第七章半导体量子阱激光器教材

合集下载

半导体光电子学第7章 半导体中的光吸收和光...ppt课件

半导体光电子学第7章 半导体中的光吸收和光...ppt课件

薄的纯单晶Ge片、在
入射光子能量
h=0.8eV附近表现出
很陡的吸收峰所证实,
如图7.1-6所示。在更
长波长处的吸收则是由
于间接跃迁所引起,而
这必须伴随着声子的发
射和吸收,以满足所需
的动量守恒。
最新课件
10
2.间接吸收的吸收系数
在图7.1-4所表示的间接带隙跃迁中,两种从初态至终态的跃迁方式 都必将伴随有声子的发射和吸收,在不考虑多声子吸收时,则有
e1che xE pgEsEks T 2
0
hEgEs hEgEs
最新课件
(7.1-23)
14
在价带顶附近的状态与 导带底附近的状态之间 的跃迁(即图7.1-5中箭 头B)是“禁戒”跃迁, 由这种跃迁所引起的吸 收系数是与过剩光子能 量(h-EgEs)的三次方 成正比的。而如上所述, 在这种能带结构中的允 许跃迁(在k=0处发生 竖直跃迁)所产生的吸 收系数是比例于(hEgEs)2 的。
这种二级微扰过程,其跃迁几率
要比一级微扰情况下小得多。
最新课件
9
在这种能带结构中,也
可以发生从价带顶
(k=0)至导带次能谷的
竖直跃迁或直接跃迁,
如图7.1-5中的箭头A
表示,只是由于导带底
(k对=0应处k的=k导m带in)能的量能小量很比
多,则跃迁所涉及的能
量比间接跃迁(图7.1-5
中箭头B大.这已为很
最新课件
18
2 .激子波函数与束缚能
电子-空穴的库仑互作用势能为
Vre rh4 ere2rh
(7.2-1)
式中。为介电常数(对夫伦克耳激子,为常数)。 弱束缚激子的薛定愕方程为
2 m 2 e e 22 m 2 h h 24 e2r F r e,r hEr e F ,r h (7.2-2)

半导体激光器原理PPT课件

半导体激光器原理PPT课件

适合做有源区发光材料
态的
(如GaAs,InP,AlGaInAs) 波矢不同,必须有相应的声子参与吸收
和发
第12页/共77页
半导体异质结
• 异质结的作用:
• 异质结对载流子的限 制作用
• 异质结对光场的限制 作用
• 异质结的高注入比
第13页/共77页
异质结对光场的限制作用
第14页/共77页
半导体激光器的材料选择
3 PECVD 生长 SiO2, 填充聚酰亚胺
第75页/共77页
VCSEL 芯片制造
4 欧姆接触
第76页/共77页
感谢您的观看!
第77页/共77页
第48页/共77页
VCSEL 的优点 ●易于实现二维平面和光电集成; ●圆形光束易于实现与光纤的有效耦合; ●有源区尺寸极小,可实现高封装密度和低阈值电流; ●芯片生长后无须解理、封装即可进行在片实验; ●在很宽的温度和电流范围内都以单纵模工作; ● 成品率高、价格低。
第49页/共77页
第50页/共77页
第25页/共77页
F-P腔激光器
第26页/共77页
第27页/共77页
DFB激光器
第28页/共77页
DFB-LD与DBR-LD
第29页/共77页
F-P-LD与DFB-LD的纵模间隔
第30页/共77页
DFB-LD的增益与损耗
第31页/共77页
工作特性
1.阈值电流 Ith
影响阈值电流的因素: 1. 有源区的体积:腔长、条宽、厚度 2. 材料生长:掺杂、缺陷、均匀性 3. 解理面、镀膜 4. 电场和光场的限制水平 5. 随温度增加,损耗系数增加,漏电流增加,内量子效率降低,这些都会

半导体量子阱激光器

半导体量子阱激光器

半导体量子阱激光器什么是量子阱量子阱(quantum well)是一种半导体结构,是指将两个能带较窄的半导体材料之间夹入一个能带较宽的材料而形成的材料结构。

量子阱激光器的工作原理量子阱激光器是利用半导体异质结构储能的原理,将电能转化为光能的半导体光电器件。

量子阱激光器的主要部分是由一系列宽度为数个纳米量级的“量子阱”和宽度大约为1微米的背域构成。

当外加电压作用整个器件时,电子和空穴在“量子阱”内发生复合,从而发射出相干性很好的激光光子,光强度迅速地增强。

量子阱激光器的特点量子阱激光器采用的是半导体亚微米制造工艺,由于这种工艺存在一些优点,因此它也具有独特的性能。

输出效率高量子阱激光器具有输出效率高,输出功率大,并且发光波长锁定精度高等优点。

目前,半导体量子阱激光器已逐渐取代气体激光器、半导体激光器和半导体激光二极管,成为现在的主流激光器。

寿命长量子阱激光器寿命较长,保持持续较高的电光转换效率,使用寿命优于其他半导体激光器器件。

量子阱激光器的加工制造和更可靠的工程设计为半导体激光器的发展奠定了坚实的基础。

小型化量子阱激光器具有小型化的优点,因为它们由亚微米制造工艺制造而成,可以被集成到其他芯片中,这一点也可以使得芯片的体积变得更小。

波长可调节量子阱激光器波长可调节,可以进行多波长发射。

这种波长可变暴露了它在目标检测和应急救援系统中的应用。

量子阱激光器的应用量子阱激光器已经成为现代科技领域的重要组成部分。

它的应用范围非常广泛,如光通信系统、制造加工、医学检测等领域。

光通信系统量子阱激光器是进行光通信的关键设备之一,被广泛应用于通信、信息处理和数据存储。

随着物联网的发展,量子阱激光器在物联网应用领域也越来越广泛。

制造加工量子阱激光器的高功率和小型化特点,使得它可以激发大功率的光束,加热加工材料,成为高精度的工业生产设备。

医学检测量子阱激光器在医学检测领域也有着广泛的应用。

例如,用于检测医疗的光谱分析,这也为临床疾病医治提供了帮助。

量子阱和超晶格课件

量子阱和超晶格课件
这些制备技术各有特点,可以根据具体的研究需求和实验条件选择合适的技术进行 量子阱和超晶格的制备。
05
量子阱和超晶格的应用前景
量子阱在光电子器件中的应用
光子晶体管
量子阱结构可用于制造光子晶体管,这种器件可以控制光子的流动,从而实现光信号的放大和调制,提高光通信系统 的性能。
发光二极管(LED)
量子阱LED具有更高的发光效率和更好的色彩渲染能力,广泛应用于显示技术和照明领域。
超晶格对量子阱性能的影响
限域效应增强
超晶格结构可以增强量子阱的限 域效应,进一步限制电子的运动 范围,从而影响量子阱的性能。
调制掺杂效应
在超晶格中,不同材料之间的电 荷转移和调制掺杂效应可以对量 子阱中的载流子浓度和分布进行 调控,从而影响量子阱的输运性
质。
应变工程
超晶格中的应变可以传递给量子 阱,通过应变工程对量子阱的性 能进行调控,如改变发光波长、
量子阱和超晶格课件
• 量子阱概述 • 超晶格概述 • 量子阱与超晶格的关系 • 量子阱和超晶格的制备技术 • 量子阱和超晶格的应用前景 • 量子阱和超晶格的最新研究进展
01
量子阱概述
量子阱的定 义
定义
量子阱是一种利用量子力学原理 在纳米尺度上限制电子、光子等 微观粒子的运动,从而改变其物 理性质的人工结构。
精度提升
近年来,研究人员致力于发掘 新型材料用于量子阱的制备, 如铟砷磷、镓砷氮等,以拓展 量子阱在光电子、微电子领域 的应用范围。
低维材料,如二维材料和一维 纳米线等,作为量子阱的构成 元素,在新型量子阱材料的研 发中占据重要地位。它们具有 优异的物理性能和广泛的潜在 应用。
通过改进生长技术、优化生长 条件,实现量子阱材料的高精 度、高质量制备,以满足量子 计算和量子通信等高端应用的 需求。

半导体激光器讲解ppt课件

半导体激光器讲解ppt课件

正反馈(驻波);
fq 谐振频率, q 谐振波长, q 纵模
f q
c
q

q
c 2nL
12
§2.半导体中光的发射和激射原理(续)
频带加宽:增益介质的增益-频率特性;
13
§2.半导体中光的发射和激射原理(续)
横模TEMmn :激光振荡垂直于腔轴方向,平面波 偏离轴向传播时产生的横向电磁场模式。
受激辐射:E2能态的电子处于不稳定状态,向下 进入亚稳态,外来光子会激励电子向下跃迁到基 态E1,受激辐射一个光子(位相相同)。
9
§2.半导体中光的发射和激射原理(续)
粒子数反转(光放大的必要条件):仅当激发态 的电子数大于基态中的电子数时,受激辐射超过 吸收,要利用“泵浦(激励)”方法。
有源区:实现粒子数反转,对光具有放大作用的 区域。
Eg=h
4
§2.半导体中光的发射和激射原理(续)
本征半导体(I型):杂质、缺陷极少的纯净、 完整的半导体。
电子半导体(N型):通过掺杂使电子数目大 大地多于空穴数目的半导体。(GaAs-Te)
空穴半导体(P型):通过掺杂使空穴数目大 大地多于电子数目的半导体。(GaAs-Zn)
在纯净的Ⅲ-Ⅴ族化合物中掺杂Ⅵ族元素(N 型),或掺杂Ⅱ族元素(P型)
掺杂:eVDEg为轻掺杂, eVDEg为重掺杂。
在平衡状态下,P区和N区有统一的Ef。
正电压向V→漂移运动→抵消一部分势垒(V-VD) →破坏平衡→ P区和N区的Ef分离(准费米能级)。
7
§2.半导体中光的发射和激射原理(续)
(Ef)N以下的能级,电子占据的可能性大于1/2, (Ef)P以上的能级,空穴占据的可能性大于1/2。

量子阱半导体激光器

量子阱半导体激光器

量子阱半导体激光器简介量子阱半导体激光器是一种基于半导体材料的激光器,其核心结构是量子阱。

量子阱是一种在半导体材料中形成的人工结构,通过限制电子和空穴在垂直方向上的运动,可以实现能带的调控和载流子的局域化。

这样的结构使得量子阱半导体激光器具有优异的光学性能和应用前景。

工作原理量子阱半导体激光器利用电子和空穴复合放射出光子的原理来产生激光。

其工作原理可以简单描述为以下几个步骤:1.注入载流子:通过外加电压或注入电流,将电子和空穴注入到量子阱结构中。

这些载流子会在量子阱中进行运动并最终发生复合过程。

2.载流子局域化:由于量子阱结构的限制,载流子会在垂直方向上被局域化。

这种局域化效应使得载流子在水平方向上进行多次碰撞,并增加了载流子之间相互复合的机会。

3.载流子复合:在量子阱中,电子和空穴会通过自发辐射的方式发生复合。

这个过程中释放出的能量将以光子的形式辐射出来。

4.光放大:释放出的光子会在量子阱结构中来回反射,并被不断放大。

由于在激光器结构中引入了光反馈环境,使得其中一部分光子经过受激辐射过程而进一步增强,形成相干和定向性很好的激光输出。

结构设计量子阱半导体激光器的结构设计是实现其优异性能的关键。

一般情况下,其主要包括以下几个部分:1.量子阱层:量子阱层是激光器结构中最重要的组成部分。

通过选择不同材料、控制厚度和形状,可以实现对能带结构和载流子局域化效应的调控。

常用的材料包括GaN、InGaAs等。

2.波导层:波导层用于引导和限制激光波长在有效范围内传播。

通常采用高折射率材料与低折射率材料的结构,形成光波在其中传播的通道。

3.反射镜:反射镜用于增强激光的放大效果。

一般情况下,激光器结构中会包含两个反射镜,其中一个是高反射镜,用于将光子反射回波导层;另一个是输出镜,用于从激光器中输出部分光子。

4.电极:电极用于注入电流并控制载流子的注入和分布。

通过调节电极的设计和布局,可以实现对激光器性能的进一步优化。

Chapter7-量子阱激光器

Chapter7-量子阱激光器

帶间跃迁矩阵元
e * * ˆ puC d 3r H 'eh [ Fh A( r ) Fe ]rrj u V e 2m0 j unit cell
考虑到uV 和uC 在每 个unit cell 上是相 同的
e 1 ( 2m0 Vunit cell
* 3 ˆ u V e puC d r )[ Fh A(r) Fe ]rrjVunit cell
2 2 En ,n 1 (n 1/ 2) 2 me d w
(Note)
量子限制效应-带隙展宽
Ew (k x , k y , k z ) E g
3D
2 2 2 2 2 2 n n 2 z 2 z 2me d w 2mhhd w
量子限制效应带隙展宽的估算
1 E 2 d
2 2
接下来会陆续介绍括号所标项对增益的影响
量子阱激光器的光增益-(f -f ) 的影响
C V
(fC-fV) 的影响
量子阱激光器的光增益谱-(f -f )
c v
T=0 K (fc-fv)=1 反转情形
实空间
K空间
Fermi-Dirac 分布
量子阱激光器的光增益--0 K
在第1子帶内, 态密度是常数, fc-fv=1;
1 W ( r rj ) N
kBZ
e
ik ( r rj )
u( r rj ) u0 ( r rj )
( r ) j F ( rj )W ( r rj ) F ( r )u0 ( r )
电子波函最终写为:
(r ) e
ik xy r
u (r ) ( z )
量子阱特征现象—分立化吸收谱

量子阱半导体激光器

量子阱半导体激光器

量子阱半导体激光器摘要:本文主要叙述了量子阱半导体激光器发展背景、基本理论、主要应用与发展现状。

一、发展背景1962年后期,美国研制成功GaAs同质结半导体激光器,第一代半导体激光器产生。

但这一代激光器只能在液氮温度下脉冲工作,无实用价值。

直到1967年人们使用液相外延的方法制成了单异质结激光器,实现了在室温下脉冲工作的半导体激光器。

1970年,贝尔实验室有一举实现了双异质结构的在室温下连续工作的半导体激光器。

至此之后,半导体激光器得到了突飞猛进的发展。

半导体激光器具有许多突出的优点:转换效率高、覆盖波段范围广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。

其发展速度之快、应用范围之广、潜力之大是其它激光器所无法比拟的。

但是,由于应用的需要,半导体激光器的性能有待进一步提高。

80年代,量子阱结构的出现使半导体激光器出现了大的飞跃。

量子阱结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。

当超薄有源层材料后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电子和空穴沿垂直阱壁方向的运动出现量子化特点。

从而使半导体能带出现了与块状半导体完全不同的形状与结构。

在此基础上,根据需要,通过改变超薄层的应变量使能带结构发生变化,发展起来了应变量子阱结构。

这种所谓“能带工程”赋予半导体激光器以新的生命力,其器件性能出现大的飞跃。

具有量子阱结构的量子阱半导体激光器与双异质结半导体激光器(DH)相比,具有阈值电流密度低、量子效应好、温度特性好、输出功率大、动态特性好、寿命长、激射波长可以更短等等优点。

目前,量子阱已成为人们公认的半导体激光器发展的根本动力。

其发展历程大概为:1976年,人们用GaInAsP/InP实现了长波长激光器。

对于激光腔结构,Kogelnik和Shank提出了分布反馈结构,它能以单片形式形成谐振腔。

Nakamura用实验证明了用光泵浦的GaAs材料形成的分布反馈激光器(DBR)。

半导体激光器PPT学习教案

半导体激光器PPT学习教案
受激辐射 和受激 吸收的 区别与 联系 受激辐 射是受 激吸收 的逆过 程。电 子在E1和E2两个能级 之间跃 迁,吸 收的光 子能量 或辐射 的光子 能量都 要满足 波尔条 件,即 E2-E1=hυ
式中,h=6.628×10-34J·s,为普朗克常数, υ为吸收或辐射的光子频率。
第7页/共54页
产生受 激辐射 和产生 受激吸 收的物 质是不 同的。 设在单 位物质 中,处 于低能 级E1和处于高 能级E2(E2>E1)的原子数分别 为N1和N2。 当系统 处于热 平衡状 态时,
能量 Eg
导带
Ec Eg/2
Ef
Eg
Eg/2
Ev
价带
Ec
Ec
Ef Eg Ef
Ev
Ev
(a)
(b)
(c)
图 3.2
(a) 本征半导体; (b) N型半导体; (c) P型半导体
第12页/共54页
能量 Eg
导带
Ec Eg/2
Ef
Eg
Eg/2
Ev
价带
Ec
Ec
Ef Eg Ef
Ev
Ev
在热平衡 状态下 ,能量 为E的能 级被电 子占据 的概率 为费米 分布
电子在低能级E1的基态和高能级E2的激发态之 间的跃迁有三种基本方式:受激吸收(本征吸 收) 自发辐射 受激辐射
第2页/共54页
初态
E2
E1
E2
hυ=E2-E1
终态
E1
(a) 自发辐射 光子的特点:非相干光
第3页/共54页
初态
E2

E1
E2
终态
E1
(b) 受激辐射 光子的特点:相干光

半导体激光器件中的量子阱与电子能带结构分析

半导体激光器件中的量子阱与电子能带结构分析

半导体激光器件中的量子阱与电子能带结构分析半导体激光器件是一种重要的光电子器件,广泛应用于通信、医疗、工业和军事等领域。

量子阱是制造半导体激光器件时经常使用的一种结构,通过控制量子阱的尺寸和材料参数,可以实现更高效的光电转换和更低的能耗。

本文将对半导体激光器件中的量子阱和电子能带结构进行详细的分析。

首先,我们来了解一下量子阱的基本概念。

量子阱是由两个能禁带较宽的材料夹紧一个能带较窄的材料形成的。

其中,能带较窄的材料被称为“量子阱层”,而能带较宽的材料被称为“禁带材料”或“组分材料”。

量子阱通过局域化电子在能隙中形成束缚态,从而实现对电子的限制和控制。

在半导体材料中,电子能带结构对于激光器件的性能至关重要。

电子能带结构由价带和导带组成,其中价带是电子禁带以下的能态,导带是电子禁带以上的能态。

对于半导体材料,导带带有自由电子,在外界的激励下可以跃迁到价带中,产生辐射并产生激光效应。

量子阱结构在激光器件中起到了至关重要的作用。

首先,量子阱的宽度决定了束缚态能级的分立程度。

当量子阱的宽度小于一定值时,能级间的能隙大到足以限制电子的运动,使得电子能态分立得足够好。

这种分立的能级结构可以实现更高效的电子注入和激光输出。

其次,量子阱的材料参数对于电子能带结构的调控具有重要意义。

材料参数包括化合物的能带偏移、能带压缩和晶格匹配等。

能带偏移是指禁带材料和量子阱层之间的能带错位,通过调节能带偏移可以调整量子阱的能带结构。

能带压缩是指量子阱层与禁带材料之间的应变,应变会影响量子阱中的电子和空穴有效质量,进而影响能态的分立程度。

晶格匹配则是指量子阱层和其它材料之间的晶格结构的匹配程度,晶格匹配好可以减小缺陷的形成。

在实际制备半导体激光器件时,我们可以通过分子束外延、金属有机化学气相沉积和金属有机化学液相沉积等方法来制备量子阱结构。

这些方法可以精确地控制量子阱的尺寸和形貌,从而实现对电子能带结构的精细调控。

此外,量子阱的材料选择也对电子能带结构产生了重要影响。

半导体超晶格和量子阱-PPT(精)65页PPT

半导体超晶格和量子阱-PPT(精)65页PPT
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
半导体超晶格和量子阱-PPT(精)
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。

半导体量子阱激光器

半导体量子阱激光器

老年人如何保护自己的财产安全随着社会的发展和进步,老年人的生活水平不断提高,手中的财产也逐渐增多。

然而,由于老年人在信息获取、认知能力和防范意识等方面相对较弱,使得他们成为了财产安全容易受到威胁的群体。

为了保障老年人的财产安全,让他们能够安享晚年,以下是一些实用的建议。

一、增强防范意识老年人要时刻保持警惕,不轻易相信陌生人。

对于那些主动上门推销产品、提供服务或者声称可以帮助办理各种手续的人,要多加留意,核实其身份和资质。

不要随意透露个人的财务信息,如银行账号、密码、存款金额等。

遇到可疑情况,及时与家人或信任的朋友商量,或者向警方咨询。

同时,要警惕各种诈骗手段。

如今,诈骗分子的手段层出不穷,如电话诈骗、网络诈骗、保健品诈骗、投资理财诈骗等。

老年人要了解常见的诈骗套路,比如“中奖”骗局、“冒充公检法”骗局、“高额回报投资”骗局等。

记住“天上不会掉馅饼”,不要被所谓的“好处”所迷惑。

二、妥善保管重要物品老年人要妥善保管好自己的重要物品,如身份证、银行卡、存折、房产证等。

不要将这些物品随意放置,最好放在安全可靠的地方,如保险柜或者带锁的抽屉。

如果需要使用这些物品,用完后要及时放回原处。

此外,对于密码的设置和保管也要格外小心。

密码不要设置得过于简单,如生日、电话号码等容易被猜到的数字。

同时,不要将密码写在纸上或者告诉他人,以免造成财产损失。

三、谨慎进行投资理财在投资理财方面,老年人要谨慎选择。

不要盲目跟风,不要轻信那些承诺高额回报、低风险的投资项目。

在进行投资之前,要充分了解投资产品的风险和收益情况,咨询专业的金融机构或者理财顾问。

对于一些新兴的投资方式,如互联网金融、虚拟货币等,老年人由于对其了解较少,更要谨慎对待。

如果没有足够的知识和经验,最好不要轻易涉足。

四、注意消费陷阱在消费过程中,老年人也要注意防范陷阱。

购买商品或服务时,要仔细查看合同条款,了解价格、质量、售后服务等方面的内容。

对于那些需要预付款的消费项目,要谨慎考虑,避免商家跑路或者服务不到位导致财产损失。

2024年半导体物理学刘恩科第七版-第七章-金半接触

2024年半导体物理学刘恩科第七版-第七章-金半接触
由于半导体表面存在表面态的缘故
施主表面态:释放电子呈正电性; 受主表面态:接受电子呈负电性;
表面态具有表面能级,距价带顶q0
电子正好填满q0以下所有表 面态时,表面电中性;
q0以下所有表面态空着时,表面带 正电,呈施主; q0以上表面态被电子填满时,表面 带负电,呈受主;
对n型半导体,EF高于q0,如果q0以上有受主表面态,则基本 被电子填满,带负电。
半导体内单位体积中能量在E~E+dE区间内的电子数 为:
由于
E
Ec
1 2
mn
* 2
dE
dE mn *d
dn
4n0
(
mn *
2k0T
)3
/
2
2
exp(
mn * 2 2k0T
)d
单位体积中,速率在x~ (x+dx)、 y~ (y+dy)、 z~ (z+dz)区间内, 单位截面积、单位时间到达金半界面的电子数为:
高阻区,常称阻挡层。
高电导区,常称反阻挡层。
金属与p型半导体接触时,情况刚好相反。
Vs>0
Vs〈0
1. 能带向下弯曲; 2. 形成p型阻挡层。
1. 能带向上弯曲; 2. 形成p型反阻挡层。
对一定半导体,亲和势一定。 理论上,金属材料不同,功函数Wm不
同,势垒高度也不同。
实际上,虽然金属功函数Wm差别较大 不同,势垒高度差别不大。
因此,选择金属材料不能获得欧姆接触。 实际中,主要利用隧道效应原理实现欧姆接触
金属内部电子逸出成为自由电子所需 要的最小能量为:
半导体中, 使内部电子从半导体逸出 成为自由电子所需要的最小能量为:
Ws为半导体的功函数

量子阱半导体激光器的的基本原理及其应用

量子阱半导体激光器的的基本原理及其应用

量子阱半导体激光器的的基本原理及其应用无研01 王增美(025310)摘要:本文主要阐述了量子阱及应变量子阱材料的能带结构,以及能态密度和载流子有效质量的变化对激光器阈值电流等参数的影响,简要说明了量子阱激光器中对光场的波导限制。

最后对量子阱半导体激光器的应用作了简要的介绍,其中重点是GaN 蓝绿光激光器的发展和应用。

引言半导体激光器自从1962年诞生以来,就以其优越的性能得到了极为广泛的应用,随着新材料新结构的不断涌现和制造工艺水平的不断提高,其各方面的性能也不断得到改善,应用范围也不在再局限于信息传输和信息存储,而是逐渐渗透到材料加工、精密测量、军事、医学和生物等领域,正在迅速占领过去由气体和固体激光器所占据的市场。

20世纪70年代的双异质结激光器、80年代的量子阱激光器和90年代出现的应变量子阱激光器是半导体激光器发展过程中的三个里程碑。

制作量子阱结构需要用超薄层的薄膜生长技术,如分子外延术(MBE )、金属有机化合物化学气相淀积(MOCVD )、化学束外延(CBE )和原子束外延等。

我国早在1974年就开始设计和制造分子束外延(MBE )设备,而直到1986年才成功的制造出多量子阱激光器,在1992年中科院半导体所(ISCAS )使用国产的MBE 设备制成的GRIN-SCH InGaAs/GaAs 应变多量子阱激光器室温下阈值电流为1.55mA ,连续输出功率大于30mW ,输出波长为1026nm [4]。

量子阱特别是应变量子阱材料的引入减少了载流子的一个自由度,改变了K 空间的能带结构,极大的提高了半导体激光器的性能,使垂直腔表面发射激光器成为现实,使近几年取得突破的GaN 蓝绿光激光器成为新的研究热点和新的经济增长点,并将使半导体激光器成为光子集成(PIC )和光电子集成(OEIC )的核心器件。

减少载流子一个自由度的量子阱已经使半导体激光器受益匪浅,再减少一个自由度的所谓量子线(QL )以及在三维都使电子受限的所谓量子点(QD )将会使半导体激光器的性能发生更大的改善,这已经受到了许多科学家的关注,成为半导体材料的前沿课题。

第七章半导体量子阱激光器

第七章半导体量子阱激光器

∆Ec
∆Ev
多量子阱能带图
超2)掺杂调制超晶格 (3)应变超晶格 (4)多维超晶格
超晶格能带结构来源于两种材料禁带的变化,存在内界面。
(1)组分调制超晶格
在超晶格结构中,如果超晶格的重复单元是由不同半导 体材料的薄膜堆垛而成,则称为组分超晶格。在组分超晶格 中,由于构成超晶格的材料具有不同的禁带宽度,在异质界 面处将发生能带的不连续。
这意味着GaAs/AlGaAs异质结已将杂质、缺陷等对二维 电子系统的“干扰”降低到最低限度,这才使电子间的多 体相互作用显得更为重要起来。 因此,从某种意义上说,性质优异的异质结结构为整数量 子Hall效应和分数量子Hall效应的发现提供了必要条件。
迄今为止, GaAs/AlGaAs调制掺杂异质结能获得的电子 迁移率已高达1×107cm2/ V· s 。
超晶格多量子阱能带结构示意图
多量子阱和超晶格的本质差别在于势垒的宽度:当势垒 很宽时电子不能从一个量子阱隧穿到相邻的量子阱,即 量子阱之间没有相互耦合,此为多量子阱的情况;当势 垒足够薄使得电子能从一个量子阱隧穿到相邻的量子阱, 即量子阱相互耦合,此为超晶格的情况。
EcA EgA EcB EvB EvA E2 E1 EgB E2 E1
7.5.1 新型的量子阱激光器
(1)低维超晶格——量子线、量子点激光器: 量子阱结构中,电子只受到一维的限制,在结平面内仍 维持二维的自由运动。如果对电子进行二维或三维的限制, 就得到一维量子线和零维量子点结构。 (2)量子级联激光器(Quantum Cascade Laser): 由数组量子阱结构串联在一起构成的新型量子阱激光器。
(1)低维超晶格——量子线、量子点激光器 这种更窄的态密度分布带来更高的微分增益,将使得 半导体激光器的特性进一步提高,如阈值电流降低, 光谱线宽、调制速率、温度特性等可以进一步改善。

量子阱半导体激光器

量子阱半导体激光器

量子阱半导体激光器引言量子阱半导体激光器(quantum well semiconductor laser)是一种利用量子阱结构实现的半导体激光器。

其具有较小的发射阈值电流、高效率、高速调制特性等优点,在通信、雷达、医学和科学研究等领域有广泛应用。

本文将对量子阱半导体激光器的原理和应用进行探讨。

量子阱半导体激光器的原理量子阱半导体激光器的原理基于半导体材料中的能带结构和电子能级的量子限制效应。

量子阱是一种在材料中形成的极薄的区域,其中的电子仅能在垂直方向上做束缚运动。

这种限制使得材料的禁带宽度变窄,电子在阱内的能量级离散。

因此,量子阱结构能够有效地限制电子运动,提高激光器的效率。

量子阱结构量子阱结构一般由两种不同宽度的材料层交替叠加而成。

其中,较宽的材料层称为障垒层(barrier),用于限制电子在垂直方向上的运动。

较窄的材料层称为量子阱层(well),用于限制电子在平面上的运动。

通过调节障垒层和量子阱层的宽度和组分,可以实现对激光器波长和特性的控制。

激光器结构量子阱半导体激光器的基本结构包括n型和p型的半导体层和量子阱结构层。

其中n型和p型层的作用是形成电子和空穴注入区,而量子阱结构层则是光放大区。

通过在结构中引入反射镜和耦合器件等元素,可以实现激光器的进一步增强和光输出。

量子阱半导体激光器的性能和特点量子阱半导体激光器具有以下性能和特点:低发射阈值电流由于量子阱结构的限制性,激活载流子在阱内的束缚效应增强,从而减小了发射阈值电流。

因此,量子阱半导体激光器具有低阈值电流的特点,可以降低功率消耗,提高激光器的效率。

高光束质量量子阱半导体激光器中的电子和空穴限制在较小的空间内运动,使得光场分布更加集中和稳定,光束质量更高。

这使得激光器能够产生更细致的光束,提供更好的输出性能。

宽光谱调制带宽量子阱半导体激光器的响应速度较快,可以在高频率下实现光强调制。

通过在量子阱结构中引入电流或光的调制,可以实现高速的光通信和调制功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)由于价带的轻重空穴带量子化能级分离,因此具有 TE,TM模式的选择控制性能;
(6)微分增益系数高,能再更高的调制速率下工作,动态工 作特性好。
(2)注入载流子能提供更高温度性好;
(3)注入载流子大部分用来克服内部损耗,只要较小的注入 载流子就能有高的效率,产生更大的功率,适于制作大功率激 光器阵列;
(4)在量子阱激光器中,增益变化只引起较小的折射率改变 ,所以光谱线较窄,频率啁啾小。
• 更为重要的是,施主杂质在离界面一定距离以外的 AlGaAs 一侧,而电子被转移到窄能隙的GaAs 侧界面势阱内, 远离产生它的电离施主,使它们感受到的库仑散射作用大大 减弱,极大地提高了二维电子气在低温下的迁移率。
这意味着GaAs/AlGaAs异质结已将杂质、缺陷等对二维 电子系统的“干扰”降低到最低限度,这才使电子间的多 体相互作用显得更为重要起来。
ρ (E)
ρ (E)
ρ (E)
E
E
E
态密度分布(量子阱、量子线、量子点)
(2)量子级联激光器从电子跃迁的方式上可分为 斜跃迁和垂直跃迁两种 。
斜跃迁量子阱级联激光器能 带结构示意图及P-I特性
垂直跃迁量子阱级联激 光器部分导带图
量子阱激光器的突出优点:
(1)改变量子阱的厚度可以在相当宽的范围内改变激射波长 ;
因此,从某种意义上说,性质优异的异质结结构为整数量 子Hall效应和分数量子Hall效应的发现提供了必要条件。
迄今为止, GaAs/AlGaAs调制掺杂异质结能获得的电子 迁移率已高达1×107cm2/ V·s 。
7.5.1 新型的量子阱激光器
(1)低维超晶格——量子线、量子点激光器: 量子阱结构中,电子只受到一维的限制,在结平面内仍
为什么说GaAs/AlGaAs 异质结是最接近理想的二维 电子系统?
• 由于GaAs/ AlGaAs 是晶体匹配的材料体系。利用现代 分子束外延生长技术几乎可以获得原子级平整的界面,大大 减少了界面缺陷和界面粗糙度对输运性质的影响。
• 超高真空下分子束外延生长保证了GaAs、AlGaAs本征材 料的纯度可达到1013cm-3的水平。
维持二维的自由运动。如果对电子进行二维或三维的限制, 就得到一维量子线和零维量子点结构。
(2)量子级联激光器(Quantum Cascade Laser): 由数组量子阱结构串联在一起构成的新型量子阱激光器。
(1)低维超晶格——量子线、量子点激光器
这种更窄的态密度分布带来更高的微分增益,将使得 半导体激光器的特性进一步提高,如阈值电流降低, 光谱线宽、调制速率、温度特性等可以进一步改善。
超晶格多量子阱能带结构示意图
多量子阱和超晶格的本质差别在于势垒的宽度:当势垒 很宽时电子不能从一个量子阱隧穿到相邻的量子阱,即 量子阱之间没有相互耦合,此为多量子阱的情况;当势 垒足够薄使得电子能从一个量子阱隧穿到相邻的量子阱, 即量子阱相互耦合,此为超晶格的情况。
EcA
E2
EgA EgB EcB
E1
EvB EvA
多量子阱能带图
∆Ec ∆Ev
E2 E1
超晶格能带图
超晶格分类
(1)组分调制超晶格 (2)掺杂调制超晶格 (3)应变超晶格 (4)多维超晶格
超晶格能带结构来源于两种材料禁带的变化,存在内界面。
(1)组分调制超晶格
在超晶格结构中,如果超晶格的重复单元是由不同半导 体材料的薄膜堆垛而成,则称为组分超晶格。在组分超晶格 中,由于构成超晶格的材料具有不同的禁带宽度,在异质界 面处将发生能带的不连续。
相关文档
最新文档