光伏组件失效模式介绍共31页文档

合集下载

户外运行光伏组件之接线盒失效分析

户外运行光伏组件之接线盒失效分析

D O I :10.3969/j.i s s n .1003-0972.2024.02.005 文章编号:1003-0972(2024)02-0165-04户外运行光伏组件之接线盒失效分析韩会丽1,2,3,彭祁军2,朱灯林1*(1.河海大学力学与材料学院,江苏南京210000;2.浙江鑫辉光伏科技有限公司,浙江乐清325600;3.信阳师范大学建筑节能材料河南省协同创新中心,河南信阳464000)摘 要:针对光伏组件用光伏接线盒在大型光伏电站现场使用过程中出现的失效现象进行分析研究㊂通过对光伏接线盒的外观检测㊁电流-电压(I -V )特性分析以及进一步的解剖测试分析,在二极管解剖出的芯片表面保护环位置发现多处烧熔点,确定是雷击造成的二极管击穿导致接线盒失效㊂关键词:光伏组件,接线盒;失效分析;二极管中图分类号:T P 391 文献标识码:A开放科学(资源服务)标识码(O S I D ):F a i l u r e A n a l ys i s o f t h e J u n c t i o n B o x U s e d f o r P h o t o v o l t a i c M o d u l e S e r v i c e d O u t d o o r H A N H u i l i1,2,3,P E N G Q i j u n 2,Z H U D e n gl i n 1*(1.C o l l e g e o f M e c h a n i c s a n d M a t e r i a l s ,H o H a i U n i v e r s i t y ,N a n j i n g 210000,C h i n a ;2.Z h e j i a n g X i n h u i P V T e c h n o l o g y ,Y u e q i n g 3256000,C h i n a ;3.E n e r g y -S a v i n g B u i l d i n g Ma t e r i a l s I n n o v a t i v e C o l l ab o r a t i o n C e n t e r o f H e n a n P r o v i nc e ,X i n y a n g N o r m a l U n i v e r s i t y ,X i n y a n g 464000,C h i n a )A b s t r a c t :T h e f a i l u r e p h e n o m e n o n o f t h e j u n c t i o n b o x u s e d f o r p h o t o v o l t a i c m o d u l e s i n a l a r ge -s c a l e p h o t o v o l t a i c p o w e r s t a t i o n w a s i n v e s t i g a t e d .T h i s i n v e s t i g a t i o n i n v o l v e d t h e v i s u a l i n s p e c t i o n of t h e j u n c t i o n b o x ,a n a l ys i s o f i t s v o l t a g e -c u r r e n t (I -V )c h a r a c t e r i s t i c s ,a n d f u r t h e r d i s s e c t i o n t e s t i n g a n d a n a l y s i s .U l t i m a t e l y,t h e b u r n m a r k s w e r e d i s c o v e r e d o n t h e p r o t e c t i o n r i n g po s i t i o n o f t h e d i o d e s s u r f a c e a f t e r d i s s e c t i o n .T h e f a i l u r e o f t h e j u n c t i o n b o x w a s a t t r i b u t e d t o d i o d e b r e a k d o w n i n d u c e d b y l i gh t n i n s t r i k e .K e y wo r d s :p h o t o v o l t a i c m o d u l e ;j u n c t i o n b o x ;f a i l u r e a n a l y s i s ;d i o d e 0 引言近年来,随着成本的不断降低,光伏发电在新型电力系统中逐步走向主力能源㊂组件产品作为光伏电站最核心的发电设备,其安全性与可靠性将直接影响电站乃至新型电力系统的长久稳定运行[1]㊂在此趋势下,光伏器件与组件技术持续往高效率㊁大功率方向发展,相关能耗及物料成本逐渐下降,在提质降本与光伏产品多样化㊁大规模应用的过程中,确保组件产品的品质可靠,是保障发电系统安全的核心要素,也是护航终端客户价值的关键所在㊂光伏组件用接线盒作为太阳能电池组件的一个重要部件,是介于太阳能电池组件构成的太阳能电池方阵和太阳能电池充电控制装置之间的连接器,是一门集电气设计㊁机械设计和材料科学相结合的跨领域综合性设计[2-4],为用户提供了太阳能电池组件的组合连接方案㊂所以,接线盒是连接光伏组件和系统的唯一电路通路,只有接线盒长期可靠的工作,系统才能稳定可靠发电㊂光伏组件用接线盒经历长期户外运行也会出现性能衰退甚至失效的现象㊂然而接线盒的性能衰退主要表现为材料结构性能的衰退,在实际应用中并不容易观测到,因此接线盒失效现象是光伏电站运维过程中常见的问题[5]㊂根据光伏组件户外使用情况,有研究者[6]统计出了接线盒常见失效模式的占比,如图1收稿日期:2023-07-05;修回日期:2023-10-22;*.通信联系人,E -m a i l :h a n h u i l i 107@126.c o m ;19911107@h h u .e d u .c n 基金项目:国家自然科学基金项目(12105239);河南省自然科学基金项目(242300420357) 作者简介:韩会丽(1985 ),女,河南漯河人,讲师,博士,主要从事太阳能电池组件性能的研究㊂ 作者简介:韩会丽,彭祁军,朱灯林.户外运行光伏组件之接线盒失效分析[J ].信阳师范学院学报(自然科学版),2024,37(2):165-168.H A N H u i l i ,P E N G Q i j u n ,Z HU D e n g l i n .F a i l u r e A n a l y s i s o f t h e J u n c t i o n B o x U s e d f o r P h o t o v o l t a i c M o d u l e S e r v i c e d O u t d o o r [J ].J o u r n a l o f X i n y a n g N o r m a l U n i v e r s i t y (N a t u r a l S c i e n c e E d i t i o n ),2024,37(2):165-168.561信阳师范学院学报(自然科学版) J o u r n a l o f X i n y a n g N o r m a l U n i v e r s i t y第37卷 第2期 2024年4月N a t u r a l S c i e n c e E d i t i o n V o l .37N o .2A pr .2024所示㊂接线盒失效的主要表现有二极管击穿㊁二极管的短路或失效㊁组件正负极引出线虚接㊁接线盒开裂等[7-8]㊂其中旁路二极管烧毁是接线盒失效的主要模式,占比超过50%,而其主要原因是系统过载,根本原因则是温度过高或内部直流电弧导致[9-10]㊂如果接线盒选取不当,就可使电池板烧毁,从而影响整个光伏系统性能㊂图1 接线盒常见失效模式统计图F i g.1 S t a t i s t i c a l c h a r t o f c o m m o n f a i l u r e m o d e s o f t h e ju n c t i o n b o x e s 目前,市场上接线盒的品牌较多,产品质量也是参差不齐,接线盒在系统应用中出现的问题也越来越多(图1)㊂本研究针对某大型光伏发电站运行期间出现的部分接线盒失效现象,对接线盒进行一系列分析,研究接线盒失效的根本原因㊂1 现象描述及样品抽查建设在广东湿热气候环境下的某大型地面光伏电站正常运行近一年,雷雨天气之后,突然发现相邻多个组串出现无电压现象㊂经查验,发现这些组串中的光伏组件没有玻璃破裂㊁背板破坏㊁电池损坏㊁接线盒烧毁等明显的外观缺陷,组件接线盒的接头线缆也没有发现异常灼烧现象㊂但是,部分组件接线盒盒盖出现凸凹不平的经高温灼烧的痕迹㊂为了验证接线盒性能,随机抽取4个接线盒不良样品进行实验室性能测试与分析,分别将不良接线盒编号为A ㊁B ㊁E ㊁G (图2)㊂图2 不良接线盒外观图F i g .2 T h e a p p e a r a n c e o f t h e p o o r ju n c t i o n b o x 接线盒的分析样品外观如图2所示㊂可以看到,部分接线盒外壳已经变形,初步判断局部高温所致㊂打开接线盒盒盖,观察接线盒内灌封胶情况(图3)㊂从图3可以看出,A ㊁B 接线盒内灌封胶大面积均出现黄变现象,尤其是二极管附近灌封胶已经开始焦化;而E ㊁G 接线盒内灌封胶只是在中间位置二极管附近出现黄变㊂为了进一步查验接线盒内二极管的焊接是否良好,将灌封胶去除,露出内部二极管(A 1㊁A 2㊁A 3为接线盒A 内二极管,B 1㊁B 2㊁B 3为接线盒B 内二极管,E 1㊁E 2㊁E 3为接线盒E 内二极管,G 1㊁G 2㊁G 3为接线盒G 内二极管)㊂可见光条件下,查看接线盒内二极管焊接点情况,只发现A 接线盒内二极管A 3(接线盒A 右侧边缘处二极管)焊接脱落,其他接触正常㊂图3 接线盒内部灌封胶焦化(上)及二极管焊接情况(下)F i g .3 T h e p o u r i n g s e a l a n t (t o p)a n d t h e d i o d e s (d o w n )i n t h e ju n c t i o n b o x 2 测试与数据分析2.1 导通性测试与二极管外观检查为测试接线盒的电性能,首先采用万用表接入接线盒引出线正负极测试其导通电阻㊂测试结果显示:A 接线盒接触不好,时而导通㊁时而不导通,导通时测得电阻较大为MΩ级;B 和C 接线盒不导通;D 接线盒导通电阻为1.4Ω,更换正负极接入测得导通电阻大小接近;E 和G 接线盒导通电阻为0.2Ω,更换正负极接入电阻变化不大;为了排除引出线原因,将接线盒内部灌封胶去除后,再次用万用表接入接线盒输出端㊂电导通性测试结果和引出线端测试结果相同㊂进一步将每个样品接线盒内部二极管取出,对其进行外观检测,结果显示所有样品二极管并无出现损伤㊁零部件缺损等缺陷,具体如图4所示㊂2.2 二极管I -V 特性分析接线盒中二极管不论在旁路工作还是反向截止状态,都会产生热㊂特别是随着组件输出电流越来越大,接线盒中二极管工作时的发热量通常也会越来越大㊂据相关研究显示,有些接线盒内二极管旁路导通工作时,二极管的表面温度达到了170ħ661第37卷 第2期信阳师范学院学报(自然科学版) h t t p ://j o u r n a l .x yn u .e d u .c n 2024年4月或更高随着温度升高[11],这种高温工作会导致二极管出现燃烧的可能性㊂为了测试二极管性能,对每一个二极管进行I -V 特性测试㊂测试结果如图5所示,所有样品二极管均呈现出击穿二极管的反向特性曲线㊂图4 二极管外观检查F i g .4 T h e v i s u a l a p pe a r a n c e of t h e d i o d e s 图5 二极管I -V 特性F i g.5 T h e I -V c h a r a c t e r i s t i c s o f t h e d i o d e s 从二极管I -V 特性测试的结果来看,抽取的不良接线盒内的二极管均失去二极管特性,不再有防反作用㊂2.3 解剖分析采用化学试剂将二极管进一步解剖至焊接件,进行确认分析,如图6所示㊂二极管焊接件的光学外观未发现异常㊂进一步将焊接件解剖至芯片,并在光学显微镜下观察芯片表面,其微观形貌如图7㊂从芯片的微观形貌图可以看出,芯片A 3表面有明显的较大烧熔点,可能是热应力导致硅边缘缺角所致,芯片B 3表面也出现多个烧熔点,应该是雷击所致,芯片E 1㊁E 2㊁E 3㊁G 1㊁G 3表面也都有比较明显的烧熔点,而且烧熔点几乎都出现在芯片的保护环边缘位置,应该可以确定二极管是受到了极大的电能量引起芯片多部位击穿烧伤㊂图6 焊接件外观图F i g .6 T h e v i s u a l a p p e a r a n c e o f w e l d a s s e m b ly图7 光学显微镜下二极管芯片的外观F i g .7 T h e v i s u a l a p p e a r a n c e o f t h e c h i ps u n d e r a l i g h t m i c r o s c o pe 另一方面,接线盒内部二极管全部失效,也没有出现局部发热的痕迹,由此可以断定二极管是瞬761韩会丽,彭祁军,朱灯林.户外运行光伏组件之接线盒失效分析间失效的㊂这种高能量在瞬间出现多个高峰的情况,只有雷击才具备㊂该批组件运行在空旷环境且雷雨天气之后出现接线盒失效现象,因此,可判断二极管失效是雷击造成的㊂3结论对该批接线盒抽样样品的外观检查发现,多个接线盒外壳被烧变形而且内部灌封胶出现大面积焦化现象,初步断定是由于接线盒内部高温所致㊂二极管的I-V特性测试表明,二极管反向波形为S h o r t状态,说明接线盒内部二极管已经被击穿㊂二极管的进一步解剖分析显示,二极管芯片表面出现多个不同大小的烧熔点,其中二极管编号B3㊁E3㊁G1㊁G3缺陷为典型的雷击失效模式,其中B3二极管芯片边缘出现连续的烧熔点,G1㊁G3二极管芯片边角出现烧毁现象,均是典型的雷击造成的,而且该批接线盒为批次损坏且电气位置和地理位置集中,可判断该批失效二极管主要是雷击导致电流反灌,引起芯片局部高温击穿所致,同时高温引起灌封胶的焦化和二极管热氧变形㊂接线盒失效是影响光伏电站发电量的一个重要因素,本文分析了户外接线盒的失效原因,可为电站的户外可靠运行提供数据支撑和质量保证㊂参考文献:[1]张栋兵,孟庆法.户外光伏组件接线盒鼓包失效分析[J].太阳能,2023(4):84-88.Z HA N G D o n g b i n g,M E N G Q i n g f a.B u l g e f a i l u r e a n a l y s i s o f o u t d o o r P V m o d u l e j u n c t i o n b o x[J].S o l a r E n e r g y,2023(4):84-88.[2]李荣,刘飞,贺国顺,等.光伏组件接线盒二极管的击穿失效分析[J].太阳能,2019(6):76-78.L I R o n g,L I U F e i,H E G u o s h u n,e t a l.F a i l u r e a n a l y s i s o f d i o d e b r e a k d o w n o f P V m o d u l e j u n c t i o n b o x[J].S o l a rE n e r g y,2019(6):76-78.[3] L A U K AM P H,B O P P G,G R A B R,e t a l.P V f i r e h a z a r d-a n a l y s i s a n d a s s e s s m e n t o f f i r e i n c i d e n t s[C]//E u r o p e a nP h o t o v o l t a i c S o l a r E n e r g y C o n f e r e n c e a n d E x h i b i t i o n,P a r i s:E U P V S E C,2013:4304-4311.[4]杜晓华,张定军.光伏发电站大回线中雷电感应过电压研究[J].电瓷避雷器,2017(4):109-114.D U X i a o h u a,Z HA N G D i n g j u n.S t u d y o f l a r g e l o o p s l i g h t n i n g i n d u c e d o v e r v o l t a g e s i n p h o t o v o l t a i c i n s t a l l a t i o n s[J].I n s u l a t o r s a n d S u r g e A r r e s t e r s,2017(4):109-114.[5]J O R D A N D C,S I L V E R MA N T J,WOH L G E MU T H J H,e t a l.P h o t o v o l t a i c f a i l u r e a n d d e g r a d a t i o n m o d e s[J].P r o g r e s s i n P h o t o v o l t a i c s:R e s e a r c h a n d A p p l i c a t i o n s,2017,25(5):318-326.[6] C HA N G M a o y i,C H E N C,H S U E H C H,e t a l.T h e r e l i a b i l i t y i n v e s t i g a t i o n o f P V j u n c t i o n b o x b a s e d o n1GWw o r l d w i d e f i e l d d a t a b a s e[C]//2015I E E E42n d P h o t o v o l t a i c S p e c i a l i s t C o n f e r e n c e(P V S C),N e w O r l e a n s:I E E E, 2015:1-4.[7]王颖亭,竺江峰,胡晓飞,等.关于光伏接线盒散热性影响因素的研究[J].大学物理实验,2019,32(1):76-79.WA N G Y i n g t i n g,Z HU J i a n g f e n g,HU X i a o f e i,e t a l.A r e s e a r c h o f t h e f a c t o r s i n f l u e n c i n g t h e h e a t d i s s i p a t i o n o f p h o t o v o l t a i c j u n c t i o n b o x[J].P h y s i c a l E x p e r i m e n t o f C o l l e g e,2019,32(1):76-79.[8]王会晓,麻超,张向前,等.光伏组件用接线盒失效分析[J].科技创新导报,2019,16(3):114,116.WA N G H u i x i a o,MA C h a o,Z HA N G X i a n g q i a n,e t a l.F a i l u r e a n a l y s i s o f j u n c t i o n b o x d i o d e u s e d f o r P V m o d u l e[J].S c i e n c e a n d T e c h n o l o g y I n n o v a t i o n H e r a l d,2019,16(3):114,116.[9]钟泰军,康慨,李慧.大面积光伏旁路二极管击穿事故分析研究[J].太阳能,2018(12):53-60.Z HO N G T a i j u n,K A N G K a i,L I H u i.A n a l y s i s o f l a r g e a r e a P V b y p a s s d i o d e b r e a k d o w n a c c i d e n t[J].S o l a r E n e r g y, 2018(12):53-60.[10] WU T a n g q i n g,Z HO U Z h a o f e n,X U S o n g,e t a l.A c o r r o s i o n f a i l u r e a n a l y s i s o f c o p p e r w i r e s u s e d i n o u t d o o r t e r m i n a lb o x e s i n s u b s t a t i o n[J].E n g i n e e r i n g F a i l u r e A n a l y s i s,2019,98:83-94.责任编辑:张钰861第37卷第2期信阳师范学院学报(自然科学版)h t t p://j o u r n a l.x y n u.e d u.c n2024年4月。

光伏电站设备常见故障分析与维护课件

光伏电站设备常见故障分析与维护课件
3、在发电方阵在现场遭遇雷击等自然环境的影响导 致反向的电压超过额定的反向耐压,二极管被击穿。
4、元件焊接工艺不良,引起的发热。 5、材料材质低劣。 6、正向大电流击穿:正向大电流会导致二极管过热, 造成热击穿。
7、组件在安装方法不当,导线受应力脱焊、虚接。
采取的措施:
1、根据目前组件认证、制造、使用的需要,建议接 线盒内预留扩展连接座;
2、对电站一次设备绝缘进行定期检查,判断电 缆、避雷器、互感器等设备是否存在潜在风险。
3、定期对电站二次回路进行检查,对保护定值 进行校验。
4、电缆头由电缆头附件供货厂家负责制作
谢谢!
3、制作完毕后使用紧固MC4插头专用工具进行再次 紧固,保证芯子可连接可靠;
4、 MC短路故障发生。
二、直流汇流箱故障
正负极接线端子发热故障 、正负极保险熔 断及保险盒发热、烧损故障 汇流箱内组串支路输入保险盒端子电缆 虚接,正负极接线端子在运行中发热烧损, 组串支路无电压、电流,组串支路无输入。
MC4插头烧损
电池组件在运行中MC4插头发热烧损, 组件无功率输出。
原因分析:
1、因施工人员不是专业安装,在制作MC4插头时, 芯子制作不规范,长期运行发热后烧损;
2、电池组件MC4插头两端公母头螺丝未拧紧,虚接 导致发热后烧损;
3、电池组件MC4插头公母头未插紧,导致芯子长期 运行接触电阻较大,发热烧损;
3、光伏发电因天气变化具有瞬时性,逆变器功率电流变 化较大,导致引起过流、过、欠压等模块故障;
4、光伏发电是由好多块电池组件串联,再经并联后接入 逆变器,较多电缆预埋在地下,电缆因绝缘破损导致接地, 逆变器模块检测故障退出;
采取的措施 1、定期对逆变器进行除尘清扫检查; 2、改善逆变器运行环境; 3、储配一定数量的备品备件; 4、加强逆变器运行监测;

太阳能光伏组件失效模式介绍

太阳能光伏组件失效模式介绍

Electrons (-ve)
Holes (+ve)
如有机会,将来另开专题再详细讲解!
25
All Rights Reserved © Suntech
玻璃破裂
失效原因 — 冲击(如石头、冰雹等物理) 导致玻璃碎裂,可以从碎裂的形状 判断 — 玻璃质量问题(如玻璃自爆) — 不当的安装方式 — 高温(如热斑、打弧等)
26
All Rights Reserved © Suntech
不当的安装方式导致玻璃破裂
27
All Rights Reserved © Suntech
过热导致玻璃破裂
28
All Rights Reserved © Suntech
组件承载能力 — 风载/雪载
29
All Rights Reserved © Suntech
19
All Rights Reserved © Suntech
热斑
当组件的Imp超过被遮挡的电池或是有缺陷的电池的Isc 时,容易导致热斑过热现象的产生
失效原因 — 电池表面有异物 — 电池之间不匹配 — 电池缺陷如右下图所示 — 二极管并联的电池片数量过多 — 部分遮挡 — 焊接不良 影响 — 焊接处融化 — 过高的温度导致封装材料和背板的老化 — 局部过热导致玻璃碎裂
Hot cell
Def. front contact Partial shadowing
Hot Spot
A: Bypass Diode B: Hot Cell C: Interconnect D: Hot-spot E: Broken Cell F: Hot Cell Array G: Front Contact H: Partial Shadow

失效模式分析表格

失效模式分析表格

失效模式分析表格失效模式描述1. 组件故障组件损坏或失效导致整个系统无法正常工作2. 电源故障供电系统故障导致设备无法正常工作3. 连接故障连接线路或接口故障导致信号无法传输或丢失4. 软件错误系统软件或应用程序出现错误导致功能失效5. 网络故障网络连接中断或网络设备故障导致通信失败6. 传感器故障传感器无法正常检测或传输数据导致系统失效7. 数据错误数据输入或处理过程中出现错误导致结果不准确8. 停电故障电力供应中断或电力设备故障导致设备无法工作9. 控制逻辑错误控制逻辑程序出现错误导致系统无法按预期运作人员操作不当或误操作导致系统功能失效10. 人为操作错误1. 组件故障描述:组件故障是指系统中的重要组件出现损坏或失效的情况,导致整个系统无法正常工作。

常见的组件故障包括电子元器件损坏、机械部件失灵、电路板短路等。

解决方案: - 检查组件的工作状态,确保其在正常工作范围内; - 定期进行设备维护和检修,及时更换老化部件; - 使用高质量的组件,减少故障发生的可能性。

2. 电源故障描述:电源故障是指系统供电部分发生故障,导致设备无法正常工作。

常见的电源故障包括电源线路断路、电源适配器故障、电池电量不足等。

解决方案: - 检查电源线路和插头是否正常连接; - 检查电源适配器是否工作正常,如发现故障及时更换; - 定期检查设备电池电量,如发现不足及时充电或更换电池。

3. 连接故障描述:连接故障是指设备之间的连接线路或接口出现问题,导致信号无法正常传输或丢失。

常见的连接故障包括线路脱落、接口松动或损坏等。

解决方案: - 检查连接线路是否完好,确保连接稳固; - 检查接口是否松动或损坏,如有问题及时修复或更换; - 定期进行连接线路的检查和保养,防止连接故障发生。

4. 软件错误描述:软件错误是指系统的软件或应用程序出现错误,导致系统功能失效。

常见的软件错误包括程序崩溃、数据丢失、算法错误等。

解决方案: - 及时更新软件补丁或升级软件版本,修复已知的软件错误; - 定期进行软件测试和质量控制,确保软件的稳定性和可靠性; - 遵循良好的软件开发规范,减少软件错误的发生。

光伏组件失效分析

光伏组件失效分析

光伏组件失效分析摘要:本文对运行光伏电站中光伏组件热斑失效情况,定义典型热斑类别,选择实际运行光伏电站代表性的热斑组件,监测其电性能变化数据,分析不同热斑类型的产生原因与机理。

在光伏系统中模拟太阳电池失配情况,进行热斑试验,验证遮挡对热斑的影响。

关键词:光伏组件;热斑;分析一、光伏热斑案例分析在实际使用光伏中,尽管光伏组件安装时都要考虑阴影的影响,并加配保护装置以减少热斑的影响。

但长期使用中难免落上飞鸟、尘土、落叶等遮挡物,这些遮挡物在光伏组件上就形成了阴影。

由于局部阴影的存在,电池单片本身通常一定程度存在杂质与缺陷,这些组件在工作时局部发热,长时间热斑高温会导致焊点熔化、背板烧毁、玻璃碎裂等失效。

作者调研了某地区已运行1~3年的约200 MW。

的平板光伏组件,对异常组件的性能进行了测试和分析,总结了这些组件的衰减与失效构成因素。

在所有115块短期失效或高衰减光伏组件中,由于电池热斑导致的失效组件占25块,占到总失效光伏组件的20%以上。

在这些实际运行光伏电站的典型热斑问题中,有3类比较常见:电池间显著温差(定义为A类)、单电池串电性能失效(定义为B类)、玻璃与电池碎裂(定义为C类)。

A类光伏组件中不同电池片会出现明显温差,最高温度电池与正常电池温差通常达到10℃以上,部分温差达到40~50℃。

该类组件热斑问题较为常见,由于电池之间电流失配造成,组件搬运、安装过程造成的电池隐裂是产生电流失配的重要原因。

将光伏电站中该类热斑问题组件进行的红外热相(正常并网工作状态),与电致发光(EL)测试,如图1所示。

图中红外热相图片从组件背面拍摄,EL图为组建正面图,从图1可看出,组件中发热电池与EL隐裂电池能有一定对应关系。

此外部分发热电池EL照片不能反应其明显缺陷,封装材料的内部分层对组件局部散热的影响等可能是产生电池问温度差异的原因。

A类热斑组件在组件室内太阳模拟器中测试功率,功率下降幅度为5%一8%。

B类光伏组件中单串太阳电池功率失效(多串失效在所收集的热斑组件中未见到),对于商用60片156 mmX156 mm电池组件成的组件,约三分之一的功率损失。

光伏组件失效模式介绍PPT课件

光伏组件失效模式介绍PPT课件
组件失效模式介绍
汇报人:徐连富 部门:品质中心
.
1
目录
1.前言 .
2
前言
光伏组件失效模式分类
光伏组件失效浴盆曲线
晶体硅光伏组件的失效通常分为三类:早期失效、随机失效、损耗失效。我们推进的所有可靠 性的改善都是为了: 1.减少早期失效, 2.减低随机失效, 3.推迟损耗失效。
1.水汽隔离性能下降,焊带、 温度及均匀度,真空度,层压时间)
电池片腐蚀
5.材料的可靠性试验( “双85”,
2.绝缘性能下降
耐紫外试验等,参照IEC61215)
3.组件功率轻微下降
6.安装环境与物料匹配性
4. 影响组件外观 .
10
光伏组件户外常见失效模式
闪电纹
EVA中的过氧化物在水汽的作用下与电池片栅线中的银发生反应,生成银的氧化物。电池片 隐裂,背板EVA的透水率高加速了闪电纹的产生。
.
8
光伏组件户外常见失效模式
脱层
背板与EVA分层,EVA与玻璃分层,EVA与电池片间分层
脱 层
脱 层
脱 层
失效原因:
1.湿气,紫外等导致封装 材料间的粘粘力被破坏, 2.金属离子的污染 3.材料匹配性不好 4.层压参数不合理 5.背板层间分层 6.硅胶密封性不好
失效影响:
1.焊带、电池片腐蚀, 致使组件报废 2.影响组件外观 3.遮挡电池片,功率 输出下降
6
边框
高机械强度,高耐候行 较低的密度
导出组件电能,减少热斑损坏 组件组件间连接 保护组件免受外界环境损害,保证寿命 降低组件重量
7
焊带汇流条
高抗拉强度,延伸率及可焊接性 低电阻率
连接电池片收集电流
.

光伏组件失效模式介绍

光伏组件失效模式介绍

4
5 6 7
背板
接线盒 边框 焊带汇流条
保护组件免受外界环境损害,保证寿命 导出组件电能,减少热斑损坏 组件组件间连接 保护组件免受外界环境损害,保证寿命 降低组件重量
连接电池片收集电流
前言
光伏组件一般提供五年的产品质量保证和10-25年的产品功率保证,25年内产品最大功 率衰减不超过20%。 组件户外使用受到各种环境因素的侵蚀影响。
背板与EVA分层,EVA与玻璃分层,EVA与电池片间分层
脱层
脱 层
脱 层
脱 层
失效原因:
1.湿气,紫外等导致封装 材料间的粘粘力被破坏, 2.金属离子的污染 3.材料匹配性不好 4.层压参数不合理 5.背板层间分层 6.硅胶密封性不好
失效影响:
管控方向:
1.焊带、电池片腐蚀, 致使组件报废 2.影响组件外观 3.遮挡电池片,功率 输出下降
焊 带 腐 蚀
焊 带 变 色
光伏组件户外常见失效模式

电池片变色氧化
边 缘 氧 化 整 片 氧 化 主 栅 边 氧 化
失效原因:
失效影响: 1.焊接电池片存在氧化 2.背板,EVA封装材料透水率 1.栅线变色,影响外观 2.电阻变大,影响功率输出 高,导致进水氧化腐蚀 3.助焊剂残留腐蚀栅线 4.EVA分解残留的醋酸类腐 蚀栅线 5.员工使用含有硫的橡胶手 套 6.组件在系统中正电压偏置, 银浆发生电化学腐蚀
管控方向 电池质量管控 1.包括硅片/电池片EL缺陷检测 2.电池片光衰一致性 3.电性能水位一致性 制程管控 1.焊接质量(虚焊,过焊) 2.制程隐裂EL检测 3.组件异物 4.换片补片档位一致性 组件安装维护 1.安全的包装运输防护 2.合理的安装角度距离 3.定期清理,避免遮挡

光伏组件主材机理及失效模式精品文档42页

光伏组件主材机理及失效模式精品文档42页
(2)覆盖焊料表面,防止焊料或金属继续氧化; (3)增加焊料和被焊金属表面的活性,降低焊料的 表面张力,提高润湿能力;
(4)加快热量从烙铁头向焊料和被焊物表面传递; (5)合适的助焊剂还能使焊点美观;
1 助焊剂
助焊剂成分
国内外助焊剂一般由活化剂、 溶剂、表面活性剂和特殊成分总成。 特殊成分包括缓蚀剂、防氧化剂、 成膜剂等。
化学反应
分子破裂成原子,原子重新排列组合生成新物质 的过程,称为化学反应。在反应中常伴有发光发热变 色生成沉淀物等,判断一个反应是否为化学反应的依 据是反应是否生成新的物质。
反应条件
指化学反应所必须或可提高反应速率的方法,如: 加热(△)、点燃、高温、电解、通电(电解)、紫 外线或催化剂等。
材料分类
焊带在串联电池片的过程中一定要做到焊接牢固,避免虚 焊假焊现象的发生。在选择焊带时一定要根据所选用的电池片 特性来决定用什么状态的焊带。
一般选用的标准是根据电池片的厚度和短路电流的多少来 确定焊带的厚度,焊带的宽度要和电池的主删线宽度一致,焊 带的软硬程度一般取决于电池片的厚度和焊接工具。
6 焊带
(2)满意的性能寿命,即使在苛刻、恶劣环境下装饰使用, 也能确保50年寿命以上不腐蚀、不老化、不褪色、不脱落;
(3)手感光滑细腻,外观鲜艳亮丽、富丽堂皇;
(4)漆膜硬度高,可耐3H以上铝笔硬度画刻;
9 接线盒
光伏接线盒是介于太阳能电池组件构成的太阳能电池 方阵和太阳能充电控制装置之间的连接器。是一门集 电气设计、机械设计与材料科学相结合的跨领域的综 合性设计。
风沙磨损 在中国西部和华北(如青海、甘肃、宁夏、新疆等)部分地区, 由于强烈的风沙,应在标准中考虑背板耐磨性能。
湿热盐雾腐蚀 在东部沿海地区,要考虑背板材料的耐湿热、盐雾腐蚀性能和 粘接力的稳定性。

光伏电站组件故障及分析

光伏电站组件故障及分析

2023/5/4
固定式水泥基础
固定式地锚基础
光伏方阵的跟踪式光伏方阵分为单轴跟踪和双轴跟踪。 单轴跟踪一般采用三种方式:第一种方式是旋转轴倾斜布置光伏方阵 东西方向跟踪;第二种方式是旋转轴南北水平布置,光伏方阵东西跟踪;第 三种方式是旋转轴东西水平布置,光伏方阵南北方向跟踪。这三种方式是南 北方向或东西方向的单轴跟踪,工作原理基本相似。
(3)光伏组件的闪电纹现象 闪电纹也称蜗牛纹,闪电纹产生的原因为EVA胶膜的交联度不均匀导致 使用后产生不均匀的应力,使电池片产生隐裂,隐裂处会产生热斑效应,从 而导致EVA胶膜或栅线烧掉。
(4)光伏组件的其他故障现象 ①光伏组件接线盒问题 光伏组件接线盒背板胶粘度较低,产生轻脱现象或接线盒内导电金属片
2023/5/4
单晶太阳能组件
96片
2023/5/4
54片
60片
72片
多晶太阳能组件
72片
2023/5/4
60片
54片
种类 晶硅
电池类型 实验室效率
单晶硅
24%
多晶硅
21%
非晶硅 薄膜电池 13%
化合物 碲化镉
15.8%
铜铟镓硒 15. 13%-15% 8%-11% 5%-8% 5%-8%
接触面较小使得接触电阻变大。
(4)光伏组件的其他故障现象 ② 光伏组件内电池片与EVA胶膜脱层
(4)光伏组件的其他故障现象 ③接线盒内汇流盒和旁路二极管氧化 光伏组件接线盒内由于进水导致汇流条和旁路二极管氧化。
(4)光伏组件的其他故障现象 ④接线盒烧坏 光伏组件接线盒出现烧坏现象。
图2-21 接线盒烧坏
光伏组件由焊带、钢化玻璃、EVA胶膜、背板、铝型材边框、硅胶、接线 盒等组成。

(完整版)光伏组件失效模式介绍

(完整版)光伏组件失效模式介绍

2.制程隐裂EL检测
热 斑 正 面
热 斑 背 面
3.组件异物 4.换片补片档位一致性 组件安装维护 1.安全的包装运输防护 2.合理的安装角度距离 3.定期清理,避免遮挡
光伏组件户外常见失效模式
脱层
背板与EVA分层,EVA与玻璃分层,EVA与电池片间分层
脱 层
脱 层
脱 层
失效原因:
1.湿气,紫外等导致封装 材料间的粘粘力被破坏, 2.金属离子的污染 3.材料匹配性不好 4.层压参数不合理 5.背板层间分层 6.硅胶密封性不好
前言
光伏组件介绍-结构及物料
光伏组件可以分为晶体硅光伏组件及薄膜组件,本文主要进行晶体硅光伏组件常见的失效 模式分析。
光 伏 组 件 三 明 治 结 构
序号 1 2 3 4 5 6 7
物料名称 玻璃 EVA 电池片 背板 接线盒 边框
焊带汇流条
特性 高太阳能透过比、低吸收比、低反射比和高强度
耐紫外辐射、耐碱、抗老化、低透水汽率 高透明,柔软,坚韧度及黏连性 耐紫外辐射、抗老化,低透水汽率,低热阻 高光电转化效率,较高的弱光性 较高的耐候行 耐紫外辐射、抗老化,低透水汽率,低热阻 高耐候性,高阻燃,低电阻 高机械强度, 高机械强度,高耐候行 较低的密度 高抗拉强度,延伸率及可焊接性 低电阻率
失效原因:
1.硅片电池缺陷
2.电池表面有异物
3.电池之间不匹配:效率电流混档,
衰减不一致
4.二极管并联的电池片数目过多
5.阴影遮挡
6.焊接不良
失效影响:
1.焊接处融化, 2.过高的温度导致封装材料加速老化ቤተ መጻሕፍቲ ባይዱ3.局部过热导致玻璃破碎
热 斑
4.组件烧毁

光伏电站组件常见故障分析及处理

光伏电站组件常见故障分析及处理

光伏电站组件常见故障分析及处理出了新的要求。

需要高水平的管理和维护技术,以及时有效地解决电厂运行中的故障,为确保光伏电站安全稳定运行,提高电站性能,光伏电站建设周期仅需几个月,后续运行维护周期长达20-25年。

在日常运行维护过程中,对光伏组件的缺陷采取有效的处理措施是非常重要的,我已经从事了一家大型光伏电站的运行维护工作五年。

在这方面,本文件以大型光伏电站组件的常见缺陷为出发点,具体分析电站组件的常见缺陷,并提出解决方案,为光伏电站的运行维护提供参考。

关键字:光伏组件;常见故障;处理措施前言:光伏组件是将太阳能转化为电能的直接载体,是光伏发电系统的重要组成部分。

其发电能力直接影响光伏阵列的生产性能,最终影响光伏发电能力。

如果光伏组件故障不能及时有效排除,可能导致组件损坏,在严重情况下会导致火灾和安全事故。

分析光伏组件在运行过程中可能存在的缺陷并制定预防措施是改进设备使用的重要手段,也是确保电厂安全稳定运行的重要基石光伏发电。

1简述光伏发电的原理光伏发电是一种利用半导体界面的光伏效应将光能直接转化为电能的技术。

该技术的关键部件是太阳能电池。

单个太阳能电池可以串联封装和保护,形成大面积的光伏组件。

多个光伏组件串联在光伏串中,并联在一个汇流箱上形成光伏串联。

太阳能通过光伏组件组成的光伏阵列将太阳光转换为直流电,通过三相逆变器以三相交流电的形式转换,经升压变压器升级后接入电网。

2光伏发电厂简介一座总容量120mW的大型光伏电站位于丘陵地带,占地面积约7200亩,光伏电站选用255(多晶)、265(单晶)、270(单晶)和275(单晶)光伏组件。

22块光伏板串联形成一个光伏模块,连接到直流汇流防雷智能保护(16进1出),6个汇流箱连接到500kW集成逆变器的直流侧,逆变器将交流电流中的电流能量反转,并将其发送至35kV组合箱式变压器的低压侧。

经箱变升级至35kV 后,送至呼叫站更换。

经召回变压器升级至110kV后,接入电网。

光伏组件背板介绍PPT课件

光伏组件背板介绍PPT课件
总论 背板结构 背板的测试方法 背板的失效模式
*
总论
背板(Backsheet)是用在太阳能组件背面,直接与外环境大面积接触的光伏封装材料,其应具备卓越的耐长期老化(湿热、干热、紫外)、耐电气绝缘、水蒸气阻隔等性能。因此,背膜要在耐老化、耐绝缘、耐水气等方面满足太阳电池组件25年的环境考验,起到封装组件原辅料、保护太阳能组件、隔绝汇流带的作用。 基本性能 优秀的耐候性 低的水汽透过率 好的电气绝缘性 一些机械性能
含氟量59%
*
外层
PVF和PVDF的对比
性能
单位
PVF
PVDF
密度
g/cm3
1.4
1.7
熔点

185~195
160~172
分解温度

210
316
拉伸强度
Mpa
37~41
30~50
断裂伸长率
%
65~225
50~250
热收缩率
%
5
2
使用温度

-70~107
-60~150
PVDF的密度是PVF的1.3-1.4倍,在分子结构上多一个氟原子,所以比PVF更致密、更耐候、阻隔性更好。纯PVDF薄膜的透水率只有同等厚度的PVF薄膜的1/5左右,所以通常情况下使用PVDF薄膜的厚度可以比PVF薄,但是PVDF成型较困难,一般需要添加丙烯酸类材料,此材料会造成局部老化。
*
各层的特性
外层









胶层



中间层








光伏发电系统的失效原因分析研究

光伏发电系统的失效原因分析研究

光伏发电系统的失效原因分析研究一、引言光伏发电系统是利用太阳能将光能转化为电能的一种方式,得到了广泛的应用,尤其是在全球能源危机背景下,光伏发电系统大大减轻了人们对传统化石燃料的依赖。

然而,光伏发电系统仍然面临许多问题,如功率输出不稳定、系统损坏等。

本文旨在从失效原因的角度出发,深入分析光伏发电系统的失效原因,为解决这些问题提供依据。

二、光伏发电系统的组成光伏发电系统主要由太阳能电池板、电池板支撑、储能装置、逆变器和监控系统组成。

2.1 太阳能电池板太阳能电池板是光伏发电系统的核心部件。

它的主要工作原理是将光能转化为电能。

太阳能电池板通常由许多太阳能电池组成,太阳能电池是将光能直接转化为电能的器件。

2.2 电池板支撑电池板支撑主要起支撑电池板的作用,有许多不同的形式,如钢架、铝合金架等。

电池板支撑的质量好坏直接影响电池板的使用寿命和稳定性。

2.3 储能装置光伏发电系统中的太阳能电池板发电不稳定,需要通过储能装置进行平衡。

目前市场上主要有铅酸电池、锂离子电池、超级电容储能等储能装置可供选择。

2.4 逆变器逆变器是光伏发电系统的核心部件之一,其主要作用是将太阳能电池板所产生的直流电转化为交流电,并输出给公共电网,从而实现发电和储能。

逆变器的质量好坏直接关系到光伏发电系统的稳定性和功率输出的可靠性。

2.5 监控系统由于光伏发电系统的复杂性和可靠性要求,需要严格的监控系统。

监控系统能够实时获取系统运行状况、检测运行故障,并提醒维护人员对系统进行维护,从而提高系统的效率和稳定性。

三、光伏发电系统失效原因分析光伏发电系统一旦出现失效,常常会对光伏发电系统的稳定性和功率输出造成影响。

下面从太阳能电池板、电池板支撑、储能装置、逆变器和监控系统等方面分析光伏发电系统出现失效的常见原因。

3.1 太阳能电池板失效原因(1)安装质量问题:太阳能电池板的安装质量直接影响其使用寿命和性能。

安装不牢固或不合适,太阳能电池板可能损坏或产生损失。

光伏组件失效模式

光伏组件失效模式
组件失效模式介绍
目录
1.前言 2.组件户外常见失效模式 3.组件实验室常见失效模式
前言
光伏组件失效模式分类
光伏组件失效浴盆曲线
晶体硅光伏组件的失效通常分为三类:早期失效、随机失效、损耗失效。我们推进的所有可靠 性的改善都是为了: 1.减少早期失效, 2.减低随机失效, 3.推迟损耗失效。
前言
光伏组件介绍-结构及物料
耐紫外试验等,参照IEC61215)
3.组件功率轻微下降
6.安装环境与物料匹配性
4. 影响组件外观
光伏组件户外常见失效模式
闪电纹
EVA中的过氧化物在水汽的作用下与电池片栅线中的银发生反应,生成银的氧化物。电池片 隐裂,背板EVA的透水率高加速了闪电纹的产生。
闪 电 纹
闪 电 纹
闪 电 纹
/ /


辐射 UV
温度
湿度
炎热,霜冻,日 夜温差
机械应力
风载,雪载,冰雹,踩踏
大气
灰尘,盐雾,风沙
湿气
雨水,霜,露水,, 凝露
光伏组件户外常见失效模式
➢组件破碎 ➢热斑 ➢脱层 ➢封装材料变色 ➢闪电纹 ➢背板开裂粉化 ➢功率衰减
➢电池片隐裂碎片 ➢焊带腐蚀 ➢电池片氧化 ➢白斑 ➢线盒进水烧毁 ➢焊接失败 ➢PID效应
2.制程隐裂EL检测
热 斑 正 面
热 斑 背 面
3.组件异物 4.换片补片档位一致性 组件安装维护 1.安全的包装运输防护 2.合理的安装角度距离 3.定期清理,避免遮挡
光伏组件户外常见失效模式
脱层
背板与EVA分层,EVA与玻璃分层,EVA与电池片间分层
脱 层
脱 层
脱 层
失效原因:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档