氢键PPT演示课件
合集下载
氢键PPT幻灯片
吸引。这种静电吸引作用就是氢键。
19
2、氢键形成条件
故只有部分分子之间才存在氢键,如HF、H2O、NH3 分子之间存在氢键。
如H2O中,H-O中的共用电子对强烈的偏向氧原子,使 氢原子几乎成为“裸露”的质子。便与另一个水分子带部分 负电荷的氧原子相互吸引。这种静电吸引作用就是氢键。
20
3.氢键的表示方法:
分子间作用力
2017.12
1
一、课堂新知 1.概念: 将气体分子凝聚成相应的固体或液体的作用。
2.实质: 分子间作用力是一种静电作用,但比化学键弱得多。
3.类型: 常见的分子间作用力:范德华力和氢键
2
分子间作用力 把分子聚集在一起的作用力(范德华力)
降温加压
降温
气态
液态
固态
分子距离缩短
分子距离缩短
5
二、范德华力
1.存在于哪里:
范德华力普遍存在固体、 液体、和气体分子间
2.方向性与饱和性:
范德华力一般没有方向性、饱和性,只要分子周围 空间准许,当气体分子凝聚时,它总是尽可能吸引 更多的其它分子
6
3.影响范德华力的因素
影响范德华力的因素很多:分子的大小、 分子的空间构型、分子中的电荷分布情况
10
分子间作用力对物质的熔点、沸 点的影响
组成和结构相似的物质,相对分子质 量越大,分子间作用力越大,克服分子间 引力使物质熔化和气化就需要更多的能量, 熔、沸点越高。
11
相四
沸点对分
卤 化
熔点子 碳
质熔
量沸
的点
关与
系
12
对溶解度的影响:
溶质分子与溶剂分子间的范德华力越大,则溶质分子的溶解 度越大,如CH4和HCl在水中的溶解情况,由于CH4和H2O分子 间的作用力很小,故CH4几乎不溶于水,而HCl与H2O分子间的 作用力较大,故HCl极易溶于水;同理,Br2、I2与苯分子间的作 用力较大,故Br2、I2易溶于苯中,而H2O与苯分子问的作用力 很小,故H2O很难溶于苯中。
氢键课件ppt
第三节 分子的性质
分子间作用力
分子间存在着将分子聚集在一起的作 用力,这种作用力称为分子间作用力.常见 的为范德华力和氢键
二、范德华力及其对物质性质的影响 范德华力的特点
(1)广泛存在(由分子构成的物质) (2)作用力弱、是短程力 (3)主要影响物质的物理性质(熔沸点)
由分子构成的
化学键与范德华力的比较
21.14 431.8
23.11 366
26.00 298.7
范德华力很弱,约比化学键能小1-2数量级
二、范德华力及其对物质性质的影响
(2) 范德华力与相对分子质量的关系
分子
HCl HBr
HI
相对分子 质量
范德华力 (kJ/mol)
36.5 21.14
81 23.11
128 26.00
结构相似,相对分子质量越大,范德 华力越大
六、无机含氧酸分子的酸性
含氧酸的强度取决于中心原子的电 负性、原子半径、氧化数。
当中心原子的电负性大、原子半径 小、氧化数高时,使O-H键减弱,酸 性增强。
无机含氧酸强度的变化规律
同周期的含氧酸,自左至右,随 中心原子原子序数增大 ,酸性增强。
同一族的含氧酸,自上而下,随 中心原子原子序数增大 ,酸性减弱。
2.表示: X—H…Y (X、Y为N、O、F)
F
F
H
H
H
H
F
F
3.氢键的形成条件: (1)在X—H…Y表示的氢键中,H原子位于X、Y间 (2)X、Y所属元素具有很强的电负性,很小的原子半
径,如N、O、F等。 4.键参数:键长指X和Y的距离
键能指X—H…Y分解为X—H 和Y所需要的能量
为什么冰会浮 在水面上呢?
分子间作用力
分子间存在着将分子聚集在一起的作 用力,这种作用力称为分子间作用力.常见 的为范德华力和氢键
二、范德华力及其对物质性质的影响 范德华力的特点
(1)广泛存在(由分子构成的物质) (2)作用力弱、是短程力 (3)主要影响物质的物理性质(熔沸点)
由分子构成的
化学键与范德华力的比较
21.14 431.8
23.11 366
26.00 298.7
范德华力很弱,约比化学键能小1-2数量级
二、范德华力及其对物质性质的影响
(2) 范德华力与相对分子质量的关系
分子
HCl HBr
HI
相对分子 质量
范德华力 (kJ/mol)
36.5 21.14
81 23.11
128 26.00
结构相似,相对分子质量越大,范德 华力越大
六、无机含氧酸分子的酸性
含氧酸的强度取决于中心原子的电 负性、原子半径、氧化数。
当中心原子的电负性大、原子半径 小、氧化数高时,使O-H键减弱,酸 性增强。
无机含氧酸强度的变化规律
同周期的含氧酸,自左至右,随 中心原子原子序数增大 ,酸性增强。
同一族的含氧酸,自上而下,随 中心原子原子序数增大 ,酸性减弱。
2.表示: X—H…Y (X、Y为N、O、F)
F
F
H
H
H
H
F
F
3.氢键的形成条件: (1)在X—H…Y表示的氢键中,H原子位于X、Y间 (2)X、Y所属元素具有很强的电负性,很小的原子半
径,如N、O、F等。 4.键参数:键长指X和Y的距离
键能指X—H…Y分解为X—H 和Y所需要的能量
为什么冰会浮 在水面上呢?
范德华力和氢键及其对物质性质的影响 PPT课件
HF: F—H…F
H2O: O—H…O
NH3:
N—H…N
NH3和H2O: O—H…N
3.氢键的特点 (1).饱和性和方向性
a.由于 H 的体积小,1 个 H 只能形成一个氢键;
b.由于 H 的两侧电负性极大的两原子的负电排斥, 使(A — H ···B —)中A和B两个原子一般在H原子 两侧且呈直线排列。除非其它外力有较大影响时, 才改变方向。
Waals,1837~1923年)。荷兰科学家, 1910年获得诺贝尔物理奖。1837年6 月1日,生于莱顿。1873年,他获得 莱顿大学的博士学位,在论文中他 首次证明了分子体积以及分子间作 用力的存在。这种把分子聚集在一 起的作用力,叫做分子间作用力即
范德华力。
一、范德华力
1.使分子聚集在一起的作用力,其实质是电性引力。
范德华力和氢键及其对物 质性质的影响
夯实基础:
范德
华力 一、范德华力
和氢
键及
其对
物质
性质 的
二、氢键
影响
思考与交流
1、降温加压气体为什么会液化? 2、降温时液体为什么会凝固?
—— 分子间存在一种使其聚集在一起的 作用力!
这种把分子聚集在一起的作用力,叫做 分子间作用力也称为范德华力。
资 料
范德瓦尔斯(J.D.van der
有分子内氢键 沸点: 44 - 45 ℃
(2).溶解度
若溶质与溶剂之间能形成氢键,物质的溶解度 较大。例如:NH3极易溶于水。
(3).物质的硬度
若分子之间存在氢键,物质的硬度增大!
(4).物质的密度——使物质密度反常!
例如:水的固体(冰)密度小于液体!
Why:冰的密度小于水的密度?
H2O: O—H…O
NH3:
N—H…N
NH3和H2O: O—H…N
3.氢键的特点 (1).饱和性和方向性
a.由于 H 的体积小,1 个 H 只能形成一个氢键;
b.由于 H 的两侧电负性极大的两原子的负电排斥, 使(A — H ···B —)中A和B两个原子一般在H原子 两侧且呈直线排列。除非其它外力有较大影响时, 才改变方向。
Waals,1837~1923年)。荷兰科学家, 1910年获得诺贝尔物理奖。1837年6 月1日,生于莱顿。1873年,他获得 莱顿大学的博士学位,在论文中他 首次证明了分子体积以及分子间作 用力的存在。这种把分子聚集在一 起的作用力,叫做分子间作用力即
范德华力。
一、范德华力
1.使分子聚集在一起的作用力,其实质是电性引力。
范德华力和氢键及其对物 质性质的影响
夯实基础:
范德
华力 一、范德华力
和氢
键及
其对
物质
性质 的
二、氢键
影响
思考与交流
1、降温加压气体为什么会液化? 2、降温时液体为什么会凝固?
—— 分子间存在一种使其聚集在一起的 作用力!
这种把分子聚集在一起的作用力,叫做 分子间作用力也称为范德华力。
资 料
范德瓦尔斯(J.D.van der
有分子内氢键 沸点: 44 - 45 ℃
(2).溶解度
若溶质与溶剂之间能形成氢键,物质的溶解度 较大。例如:NH3极易溶于水。
(3).物质的硬度
若分子之间存在氢键,物质的硬度增大!
(4).物质的密度——使物质密度反常!
例如:水的固体(冰)密度小于液体!
Why:冰的密度小于水的密度?
氢键 课件-高一化学人教版(2019)必修第一册
Br2
50 0
CCl4
-50 -100
50 100 150 200 250
Cl2
相对分 子质量
-50 -100
100 200 300 400 500
相对分 子质量
-150
-150 CF4
-200 F2
-200
-250 卤素单质的熔沸点与 -250 四卤化碳的熔沸点与 相对分子质量的关系 相对分子质量的关系
(1)存在: 分子 分子间作用力 分子
(2)强弱:比化学键弱
(较弱) 分子间作用力
O HH
化学键 (较强)
1.为什么NaCl在熔化状态或水溶液中具有导电性,而液态氯化氢却不 具有导电性?
前者熔化或溶于水破坏了离子键,形成可自由移动的阴阳离子 后者原子间以共价键结合,分子间存在分子间作用力
2.干冰受热汽化转化为二氧化碳气体,而二氧化碳气体在加热条件下
1、结合下列数据分析下列间题:
O原子的电负性强
①为什么H2O分子间能形成氢键,而CH4分子间难形成氢键?
②为什么NH3分子间能形成氢键,而HCI分子间难形成氢键? N原子的半径小
氢键的形成条件
⑴有X-H共价键,X原子电负性强,原子半径 小,主要是F、O、N。 ⑵ X—H…Y中的Y必须电负性强、原子半径 小、具有孤对电子。X、Y可以相同,也可 以不同。
氢键的本质: 强极性键(X-H)上的氢与电负性很大的、含孤电子 对并带有部分负电荷的原子Y之间的静电作用力。
3、氢键的特点: 有方向性,有饱和性
• 方向性(X-H…Y尽可能在同一条直线上) • 饱和性(一个X-H只能和一个Y原子结合)
典例剖析
例1、下列物质中,分子间不能形成氢键的是( )
第67讲-范德华力 氢键 大π键(课件)
【解析】 1个水分子能形成4个氢键,1个HF分子能形成2个氢键,A项正 确;NO2分子间不存在氢键,NO2分子间因形成化学键而聚合成N2O4,B项错误; 只有非金属性很强的元素(如N、O、F)原子才能与氢原子形成极性较强的共价 键,分子间才能形成氢键,C—H键不是极性较强的共价键,C项正确,D项错 误。
②在附近有电负性大, 半径小的原子(F、O、N)
(3)表示方法 一般: A-H … B-
表示式:氢键可以用A—H…B表示。
X和Y都是电负性较大、半径极小的非金属原子(一般是N、O、F)。 表示式中的实线表示共价键,虚线表示氢键。
特点: 氢键具有饱和性和方向性。其键能一般小于40kJ/mol,强度 介于范德华力和化学键之间.因此氢键不属于化学键,而属于一种分 子间作用力。
分子晶体的晶胞堆积方式常为面心立方,配位数12
范德华(1837 - 1923)
荷兰物理学家,分子间吸引力被命名为范 德华力。
范德华力
分子 范德华力(kJ/mol)
HCl 21.14
HBr 23.11
HI 26.00
共价键键能(kJ/mol) 431.8
366
298.7
范德华力
影响范德华力的因素很多,如分子的大小,分子的空间构型, 以及分子中电荷分布是否均匀等
SO3分子中参与形成大π键的电子总 数为1*3+3=6,即形成的大π键为π46
2023
知识重构 重温经典 模型建构 名师导学
第 26 页
1、Cl2(1:2)可溶于水、SO2(1:40)易 溶于水、NH3(1:700)极易溶于水,造成差异 的原因是什么?
2、水与甲醇互溶原因是什么?
水、甲醇互溶
氢键存在增大
范德华力影响分子的物理性质(熔、沸点等)。一般范德华力 越大,熔沸点越高
②在附近有电负性大, 半径小的原子(F、O、N)
(3)表示方法 一般: A-H … B-
表示式:氢键可以用A—H…B表示。
X和Y都是电负性较大、半径极小的非金属原子(一般是N、O、F)。 表示式中的实线表示共价键,虚线表示氢键。
特点: 氢键具有饱和性和方向性。其键能一般小于40kJ/mol,强度 介于范德华力和化学键之间.因此氢键不属于化学键,而属于一种分 子间作用力。
分子晶体的晶胞堆积方式常为面心立方,配位数12
范德华(1837 - 1923)
荷兰物理学家,分子间吸引力被命名为范 德华力。
范德华力
分子 范德华力(kJ/mol)
HCl 21.14
HBr 23.11
HI 26.00
共价键键能(kJ/mol) 431.8
366
298.7
范德华力
影响范德华力的因素很多,如分子的大小,分子的空间构型, 以及分子中电荷分布是否均匀等
SO3分子中参与形成大π键的电子总 数为1*3+3=6,即形成的大π键为π46
2023
知识重构 重温经典 模型建构 名师导学
第 26 页
1、Cl2(1:2)可溶于水、SO2(1:40)易 溶于水、NH3(1:700)极易溶于水,造成差异 的原因是什么?
2、水与甲醇互溶原因是什么?
水、甲醇互溶
氢键存在增大
范德华力影响分子的物理性质(熔、沸点等)。一般范德华力 越大,熔沸点越高
2.3.2《 范德华力和氢键》PPT课件-人教版高二化学选修3
【答案】C【解析】氢键属于分子间作用力,其大小介 于范德华力和化学键之间,不属于化学键,分子间氢键的 存在,加强了分子间作用力,使物质的熔、沸点升高,A 项错误,C项正确;在冰和水中都存在氢键,而H2O的稳定 性主要是由分子内的O—H的键能决定,B、D项错误。
(人教版选修3) 第 二章《分子结构与性质》
。
(人教版选修3) 第 二章《分子结构与性质》
【问题探究3】(3)在第ⅤA、ⅥA、ⅦA族元素的氢化物 中,为什么NH3、H2O、HF三者的相对分子质量分别小于 同主族其他元素的氢化物,但熔、沸点却比其他元素的氢 化物高?
因为NH3、H2O、HF三者的分子间能形成氢 键,同主族其他元素的氢化物不能形成氢键,所以它们的 熔点和沸点高于同主族其他元素的氢化物。
(人教版选修3) 第 二章《分子结构与性质》
【归纳小结】范德华力对物质性质的影响有哪些?
(1)范德华力越大,物质的熔、沸点越高。 ①组成和结构相似的分子,相对分子质量越大,范德华力越大, 物质的熔、沸点越高。如熔、沸点I2>Br2>Cl2>F2,HCl<HBr<HI。② 组成相似、相对分子质量相近的物质,分子的极性越大,物质的熔、 沸点越高。如熔、沸点CO>N2(CO为极性分子);又如有机物的同分异 构体中,通常支链越多,分子对称性越好,分子极性越小,物质的 熔、沸点越低(沸点:正戊烷>异戊烷>新戊烷)。(2)溶质分子与溶 剂分子间的范德华力越大,则溶质分子的溶解度越大。如CH4和HCl 在水中的溶解情况,由于CH4与H2O分子间的作用力很小,故CH4几乎 不溶于水,而HCl与H2O分子间的作用力较大,故HCl极易溶于水;同 理,Br2、I2与苯分子间的作用力较大,故Br2、I2易溶于苯中,而 H2O与苯分子间的作用力很小,故H2O很难溶于苯中。
氢键优秀课件
氢键对物质性质影响
03
物理性质
化学性质
生物活性
氢键对物质的熔点、沸点、密度、粘度等 物理性质有显著影响。例如,水的熔点和 沸点异常高,就是由于水分子间存在较强 的氢键。
氢键可以影响物质的化学性质,如溶解性 、酸碱性等。例如,氨在水中的溶解度较 高,部分原因是由于氨分子与水分子之间 可以形成氢键。
在生物体系中,氢键对蛋白质、DNA等 生物大分子的结构和功能起着重要作用。 例如,DNA双螺旋结构的稳定性就依赖 于碱基之间的氢键。
分析化学中氢键识别与测定
红外光谱
红外光谱是识别氢键的主要手段 之一,氢键的形成会导致相关基 团的振动频率发生变化,从而在
红外光谱上产生特征吸收峰。
核磁共振
核磁共振技术可以用于研究氢键 对分子结构和动力学的影响,通 过观测相关质子的化学位移和耦 合常数等信息,可以推断出氢键
的存在和强度。
质谱分析
在质谱分析中,氢键的断裂和形 成会影响分子的离子化效率和碎 片离子的分布,从而提供有关氢
超分子自组装过程中氢键导向作用
氢键导向超分子自组装的形貌
01
通过合理设计氢键供体和受体的位置和数量,可以调控超分子
自组装体的形貌,如球形、棒状、层状等。
氢键影响超分子自组装的稳定性
02
氢键的强度和数量对超分子自组装体的稳定性具有重要影响,
强氢键和多个氢键可以提高自组装体的稳定性。
氢键在超分子自组装过程中的动态调控
02
氢键在化学领域应用
有机化学中氢键作用
分子识别
在有机化学中,氢键在分子识别中起 到关键作用,如在酶与底物、抗体与 抗原等生物分子间的相互作用中,氢 键能够提供重要的结合力。
有机合成
2-3-2范德华力、氢键及其对物质性质的影响与溶解性 59张 PPT课件
氢键。
第二章 分子结构与性质
3.氢键的表示方法
氢键通常用X—H……Y—表示,其中X、Y为N、O、F,
“—”表示共价键,“……”表示形成的氢键。例如,水中的 人
教
氢键表示为:O—H……O—。
版 化
学
第二章 分子结构与性质
说明:
①氢键中电负性强的原子可以是同种原子,也可以是
不同种原子。
人
教
② 氢 键 的 键 长 定 义 为 X—H…Y 的 长 度 , 而 不 定 义 为
2.范德华力的影响因素
影响范德华力的主要因素有分子的相对分子质量、分
子的极性等。
人
教
(1)组成和结构相似的物质,相对分子质量越大,范德
版 化
学
华力越大,如
分子 Ar
范德华
力 /kJ·mo
8.50
l-1
CO HI 8.75 26.00
HBr 23.11
HCl 21.14
第二章 分子结构与性质
(2)分子的极性越强,范德华力越大。 (3)温度升高,范德华力减小。
人 教 版 化 学
第二章 分子结构与性质
3.范德华力对物质性质的影响
(1)对物质熔、沸点的影响
一般来说,分子晶体中范德华力越大,物质的熔、沸 人
教
点越高。具体如下:
版 化
学
①组成和结构相似的物质,随着相对分子质量的增大,
分子间的范德华力逐渐增大,它们的熔、沸点逐渐升高。
如下图中的曲线所示:
第二章 分子结构与性质
版 化
学
第二章 分子结构与性质
若不断地升高温度,实现“雪花→水→水蒸气→氧气
和氢气”的变化。在变化的各阶段被破坏的粒子间的主要
分子间作用力和氢键.ppt
分子间力具有以下特性:
(1)它是存在于分子间的一种电性作用力。 (2)作用能的大小只有几个千卡/摩尔,比化学键 能(约为30-150千卡/摩尔)小一二个数量级。 (3)作用力的范围很小。三种分子间力都与分子间 距离的七次方成反比,即当分子稍为远离时,分 子间力迅速减弱。 (4)一般没有方向性和饱和性。 (5)在三种作用力中,色散力是主要的,诱导力通 常很小,只有少数极性较大(如水、氨)的分子之 间,取向力才占一定的比例或占优势。
CH4
NH3 H2O
化学键与物质结构
分子间力和氢键
化学键与物质结构
分子的极性
由于共价键分为极性键和非极性键,给共 价型分子带来了性质上的差别。
当分子中正、负电荷重心重合时,这种分 子叫做非极性分子。正、负电荷重心不重合的 分子叫做极性分子或偶极分子。
CO2
H2O
化学键与物质结构
分子极性和键极性的关系
间可以形成分子间氢键,则溶质的溶解度增大。 例如,氨、丙酮和乙酸等溶质分子中有电负
性较大的原子N或O等,可以和水中的O-H形 成氢键,这些物质都易溶于水。
如,一体积的水在20 ℃时能够溶解700体积 的氨。
11:34
化学键与物质结构
氢键的形成对物质的溶解度有一定的影响。 如果溶质分子能够形成分子内氢键,则在极
离子间极化越强,核间距缩短 离子间极化越强,物质熔点、沸 点就越低 离子间极化越强,物质颜色越深
化学键与物质结构
晶体
内部的原子、分子、离子等质点有规则排列的一 类固体物质统称为晶体
离子晶体
原子晶体 晶 体
分子晶体
金属晶体
化学键与物质结构
晶体
一般而言:三种晶体在熔点、沸点、硬度上有: 原子晶体 > 离子晶体 > 分子晶体
(1)它是存在于分子间的一种电性作用力。 (2)作用能的大小只有几个千卡/摩尔,比化学键 能(约为30-150千卡/摩尔)小一二个数量级。 (3)作用力的范围很小。三种分子间力都与分子间 距离的七次方成反比,即当分子稍为远离时,分 子间力迅速减弱。 (4)一般没有方向性和饱和性。 (5)在三种作用力中,色散力是主要的,诱导力通 常很小,只有少数极性较大(如水、氨)的分子之 间,取向力才占一定的比例或占优势。
CH4
NH3 H2O
化学键与物质结构
分子间力和氢键
化学键与物质结构
分子的极性
由于共价键分为极性键和非极性键,给共 价型分子带来了性质上的差别。
当分子中正、负电荷重心重合时,这种分 子叫做非极性分子。正、负电荷重心不重合的 分子叫做极性分子或偶极分子。
CO2
H2O
化学键与物质结构
分子极性和键极性的关系
间可以形成分子间氢键,则溶质的溶解度增大。 例如,氨、丙酮和乙酸等溶质分子中有电负
性较大的原子N或O等,可以和水中的O-H形 成氢键,这些物质都易溶于水。
如,一体积的水在20 ℃时能够溶解700体积 的氨。
11:34
化学键与物质结构
氢键的形成对物质的溶解度有一定的影响。 如果溶质分子能够形成分子内氢键,则在极
离子间极化越强,核间距缩短 离子间极化越强,物质熔点、沸 点就越低 离子间极化越强,物质颜色越深
化学键与物质结构
晶体
内部的原子、分子、离子等质点有规则排列的一 类固体物质统称为晶体
离子晶体
原子晶体 晶 体
分子晶体
金属晶体
化学键与物质结构
晶体
一般而言:三种晶体在熔点、沸点、硬度上有: 原子晶体 > 离子晶体 > 分子晶体
化学人教版(2019)选择性必修2 2.3.2范德华力、氢键(共25张ppt)
﹣188.1
38
﹣34.6
71
58.78
160
184.4
254
卤素单质的组成和结构相似 相对分子质量增大 范德华力增强 熔、沸点升高
知识精讲
资料卡片——壁虎与范德华力
壁虎为什么能在天花板土爬行自如?这曾是一个困扰科学 家一百多年的谜。用电子显微镜可观察到,壁虎的四足覆 盖着几十万条纤细的由角蛋白构成的纳米级尺寸的毛。 壁虎的足有多大吸力?实验证明,如果在一个分币的面积 土布满100万条壁虎足的细毛,可以吊起 20kg 重的物体。 近年来,有人用计算机模拟,证明壁虎的足与墙体之间的 作用力在本质上是它的细毛与墙体之间的范德华力。
它使得许多物质能以一定的凝聚态(固态和液态)存在 2. 本质:分子之间的静电作用 3. 特征:①只存在于分子之间,分子充分接近(300-500pm)时才有范德华力
金刚石 / 硅
冰
水
水蒸气
知识精讲
3. 特征:①只存在于分子之间,分子充分接近(300-500pm)时才有范德华力 ②范德华力很弱,比化学键的键能小1~2个数量级 ③分子结构相似,相对分子质量越大,范德华力越大 ④相对分子质量相近时,分子的极性越大,范德华力越大
HI 26.00 -50.8 -35.1
知识精讲
加热过程中物质状态变化的微观模拟过程
加热
加热
三态变化时破坏的是范德华力,因此,分子 间的范德华力越大,物质的熔、沸点越高
知识精讲
解释卤素单质熔沸点的递变性
单质 F2 Cl2 Br2 I2
熔点/℃ ﹣219.6 ﹣101 ﹣7.2
113.5
沸点/℃ 相对分子质量
以H2O为例,沸点反常的原因如下
在 水 分 子 的 O-H 中 , 共 用 电 子 对 强 烈地偏向O,使得 H 几乎成为“裸 露”的质子,其显正电性 它能与另一个水分子中相对显负电 性的O的孤电子对产生静电作用, 这种静电作用就是氢键
氢键PPT演示课件
共 价 键 键 568 能(kJ/mol)
18.8 462.8
20.9 390.8
结论:氢键介于范德华力和化学键之间,是一种较弱的作用力
氢键的键能一般小于40kJ/mol,比共价键的键
能小得多,比较接近分子间作用力,比范德华
力大.因此氢键不属于化学键,而属于一般分
子间作用力范畴。
9
4.氢键的分类 (1)分子间氢键 (2)分子内氢键
说明在HF、H2O、NH3分子间还存在 除范德华力之外的其他作用.这种作用就是 氢键.
5
1、氢键:除范德华力外的另一种分子间作用力, 它是由已经与电负性很强的原子形成共 价键的氢原子与另一分子中电负性很强 的原子之间的作用力.(不属于化学键) 一般表示为 X—H------Y。
6
氢键本质
水分子中O-H键是极性共价键,氧原子 与氢原子共用的电子对强烈的偏向氧原子,使 氢原子几乎成了“裸露”的质子.这样,一个 水分子中相对显正电性的氢原子就能和另一个 水分子相对带负电性的氧原子上的孤电子对接 近并产生相互作用,这种相互作用叫做氢键.
15
讨论水的特殊性: (1)水的熔沸点比较高? (2)为什么水结冰后体积膨胀? (3)为什么水在4℃时密度最大?
16
液态水中的氢键
17
18
19
在水蒸气中水以单个的H20分子形式存在; 在液态水中,经常是几个水分子通过氢键结合 起来,形成(H20)n(如上图);在固态水 (冰)中,水分子大范围地以氢键互相联结, 形成相当疏松的晶体,从而在结构中有许多空 隙,造成体积膨胀,密度减小,因此冰能浮在 水面上.
33
14
水的物理性质:
纯净的水是无色、无味的透明液体。在 1.0×105Pa下,水的凝固点(熔点)为0.00℃, 沸点为100.00℃。水的密度比较特殊。在 0℃~4℃之间随着温度的升高密度不是减小而 是增大,0℃时为0.999841g/cm3,到4℃时 达到最大值为1.000000g/cm3,4℃以后和 一般物质一样随温度升高而逐渐减小(20℃为 0.998203g/cm3,100℃时为0.958354g/ cm3。水结冰体积膨胀
18.8 462.8
20.9 390.8
结论:氢键介于范德华力和化学键之间,是一种较弱的作用力
氢键的键能一般小于40kJ/mol,比共价键的键
能小得多,比较接近分子间作用力,比范德华
力大.因此氢键不属于化学键,而属于一般分
子间作用力范畴。
9
4.氢键的分类 (1)分子间氢键 (2)分子内氢键
说明在HF、H2O、NH3分子间还存在 除范德华力之外的其他作用.这种作用就是 氢键.
5
1、氢键:除范德华力外的另一种分子间作用力, 它是由已经与电负性很强的原子形成共 价键的氢原子与另一分子中电负性很强 的原子之间的作用力.(不属于化学键) 一般表示为 X—H------Y。
6
氢键本质
水分子中O-H键是极性共价键,氧原子 与氢原子共用的电子对强烈的偏向氧原子,使 氢原子几乎成了“裸露”的质子.这样,一个 水分子中相对显正电性的氢原子就能和另一个 水分子相对带负电性的氧原子上的孤电子对接 近并产生相互作用,这种相互作用叫做氢键.
15
讨论水的特殊性: (1)水的熔沸点比较高? (2)为什么水结冰后体积膨胀? (3)为什么水在4℃时密度最大?
16
液态水中的氢键
17
18
19
在水蒸气中水以单个的H20分子形式存在; 在液态水中,经常是几个水分子通过氢键结合 起来,形成(H20)n(如上图);在固态水 (冰)中,水分子大范围地以氢键互相联结, 形成相当疏松的晶体,从而在结构中有许多空 隙,造成体积膨胀,密度减小,因此冰能浮在 水面上.
33
14
水的物理性质:
纯净的水是无色、无味的透明液体。在 1.0×105Pa下,水的凝固点(熔点)为0.00℃, 沸点为100.00℃。水的密度比较特殊。在 0℃~4℃之间随着温度的升高密度不是减小而 是增大,0℃时为0.999841g/cm3,到4℃时 达到最大值为1.000000g/cm3,4℃以后和 一般物质一样随温度升高而逐渐减小(20℃为 0.998203g/cm3,100℃时为0.958354g/ cm3。水结冰体积膨胀
范德华力和氢键ppt课件
Cl2
71 -101.0 -34.6
Br2 160 -7.2 58.8
I2
254 113.5 184.4
范德华力越大,物质熔沸点越高
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
练习:
下列叙述正确的是: A.氧气的沸点低于氮气的沸点 B、稀有气体原子序数越大沸点越高 C、分子间作用力越弱分子晶体的熔点越低 D、同周期元素的原子半径越小越易失去电 子
例如:O2> N2
HI>HBr>HCl
CO >N2
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
二、范德华力及其对物质性质的影响
科学视野
壁虎与范德华力
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
溶质分子与溶剂分子的结构越相似, 相互溶解越容易。
溶质分子的分子间力与溶剂分子的分 子间力越相似,越易互溶。
PtCl2(NH3)2可以形成两种固体,一种为淡黄 篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统 色,在水中的溶解度小,另一种为黄绿色,在
五. 手性
1. 手性:镜像对称,在三维空间里不能重叠。 2. 手性异构体
具有完全相同的组成和原子排列的一对分子,如同 左手与右手一样互为镜像,却在三维空间里不能重叠, 互称手性异构体。 3. 手性分子:有手性异构体的分子叫做手性分子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
2.表示:氢键可以用A—H…B表示。A和B可以 是同种原子,也可以是不同种原子,但都是电 负性较大、半径极小的非金属原子(一般就是 N、O、F)。表示式中的实线表示共价键, 虚线表示氢键。
8
3.氢键键能大小:
F—H---F O—H--- O N—H--- N
氢 键 键 能 28.1 (kJ/mol)
共 价 键 键 568 能(kJ/mol)
18.8 462.8
20.9 390.8
结论:氢键介于范德华力和化学键之间,是一种较弱的作用力
氢键的键能一般小于40kJ/mol,比共价键的键
能小得多,比较接近分子间作用力,比范德华
力大.因此氢键不属于化学键,而属于一般分
子间作用力范畴。
9
4.氢键的分类 (1)分子间氢键 (2)分子内氢键
5.氢键对物质熔沸点的影响: 分子间氢键使物质熔沸点升高 分子内氢键使物质熔沸点降低
10
11
6.氢键还影响物质的溶解性 NH3为什么极易溶于水? NH3溶于水是形成N-H…O还是形成O-H…N?
12
●●●
正是这样,NH3溶于水溶液呈碱性
13
相似相溶──水和 甲醇的相互溶解 (深蓝色虚线为氢 键)
NH3 -50
-75 -100 -125
H2S
HCl
PH3
SiH4×
H2Se AsH3
HB×r
GeH4
H2Te SbH3
HI
×
SnH4
-150 CH4×
2 3 4 5 周期
一些氢化物的沸点
3
探究: 为什么水的沸点比H2S、H2Se、 H2Te的沸点都要高?
4
非金属元素的氢化物在固态时是分子晶 体,其熔沸点和其分子量有关.对于同一主 族非金属元素而言,从上到下,分子量逐渐 增大,熔沸点应逐渐升高.而HF、H2O、 NH3却出现反常,为什么?
15
讨论水的特殊性: (1)水的熔沸点比较高? (2)为什么水结冰后体积膨胀? (3)为什么水在4℃时密度最大?
16
液态水中的氢键
17
18
19
在水蒸气中水以单个的H20分子形式存在; 在液态水中,经常是几个水分子通过氢键结合 起来,形成(H20)n(如上图);在固态水 (冰)中,水分子大范围地以氢键互相联结, 形成相当疏松的晶体,从而在结构中有许多空 隙,造成体积膨胀,密度减小,因此冰能浮在 水面上.
28
我们在学习化学的过程中还有什么地方能用氢 键的知识来解释的?
(1)醇比含有相同碳原子的烃熔沸点高
(2)低级醇易溶于水
(3)含有相同C原子数的醚为什么熔沸点 低于醇
(4)为什么醚也可以溶于水
(5)HF酸是弱酸
…………
29
拓展视野:
水孕育生命,水养育人类。人体内水的重量约占 70%。人们平常喝的天然水是由许多水分子缔合成的簇 团,参与体内生物化学作用差。人体动脉内的脂质沉积 随着年龄增长逐渐增多,血流阻力增大,同时动脉管腔 变窄,血流量减少。中老年人可能患动脉粥样硬化症、 高脂血症和高血压症,有的人还伴发血粘度高、血糖高、 血尿酸高,产生微循环障碍,这些病变,形成心脑血管 病、糖尿病等,促使人体器官功能提前衰减,缩短了人 应享的自然寿命。只有认识水的结构及其变化,了解有 关的医学研究成果,才能领悟喝天然水是产生上述老年 病的重要原因,并企盼饮用小分子水,以祛疾养生,益 寿延年。
说明在HF、H2O、NH3分子间还存在 除范德华力之外的其他作用.这种作用就是 氢键.
5
1、氢键:除范德华力外的另一种分子间作用力, 它是由已经与电负性很强的原子形成共 价键的氢原子与另一分子中电负性很强 的原子之间的作用力.(不属于化学键) 一般表示为 X—H------Y。
6
氢键本质
水分子中O-H键是极性共价键,氧原子 与氢原子共用的电子对强烈的偏向氧原子,使 氢原子几乎成了“裸露”的质子.这样,一个 水分子中相对显正电性的氢原子就能和另一个 水分子相对带负电性的氧原子上的孤电子对接 近并产生相互作用,这种相互作用叫做氢键.
氢键
1200
CBr4× ×
150
CI4
100 CCl×4 50
× CBr4
0
-50
-100
-150
-200
100×200 300 400 500
CCl4 相对分子质量
×CF4 × CF4
-250
四卤化碳的熔沸点与
相对原子质量的关系
2
沸点/℃100
H2O
75
50
25 HF
0 -25
14
水的物理性质:
纯净的水是无色、无味的透明液体。在 1.0×105Pa下,水的凝固点(熔点)为0.00℃, 沸点为100.00℃。水的密度比较特殊。在 0℃~4℃之间随着温度的升高密度不是减小而 是增大,0℃时为0.999841g/cm3,到4℃时 达到最大值为1.000000g/cm3,4℃以后和 一般物质一样随温度升高而逐渐减小(20℃为 0.998203g/cm3,100℃时为0.958354g/ cm3。水结冰体积膨胀
20
随温度升高,同时发生两种相反的过程:一是 冰晶结构小集体受热不断崩溃,缔合分子减少; 另一是水分子间距因热运动不断增大.0~4℃间, 前者占优势, 4℃以上,后者占优势, 4℃时, 两者互不相让,招致水的密度最大.
21
生命活动中的氢键
二级结构是指多肽链借助于氢键沿一维方向排列成具有 周期性的结构的构象,是多肽链局部的空间结构(构象), 主要有α-螺旋、β-折叠、β-转角等几种形式,它们是构 成蛋白质高级结构的基本要素。 蛋白质的生物学活性和理 化性质主要决定于空间结构的完整
22
小结:
范德华力
氢键
共价键
定义
分子间普遍 存在的作用 力
已经与电负性很强的 原子形成共价键的氢 原子与另一分子中电 负性很强的原子之间 的作用力
原子之间通过 共用电子对形 成的化学键
作用微粒 强弱
分子之间 分子间或分子内氢原子与电 相邻原子之间 负性很强的F、O、N之间
弱
较强
很强
对物质性质 的影响
范德华力越 大,物质熔 沸点越高
对某些物质(如水、氨 气)的溶解性、熔沸点 都产生影响
物质的稳定性
23
24
25
26
27
变性作用是蛋白质受物理或化学因素 的影响,改变其分子内部结构和性质的作 用。一般认为蛋白质的二级结构和三级结 构有了改变或遭到破坏,都是变性的结果。 强酸、强碱使蛋白质变性,是因为强酸、 强碱可以使蛋白质中的氢键断裂。
2.表示:氢键可以用A—H…B表示。A和B可以 是同种原子,也可以是不同种原子,但都是电 负性较大、半径极小的非金属原子(一般就是 N、O、F)。表示式中的实线表示共价键, 虚线表示氢键。
8
3.氢键键能大小:
F—H---F O—H--- O N—H--- N
氢 键 键 能 28.1 (kJ/mol)
共 价 键 键 568 能(kJ/mol)
18.8 462.8
20.9 390.8
结论:氢键介于范德华力和化学键之间,是一种较弱的作用力
氢键的键能一般小于40kJ/mol,比共价键的键
能小得多,比较接近分子间作用力,比范德华
力大.因此氢键不属于化学键,而属于一般分
子间作用力范畴。
9
4.氢键的分类 (1)分子间氢键 (2)分子内氢键
5.氢键对物质熔沸点的影响: 分子间氢键使物质熔沸点升高 分子内氢键使物质熔沸点降低
10
11
6.氢键还影响物质的溶解性 NH3为什么极易溶于水? NH3溶于水是形成N-H…O还是形成O-H…N?
12
●●●
正是这样,NH3溶于水溶液呈碱性
13
相似相溶──水和 甲醇的相互溶解 (深蓝色虚线为氢 键)
NH3 -50
-75 -100 -125
H2S
HCl
PH3
SiH4×
H2Se AsH3
HB×r
GeH4
H2Te SbH3
HI
×
SnH4
-150 CH4×
2 3 4 5 周期
一些氢化物的沸点
3
探究: 为什么水的沸点比H2S、H2Se、 H2Te的沸点都要高?
4
非金属元素的氢化物在固态时是分子晶 体,其熔沸点和其分子量有关.对于同一主 族非金属元素而言,从上到下,分子量逐渐 增大,熔沸点应逐渐升高.而HF、H2O、 NH3却出现反常,为什么?
15
讨论水的特殊性: (1)水的熔沸点比较高? (2)为什么水结冰后体积膨胀? (3)为什么水在4℃时密度最大?
16
液态水中的氢键
17
18
19
在水蒸气中水以单个的H20分子形式存在; 在液态水中,经常是几个水分子通过氢键结合 起来,形成(H20)n(如上图);在固态水 (冰)中,水分子大范围地以氢键互相联结, 形成相当疏松的晶体,从而在结构中有许多空 隙,造成体积膨胀,密度减小,因此冰能浮在 水面上.
28
我们在学习化学的过程中还有什么地方能用氢 键的知识来解释的?
(1)醇比含有相同碳原子的烃熔沸点高
(2)低级醇易溶于水
(3)含有相同C原子数的醚为什么熔沸点 低于醇
(4)为什么醚也可以溶于水
(5)HF酸是弱酸
…………
29
拓展视野:
水孕育生命,水养育人类。人体内水的重量约占 70%。人们平常喝的天然水是由许多水分子缔合成的簇 团,参与体内生物化学作用差。人体动脉内的脂质沉积 随着年龄增长逐渐增多,血流阻力增大,同时动脉管腔 变窄,血流量减少。中老年人可能患动脉粥样硬化症、 高脂血症和高血压症,有的人还伴发血粘度高、血糖高、 血尿酸高,产生微循环障碍,这些病变,形成心脑血管 病、糖尿病等,促使人体器官功能提前衰减,缩短了人 应享的自然寿命。只有认识水的结构及其变化,了解有 关的医学研究成果,才能领悟喝天然水是产生上述老年 病的重要原因,并企盼饮用小分子水,以祛疾养生,益 寿延年。
说明在HF、H2O、NH3分子间还存在 除范德华力之外的其他作用.这种作用就是 氢键.
5
1、氢键:除范德华力外的另一种分子间作用力, 它是由已经与电负性很强的原子形成共 价键的氢原子与另一分子中电负性很强 的原子之间的作用力.(不属于化学键) 一般表示为 X—H------Y。
6
氢键本质
水分子中O-H键是极性共价键,氧原子 与氢原子共用的电子对强烈的偏向氧原子,使 氢原子几乎成了“裸露”的质子.这样,一个 水分子中相对显正电性的氢原子就能和另一个 水分子相对带负电性的氧原子上的孤电子对接 近并产生相互作用,这种相互作用叫做氢键.
氢键
1200
CBr4× ×
150
CI4
100 CCl×4 50
× CBr4
0
-50
-100
-150
-200
100×200 300 400 500
CCl4 相对分子质量
×CF4 × CF4
-250
四卤化碳的熔沸点与
相对原子质量的关系
2
沸点/℃100
H2O
75
50
25 HF
0 -25
14
水的物理性质:
纯净的水是无色、无味的透明液体。在 1.0×105Pa下,水的凝固点(熔点)为0.00℃, 沸点为100.00℃。水的密度比较特殊。在 0℃~4℃之间随着温度的升高密度不是减小而 是增大,0℃时为0.999841g/cm3,到4℃时 达到最大值为1.000000g/cm3,4℃以后和 一般物质一样随温度升高而逐渐减小(20℃为 0.998203g/cm3,100℃时为0.958354g/ cm3。水结冰体积膨胀
20
随温度升高,同时发生两种相反的过程:一是 冰晶结构小集体受热不断崩溃,缔合分子减少; 另一是水分子间距因热运动不断增大.0~4℃间, 前者占优势, 4℃以上,后者占优势, 4℃时, 两者互不相让,招致水的密度最大.
21
生命活动中的氢键
二级结构是指多肽链借助于氢键沿一维方向排列成具有 周期性的结构的构象,是多肽链局部的空间结构(构象), 主要有α-螺旋、β-折叠、β-转角等几种形式,它们是构 成蛋白质高级结构的基本要素。 蛋白质的生物学活性和理 化性质主要决定于空间结构的完整
22
小结:
范德华力
氢键
共价键
定义
分子间普遍 存在的作用 力
已经与电负性很强的 原子形成共价键的氢 原子与另一分子中电 负性很强的原子之间 的作用力
原子之间通过 共用电子对形 成的化学键
作用微粒 强弱
分子之间 分子间或分子内氢原子与电 相邻原子之间 负性很强的F、O、N之间
弱
较强
很强
对物质性质 的影响
范德华力越 大,物质熔 沸点越高
对某些物质(如水、氨 气)的溶解性、熔沸点 都产生影响
物质的稳定性
23
24
25
26
27
变性作用是蛋白质受物理或化学因素 的影响,改变其分子内部结构和性质的作 用。一般认为蛋白质的二级结构和三级结 构有了改变或遭到破坏,都是变性的结果。 强酸、强碱使蛋白质变性,是因为强酸、 强碱可以使蛋白质中的氢键断裂。