 次·[9-2]详细简介请参考下载页★]竞赛·[ 2 试试题”届“希望杯全国数学邀请赛初二第18 ·2007年第·101 次·[9-2]详细简介请参考下载页★]竞赛·[ 1 全国数学邀请赛初二第试试题” “18 ·2007 年第届希望杯次·95 ·[9-2]详细简介请参考下载页★]竞赛·[ 试试题”全国数学邀请赛初二第2·2006 年第17 届“希望杯次·76 ·[9-2]详细简介请参考下载页★]竞赛·[ 1 试试题“希望杯”全国数学邀请赛初二第届·2006年第17 ·76 次·[9-2]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第 2 希望杯·2005 年第16 届“”次·65 ·[9-1]详细简介请参考下载页★]·[ 竞赛 1 试试题全国数学邀请赛初二第届·2005 年第16“希望杯”次·52 ·[9-1]详细简介请参考下载页★]·[ 竞赛试试题全国数学邀请赛初二第希望杯”2·2004 年第15 届“次·47 ·[9-1]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第115 届“希望杯”年第·2004 次·38 ·[9-1]详细简介请参考下载页★]·[ 竞赛 2 试试题希望杯”全国数学邀请赛初二第届·2003 年第14 “次·30 ·[9-1]详细简介请参考下载页★]竞赛·[ 1 试试题希望杯届“”全国数学邀请赛初二第年第·200314 ·26 次·[9-1]详细简介请参考下载页★]竞赛·[ 2 试试题全国数学邀请赛初二第希望杯届年第·200213 “”·31 次·[9-1]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第 1 ”年第13 届“希望杯·2002 次·23 ·[9-1]详细简介请参考下载页★]竞赛·[ 2 试试题“希望杯”全国数学邀请赛初二第·2001 年第12 届·17 次·[9-1]详细简介请参考下载页★]]·[ 竞赛试试题”全国数学邀请赛初二第1“·2000 年第11 届希望杯次·15 ·[9-1]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第210 届“希望杯”·1999年第次·13 ·[9-1]详细简介请参考下载页★]·[ 竞赛试试题 1 希望杯”全国数学邀请赛初二第·1999 年第10 届“次·15 ·[9-1]详细简介请参考下载页★]竞赛·[ 2 试试题“希望杯”全国数学邀请赛初二第9 ·1998年第届次·11 ·[8-29]详细简介请参考下载页★]·试题[ 竞赛 1 ”“9·1998 年第届希望杯全国数学邀请赛初二第试竞赛·[ 试试题全国数学邀请赛初二第112 年第届“希望杯”·2001 ·17 次·[9-1]详细简介请参考下载页★]竞赛·[ 试试题2“届希望杯”全国数学邀请赛初二第11 ·2000 年第次·15 ·[9-1]★详细简介请参考下载页次·10 ·[8-29]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第28 年第届“希望杯”·1997 次·13 ·[8-29]详细简介请参考下载页★]·[ 竞赛 1 试试题希望杯”全国数学邀请赛初二第“·1997 年第8 届·10 次·[8-29]详细简介请参考下载页★]竞赛·[ 2 试试题”届“希望杯全国数学邀请赛初二第7·1996年第·11 次·[8-29]详细简介请参考下载页★]竞赛·[ 1 全国数学邀请赛初二第试试题” “7·1996 年第届希望杯次·10 ·[8-29]详细简介请参考下载页★]·[ 竞赛试试题”希望杯全国数学邀请赛初二第2·1995 年第6 届“次·14 ·[8-29]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第16 届“希望杯”·1995年第次·14 ·[8-29]★详细简介请参考下载页]·[ 竞赛 2 试试题希望杯”全国数学邀请赛初二第5·1994 年第届“次·12 ·[8-29]详细简介请参考下载页★]竞赛·[ 1 试试题“届希望杯”全国数学邀请赛初二第·1994年第5 ·12 次·[8-29](每一、选择题: 年第五届希望杯全国数学邀请赛1994 初中二年级第一试试题[] Ax 1.303 小题分,共分)使等式成立的的值是.是]·[ 竞赛试试题初二第 2 ”年第4 届“希望杯全国数学邀请赛·1993 次·9 ·[8-29]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第14 届“希望杯”·1993年第次·10 ·[8-29]详细简介请参考下载页★]·[ 竞赛试试题2 希望杯”全国数学邀请赛初二第·1992 年第3 届“次·11 ·[8-29]详细简介请参考下载页★]竞赛·[ 1 试试题“希望杯”全国数学邀请赛初二第 3 ·1992年第届次·9 ·[8-29]详细简介请参考下载页★]·[ 竞赛 2 ”“2·1991 年第届希望杯全国数学邀请赛初二第试试题·14 次·[8-28]详细简介请参考下载页★]·[ 竞赛试试题”全国数学邀请赛初二第 1 年第·19912 届“希望杯次·12 ·[8-28]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第21 届“希望杯”·1990年第·13 次·[8-28]详细简介请参考下载页★]·[ 竞赛试试题”全国数学邀请赛初二第 1 希望杯·1990 年第1 届“次·11 ·[8-28]分,(每题1 ”全国数学邀请赛初二第一试一、选择题: “1990 年第一届希望杯() 倍,那么这个角是 1 .一个角等于它的余角的 5 分)共10]竞赛·[ 2 试试题全国数学邀请赛初一第希望杯届年第·200718 “”·94 次·[8-28]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初一第118 届“希望杯”·2007年第次·42 ·[8-28]详细简介请参考下载页★]·[ 竞赛试试题”希望杯全国数学邀请赛初一第2·2006 年第17 届“次·41 ·[8-28]详细简介请参考下载页★]竞赛·[ 试试题 1 希望杯”全国数学邀请赛初一第“·2006 年第17 届次·43 ·[8-28]试第1 全国数学邀请赛初一希望杯年第十七届2006 “”中考资源网,竞赛试题任你选!更多数学竞赛试题请点击。
2019-2020学年八年级数学第1届“希望杯”第2试试题
2019-2020学年八年级数学第1届“希望杯”第2试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm ,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ] A .7.5 B .12. C .4. D .12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ]A .M >P >N 且M >Q >N.B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1则∠BDA=[ ]A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种二、填空题:(每题1分,共5分)1. △ABC 中,∠∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2. 2(2)0ab -=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____.3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=300三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______.5. 设a,b,c 是非零整数,那么a bc ab ac bc abca b c ab ac bc abc ++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD和A'B'C'D',且正方形A'B'C'D'的顶点A'在正方形ABCD的中心.当正方形A'B'C'D'绕A'转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n之和被7除余数都不为1,将所有满足上述条件的自然数n由小到大排成一列n1<n2<n3<n4……,试求:n1·n2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3=∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.。
2019-2020学年八年级数学第1届“希望杯”第2试试题.docx
2019-2020 学年八年级数学第 1届“希望杯”第 2试试题一、选择题 : (每题 1分,共 5分)1.等腰三角形周长是 24cm,一腰中线将周长分成 5∶3的两部分,那么这个三角形的底边长是 [ ]A.7.5B. 12. C . 4.D. 12或42. 已知 P= 19881989199019911( 1989) 2,那么P的值是[ ]A. 1987B. 1988. C. 1989D. 19903.a>b> c,x>y> z,M=ax+by+cz,N=az+by+cx,P=ay+bz+cx ,Q=az+bx+cy,则 []A. M> P> N且 M> Q>N. B .N> P> M且 N> Q> MC. P> M> Q且 P> N>Q. D .Q> M> P且 Q> N> P∠ CDA∶∠ ABC=2∶ 1,AD∶CB=1∶3 , 则∠ BDA=[] 4.凸四边形 ABCD中,∠ DAB=∠ BCD=90,A. 30°B. 45°. C . 60° .D.不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割 []A.是不存在的 . B .恰有一种 . C.有有限多种,但不只是一种.D .有无穷多种二、填空题 : (每题 1分,共 5分)1.△ ABC中,∠∠ B=90°,∠ C的平分线与 AB交于 L,∠ C的外角平分线与BA的延长线交于 N.已知 CL=3,则 CN=______.2.若 a 1(ab2)20 ,那么111的值是 _____.ab(a1)(b1)(a1990)( b1990)3.已知 a, b, c满足 a+b+c=0, abc=8 ,则 c的取值范围是 ______.4. ABC中 ,∠ B=300,AB=5 ,BC=3 , 三个两两互相外切的圆全在△ABC中,这三个圆面积之和的最大值的整数部分是______.a b c ab ac bc abc 5.设 a,b,c 是非零整数 , 那么b c ab ac bc abc 的值等于a _________.三、解答 : (每 5分,共 15分)1.从自然数 1, 2,3⋯, 354中任取 178个数,:其中必有两个数,它的差是177.2.平面上有两个相等的正方形ABCD和A' B' C' D',且正方形 A' B' C' D'的点 A'在正方形 ABCD的中心.当正方形 A' B'C'D' A',两个正方形的重合部分的面必然是一个定.个?明你的判断.3.用 1, 9, 9,0四个数成的所有可能的四位数中,每一个的四位数与自然数 n之和被 7除余数都不 1,将所有足上述条件的自然数n由小到大排成一列n1< n2< n3<n4⋯⋯,求: n1· n2之.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B) 或 (D) .又:底为 4时,腰长是 10.符合题意.故选(C) .=19882+3× 1988+1-1989 2=(1988+1) 2+1988-1989 2=19883.只需选 a=1,b=0,c=-1 ,x=1,y=0,z=-1 代入,由于这时 M=2,N=-2,P=-1 ,Q=-1.从而选 (A) .4.由图 6可知:当∠ BDA=60°时,∠ CDB5.如图 7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选 (D) .二、填空题提示:1.如图8:∠ NLC=∠ B+∠1=∠ CAB-90° +∠ 1=∠ CAB-∠3 =∠ N.∴ NC=LC=3.5.当 a, b, c均正,7.当 a, b, c不均正,-1 .三、解答177个:(1 ,178) , (2 ,179) ,(3 ,180) ,⋯,1.法一把 1到 354的自然数分成(177 , 354) .的中,任一内的两个数之差177.从 1~354中任取 178个数,即是从 177个中取出 178个数,因而至少有两个数出自同一个.也即至少有两个数之差是 177.从而明了任取的 178个数中,必有两个数,它的差是177.法二从 1到 354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1, 2,⋯, 176 177种之一.因而 178个数中,至少有两个数a, b的余数相同,也即至少有两个数a, b之差是177的倍数,即×177.又因 1~ 354中,任两数之差小于2× 177=354.所以两个不相等的数a,b之差必177.即.∴从自然数 1,2,3,⋯, 354中任取 178个数,其中必有两个数,它的差是177.2.如图 9,重合部分面积S A'EBF是一个定值.证明:连 A'B, A' C,由 A'为正方形 ABCD的中心,知∠A' BE=∠ A' CF=45°.又,当 A' B'与 A' B重合时,必有 A' D'与 A' C重合,故知∠ EA' B=∠FA' C.在△ A' FC和△ A' EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990 ,1909, 1099, 9091, 9109,9910 , 9901, 9 019, 9190.其中1990=7 ×284+2,1909=7 ×272+5.1099=7× 157,9091=7 × 1298+5,9109=7 × 1301+2,9910=7× 1415+5, 9901=7× 1414+3,9019=7× 1288+3, 9190=7× 1312+6.即它们被 7除的余数分别为 2, 5,0, 5, 2,5, 3, 3,6.即余数只有 0,2, 3, 5,6五种.它们加 1, 2, 3都可能有余 1的情形出现.如0+1≡ 1, 6+2≡ 1, 5+3≡ (mod7) .而加 4之后成为: 4, 6 ,7, 9, 10,没有一个被 7除余 1,所以 4是最小的 n.又:加 5, 6有: 5+3≡ 1,6+2≡ 1.(mod7) 而加 7之后成为 7,9,10,12, 13.没有一个被 7除余 1.所以 7是次小的 n.即n 1=4, n2=7∴n 1× n2=4× 7=28.。
2019-2020年八年级数学第20届“希望杯”第2试试题
2019-2020年八年级数学第20届“希望杯”第2试试题一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内.1.篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章.印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图1的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中镂空的)( )2.如果1-<<y x ,那么代数式xy x y -++11的值是( ) (A ) 0 (B ) 正数 (C )负数 (D )非负数3.将x 的整数部分记为[x ],x 的小数部分记为{x },易知=x [x ]+{x }({}10<<x ).若5353+--=x ,那么[x ]等于( )(A ) 2- (B )1- (C ) 0 (D )14.某种产品由甲、乙、丙三种元件构成.根据图2,为使生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( )(A )120°,180°,60°(B )108°,144°,108°(C )90°,180°,90° (D ) 72°,216°,72°5.面积是48的矩形的边长和对角线的长都是整数,则它的周长等于 ( )(A )20 (B ) 28 (C ) 36 (D )406.In the rectangular coordinates,abscissa and ordinate of the intersection point ofthe lines k x y -= and 2+=kx y are integers for imteger k ,then thenumber of the possible values of k is ( )(A )4 (B )5 (C )6 (D )7(英汉小词典:abscissa 横坐标;ordinate 纵坐标;intersection point 交点;integer 整数)7.将一张四边形纸片沿两组对边的中点连线剪开,得到四张小纸片,如图3所示.用这四张小纸片一定可以拼成( )(A )梯形 (B )矩形 (C )菱形 (D )平行四边形8.若不等式组⎩⎨⎧>++<+-m x x m x 1104的解集是4>x ,则( ) (A )29≤m (B )5≤m (C )29=m (D )5=m 9.如图4,四边形ABCD 中,∠A=∠C=90°,∠ABC=60°,AD=4,CD=10,则BD 的长等于( )(A ) 134 (B )38 (C )12 (D )31010.任何一个正整数n 都可以写成两个正整数相乘的形式,对于两个乘数的差的绝对值最小的一种分解q p n ⨯=(q p ≤)可称为正整数n 的最佳分解,并规定q p n F =)(.如:12=1×12=2×6=3×4,则43)12(=F . 则在以下结论 ①21)2(=F ②83)24(=F ③若n 是一个完全平方数,则1)(=n F④若n 是一个完全立方数,即3a n =(a 是正整数),则an F 1)(=. 中,正确的结论有( )(A ) 4个 (B )3个 (C )2个 (D )1个二、填空题(每小题4分,共40分)11.将一根钢筋锯成a 段,需要b 分钟,按此速度将同样的钢筋锯成c 段(a ,b ,c 都是大于1的自然数),需要 分钟.12.给机器人下一个指令[s ,A ](0≥s ,1800<≤A ),它将完成下列动作: ①先在原地向左旋转角度A ;②再朝它面对的方向沿直线行走s 个单位长度的距离. 现机器人站立的位置为坐标原点,取它面对的方向为x 轴的正方向,取它的左侧为y 轴的正方向,要想让机器人移动到点(5-,5)处,应下指令: . 13.已知实数x ,y ,z 满足3321z y x z z y y x x ++=+=+=+,则_________或=++z y x . 14.已知实数x ,y 满足432=-y x ,并且0≥x ,1≤y ,则y x -的最大值是 ,最小值是 .15.汽车燃油价税费改革从2009年元旦起实施:取消养路费,同时汽油消费税每升提高0.8元.若某车一年的养路费是1440元,百公里耗油8升,在“费改税”前后该车的年支出与年行驶里程的关系分别如图5中的1l 、2l 所示,则1l 与2l 的交点的横坐标=m .(不考虑除养路费和燃油费以外的其它费用)16.Given d cx bx ax x f +++=23)(,if when x takes the value of its inverse number ,the corresponding value of )(x f is also the inverse number,and 0)2(=f ,then =++ba d c .(英汉小词典:inverse number 相反数) 17.8人参加象棋循环赛,规定胜1局得2分.平1局得1分,败者不得分,比赛结果是第二名的得分与最后4名的得分之和相同,那么第二名得 分.18.若正整数a ,b 使等式20092)1)((=-+++b a b a a 成立,则=a ,=b .19.如图6,长为2的三条线段'AA 、'BB 、'CC 交于O 点,并且OB C OA B ''∠=∠=∠=OC A '60°,则这三个三角形的面积的和21S S S ++.(填“<”、“=”、“>”)20.已知正整数x ,y 满足2492y x =+,则=x ,=y . 三、解答题(每题都要写出推算过程)21.(本题满分10分)在分母小于15的最简分数中,求不等于52但与52最接近的那个分数.22.(本题满分15分)如图7,一次函数33+-=x y 的函数图象与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作Rt △ABC ,且使∠ABC=30°.(1)求△ABC 的面积;(2)如果在第二象限内有一点P (m ,23),试用含m 的代数式表示四边形AOPB 的面积,并求当△APB 与△ABC 面积相等时m 的值; (3)是否存在使△QAB 是等腰三角形并且在坐标轴上的点Q ?若存在,请写出点Q 所有可能的坐标;若不存在,请说明理由.23.(本题满分15分)点A (4,0),B (0,3)与点C 构成边长分别为3,4,5的直角三角形,如果点C 在反比例函数xk y的图象上,求k 可能取的一切值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年八年级数学第18届“希望杯”第1试试题一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。
1. 下列运动属于平移的是( )(A )乒乓球比赛中乒乓球的运动. (B )推拉窗的活动窗扇在滑道上的滑行. (C )空中放飞的风筝的运动. (D )篮球运动员投出的篮球的运动.2. 若x =1满足2m x 2-m 2x -m =0,则m 的值是( )(A )0. (B )1. (C )0或1. (D )任意实数. 3. 如图1,将△APB 绕点B 按逆时针方向旋转90后得到△A P B ''',若BP=2,那么PP '的长为( )(A ) (B (C )2 . (D )3.4.已知a 是正整数,方程组48326ax y x y +=⎧⎨+=⎩ 的解满足x >0,y <0,则a 的值是( )(A )4 . (B )5 . (C )6. (D )4,5,6以外的其它正整数.5.让k 依次取1,2,3,…等自然数,当取到某一个数之后,以下四个代数式:①k+2;②k 2;③2 k ;④2 k就排成一个不变的大小顺序,这个顺序是( )(A )①<②<③<④. (B )②<①<③<④. (C) ①<③<②<④. (D) ③<②<①<④.6.已知1个四边形的对角线互相垂直,且两条对角线的长度分别是8和10 , 那么顺次连接这个四边形的四边中点所得的四边形的面积是( )(A )40 . (B ) (C )20. (D ).7. Let a be the length of a diagonal of a square, b and c be the length of two diagonals of a rhombus respectively. If b:a=a:c,then the ratio of area of the square and rhombus is ( )(A )1:1. (B )2 (C )1 (D )1:2.(英汉词典:length 长度;diagonal 对角线;square 正方形;rhombus 菱形;respectively 分别地;ratio 比;area 面积)8.直角三角形有一条边长为11,另外两边的长是自然数,那么它的周长等于( ).(A )132. (B )121. (C )120. (D )111.9.若三角形三边的长均能使代数式是x 2-9x +18的值为零,则此三角形的周长是( ).(A )9或18. (B )12或15 . (C )9或15或18. (D )9或12或15或18.10. 如图2,A 、B 、C 、D 是四面互相垂直摆放的镜子,镜面向内,在镜面D 上放了写有字母“G ”的纸片,某人站在M 处可以看到镜面D 上的字母G 在镜面A 、B 、C 中的影像,则下列判断中正确的是( ) (A )镜面A 与B 中的影像一致 . (B )镜面B 与C 中的影像一致 .(C )镜面A 与C 中的影像一致 . (D )在镜面B 中的影像是“G ”.二、A 组填空题(每小题4分,共40分) 11.如图3,在 △BMN 中,BM=6,点A 、C 、D 分别在MB 、BN 、MN 上,且四边形ABCD 是平行四边形,∠NDC=∠MDA ,则ABCD 的周长是 .12.如果实数a ≠b ,且101101a b a b a b ++=++,那么a b +的值等于 .13.已知x =a M 的立方根,y =x 的相反数,且M =3a -7,那么x 的平方根是 .14.如图4,圆柱体饮料瓶的高是12厘米,上、下底面的直径是6厘米.上底面开有一个小孔供插吸管用,小孔距离上底面圆心2厘米,那么吸管在饮料瓶中的长度最多是 厘米.15.小杨在商店购买了a 件甲种商品,b 件乙种商品,共用213元,已知甲种商品每件7元,乙种商品每件19元,那么a b +的最大值是 .16.ABC 是边长为D 在三角形内,到边AB 的距离是1,到A 点的距离是2,点E 和点D 关于边AB 对称,点F 和点E 关于边AC 对称,则点F 到BC 的距离是 .17.如图5,小华从M 点出发,沿直线前进10米后,向左转20,再沿直线前进10米后,又向左转20,……,这样下去,他第一次回到出发地M 时,行走了 米.18.关于x 的不等式123x x -+-≤的所有整数解的和是 . 19.已知点(1,2)在反比例函数ay x=所确定的曲线上,并且该反比例函数和一次函数1y x =+ 在x b =时的值相等,则b 等于 .20.如图6,大五边形由若干个白色和灰色的多边形拼接而成,这些多边形(不包括大五边形)的所有内角和等于 .三、B 组填空题(每小题8分,共40分,每一题两个空,每空4分) 21.解分式方程225111m x x x +=+--会产生增根,则m = 或 . 22.Let A abcd = be a four-digit number. If 400abcd is a square of an integer, then A= 或 .(英汉词典:four-digit number 四位数;square 平方、平方数;integer 整数)23.国家规定的个人稿酬纳税办法是:①不超过800元的不纳税;②超过800元而不超过4000元的,超过800元的部分按14%纳税;③超过4000元的按全部稿酬的11%纳税.某人编写了两本书,其中一本书的稿酬不超过4000元,第二本书的稿酬比第一本书多700元,两本书共纳税915元,则两本书的稿酬分别是 元和 元.24.直线l 交反比例函数y x=的图象于点A ,交x 轴于点B ,点A 、B 与坐标原点o 构成等边三角形,则直线l 的函数解析式为 或 . 25.若n 是质数,且分数417n n -+不约分或经过约分后是一个最简分数的平方,则n 或 .第十八届“希望杯”全国数学邀请赛答案(初二)1提示:1、略2、原式可化为:m(1-m)=0,m=0或m=13、由题意得△BPP ´是等腰直角三角形,由勾股定理得PP ´4、解方程组得:461236x aa y a ⎧=⎪⎪-⎨-⎪=⎪-⎩∵x>0,y<0 ∴601230a a ->⎧⎨-<⎩解得4<a<6, ∴a=5.5、当k>4时,2k>k 2>2k>k+2,所以选C6、顺次连接该四边形的四边中点所得的四边形是矩形,面积是:(12×10)×(12×8)=20 7、S 正=12a 2 , S 菱形=12bc ,∵b:a=a:c ,即a 2=bc ,∴S 正 :S 菱形 =1:18、设另两边为a ,b ,则a 2+b 2=112(不合题意舍去)或112= a 2- b 2=(a+b)(a-b)=121 =121×1; ∵a,b 是自然数 ∴a+b=121, ∴周长是121+11=1329、∵x2-9x+18=0,即(x-6)(x-3)=0 ,∴x=6或x=3,∴三角形三边分别是:3,3,3或6,6,6或6,6,3。
周长:9或15或18。
10、略 二、A 组填空题: 提示: 11 ABCD ∴BC //BM∴NDC M ∠=∠66NDC MDA MDA MAM ADBA AD BA AM BM BC DC BA AD ABCD∠=∠∴∠=∠∴=∴+=+==∴+=+=∴周长为12 12. 1110610++=++b a a b a)1)(10()1)(10(++=++∴a a b b b a化简得(a-b)(a+b-9)=0 b a ≠09=-+∴b a 9=+∴b a13.由题意得⎩⎨⎧-=-=+a b b a 3763解得⎩⎨⎧-==25b a288733==∴=-=∴x a M2±∴的平方根是x14由题意得AB=5 BC=12169BC AB AC 222=+=∴ 13AC =∴15由题意得7a+196=213 a=7196213- 在b 最小时 a+b 值最大 ∴⎩⎨⎧==252a b 即a+b=27 16. 画出图形,由对称的性质和等边 三角形的性质可设F 到BC 的距离为4 17 .由多边形外角和为3600,个外角是020, 可设该多边形为3600=020=18边形30321≤≤∴≤-+-∴x x x∴所有整数解为和为0+1+2+3=618. 19由题意设2=1a∴a=2 1202122-=-=∴=-+∴+=∴b b b b b b或 20. 5个三角形 10个四边形54500360101800=⨯+⨯° 三、B 组填空题提示:21.去分母设2(x-1)-5(x+1)=m当x=1时 m=-10 当x=-1时 m=-423.设第一本x 元 第二本x+700元915%11)700(%14)800(=⨯++⨯-x x解得:x=3800x+700=4500答:第一本3800元 第二本4500元 24.由题意得⎪⎩⎪⎨⎧=+=xy x xy 2322 解得⎩⎨⎧==31y x ⎩⎨⎧-=-=31y x)3,1(A ∴或(1- 3-))0.2(B ∴或(-2,0)解析式为y=323+-x 或y=323--=x 25.11;31。