氢键PPT演示课件

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
水的物理性质:
纯净的水是无色、无味的透明液体。在 1.0×105Pa下,水的凝固点(熔点)为0.00℃, 沸点为100.00℃。水的密度比较特殊。在 0℃~4℃之间随着温度的升高密度不是减小而 是增大,0℃时为0.999841g/cm3,到4℃时 达到最大值为1.000000g/cm3,4℃以后和 一般物质一样随温度升高而逐渐减小(20℃为 0.998203g/cm3,100℃时为0.958354g/ cm3。水结冰体积膨胀
28
我们在学习化学的过程中还有什么地方能用氢 键的知识来解释的?
(1)醇比含有相同碳原子的烃熔沸点高
(2)低级醇易溶于水
(3)含有相同C原子数的醚为什么熔沸点 低于醇
(4)为什么醚也可以溶于水
(5)HF酸是弱酸
…………
29
拓展视野:
水孕育生命,水养育人类。人体内水的重量约占 70%。人们平常喝的天然水是由许多水分子缔合成的簇 团,参与体内生物化学作用差。人体动脉内的脂质沉积 随着年龄增长逐渐增多,血流阻力增大,同时动脉管腔 变窄,血流量减少。中老年人可能患动脉粥样硬化症、 高脂血症和高血压症,有的人还伴发血粘度高、血糖高、 血尿酸高,产生微循环障碍,这些病变,形成心脑血管 病、糖尿病等,促使人体器官功能提前衰减,缩短了人 应享的自然寿命。只有认识水的结构及其变化,了解有 关的医学研究成果,才能领悟喝天然水是产生上述老年 病的重要原因,并企盼饮用小分子水,以祛疾养生,益 寿延年。
5.氢键对物质熔沸点的影响: 分子间氢键使物质熔沸点升高 分子内氢键使物质熔沸点降低
10
11
6.氢键还影响物质的溶解性 NH3为什么极易溶于水? NH3溶于水是形成N-H…O还是形成O-H…N?
12
●●●
正是这样,NH3溶于水溶液呈碱性
13
相似相溶──水和 甲醇的相互溶解 (深蓝色虚线为氢 键)
15
讨论水的特殊性: (1)水的熔沸点比较高? (2)为什么水结冰后体积膨胀? (3)为什么水在4℃时密度最大?
16
液态水中的氢键
17
18
19
在水蒸气中水以单个的H20分子形式存在; 在液态水中,经常是几个水分子通过氢键结合 起来,形成(H20)n(如上图);在固态水 (冰)中,水分子大范围地以氢键互相联结, 形成相当疏松的晶体,从而在结构中有许多空 隙,造成体积膨胀,密度减小,因此冰能浮在 水面上.
共 价 键 键 568 能(kJ/mol)
18.8 462.8
20.9 390.8
结论:氢键介于范德华力和化学键之间,是一种较弱的作用力
氢键的键能一般小于40kJ/mol,比共价键的键
能小得多,比较接近分子间作用力,比范德华
力大.因此氢键不属于化学键,而属于一般分
子间作用力范畴。
9
4.氢键的分类 (1)分子间氢键 (2)分子内氢键
氢键
1
温度/℃
250
沸点 熔点
200
CBr4× ×
150
CI4
100 CCl×4 50
× CBr4
0
-50
-100
-150
-200
100×200 300 400 500
CCl4 相对分子质量
×CF4 × CF4
-250
四卤化碳的熔沸点与
相对原子质量的关系
2
沸点/℃100
H2O
75
50
25 HF
0 -25
NH3 -50
-75 -100 -125
H2S
HCl
PH3
SiH4×
百度文库
H2Se AsH3
HB×r
GeH4
H2Te SbH3
HI
×
SnH4
-150 CH4×
2 3 4 5 周期
一些氢化物的沸点
3
探究: 为什么水的沸点比H2S、H2Se、 H2Te的沸点都要高?
4
非金属元素的氢化物在固态时是分子晶 体,其熔沸点和其分子量有关.对于同一主 族非金属元素而言,从上到下,分子量逐渐 增大,熔沸点应逐渐升高.而HF、H2O、 NH3却出现反常,为什么?
7
2.表示:氢键可以用A—H…B表示。A和B可以 是同种原子,也可以是不同种原子,但都是电 负性较大、半径极小的非金属原子(一般就是 N、O、F)。表示式中的实线表示共价键, 虚线表示氢键。
8
3.氢键键能大小:
F—H---F O—H--- O N—H--- N
氢 键 键 能 28.1 (kJ/mol)
20
随温度升高,同时发生两种相反的过程:一是 冰晶结构小集体受热不断崩溃,缔合分子减少; 另一是水分子间距因热运动不断增大.0~4℃间, 前者占优势, 4℃以上,后者占优势, 4℃时, 两者互不相让,招致水的密度最大.
21
生命活动中的氢键
二级结构是指多肽链借助于氢键沿一维方向排列成具有 周期性的结构的构象,是多肽链局部的空间结构(构象), 主要有α-螺旋、β-折叠、β-转角等几种形式,它们是构 成蛋白质高级结构的基本要素。 蛋白质的生物学活性和理 化性质主要决定于空间结构的完整
22
小结:
范德华力
氢键
共价键
定义
分子间普遍 存在的作用 力
已经与电负性很强的 原子形成共价键的氢 原子与另一分子中电 负性很强的原子之间 的作用力
原子之间通过 共用电子对形 成的化学键
作用微粒 强弱
分子之间 分子间或分子内氢原子与电 相邻原子之间 负性很强的F、O、N之间

较强
很强
对物质性质 的影响
范德华力越 大,物质熔 沸点越高
对某些物质(如水、氨 气)的溶解性、熔沸点 都产生影响
物质的稳定性
23
24
25
26
27
变性作用是蛋白质受物理或化学因素 的影响,改变其分子内部结构和性质的作 用。一般认为蛋白质的二级结构和三级结 构有了改变或遭到破坏,都是变性的结果。 强酸、强碱使蛋白质变性,是因为强酸、 强碱可以使蛋白质中的氢键断裂。
说明在HF、H2O、NH3分子间还存在 除范德华力之外的其他作用.这种作用就是 氢键.
5
1、氢键:除范德华力外的另一种分子间作用力, 它是由已经与电负性很强的原子形成共 价键的氢原子与另一分子中电负性很强 的原子之间的作用力.(不属于化学键) 一般表示为 X—H------Y。
6
氢键本质
水分子中O-H键是极性共价键,氧原子 与氢原子共用的电子对强烈的偏向氧原子,使 氢原子几乎成了“裸露”的质子.这样,一个 水分子中相对显正电性的氢原子就能和另一个 水分子相对带负电性的氧原子上的孤电子对接 近并产生相互作用,这种相互作用叫做氢键.
相关文档
最新文档