再次例谈导数压轴题中双变量问题的常用解法
导数中双变量问题的四种策略
导数中双变量问题的四种策略双变量问题的几种处理策略策略一:合并思想已知函数$f(x)=\ln x$的图像上任意不同的两点的中点为$A(x_1,y_1)$。
$B(x_2,y_2)$,线段$AB$的中点为$C(x,y)$,记直线$AB$的斜率为$k$,试证明:$k>f'(x)$。
解析:因为$f(x)=\ln x$,所以$f'(x)=\frac{1}{x}$。
又因为k=\frac{f(x_2)-f(x_1)}{x_2-x_1}=\frac{\ln x_2-\lnx_1}{x_2-x_1}=\frac{\ln\frac{x_2}{x_1}}{x_2-x_1}$$不妨设$x_2>x_1$,要比较$k$与$f(x)$的大小,即比较frac{\ln\frac{x_2}{x_1}}{x_2-x_1}\text{和}\frac{1}{x_1}$$的大小,即比较ln\left(\frac{x_2}{x_1}\right)^{\frac{1}{x_2-x_1}}\text{和}e^{\frac{1}{x_2-x_1}}$$的大小。
又因为$x_2>x_1$,所以frac{x_2-x_1}{x_2+1}<\ln\left(\frac{x_2}{x_1}\right)^{\frac{1}{x_2-x_1}}<\frac{x_2-x_1}{x_1}$$因此frac{x_2-x_1}{x_2+1}<k<\frac{x_2-x_1}{x_1}$$又因为$x_2>x_1$,所以$\frac{x_2-x_1}{x_2+1}>\frac{1}{2}$,因此$k>f'(x)$。
策略二:分离思想问题2:若$g(x)=\ln x+\frac{1}{x}$,求$a$的取值范围,使得对任意的$x_1,x_2\in(1,2)$,都有$g(x_2)-g(x_1)<-1$。
导数中双变量问题的四种策略
双变量问题的几种处理策略策略一:合的思想问题1:已知函数x x f ln )(=的图象上任意不同的两点,,线段的中点为,记直线的斜率为,试证明:.解析:因为∴, ∴,又 不妨设 , 要比较与的大小,即比较与的大小, 又∵,∴ 即比较与的大小.令,则, ∴在上位增函数.又,∴, ∴,即二:分的思想问题2:若1ln )(++=x a x x g ,且对任意的(]2,1,21∈x x ,,都有,求a 的取值范围.解析∵ ,∴由题意得在区间(]2,1上是减函数. ∴ ()11,y x A ()22,y x B AB),(00y x C AB k )(0x f k '>x x f ln )(=xx f 1)(='210021)(x x x x f +=='121212121212ln ln ln )()(x x x x x x x x x x x f x f k -=--=--=12x x >k )(0x f '1212lnx x x x -212x x +12x x >12lnx x 1)1(2)(212122112+-=+-x x x x x x x x )1(1)1(2ln )(≥+--=x x x x x h 0)1()1()1(41)(222≥+-=+-='x x x x x x h )(x h [)+∞,1112>x x 0)1()(12=>h x x h 1)1(2ln 121212+->x x x x x x )(0x f k '>21x x ≠1)()(1212-<--x x x g x g 1)()(1212-<--x x x g x g []0)()(121122<-+-+x x x x g x x g x x g x F +=)()(1)1(1)(2++-='x ax x F由在恒成立. 设,,则 ∴在上为增函数,∴.策略3:变得思想设函数x x x f ln )(=,若,求证 解析:, ,所以在上是增函数,上是减函数.因为,所以即,同理. 所以 又因为当且仅当“”时,取等号. 又,, 所以,所以, 所以:.问题4:已知函数()21ln ,2f x x x mx x m R =--∈,若函数()f x 有两个极值点12,x x ,求证: 212x x e >解析:欲证212x x e >,需证: 12ln ln 2x x +>,若()f x 有两个极值点12,x x ,即函数()'f x 有两个零点,又()'ln f x x mx =-, 所以12,x x 是方程()'0f x =的两个不同实根313)1()1(0)(222+++=+++≥⇒≤'xx x x x x a x F []2,1∈x =)(x m 3132+++x x x []2,1∈x 0312)(2>+-='xx x m )(x m []2,1227)2(=≥m a 1),1,1(,2121<+∈x x e x x 42121)(x x x x +<x x xx f x g ln )()(==e x x x g 1,0ln 1)(==+=),1(+∞e )(x g )1,0(e11211<+<<x x x e111212121ln )()ln()()(x x x g x x x x x x g =>++=+)ln(ln 211211x x x x x x ++<)ln(ln 212212x x x x x x ++<)ln()2()ln()(ln ln 2112212112122121x x x xx x x x x x x x x x x x +++=++++<+,421221≥++x x x x 21x x =1),1,1(,2121<+∈x x ex x 0)ln(21<+x x )ln(4)ln()2(21211221x x x x x x x x +≤+++)ln(4ln ln 2121x x x x +<+42121)(x x x x +<于是,有1122ln 0{ln 0x mx x mx -=-=,解得1212ln ln x x m x x +=+,另一方面,由1122ln 0{ln 0x mx x mx -=-=,得()2121ln ln x x m x x -=-,从而可得21122112ln ln ln ln x x x x x x x x -+=-+,于是()()222121111222111lnln ln ln ln 1x x x x x x x x x x x x x x ⎛⎫+ ⎪-+⎝⎭+==--.又120x x <<, 设21x t x =,则1t >.因此, ()121ln ln ln ,1t t x x t ++=-1t >. 要证12ln ln 2x x +>,即证:()1ln 2,11t t t t +>>-.即当1t >时,有()21ln 1t t t ->+. 设函数()()21ln ,11t h t t t t -=-≥+,则()()()()()()222212111011t t t h t t t t t +---'=-=≥++, 所以, ()h t 为()1,+∞上的增函数.注意到, ()10h =,因此, ()()10h t h ≥=.于是,当1t >时,有()21ln 1t t t ->+. 所以,有12ln ln 2x x +>成立, 212x x e >.问题5:x m x x x f x --=221ln )(已知函数,若()x f 有两个极值点x 1,x 2,(x 1<x 2),且x x x x x a 12112ln 2ln ->-恒成立,求整数a 的最大值。
双变量问题的解决策略
g(t) 0 ,即 ln t 1 1 0 ,即 ln t 1 1 ,从而结论得证.
t
t
【题目 6】已知函数 f (x) ln x ax , a R.
(I)讨论 f (x) 的单调性;
( II ) 记 函 数 f (x) 的 两 个 零 点 为 x1, x2 , 且 x1 x2 . 已 知 0 , 若 不 等 式
一、变更主元
对于题目涉及到的两个变元,已知中一个变元在题设给定的范围内任意变动,求另一外
变元的取值范围问题,这类问题我们称之不“伪双变量”问题.这种“伪双变量”问题,往
往会利用我们将字母 x 作为自变量的误区来进行设计.此时,我们变更一元思路,将另一个
变量作为自变量,从而使问题得以解决,我们称这种方法为变更主元法.
二、指定主变量
有些问题虽然有两个变量,只要把其中一个当作常数,另一个看成自变量,便可使问题 得以解决,我们称这种思想方法为指定主变量思想.
【题目 2】求证: e2x 2t(ex x) x2 2t 2 1 3 . 2
1
【解析】令 f (t) 2t2 2(ex x)t e2x x 1
(II)由(I)知,当 1 时, f (x) 1 ln x ex 在 (0, ) 上单调递减,因为
e
e
0
x1
x2 ,所以
f (x1)
f
(
x2
).
即
1 e
ln
x1
e
x1
1 e
ln
x2
e x2 ,
所以 ln x1 e ex1 ln x2 e e x2 ,即 e1x2 e1x1 ln x1 ln x2.
设 g(x) f (x) x ln x k x ( x 0 ),则(*)式等价于 f (x) 在 (0, ) 上单调 x
微专题13 导数解答题之双变量问题
微专题13 导数解答题之双变量问题秒杀总结1.破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.例1.(广东省潮汕地区精英名校2022届高三第一次联考数学试题)已知函数()()()21e xf x x ax a =+-∈R ,()f x '为()f x 的导函数.(1)若()f x '只有一个零点,求a 的取值范围; (2)当34e a =时,存在1x ,2x 满足()()()12122,0f x f x x x x =<≠,证明:121x x >.例2.(浙江省台州市2021-2022学年高三上学期期末数学试题)已知,a k ∈R ,设函数()()ln f x x a kax =+-. (1)当1k =时,若函数()f x 在(),a -+∞上单调递增,求实数a 的取值范围; (2)若对任意实数a ,函数()f x 均有零点,求实数k 的最大值; (3)若函数()f x 有两个零点12,x x ,证明:()1212221x x a x x k a ++<.例3.(第13讲双变量问题-2022年新高考数学二轮专题突破精练)已知函数221()2ln (0)2f x ax x a x a =-+≠(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:121212()()11f x f x x x x x -<+-过关测试1.(四川省成都市树德中学2021-2022学年高三上学期入学考试文科数学试题)已知函数()2ln x x f x ax x =--,a R ∈.(1)若()f x 存在单调递增区间,求a 的取值范围;(2)若1x ,()212x x x <与为()f x 的两个不同极值点,证明:124ln ln 3x x +>.2.(浙江省宁波市2021-2022学年高三上学期11月高考模拟考试数学试题)已知函数()ln 2()f x x x x a =+∈R .(1)当2a =-时,求函数()f x 的单调区间; (2)若函数()f x 有两个不同零点1x ,212()x x x <, ①求实数a 的取值范围;②求证:22124a x x ⋅>.3.(安徽省合肥市第一中学2021-2022学年高三上学期11月月考理科数学试题)已知函数()()e cos x f x x ax a R =+-∈.(1)当1a =时,判断()f x 在区间(0,)+∞上的单调性;(2)当e a =时,若()()()121212,(0,),x x x x f x f x π∈≠=,且()f x 的极值在0x x =处取得,证明:1202x x x +<.4.(第12讲双变量不等式:剪刀模型-突破2022年新高考数学导数压轴解答题精选精练)已知函数()(1)(1)x f x x e =+-.(1)求()f x 在点(1-,(1))f -处的切线方程;(2)若1a e -…,证明:()22f x alnx ex +-…在[1x ∈,)∞+上恒成立; (3)若方程()f x b =有两个实数根1x ,2x ,且12x x <,证明:2111311b e ebx x e e ++-++--….5.(第26讲拐点偏移问题-突破2022年新高考数学导数压轴解答题精选精练)已知函数21()ln (1)2f x x ax a x =-+-,a R ∈.(1)讨论()f x 的单调性;(2)当2a =-时,正实数1x ,2x 满足1212()()0f x f x x x ++=,证明:1214x x +>.6.(第12讲双变量不等式:剪刀模型-突破2022年新高考数学导数压轴解答题精选精练)已知函数()e 1x f x ax =-+,ln3是()f x 的极值点.(1)求a 的值;(2)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线为直线l .求证:曲线()y f x =上的点都不在直线l 的上方;(3)若关于x 的方程()(0)f x m m =>有两个不等实根1x ,212()x x x <,求证:217210mx x -<-.7.(第13讲双变量问题-2022年新高考数学二轮专题突破精练)已知函数()2ln f x x x ax =+,0a ≥.(1)若曲线()y f x =在e x =处的切线在y 轴上的截距为e -,求a 的值;(2)证明:对于任意两个正数1x 、()212x x x ≠,()()121222x x f f x f x +⎛⎫<+ ⎪⎝⎭.微专题13 导数解答题之双变量问题秒杀总结1.破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.例1.(广东省潮汕地区精英名校2022届高三第一次联考数学试题)已知函数()()()21e xf x x ax a =+-∈R ,()f x '为()f x 的导函数.(1)若()f x '只有一个零点,求a 的取值范围; (2)当34e a =时,存在1x ,2x 满足()()()12122,0f x f x x x x =<≠,证明:121x x >. 【答案】(1){}34,0e ⎛⎫+∞⋃ ⎪⎝⎭;(2)证明见解析. 【解析】 【分析】(1)求出()()21e x f x x a '=+-,再二次求导,对a 分五种情况讨论得到a 的取值范围; (2)先证明100x x <<,再分120x x <<和120x x <<两种情况讨论证明不等式. (1)解:()f x 的定义域为(),-∞+∞,()()21e x f x x a '=+-,令()()()21e x g x f x x a '==+-,则()()()13e xg x x x '=++.∴当(),3x ∈-∞-时,()0g x '>,()f x '单调递增; 当()3,1x ∈--时,()0g x '<,()f x '单调递减; 当()1,x ∈-+∞时,()0g x '>,()f x '单调递增.①若0a <,则()()21e 0x f x x a '=+->,()f x '无零点,不成立;②若0a =,则()()21e x f x x '=+有且只有1x =-一个零点,符合题意; ③若340e a <<,则()10f a '-=-<,()3430e f a '-=->,()010f a '=->, ∴()3,1α∃∈--,()1,0β∈-,使()()0f f αβ''==, ∴()f x '不只有一个零点,不成立.④若34e a =,则()30f '-=,又f ′(−1)=−4e 3<0,()34010e f =->', ∴()01,0x ∃∈-,使()00f x '=,∴()f x '不只有一个零点,不成立. ⑤若34e a >,则当(),3x ∞∈--时,()()3430e f x f a ''≤-=-<, ()10f a '-=-<,()()()()ln 11ln 110f a a a '+=+++>,∴()()1,ln 1a γ∃∈-+,使()0f γ'=. ∴()f x '有且只有一个零点,符合题意.综上,a 的取值范围是{}34,0e ⎛⎫+∞⋃ ⎪⎝⎭.(2) 解:当34e a =时,()()2341e e x f x x x =+-, 由(1)知,当()0,x x ∈-∞时,()0f x '≤,()f x 单调递减; 当()0,x x ∈+∞时,()0f x '>,()f x 单调递增.又()()12f x f x =,12x x <,则()10,x x ∈-∞,()20,x x ∈+∞, ∴100x x <<. ①若120x x <<,则11221x xx x =>. ②若120x x <<,则1122x xx x =-,要证明121x x >,即证21x x <-. 又2x ,()10,x x -∈+∞,则只要证()()21f x f x <-,即证()()11f x f x <-.令()()()()1121111381e e e x x f x f x x x ---=+--. 先证明一个不等式:e e 2x x x --<,0x <.令()e e 2x xh x x -=--,则()e e 2e e 20x x x x h x --'=+-≥⋅=,∴()h x 在(),0∞-上单调递增.∴当(),0x ∈-∞时,()()00h x h <=,∴e e 2x x x --<,0x <.∴()()()()()112221111111113338881e e 21220e e e x x f x f x x x x x x x x -⎛⎫--=+--<+-=+-< ⎪⎝⎭ ∴()()11f x f x <-,∴121x x >综上,有121x x >. 【点睛】方法点睛:函数的零点问题处理常用的方法有三种:(1)方程法:直接解方程得解;(2)图象法:画出函数的图象分析图象得解;(3)方程+图象法:令()=0f x 得到()()g x h x =,再分析(),()g x h x 的图象即得解. 例2.(浙江省台州市2021-2022学年高三上学期期末数学试题)已知,a k ∈R ,设函数()()ln f x x a kax =+-. (1)当1k =时,若函数()f x 在(),a -+∞上单调递增,求实数a 的取值范围; (2)若对任意实数a ,函数()f x 均有零点,求实数k 的最大值; (3)若函数()f x 有两个零点12,x x ,证明:()1212221x x a x x k a ++<. 【答案】(1)0a ≤(2)2e (3)证明见解析 【解析】 【分析】(1)当1k =时,对函数()f x 求导,再根据0a ≤和0a >两种情况进行分类讨论函数的单调性,即可求出结果.(2)对函数()f x 求导,再根据0ka ≤和0ka >两种情况讨论函数的单调性,进而求出函数的最值; (3)由题意得,要证原命题成立,只要证212221()()x a x a a k a++<+成立;设ln()x a t +=,则11ln()x a t +=,22ln()x a t +=是函数()(e )t h t t ka a =--的两根.再根据0ka ≤和0ka >两种情况讨论函数()h t 的单调性,再记函数()h t 有图象关于直线1ln t ka=对称后是()y m t =函数的图象,再求()()m t g t -的正负情况,最后根据不等式关系,即可证明结果. (1)解:当1k =时,1().()f x a x a x a-'=>-+.. 当0a ≤时,()0f x '>,则()f x 在(,)a -+∞上单调递增. 当0a >时,若1x a a>-,()0f x '<,()f x 在(,)a -+∞上不可能单调递增.. 所以()f x 在(,)a -+∞上单调递增,则0a ≤. (2) 解:1().()f x ka x a x a=->-'+(ⅰ)当0ka ≤时,()0f x '>,()f x 在(,)a -+∞上单调递增.()f x 有零点. (ⅰ)当0ka >时,()f x 在1(,)a a ka--上单调递增,在1(,)a ka -+∞上单调递减.又当x 趋近于a -时,f (x )趋近于∞-;x 趋近于∞+时,f (x )趋近于∞-; 所以只要1()0f a ka-≥恒成立,则()f x 恒有零点. 即2ln()10ka ka --+≥恒成立.因为求k 的最大值,不妨设0k >,0a >.设2()ln()1g a ka ka =--+,则2121'()2ka g a ka a a-=-+=.所以只要min ()(02g a g k=≤. 即1ln(022k --≥,得2k e ≤.所以k 的最大值为2e .(3)解:由题意得:只要证212221()()x a x a a k a++<+. 设ln()x a t +=,e t x a =-.则11ln()x a t +=,22ln()x a t +=是函数()(e )t h t t ka a =--的两根. ()1e t h t ka '=-.当0ka ≤时,()0h t '>,与函数()h t 有两个零点矛盾. 所以0ka >.所以当'()1e 0t h t ka =-=时,1ln t ka=. 所以函数()h t 在1(,ln)ka -∞上递增,在1(ln ,)ka+∞上递减. 记函数()h t 有图象关于直线1ln t ka=对称后是()y m t =函数的图象. 有111()(2ln)2ln e t m t h t t ka ka ka-=-=--⋅. 则11()()2lne 2e t t m t g t ka t ka ka --=+⋅--⋅. 1[()()]e e 20t tm t g t ka ka-'-=⋅+⋅-≥. 所以1lnt ka≥时,()()m t g t ≥.所以1212lnt t ka -≥,即1212ln t t ka+≤. 所以121ln()ln()2ln x a x a ka +++≤.12221()()x a x a k a++≤. 所以21212222211()x x a x x a k a k a++<-<. 例3.(第13讲双变量问题-2022年新高考数学二轮专题突破精练)已知函数221()2ln (0)2f x ax x a x a =-+≠(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:121212()()11f x f x x x x x -<+-【答案】(1)答案不唯一,具体见解析 (2)证明见解析 【解析】 【分析】(1)函数()f x 求导后,分子为含参的二次三项式,结合0a ≠,我们可以从0∆…和0∆>结合开口方向和两根的大小来讨论;(2)1x ,2x 为函数()f x 的两个极值点,我们可以通过()f x '结合韦达定理,找到1x ,2x 的关系,带入到要证明的不等式中,然后通过整理,化简成一个关于12x x 的函数关系,再通过换元,构造函数,通过求解函数的值域完成证明. (1)22222()1a ax x a f x ax x x-+'=-+=,设22()2p x ax x a =-+.(0)x >,318a ∆=-,①当12a …时,0∆…,()0p x …,则()0f x '…,()f x 在(0,)+∞上单调递增, ②当102a <<时,0∆>,()p x 的零点为311182a x a -=,321182ax a-=,且120x x <<,令()0f x '>,得10x x <<,或2x x >,令()0f x '<,得12x x x <<,()f x ∴在3118(a --3118)a +-上单调递减,在3118(0,)2a a-,3118(a +-,)∞+单调递增,③当0a <时,0∆>,()p x 3118a--,()f x ∴在3118a --上单调递增,在3118(a --,)∞+上单调递减.综上所述:当12a …时,()f x 在(0,)+∞上单调递增;当102a <<时,()f x 在3118(a --3118a +-上单调递减,在3118a --,3118(a +-,)∞+单调递增;当0a <时,()f x 在3118)a --上单调递增,在3118(a --,)∞+上单调递减. (2)证明:由(1)知,当102a <<时,()f x 存在两个极值点, 不妨设120x x <<,则121x x a +=, 要证:121212()()11f x f x x x x x -<+-,只要证121212121221()()()()x x x x x xf x f x x x x x -+->=-,只需要证211212122211()[()2]2ln 2xxxx x a x x a x x x -+-+>-,即证21121222112ln ()2x x x a x x x x x -+>-,设12x t x =,(01)t <<, 设函数21()2ln g t a t t t =-+,22221()t a t g t t -+∴'=-,∴4440a ∆=-<,22210t a t ∴-+>, ()0g t ∴'<,()g t ∴在(0,1)上单调递减,则()(1)g t g >0=,又121()02x x -<, 则121()0()2g t x x >>-,则21121222112ln ()2x x x a x x x x x -+>-,从而121212()()11f x f x x x x x -<+-. 【点睛】(1)含参的二次三项式再进行分类讨论的时候,如果二次项含参数,在讨论有根无根的情况下要兼顾到开口方向以及两根大小的比较;(2)如果函数()f x 在求导完以后,是一个分子上含有二次三项式,不含指数、对数的式子,那么函数()f x 的极值点关系,可以使用韦达定理来表示.过关测试1.(四川省成都市树德中学2021-2022学年高三上学期入学考试文科数学试题)已知函数()2ln x x f x ax x =--,a R ∈.(1)若()f x 存在单调递增区间,求a 的取值范围;(2)若1x ,()212x x x <与为()f x 的两个不同极值点,证明:124ln ln 3x x +>. 【答案】(1)1,2e ⎛⎫-∞ ⎪⎝⎭;(2)证明见解析.【解析】 【分析】(1)由题意知()ln 20f x x ax '=->有解,分离a 可得ln 2x a x <有解,令()ln 2xg x x=,可得max ()a g x <,利用导数求()g x 的最大值即可求解;(2)由题意知1x ,2x 是()0f x '=的两根,将1x x =,2x x =代入()0f x '=整理可得1212ln ln 2x x a x x -=-,所证明不等式为()1212123ln4x x x x x x -<+12123141x xx x ⎛⎫- ⎪⎝⎭=+,令12x t x =,01t <<问题转化为证明3(1)()ln 0(01)41t t t t t ϕ-=-<<<+成立,利用导数证明单调性求最值即可求证. 【详解】(1)函数定义域为()0,∞+,根据题意知()ln 20f x x ax '=->有解, 即ln 2x a x <有解,令()ln 2xg x x=,()21ln 2x g x x -'=, 且当0e x <<时,()0g x '>,()g x 单调递增, 当e x >时,()0g x '<,()g x 单调递减, 所以max 1()(e)2e a g x g <==,所以1,2e a ⎛⎫∈-∞ ⎪⎝⎭;(2)由1x ,2x 是()f x 的不同极值点,知1x ,2x 是()0f x '=的两根,即1122ln 20ln 20x ax x ax -=⎧⎨-=⎩,所以1122ln 2ln 2x ax x ax =⎧⎨=⎩①, 联立可得:1212ln ln 2x x a x x -=-②,要证124ln ln 3x x +>,由①代入即证124223ax ax ⋅+>,即()12243a x x +>,由②代入可得()121212ln ln 43x x x x x x -+>-③, 因为12x x <,则③等价于()1122112122313ln 441x x x x x x x x x x ⎛⎫- ⎪-⎝⎭<=++, 令12x t x =,01t <<问题转化为证明3(1)()ln 0(01)41t t t t t ϕ-=-<<<+④成立, 而2221151671()0(01)(41)(41)t t t t t t t t ϕ-+'=-=><<++, ()t ϕ在()0,1上单调递增,当()0,1t ∈,()()10t ϕϕ<=④成立,即得证.2.(浙江省宁波市2021-2022学年高三上学期11月高考模拟考试数学试题)已知函数()ln 2()f x x x x a =+∈R .(1)当2a =-时,求函数()f x 的单调区间; (2)若函数()f x 有两个不同零点1x ,212()x x x <, ①求实数a 的取值范围;②求证:22124a x x ⋅>.【答案】(1)单调递增区间是1(0,)4,单调递减区间是1(,)4+∞(2)①2a >;②证明见解析 【解析】 【分析】(1)求出导函数()'f x ,由()0f x '>得增区间,由()0f x '<得减区间; (2)①函数()f x 有两个不同零点1212,()x x x x <,等价于方程2ln 2xa x x=有两个不同的实根1212,()x x x x <.设t x =ln 2a t t t=-有两个不同的实根()1212,t t t t <. 设ln ()(0)tg t t t t=->,由导数确定()g t 的单调性、极值、函数值的变化趋势后可得; ②由①11t x =22t x =要证22124a x x ⋅>,只需证2122a t t ⋅>.由①知,1201t t <<<,故有2222ln 2t a t t t =-<,即22at >.下面证明:121t t ⋅>即可.引入函数()()2221()h t g t g t =-,由导数证明()221()0g t g t ->,利用单调性即可得结论. (1)对函数()f x 求导,得142'()22a x a x f x x x -++=+= 当2a =-时,422(1)(21)'()x x x x f x --+-+-==, 因为函数()f x 的定义域(0,)+∞, 由'()0f x >,得104x <<, 由'()0f x <,得14x >, 所以函数()f x 的单调递增区间是1(0,)4,单调递减区间是1(,)4+∞.(2)由()0f x =,得ln 20x a x x +=, ①函数()f x 有两个不同零点1212,()x x x x <, 等价于方程2ln 2xa x x=有两个不同的实根1212,()x x x x <. 设t x =ln 2a t t t=-有两个不同的实根()1212,t t t t <. 设ln ()(0)tg t t t t=->, 2221ln ln 1'()1t t t g t t t-+-=-=, 再设2()ln 1u t t t =+-,1'()20u t t t =+>所以函数()u t 在(0,)t ∈+∞上单调递增, 注意到2(1)1ln110u =+-=,所以当01t <<时,()0u t <,当1t >时,()0u t >. 所以()g t 在(0,1)上单调递减,在(1,)+∞上单调递增. 当0t +→时,()g t →+∞, 当t →+∞时,()g t →+∞, 当1t =时,()1g t =, 只需12a>, 即所求2a >.②注意到11t x =22t x =22124a x x ⋅>,只需证2122a t t ⋅>.由①知,1201t t <<<,故有2222ln 2t a t t t =-<,即22a t >. 下面证明:121t t ⋅>.设()()222222222222221lnln 1111()()()()ln 1t t h t g t g t t t t t t t t t t =-=---=--+, 有()22222222222211111'1(1)ln ()(1)ln 0h t t t t t t t t t =+---+⋅=--<, 所以函数()2h t 在(1,)+∞上单调递增, 所以()2(1)0h t h >=,所以()221()0g t g t ->,故有()()2121()g g t g t t <=.又2101t <<,101t <<,且()g t 在(0,1)t ∈上单调递减,所以121t t >,即得121t t ⋅>.因此2122at t ⋅>,结论得证. 3.(安徽省合肥市第一中学2021-2022学年高三上学期11月月考理科数学试题)已知函数()()e cos x f x x ax a R =+-∈.(1)当1a =时,判断()f x 在区间(0,)+∞上的单调性;(2)当e a =时,若()()()121212,(0,),x x x x f x f x π∈≠=,且()f x 的极值在0x x =处取得,证明:1202x x x +<. 【答案】(1)()f x 在(0,)+∞上是增函数. (2)证明见解析. 【解析】 【分析】(1)求出导函数()'f x ,设()()g x f x '=,再求导()g x ',由()0g x '>恒成立得()'f x 单调递增,得()(0)0f x f ''>=,从而得()f x 的单调性;(2)利用导数得出()f x 的极小值点0x ,注意0()0f x '=,题设中12()()f x f x =,满足1020x x x π<<<<,考虑到0102x x x ->,引入新函数0()()(2)h x f x f x x =--,00x x <<,利用导数确定()h x 是单调增函数,得0()()0h x h x <=,即得101()(2)f x f x x <-,再利用12,x x 的关系,及函数()f x 的单调性可证得结论成立.(1),()0x ∈+∞,1a =时,()cos e x f x x x =+-,()sin 1e x f x x '=--,设()sin e 1x g x x =--,则()cos 0e x g x x '=+>,0x >时,()0g x '>恒成立,所以()g x ,即()'f x 在(0,)+∞上单调递增,又(0)0f '=,所以0x >时,(0)0f '>恒成立, 所以()f x 在(0,)+∞上是增函数. (2)e a =,()cos e e xf x x x =+-,s e ()in e x f x x '=--,由(1)知()'f x 在(0,)+∞上是增函数,(1)sin10f '=-<,e e ()0f ππ'=->,所以()'f x 在(1,)π,即在(0,)π上存在唯一零点0x ,000()s n e e i 0xf x x '=--=,00x x <<时,()0f x '<,()f x 递减,0x x π<<时,()0f x '>,()f x 递增.0x 是函数()f x 的唯一极小值点.若()()()121212,(0,),x x x x f x f x π∈≠=,则1020x x x π<<<<, 设0()()(2)h x f x f x x =--,00x x <<,02000e ()()(2)cos cos(2)e e (2)e x x x h x f x f x x x x x x x x -=--=+------ 0200cos cos e (2e e 2)x x x x x x x -=-+---,020e e sin sin(2)()x x x x x h x x -+-+-'=00200sin s e e e sin sin in(2)2(2)x x x x x x x x x x -≥+---=⋅+由000()s n e e i 0xf x x '=--=得00si e e n x x =+,所以00e 2sin sin sin(2()2)x x x x h x +-+-'≥,由00x x π<<<,得00sin 1x <≤,0sin 1x <≤,又01sin(2)1x x -≤-≤, 所以e+0()21(1)0h x '>-+->,所以()h x 是增函数, 当100x x <<时,10()()0h x h x <=,所以101()(2)0f x f x x --<,101()(2)f x f x x <-,又2101()()(2)f x f x f x x =<-,1020x x x <<<,所以0102x x x ->,又20x x >,()f x 在0(,)x +∞上单调递增,所以2012x x x <-,所以1202x x x +<. 【点睛】本题考查用导数研究函数的单调性,证明与极值点,方程根有关的不等式,关于不等式的证明,题中涉及到两个未知数,因此解题中需要进行变形,一是利用函数的单调性,一是利用变量的关系,可以对待证不等式进行等价转化,结合函数单调性得出证明方法.如本题要证1202x x x +<2012x x x ⇔<-,不妨设1020x x x <<<后,由()f x 在2(,)x +∞上递增,等价于证明201()(2)f x f x x <-,从而等价于101()(2)f x f x x <-,这里只有一个未知数1x 了,然后引入新函数0()()(2)h x f x f x x =--,00x x <<,再求得单调性达到证明目的.4.(第12讲双变量不等式:剪刀模型-突破2022年新高考数学导数压轴解答题精选精练)已知函数()(1)(1)x f x x e =+-.(1)求()f x 在点(1-,(1))f -处的切线方程;(2)若1a e -…,证明:()22f x alnx ex +-…在[1x ∈,)∞+上恒成立; (3)若方程()f x b =有两个实数根1x ,2x ,且12x x <,证明:2111311b e ebx x e e ++-++--…. 【答案】(1)1(1)ey x e-=+ (2)证明见解析 (3)证明见解析 【解析】 【分析】(1)根据导数的几何意义求解即可;(2)根据题意只需证()(1)22f x e lnx ex -+-…,构造函数()(1)(1)(1)22x g x x e e lnx ex =+----+,求导分析函数的单调性根据单调性分析可得()g x 只能在1x =处取得最小值,进而求解即可; (3)根据题意,构造1()()(1)eF x f x x e-=-+和()()()G x f x t x =-,利用二次求导讨论()F x 和()G x 的单调性和最小值,可得1()(1)ef x x e-+…、()(31)1f x e x e ---…,设方程1()(1)e s x x b e -=+=的根1x '和()(31)1t x e x e b =---=的根2x ',再根据不等式的性质证明即可. (1)函数()(1)(1)x f x x e =+-,由()(2)1x f x x e '=+-, 由1(1)1f e'-=-,(1)0f -=,所以切线方程为1(1)ey x e-=+, (2)当[1x ∈,)∞+时,0lnx …,所以22(1)22alnx ex e lnx ex +--+-…. 故只需证()(1)22f x e lnx ex -+-…, 构造()(1)(1)(1)22x g x x e e lnx ex =+----+,1()(2)12x e g x x e e x-'=+---, 又()g x '在[1x ∈,)∞+上单调递增,且g '(1)0=, 知()g x 在[1x ∈,)∞+上单调递增, 故()g x g …(1)22220e e =--+=. 因此(1)(1)(1)2222x x e e lnx ex alnx ex +--+-+-厖,得证. (3)由(1)知()f x 在点(1-,(1))f -处的切线方程为1(1)ey x e-=+.构造11()()(1)(1)()x e F x f x x x e e e -=-+=+-,1()(2)x F x x e e'=+-,()(3)x F x x e ''=+. 当3x <-时,()0F x ''<;当3x >-时,()0F x ''>; 所以()F x '在(,3)-∞-上单调递减,在(3,)-+∞上单调递增. 又311(3)0F e e'-=--<,1lim ()x F x e →-∞'=-,(1)0F '-=,所以()F x 在(,1)-∞-上单调递减,在(1,)-+∞上单调递增.所以1()(1)0()(1)eF x F f x x e--=⇒+厖. 设方程1()(1)es x x b e -=+=的根111eb x e'=--.又111()()()b s x f x s x '==…,由()s x 在R 上单调递减,所以11x x '…. 另一方面,()f x 在点(1,22)e -处的切线方程为()(31)1t x e x e =---. 构造()()()(1)(1)(31)1(1)3x x G x f x t x x e e x e x e ex e =-=+---++=+-+. ()(2)3x G x x e e '=+-,()(3)x G x x e ''=+.当3x <-时,()0G x ''<;当3x >-时,()0G x ''>;所以()G x '在(,3)-∞-上单调递减,在(3,)-+∞上单调递增. 又31(3)30G e e'-=--<,lim ()3x G x e →-∞'=-,G '(1)0=, 所()G x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.所以()G x G …(1)0()()(31)1f x t x e x e =⇒=---…. 设方程()(31)1t x e x e b =---=的根2131e bx e ++'=-. 又222()()()b t x f x t x '==…,由()t x 在R 上单调递增, 所以22x x '…. 11x x '…,22x x '…, 11x x '∴--…, 所以212111311b e ebx x x x e e ++''--++--剟,得证. 【点睛】破解含双参不等式证明题的3个关键点(1)转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式. (2)巧构造函数,再借用导数,判断函数的单调性,从而求其最值.(3)回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. 5.(第26讲拐点偏移问题-突破2022年新高考数学导数压轴解答题精选精练)已知函数21()ln (1)2f x x ax a x =-+-,a R ∈.(1)讨论()f x 的单调性;(2)当2a =-时,正实数1x ,2x 满足1212()()0f x f x x x ++=,证明:1214x x +>. 【答案】(1)答案见解析 (2)证明见解析 【解析】 【分析】(1)求导,然后分0a …和0a >讨论导函数的正负值即可;(2)代入12,x x 可得2211122212ln 3ln 30x x x x x x x x ++++++=,变形可得212121212()3()ln()x x x x x x x x +++=-,令12t x x =,利用导数求出()ln g t t t =-的最值,然后解不等式,比较大小即可. (1)21()ln (1)2f x x ax a x =-+-,a R ∈,21(1)1()(1)ax a x f x ax a x x-+-+∴'=-+-=, 当0a …时,0x >,()0f x ∴'>.()f x ∴在(0,)+∞上是递增函数, 即()f x 的单调递增区间为(0,)+∞,无递减区间.当0a >时,1()(1)()a x x af x x-+'=-,令()0f x '=,得1x a =. ∴当1(0,)x a ∈时,()0f x '>;当1(x a ∈,)∞+时,()0f x '<.()f x ∴的单调递增区间为1(0,)a ,单调递减区间为1(a ,)∞+.综上,当0a …时,()f x 的单调递增区间为(0,)+∞,无递减区间;当0a >时,()f x 的单调递增区间为1(0,)a ,单调递减区间为1(a ,)∞+.(2)当2a =-时,2()ln 3f x x x x =++,(0)x > 正实数1x ,2x 满足1212()()0f x f x x x ++=,2211122212ln 3ln 30x x x x x x x x ⇒++++++=,212121212()3()ln()x x x x x x x x ⇒+++=-,令12t x x =,则函数()ln g t t t =-,(0)t >,11()1t g t t t-∴'=-=,当(0,1)t ∈时,()0g t '<,当(1,)t ∈+∞时,()0g t '>,()g t g ∴…(1)1=,212121212()3()ln()1x x x x x x x x ∴+++=-….则12133x x -+…12133x x --+…舍去). 12133x x -∴+…1331213752494----, 1214x x ∴+>【点睛】关键点点睛:对于双变量问题,我们要通过变形和换元转化为单变量问题,然后构造函数解决. 6.(第12讲双变量不等式:剪刀模型-突破2022年新高考数学导数压轴解答题精选精练)已知函数()e 1x f x ax =-+,ln3是()f x 的极值点.(1)求a 的值;(2)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线为直线l .求证:曲线()y f x =上的点都不在直线l 的上方;(3)若关于x 的方程()(0)f x m m =>有两个不等实根1x ,212()x x x <,求证:217210mx x -<-. 【答案】(1)3 (2)证明见解析 (3)证明见解析 【解析】 【分析】(1)利用导数的几何意义即可求解;(2)由(1)可得曲线()y f x =在点P 处的切线l :()()003e x y x x =--. 令()()()003e xg x x x =--,()()()F x f x g x =-,则()()()0000F x f x g x =-=,由()F x 的单调性可得()()00F x F x ≤=,从而可得结论成立;(3)设方程()g x m =的解为2x ',构造新函数()2()e 1x r x x f x x =-=--,(0)x >,利用导数研究函数的单调性,进而可得()(0)0r x r >=,结合2y x =与y m =交点的横坐标12mx '=,求出21x x -即可. (1)()e x f x a '=-;由题意知,ln3(ln3)e 0f a '=-=,3a ∴=;(2)证明:设曲线()y f x =在0(P x ,0)处切线为直线00:(3e )()x l y x x =--;令00()(3e )()x g x x x =--;00()()()3e 1(3e )()x x F x f x g x x x x =-=-+---;∴0()3e (3e )e e x x x x F x '=---=-;()F x ∴在0(,)x -∞上单调递增,在0(x ,)∞+上单调递减;000()()()()0max F x F x f x g x ∴==-=;()()()0F x f x g x ∴=-…,即()()f x g x …,即()y f x =上的点都不在直线l 的上方;(3)由(2)设方程()g x m =的解为2x '; 则有020(3e )()x x x m -'-=,解得0203e x mx x '=+-; 由题意知,22ln 3x x <<';令()2()e 1x r x x f x x =-=--,(0)x >;()e 10x r x '=->;()r x ∴在(0)+∞,上单调递增; ()(0)0r x r ∴>=;2y x ∴=的图象不在()f x 的下方;2y x =与y m =交点的横坐标为12mx '=; 则有1103x x ln <'<<,即11220ln3x x x x <'<<<<';2121023ex m mx x x x x ∴-<'-'=+--; 关于0x 的函数023e x m my x =+--在(32)ln ,上单调递增; 21272223e 227210m m m m mx x ∴-<+-<+-=---. 【点睛】利用导数解决函数综合问题的过程中,难度较大,解决问题的基础是函数的单调性,通过函数的单调性得到函数的极值、最值,然后再结合所求问题逐步求解.证明两函数图象间的位置关系时,可通过构造函数,通过判断出函数的单调性,进而转化为函数最值的问题处理.7.(第13讲双变量问题-2022年新高考数学二轮专题突破精练)已知函数()2ln f x x x ax =+,0a ≥.(1)若曲线()y f x =在e x =处的切线在y 轴上的截距为e -,求a 的值;(2)证明:对于任意两个正数1x 、()212x x x ≠,()()121222x x f f x f x +⎛⎫<+ ⎪⎝⎭.【答案】(1)0a =; (2)证明见解析. 【解析】 【分析】(1)求出曲线()y f x =在e x =处的切线方程,由已知条件可得出关于a 的等式,即可求得实数a 的值;(2)利用分析法可知所证不等式等价于()222121212112212ln 2ln ln 22x x x x x x a x x x x ax ax ++⎛⎫++<+++ ⎪⎝⎭,利用作差法可证得222121222x x a ax ax +⎛⎫≤+ ⎪⎝⎭,构造函数()()1111ln ln ln 2x x g x x x x x x x +=+--,利用导数分析函数()g x 的单调性,可证得()12121122lnln ln 2x x x x x x x x ++<+,再利用不等式的基本性质可证得结论成立. (1)解:由()2ln f x x x ax =+,得()2ln 1f x ax x '=++,则()e 2e 2f a '=+,又()2e e e f a =+,∴曲线()y f x =在e x =处的切线的方程为()()22e 2e e e y a x a =+-++,即()22e 2e e y a x a =+--,由题意得2e e e a --=-,解得0a =.(2)证明:要证明()()121222x x f f x f x +⎛⎫<+ ⎪⎝⎭成立,即证明()222121212112212ln 2ln ln 22x x x x x x a x x x x ax ax ++⎛⎫++<+++ ⎪⎝⎭,一方面,()()222121222221212122222x x a x x x x a ax ax a x x ⎡⎤+-+⎛⎫--=--=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 0a ≥,则()21202a x x --≤,即222121222x x a ax ax +⎛⎫≤+ ⎪⎝⎭,①另一方面,不妨设12x x <,再设()()1111ln ln ln 2x xg x x x x x x x +=+--, 则()11lnln ln 22x x x xg x x x++'=-=,可得()10g x '=, 当1x x >时,()0g x '<,此时()g x 单调递减, ()()210g x g x ∴<=,即()12121122lnln ln 2x x x x x x x x ++<+,② 综合①②可得,()()121222x x f f x f x +⎛⎫<+ ⎪⎝⎭.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.。
导数压轴-双变量问题的探讨
引言导数中有一类问题涉及到两个变量,例如m 和n 、a 和b 、1x 和2x 。
显然涉及两个变量的问题我们是不会处理的,如何把两个变量转化为一个变量就成了我们问题解决的关键。
方法点睛方法一:也是最核心、最常见的方法。
就是进行式子齐次化,进行了齐次化后可以将12x x 或者12x x -作为单元,这样就达到了减元的目的。
方法二:一般可以通过联立12,x x 的等式,通过对两式进行相加(相减)等操作,对所求式等进行化简。
方法三:对于等价双变量不等式问题,我们先令如12x x >,再通过适当的变形,使得等式两边均只含有一个变量,且形式相同,这样我们可以令这个相同的形式为()g x ,问题也许就转化成了()g x 的单调性问题。
还有其他的一些方法技巧性较强,我们在后面的题目中进行详细剖析。
例题讲解【例题1】已知函数(1)()ln 1a x f x x x -=-+. (Ⅰ)若函数()f x 在(0,)+∞上为单调增函数,求a 的取值范围 (Ⅱ)设m ,n +∈R ,且m n ≠,求证:ln ln 2m n m nm n -+<- 对话与解答:(Ⅰ)2a ≤(Ⅱ)不妨设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,也就是证明第六课:关于导数中双变量问题的探讨21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立。
令,1m t t n =>,即证()()21ln 01t g t t t -=->+。
运用(Ⅰ)的结论,()g t 在()0+∞,上单调递增,故()()10g t g >=,不等式得证。
本题我们用到方法一。
看到解答,你可能会觉得将()2m n m n -+处理成211m n m n⎛⎫- ⎪⎝⎭+真是神来之笔,也是解决整个问题的关键。
那么这个处理究竟有没有思路可循呢?当然是有的,不难发现()2ln m n mm n n-<+的右边已经出现了m n 的形式,同时右边分子分母都死其次式,如果一开始就有“转化成一个变量”的思想,就会迅速锁定mn整体换元。
破解双变量不等式问题的两个“妙招”
思路探寻而t =x +x 2+y 2>0,所以t ≥45.当t =45时,x =310,y =25,符合题意,故选A.我们引入新元t ,通过等量代换构造关于y 的一元二次方程,即可根据方程有解的必要条件,利用Δ≥0建立不等式,利用判别式法求得t 的取值范围.四、利用解析几何知识求解在解答代数问题受阻时,我们不妨转换思考问题的角度,从代数式的几何意义入手,利用解析几何知识来解题.一般地,可将y =x 看作一条直线,将y =x 2+k 看作一条抛物线,将x 2+y 2=1看作一个圆,构造出几何图形.这样便可通过研究直线、曲线、圆的方程及其位置关系,确定目标式取最值的情形,从而求得目标式的最值.解:因为x ,y >0,2x +y =1,所以该式可看作一条直线的方程,设z =x +x 2+y 2,该式可看作直线2x +y =1上在第一象限的点P (x ,y )到y 轴的距离d 与原点的距离之和.设原点关于直线2x +y =1的对称点的坐标为O 1(m ,n ),由此可以得到如下的方程组:ìíîïïïï2⋅m +02+n +02-1=0,(-2)⋅n -0m -0=-1,解得ìíîïïïïm =45,n =25,所以O 1()45,25.由图形的对称性可得,|PO 1|=|PO|,所以z =|PO 1|+d ,所以当PO 1⊥y 轴时z 最小,故当且仅当x =310,y =25时,z min =45.故选A.我们从代数式的几何意义入手,将2x +y =1看作一条直线,将z =x +x 2+y 2看作直线2x +y =1上在第一象限的点P (x ,y )到y 轴的距离d 与原点的距离之和,便将问题转化为解析几何问题,利用点关于直线的对称性、直线之间的垂直关系求得目标式的最值.总之,求解多元最值问题,需运用发散性思维,将问题与所学的知识关联起来,寻找各个知识点与问题中式子、数量之间的契合点,从不同角度进行分析、思考,以获得不同的解题方案.(作者单位:江苏省盐城市射阳县高级中学)双变量不等式问题是近几年高考试题中的“常客”,且常以压轴题的形式出现,这类问题的难度一般较大,侧重于考查函数的单调性、导数与函数单调性之间的关系、不等式的性质等.解答双变量不等式问题,往往需通过构造同构式、指定主元,才能将问题转化为常规的单变量不等式问题,以利用函数、导数、不等式的性质顺利求得问题的答案.一、构造同构式在解答双变量不等式问题时,我们可先将不等式进行适当的变形,使不等号两边式子的结构相同或相似;然后根据其特征,构造函数模型,将双变量看作函数的两个自变量;再根据函数单调性的定义、导数与函数单调性之间的关系判断出函数的单调性,即可根据函数的单调性求得函数的最值,从而证明不等式成立.例1.已知f (x )=12x 2-ax +(a -1)ln x ,其中1<a <5,证明:对于任意的x 1,x 2∈(0,+∞),x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>-1.证明:设x 1>x 2,函数g (x )=f (x )+x ,由f (x )=12x 2-ax +(a -1)ln x 可得:g (x )=12x 2+(1-a )x +(a -1)ln x ,对g (x )求导得g '(x )=x +a -1x-(a -1),50而x +a -1x-(a -1a -1)=1-(a -1-1)2,因为1<a <5,所以g '(x )>0,所以g (x )在定义域内单调递增,又因为x 1>x 2,所以g (x 1)>g (x 2).所以f (x 1)+x 1>f (x 2)+x 2,则f (x 1)-f (x 2)x 1-x 2>-1.同理可证当x 1<x 2时,f (x 1)-f (x 2)x 1-x 2>-1.我们先将不等式f (x 1)-f (x 2)x 1-x 2>-1化为f (x 1)+x 1>f (x 2)+x 2,即可构造出同构式,据此构造出函数g (x )=f (x )+x ,转而将双变量不等式问题转化为单变量函数g (x )的单调性问题,利用导数与函数单调性之间的关系判断出函数的单调性,即可证明不等式.例2.已知函数f (x )=ln x +x 2-3x ,对于任意的x 1,x 2∈[1,10],当x 2>x 1时,不等式f (x 1)-f (x 2)>m (x 2-x 1)x 1x 2恒成立,求实数m 的取值范围.解:将f (x 1)-f (x 2)>m (x 2-x 1)x 1x 2变形可得f (x 1)-m x 1>f (x 2)-m x 2,设函数h (x )=f (x )-m x ,即h (x )=ln x +x 2-3x -mx,求导得h '(x )=1x +2x -3+m x2≤0,将其变形可得关于m 的不等式m ≤-2x 3+3x 2-x .设函数F (x )=-2x 3+3x 2-x ,求导得F '(x )=-6x 2+6x -1=-6(x -12)2+12<0,可知函数F (x )在[1,10]上单调递减,所以F (x )min =F (10)=-1710,即m ≤-1710,所以参数m 的取值范围为(-∞,-1710].先将目标不等式f (x 1)-f (x 2)>m (x 2-x 1)x 1x 2变形,构造出同构式和函数h (x )=f (x )-m x,即可将问题转化为关于单变量x 的函数最值问题.值得注意的是,在求最值时,不仅运用到了分离参数法,还用到了导数法.若无法直接求得参数的范围,就可以考虑对参数进行适当的变形,将其与题目中的条件相联系,把问题转变为求某一个函数的最值问题,这样可使解题思路柳暗花明.二、指定主元对于双变量不等式问题,往往可根据已知条件和解题需求,指定其中一个变量为主元,根据两变量之间的联系,将问题转化为关于该主元的不等式问题来求解.通常可将已知取值范围或已知关系式的变量指定为主元,通过研究主元的范围、变化规律、最值来探究另一个变量的取值范围.例3.对于任意n ∈N *,恒有(1+1n)2n +a ≤e 2,求实数a 的最大值.解:在(1+1n)2n +a ≤e 2的两边同时取对数,可得(n +a 2)ln(1+1n )≤1.由1+1n >1,可得a 2≤1ln(1+1n)-n ,设g (x )=1ln(x +1)-1x (x ∈(]0,1),则g '(x )=(1+x )[ln (1+x )]2-x 2x 2(1+x )[ln (1+x )]2.设h (x )=(1+x )[ln (1+x )]2-x 2(x ∈(]0,1),则h '(x )=[ln (1+x )]2+2ln(1+x )-2x ,h ″(x )=2[ln(1+x )-x ]1+x.再设f (x )=ln(1+x )-x ,则f '(x )=11+x-1<0,从而可知f (x )在(]0,1上单调递减,所以f (x )<f (0)=0,所以h (x )在(]0,1上单调递减,从而可知h (x )<h (0)=0,所以g '(x )<0,所以g (x )在(]0,1上单调递减,所以g (x )≥g (1)=1ln2-1,即a 2≤1ln2-1,所以实数a 的最大值为2ln2-2.我们将n 看作主元,通过分离参变量,将a 用含n 的函数式表示出来.再构造函数,通过研究其导数,判断出函数的单调性,求得函数的最值,进而求得参数的取值范围.虽然双变量不等式问题较为复杂,但我们只要能根据不等式的结构特征构造出同构式,或结合题意指定合适的主元,便能将问题转化为简单的单变量单调性、最值问题,利用函数的单调性、导数的性质来解题,快速求得问题的答案.(作者单位:江苏省东台中学)思路探寻51。
(完整版)再次例谈导数压轴题中双变量问题的常用解法
再次例谈导数压轴题中双变量问题的常用解法长沙市明达中学吴祥云今日在“玩转高中数学交流群”中,由河南的贾老师提供一常规题,很多老师作出了不同的解答,我在这里把它们总结起来,供大家交流学习。
题目虽然简单,但是方法的讲述由浅入深,学生会更容易接受一些。
闲话少说,先上题:已知函数f(x)=xe x,f(x1)=f(x2),x1≠x2,求证:x1+x2>2.解析:f′(x)=1−xe x,易得 f(x)在(−∞,1)递增,(1,+∞)递减,其图像如图,为了更好的看图,横纵轴单位长度取得不同,不妨设0<x1<1<x2,以下是几种不同的证明思路:思路一:(极值点偏移问题+构造对称函数)令g(x)=f(2−x)−f(x),(0<x<1)则g′(x)=(1−x)e x−e2−xe x e2−x<0,则g(x)在(0,1)递减∴g(x)>g(1)=0,即f(2−x)>f(x),∴f(2−x1)> f(x1)=f(x2),又2−x1>1,x2>1,f(x)在(1,+∞)递减,∴2−x1<x2,即x1+x2>2。
思路二:(极值点偏移+对数平均不等式)f(x1)=f(x2)⇒x1e x1=x2e x2⇒lnx1−x1=lnx2−x2⇒lnx1−lnx2=x1−x2⇒x1−x2lnx1−lnx2=1,由对数平均不等式x1−x2lnx1−lnx2<x1+x22(证明略),得x1+x22>1,即x1+x2>2。
思路三:(差值消元)令x2−x1=t>0,x1e x1=x2e x2⇒x2x1=e x2e x1=e x2−x1=e t⇒x1=te t−1,x2=te t−1+t,∴x1+x2=2te t−1+t,欲证x1+x2>2即证2te t−1+t<2即e t(2−t)2+t<1,令g(t)=e t(2−t)2+t,则g′(t)=e t(−t2)(2+t)2<0,故g(t)在(0,+∞)递减,点评:构造对称函数为极值点偏移问题的通法。
双变量任意,存在性导数问题
值域法破解双变量压轴题的四种情形1基本原理.第1类.“任意=存在”型2211,D x D x ∈∃∈∀,使得)()(21x g x f =,等价于函数)(x f 在1D 上上的值域A 是函数)(x g 在2D 上的值域B 的子集,即B A ⊆.其等价转化的基本思想:函数)(x f 的任意一个函数值都与函数)(x g 的某一个函数值相等,即)(x f 的函数值都在)(x g 的值域之中.此类型出现频率最高.第2类.“存在=存在”型2211,D x D x ∈∃∈∃,使得)()(21x g x f =,等价于函数)(x f 在1D 上的值域A 与函数)(x g 在2D 上的值域B 的交集不为空集,即∅≠⋂B A .其等价转化的基本思想:两个函数有相等的函数值,即它们的值域有公共部分.第3类.“任意≥(≤、>、<)任意”型2211,D x D x ∈∀∈∀,使得)()(21x g x f ≥恒成立等价于max min )()(x g x f ≥.其等价转化的基本思想是函数)(x f 的任何一个函数值均大于函数)(x g 的任何一个函数值.同理,可得其他类型.第4类.m x f x f b a x x ≤-∈∀|)()(|],,[,2121型.由于闭区间上连续函数必有最值,故此类转化为m x f x f ≤-|)()(|min max ,解决掉双变量转化为求最值.2.典例分析第1类问题问题应用.例1.已知函数()()ln f x ax x a R =+∈.(1)若1a =,求曲线()y f x =在1x =处切线方程;(2)讨论()y f x =的单调性;(3)12a ≥-时,设()222g x x x =-+,若对任意[]11,2x ∈,均存在[]20,3x ∈,使得()()12f x g x =,求实数a 的取值范围.解析:(2)()f x 定义域为()0,∞+,()1'1ax a x f xx +=+=,当0a ≥时,()'0f x >恒成立,所以()f x 在()0,∞+上单调递增;当0a <时,10,x a ⎛⎫∈- ⎪⎝⎭时()'0f x >恒成立,1,x a ⎛⎫∈-+∞ ⎪⎝⎭时()'0f x <恒成立,所以()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减;综上述,当0a ≥时,()f x 在()0,∞+上单调递增;当0a <时,()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(3)由已知,转化为()f x 在[]1,2x ∈的值域M 和()g x 在[]0,3x ∈的值域N 满足:M N ⊆,易求[]1,5N =.又()1'1ax a x f xx +=+=且12a ≥-,()f x 在[]1,2x ∈上单调递增,故值域[],2ln 2M a a =+.所以152ln 2a a ≤⎧⎨≥+⎩,解得5ln 212a -≤≤,即5ln 21,2a -⎡⎤∈⎢⎥⎣⎦.第2类问题应用例2.已知曲线()y ln x m =+与x 轴交于点P ,曲线在点P 处的切线方程为()y f x =,且2)1(=f .(1)求()y f x =的解析式;(2)求函数()()xf xg x e =的极值;(3)设2(1)1()ln x a lnx h x x +-+=,若存在实数1[1x ∈,]e ,12[x e -∈,1],使得21222222()(1)h x x ln x a x lnx x <+-+成立,求实数a 的取值范围.解析:(1)曲线()y ln x m =+与x 轴交于点(1,0)P m -,1y x m'=+,∴曲线在点P 处的切线斜率111k m m==-+,可得切线方程为0(1)y x m -=--,f (1)2=,21(1)m ∴=--,解得2m =.()(12)y f x x ∴==--,即()1f x x =+.(2)函数()1()x x f x x g x e e +==,()x xg x e-'=,0x ∴>时,()0g x '<,此时函数()g x 单调递减;0x <时,()0g x '>,此时函数()g x 单调递增.0x ∴=是函数()g x 的极大值点,(0)1g =.(3)设21x m =,12[x e -∈ ,1],则[1m ∈,]e ,2222222(1)1(1)ln m a lnm x ln x a x lnx x m +-++-+=.2(1)1()ln x a lnx h x x +-+= ,∴2(1)1()ln m a lnm h m m+-+=.若存在实数1[1x ∈,]e ,12[x e -∈,1],使21222222()(1)h x x ln x a x lnx x <+-+成立,等价于:12()()h x h m <成立,[1m ∈,]e .即2()()min max h x h x <,[1x ∈,]e .令lnx t =,[1x ∈ ,]e ,则[0t ∈,1].22(1)1(1)1()tln x a lnx t a t h x x e +-++-+∴==,[0t ∈,1],(0)1h =,h (1)3ae -=.221[(1)1](1)()()t tt a t a t t t a h t e e +--+-+--'==,a的取值范围是(-∞,32)(32ee --⋃,)+∞.第3类情形应用实例例3.设函数()(0)kx f x xe k =≠.(1)讨论函数()f x 的单调性;(2)设2()24g x x bx =-+,当1k =时,若对任意的1x R ∈,存在2[1,2]x ∈,使得()()12f x g x ≥,求实数b 的取值范围.解析:(1)令()(1)0kx f x kx e '=+>,所以10kx +>,当0k >时,1x k >-,此时()f x 在1,k ⎛⎫-∞- ⎪⎝⎭上单调递减,在1,k ⎛⎫-+∞ ⎪⎝⎭上单调递增;当k 0<时,1x k <-,此时()f x 在1,k ⎛⎫-∞- ⎪⎝⎭上单调递增,在1,k ⎛⎫-+∞ ⎪⎝⎭上单调递减;(2)当1k =时,,()f x 在(),1-∞-上单调递减,在()1,-+∞单调递增.所以对任意1x R ∈,有()11(1)f x f e ≥-=-,又已知存在2[1,2]x ∈,使()()12f x g x ≥,所以()221,[1,2]g x x e -≥∈即存在2[1,2]x ∈,使21()24g x x bx e =-+≤-,即142e b x x-+≥+,又因为当[1,2]x ∈,14114,52e x x ee -+⎡⎤+∈++⎢⎥⎣⎦,所以1242b e ≥+,124b e ≥+,即实数b 的取值范围124b e ≥+.第4类情形应用实例例4.已知函数()()ln 0bf x a x x a =+≠.(1)当2b =时,若函数()f x 恰有一个零点,求实数a 的取值范围;(2)当0a b +=,0b >时,对任意121,,x x e e ⎡⎤∈⎢⎥⎣⎦,有()()122f x f x e -≤-成立,求实数b 的取值范围.解析:(1)定义域为()0,∞+,当2b =时,22()2a x af x x x x+'=+=;当0a >时,()0f x '>,()f x 为增函数,取10a x e -=,120()1(e )0a f x -=-+<,(1)10f =>所以0()(1)0f x f ⋅<,故此时恰有一个零点;当0a <时,令()0f x '=,x =0x <时,()0f x '<,所以()f x 在⎛ ⎝单调递减,x ()0f x '>,所以()f x 在⎫+∞⎪⎪⎭单调递增;要使函数恰有一个零点,需要ln 02af a ==,解得2a e =-,综上,实数a 的取值范围是2a e =-或0a >.(2)因为对任意121,x x e e ⎡⎤∈⎢⎥⎣⎦,有()()122f x f x e -≤-成立,且12max min ()()()()f x f x f x f x --≤,所以max min ()2(e )f x f x -≤-.因为0a b +=,所以=-a b ,所以()ln bf x b x x =-+,1(1)().b b b b x f x bx x x--'=-+=当01x <<时,()0f x '<,当1x >时,()0f x '>;所以函数在1[,1)e上单调递减,在(1,]e 上单调递增,min ()(1)1,f x f ==因为1()bf b e e -=+与()b f e b e =-+,所以max 1()max (),(e),e f x f f ⎧⎫=⎨⎬⎩⎭令1()(e)()e e 2,eb bg b f f b -=-=--则当0b >时,()220b b g b e e -'=+->-=,所以()g b 在()0,∞+上单调递增,故()(0)0g b g >=,所以1()()f e f e>,从而max ()e .bf x b =-+所以12b b e e -+-≤-,即10b e b e --+≤.令()e e 1(0)t t t t ϕ=--+>,则()e 1t t ϕ'=-.当0t >时,()0t ϕ'>,所以()t ϕ在()0,∞+上单调递增.又(1)0ϕ=,所以10b e b e --+≤,即()(1)b ϕϕ≤,解得1b ≤,所以b 的取值范围是(0,1].。
(完整版)再次例谈导数压轴题中双变量问题的常用解法
(完整版)再次例谈导数压轴题中双变量问题的常⽤解法再次例谈导数压轴题中双变量问题的常⽤解法长沙市明达中学吴祥云今⽇在“玩转⾼中数学交流群”中,由河南的贾⽼师提供⼀常规题,很多⽼师作出了不同的解答,我在这⾥把它们总结起来,供⼤家交流学习。
题⽬虽然简单,但是⽅法的讲述由浅⼊深,学⽣会更容易接受⼀些。
闲话少说,先上题:已知函数f(x)=xe x,f(x1)=f(x2),x1≠x2,求证:x1+x2>2.解析:f′(x)=1?xe x,易得 f(x)在(?∞,1)递增,(1,+∞)递减,其图像如图,为了更好的看图,横纵轴单位长度取得不同,不妨设0思路⼀:(极值点偏移问题+构造对称函数)令g(x)=f(2?x)?f(x),(0则g′(x)=(1?x)e x?e2?xe x e2?x<0,则g(x)在(0,1)递减∴g(x)>g(1)=0,即f(2?x)>f(x),∴f(2?x1)> f(x1)=f(x2),⼜2?x1>1,x2>1,f(x)在(1,+∞)递减,∴2?x12。
思路⼆:(极值点偏移+对数平均不等式)f(x1)=f(x2)?x1e x1=x2e x2lnx1x1=lnx2x2lnx1lnx2=x1x2x1?x2lnx1?lnx2=1,由对数平均不等式x1?x2lnx1?lnx2<x1+x22(证明略),得x1+x22>1,即x1+x2>2。
思路三:(差值消元)令x2?x1=t>0,x1e x1=x2e x2x2x1=e x2e x1=e x2?x1=e t?x1=te t?1,x2=te t?1+t,∴x1+x2=2te t?1+t,欲证x1+x2>2即证2te t?1+t<2即e t(2?t)2+t<1,令g(t)=e t(2?t)2+t,则g′(t)=e t(?t2)(2+t)2<0,故g(t)在(0,+∞)递减,点评:构造对称函数为极值点偏移问题的通法。
如何处理导数问题中含有两个变量的问题
, 一 一 2
式 转 化 为l n > —
1 + ( )
, 即证 明l n > - 2 x - 2 :  ̄x ∈( 1 + ) 恒 成 立
,
l + x
x -2 证 明: 设g ( x) : 1 n x 一 — 2
—
,
x∈( 1 , +∞) ,
1 +x 一
二 ! ( X ) >0, / 则g ( x) : 1 n x 一2 x - 2 :  ̄( 1 , + ∞) 上单调递增 , g ( x ) > g ( 1 ) : O .
.
,
1 +x ‘
又. . . 0 < a < b . 一 b
2 b
一
证明: . . . 0 ≤b < a ≤1 。 要证 < ) 二 < 2
=
h , ( x) : 2 x ( 1 n x — l n a ) +( a 2 + x 2 ) . 一 2 a : 2 x ( 1 n x — l n a ) +
—
a +x a +x
[ ( a 2 + x 2 ) ( 1 n x
—
l n z ) 一
例2 : 函数f ( x ) = l n x , 当0 < a < b时 , 求证 : f ( b ) 一 f ( a ) >
2 a ( b — a)
a + b
2 a x + 2 a] , ( x > a )
了
.
,
1 ] ,
( x ) ≥0
恒成立 .
正负情况即可 . 求导过程相对较简单. 如 果 有 的 同 学 对 变 量 集 中不 太 熟 练 .我 们 也 可 以换 一 个 角度来 考虑 , 对我 们要证 明的不等式l n b — l n a > — 2 a ( b - a )
例谈导数压轴题中双变量问题的常用解法
例谈导数压轴题中双变量问题的常用解法典例:已知函数f(x)=xe x,f(x1)=f(x2),x 1≠x2,求证:x1+x2>2.解析:f′(x)=1−xe x,易得 f(x)在(−∞,1)递增,(1,+∞)递减,其图像如图,为了更好的看图,横纵轴单位长度取得不同,不妨设0<x1<1<x2,以下是几种不同的证明思路:思路一:(极值点偏移问题+构造对称函数)令g(x)=f(2−x)−f(x),(0<x<1)则g′(x)=(1−x)e x−e2−xe x e2−x<0,则g(x)在(0,1)递减∴g(x)>g(1)=0,即f(2−x)>f(x),∴f(2−x1)> f(x1)=f(x2),又2−x1>1,x2>1,f(x)在(1,+∞)递减,∴2−x1<x2,即x1+x2>2。
思路二:(极值点偏移+对数平均不等式)f(x1)=f(x2)⇒x1e x1=x2e x2⇒lnx1−x1=lnx2−x2⇒lnx1−lnx2=x1−x2⇒x1−x2lnx1−lnx2=1,由对数平均不等式x1−x2lnx1−lnx2<x1+x22(证明略),得x1+x22>1,即x1+x2>2。
思路三:(差值消元)令x2−x1=t>0,x1e x1=x2e x2⇒x2x1=e x2e x1=e x2−x1=e t⇒x1=te t−1,x2=te t−1+t,∴x1+x2=2te t−1+t,欲证x1+x2>2即证2te t−1+t<2即e t(2−t)2+t<1,令g(t)=e t(2−t)2+t,则g′(t)=e t(−t2)(2+t)2<0,故g(t)在(0,+∞)递减,∴g(t)<g(0)=0,∴x1+x2>2。
点评:构造对称函数为极值点偏移问题的通法。
点评:含指数或者对数的不等式问题中,指对互化是常用技巧,而对数平均不等的功能更是巨大。
导数压轴题双变量问题题型归纳总结
导数应用之双变量问题(一)构造齐次式,换元【例】已知函数()2ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =.(1)求实数,a b 的值;(2)设()()()()21212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x的两个零点,求证:0F '<.【解析】(1)1,1a b ==-;(2)()2ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x'=+-, 因为12,x x 分别是函数()F x 的两个零点,所以()()11221ln 1ln m x x m x x +=⎧⎪⎨+=⎪⎩, 两式相减,得1212ln ln 1x x m x x -+=-,1212ln ln 1x x F m x x -'=+=-0F '<,只需证1212ln ln x x x x -<-. 思路一:因为120x x <<,只需证1122ln ln ln 0x x x x ->⇔>.令()0,1t =,即证12ln 0t t t -+>. 令()()12ln 01h t t t t t =-+<<,则()()22212110t h t t t t-'=--=-<, 所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证12ln 0t t t-+>.由上述分析可知0F '<.【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形为齐次式,设12111222,ln ,,x x x xt t t x x t e x x -===-=等,构造函数来解决,可称之为构造比较函数法. 思路二:因为120x x <<,只需证12ln ln 0x x -, 设())22ln ln 0Q x x x x x =-<<,则()2110Q x xx '===<, 所以函数()Q x 在()20,x 上单调递减,()()20Q x Q x >=,即证2ln ln xx -. 由上述分析可知0F '<.【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于1x (或2x )的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.【变式训练】 已知函数()()21f x x axlnx ax 2a R 2=-++∈有两个不同的极值点x 1,x 2,且x 1<x 2. (1)求实数a 的取值范围;(2)求证:x 1x 2<a 2.【分析】(1)先求导数,再根据导函数有两个不同的零点,确定实数a 所需满足的条件,解得结果,(2)先根据极值点解得a ,再代入化简不等式x 1x 2<a 2,设21x x t =,构造一元函数,利用导数研究函数单调性,最后构造单调性证明不等式.【解析】(1)略(2)f′(x )=x-a lnx ,g (x )=x-a lnx ,由x 1,x 2是g (x )=x-a lnx=0的两个根,则2211lnx x lnx x a a =⎧⎨=⎩,两式相减,得a (lnx 2-lnx 1)=x 2-x 1),即a =2121x x lnx lnx --,即证x 1x 2<221221(x x )x (ln )x -,即证22221121x (x x )(ln )x x x -<=2112x x 2x x -+,由x 1<x 2,得21x x =t >1,只需证ln 2t-t-120t +<,设g (t )=ln 2t-t-12t+,则g′(t )=221lnt 1t t -+=112lnt t t t ⎛⎫-+ ⎪⎝⎭,令h (t )=2lnt-t+t1,∴h′(t )=2211t t --=-(11t -)2<0,∴h(t )在(1,+∞)上单调递减,∴h(t )<h (1)=0,∴g′(t )<0,即g (t )在(1,+∞)上是减函数,∴g(t )<g (1)=0,即ln 2t <t-2+t1在(1,+∞)上恒成立,∴x 1x 2<a 2. 【变式训练】 已知函数()12ln f x x a x x=-+⋅. (1)讨论()f x 的单调性;(2)设()2ln g x x bx cx =--,若函数()f x 的两个极值点()1212,x x x x <恰为函数()g x 的两个零点,且()12122x x y x x g +⎛⎫'=-⋅ ⎪⎝⎭的范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,求实数a 的取值范围.【解析】(1)()f x 的定义域为()0,∞+,()22212211a x ax f x x x x--+'=-+=-. (i )若1a ≤,则()0f x '≤,当且仅当1a =,1x =时,()0f x '=(ii )若1a >,令()0f x '=得12x a x a ==当(()20,x a a a ∈++∞时,()0f x '<;当(x a a ∈时,()0f x '>,所以,当1a ≤时,()f x 单调递减区间为()0,∞+,无单调递增区间;当1a >时,()f x 单调递减区间为(()0,,a a +∞;单调递增区间为(a a .(2)由(1)知:1a >且12122,1x x a x x +==.又()12g x b cx x'=--, ∴()12121222x x g b c x x x x +⎛⎫'=--+⎪+⎝⎭, 由()()120g x g x ==得()()22112122lnx b x x c x x x =-+-, ()()()()1222121212121222-+⎛⎫'=-=---- ⎪+⎝⎭x x x x y x x g b x x c x x x x .()121112212122212ln ln 1⎛⎫- ⎪-⎝⎭=-=-++x x x x x x x x x x x x ,令12(0,1)x t x =∈,∴2(1)ln 1t y t t -=-+, ∴22(1)0(1)t y t t --'=<+,所以y 在()0,1上单调递减. 由y 的取值范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,得t 的取值范围是10,2⎛⎤ ⎥⎝⎦,∵122x x a +=,∴()222222211221212112212212(2)242x x x x x xa x x x x x x a x x x x ++=+=++===++,∴2122119422,2x x a t x x t ⎡⎫=++=++∈+∞⎪⎢⎣⎭,又∵1a >,故a的取值范围是4⎡⎫+∞⎪⎢⎪⎣⎭.(二)各自构造一元函数【例】 已知函数f (x )=lnx ﹣ax +1(a ∈R ). (1)求f (x )的单调区间; (2)设g (x )=lnx 344x x-+,若对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,求实数a 的取值范围.【分析】(1)函数求导得()11'axf x a x x-=-=,然后分a ≤0和a >0两种情况分类求解. (2)根据对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,等价于f (x )max <g (x )max ,然后分别求最大值求解即可. 【详解】(1) 略(2)()()()222213113143'4444x x x x g x x x x x-+--+-=--⨯==, 在区间(1,3)上,g ′(x )>0,g (x )单调递增,在区间(3,+∞)上,g ′(x )<0,g (x )单调递减,所以g (x )max =g (3)=ln 312-, 因为对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立, 等价于f (x )max <g (x )max ,由(1)知当a ≤0时,f (x )无最值,当a >0时,f (x )max =f (1a )=﹣lna ,所以﹣lna <ln 312-,所以lna >,解得a 【变式训练】【广东省2020届高三期末】设函数2()()e ()xf x x ax a a -=+-⋅∈R .(1)当0a =时,求曲线()y f x =在点(1,(1))f --处的切线方程;(2)设2()1g x x x =--,若对任意的[0,2]t ∈,存在[0,2]s ∈使得()()f s g t ≥成立,求a 的取值范围.【解析】 (1)当0a =时,因为()2xf x x e -=⋅,所以()()()2'2,'13xf x x x e f e -=-+⋅-=-,又因为()1f e -=,所以曲线()y f x =在点()()1,1f --处的切线方程为()31y e e x -=-+,即320ex y e ++=.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上,()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2xx f x x a ex ax a e --=+⋅-+-⋅ ()222x e x a x a -⎡⎤=-+--⎣⎦()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时,()'0f x ≥在[]0,2上恒成立,()f x 在[]0,2上为单调递增函数,()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-; ②当02a <-<,即20a -<<时,当()0,x a ∈-时,()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e=+⋅.由1a -≥,得1a ≤-;由()2141a e+⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-; ③当2a -≥,即2a ≤-时,()'0f x ≤在[]0,2上恒成立,()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-, 综上所述,实数a 的取值范围是1a ≤-或24a e ≥-. (三)消元构造一元函数【例】已知函数f (f )={e −f +1,f ≤0,2√f , f >0.函数f =f (f (f )+1)−f (f ∈f )恰有两个零点f 1和f 2. (1)求函数f (f )的值域和实数f 的最小值;(2)若f 1<f 2,且ff 1+f 2≥1恒成立,求实数f 的取值范围. 【解析】(1)当f ≤0时,f (f )=e −f +1≥2.当f >0时,f (f )=2√f >0.∴ f (f )的值域为(0,+∞).令f (f (f )+1)=f ,∵ f (f )+1>1,∴ f (f (f )+1)>2,∴ f >2. 又f (f )的单调减区间为(−∞,0],增区间为(0,+∞).设f (f )+1=f 1,f (f )+1=f 2,且f 1<0,f 2>1.∴ f (f )=f 1−1无解.从而f(f)=f2−1要有两个不同的根,应满足f2−1≥2,∴f2≥3.∴f(f2)=f(f(f)+1)≥2√3.即f≥2√3.∴f的最小值为2√3.(2) f=f(f(f)+1)−f有两个零点f1、f2且f1<f2,设f(f)=f,f∈[2,+∞),∴e−f1+1=f,∴f1=−ln(f−1).2√f2=f,∴f2=f24.∴−f ln(f−1)+f24≥1对f∈[2,+∞)恒成立设f(f)=−f ln(f−1)+f24−1,f′(f)=−ff−1+f2=f2−f−2f2(f−1).∵f∈[2,+∞),∴f2−f∈[2,+∞)恒成立.∴当2f≤2,即f≤1时,f′(f)≥0,∴f(f)在[2,+∞)上单调递增.∴f(f)≥f(2)=−f ln1+1−1=0成立.当f>1时,设f(f)=f2−f−2f.由f(2)=4−2−2f=2−2f<0.∴∃f0∈(2,+∞),使得f(f0)=0.且当f∈(2,f0)时,f(f)<0,f∈(f0,+∞)时,f(f)>0.∴当f∈(2,f0)时,f(f)单调递减,此时f(f)<f(2)=0不符合题意.综上,f≤1.【变式训练】f(f)=f2+ff−f ln f.(1)若函数f(f)在[2,5]上单调递增,求实数f的取值范围;(2)当f=2时,若方程f(f)=f2+2f有两个不等实数根f1,f2,求实数f的取值范围,并证明f1f2<1.【解析】(1)f′(f)=2f+f−ff,∵函数f(f)在[2,5]上单调递增,∴f′(f)≥0在f∈[2,5]恒成立,即2f+f−ff≥0对f∈[2,5]恒成立,∴f≥−2f2f−1对f∈[2,5]恒成立,即f≥(−2f2f−1)max,f∈[2,5],令f(f)=−2f2f−1(f∈[2,5]),则f′(f)=−2f2+4f(f−1)2≤0(f∈[2,5]),∴f (f )在[2,5]上单调递减,∴f (f )在[2,5]上的最大值为f (2)=−8. ∴f 的取值范围是[−8,+∞).(2)∵当f =2时,方程f (f )=f 2+2f ⇔f −ln f −f =0,令f (f )=f −ln f −f (f >0),则f′(f )=1−1f ,当f ∈(0,1)时,f′(f )<0,故f (f )单调递减,当f ∈(1,+∞)时,f′(f )>0,故f (f )单调递增,∴f (f )min =f (1)=1−f .若方程f (f )=f 2+2f 有两个不等实根,则有f (f )min <0,即f >1, 当f >1时,0<f −f <1<f f ,f (f −f )=f −f >0,f (f f )=f f −2f ,令f (f )=f f −2f (f >1),则f′(f )=f f −2>0,f (f )单调递增,f (f )>f (1)=f −2>0, ∴f (f f )>0,∴原方程有两个不等实根,∴实数f 的取值范围是(1,+∞).不妨设f 1<f 2,则0<f 1<1<f 2,0<1f 2<1,∴f 1f 2<1⇔f 1<1f 2⇔f (f 1)>f (1f 2),∵f (f 1)=f (f 2)=0,∴f (f 1)−f (1f 2)=f (f 2)−f (1f 2)=(f 2−ln f 2−f )−(1f 2−ln1f 2−f ),=f 2−1f 2−2ln f 2.令f (f )=f −1f−2ln f (f >1),则f′(f )=1+1f 2−2f =(1f −1)2>0,∴f (f )在(1,+∞)上单调递增,∴当f >1时,f (f )>f (1)=0,即f 2−1f 2−2ln f 2>0,∴f (f 1)>f (1f 2),∴f 1f 2<1.(四)独立双变量,化为两边同函数形式【例】 已知函数()()1ln f x kx x =-,其中k 为非零实数.(1)求()f x 的极值;(2)当4k =时,在函数()()22g x f x x x =++的图象上任取两个不同的点()11,M x y 、()22,N x y .若当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,求正实数t 的取值范围: 【详解】(1) 略;(2)当4k =时,()4ln f x x =-',()224ln g x x x x =+-,当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,即()()112244g x x g x x -≥-,构造函数()()2424ln F x g x x x x x =-=--,由于120x x t <<<,()()12F x F x ≥,则函数()y F x =在区间()0,t 上为减函数或常函数,()()()221422x x F x x x x='-+=--,0x,解不等式()0F x '≤,解得02x <≤.由题意可知()(]0,0,2t ⊆,02t ∴<≤,因此,正实数t 的取值范围是(]0,2;【变式训练】设函数. (1)若曲线在点处的切线与直线垂直,求的单调递减区间和极小值(其中为自然对数的底数);(2)若对任何恒成立,求的取值范围. 【解析】(2)条件等价于对任意恒成立,设. 则在上单调递减, ()ln ,k R kf x x x=+∈()y f x =()(),e f e 20x -=()f x e ()()1212120,x x f x f x x x >>-<-k ()()1211220,x x f x x f x x >>-<-()()()ln 0kh x f x x x x x x=-=+->()h x ()0,+∞则在上恒成立,得恒成立,∴(对仅在时成立),故的取值范围是 【变式训练】已知函数f (f )=f +f ln f .(Ⅰ)求函数f (f )的图象在点(1,1)处的切线方程;(Ⅱ)若f ∈f ,且f (f −1)<f (f )对任意f >1恒成立,求f 的最大值; (Ⅲ)当f >f ≥4时,证明:(ff f )f >(ff f )f . 【解析】(Ⅰ)∵f ′(f )=ln f +2,∴f ′(1)=2,函数f (f )的图象在点(1,1)处的切线方程f =2f −1;(Ⅱ)由(Ⅰ)知,f (f )=f +f ln f ,∴f (f −1)<f (f ),对任意f >1恒成立,即f <f +f ln ff −1对任意f >1恒成立. 令f (f )=f +f ln ff −1,则f′(f )=f −ln f −2(f −1)2, 令f (f )=f −ln f −2(f >1),则f ′(f )=1−1f =f −1f>0,所以函数f (f )在(1,+∞)上单调递增.∵f (3)=1−ln 3〈0,f (4)=2−2ln 2〉0,∴方程f (f )=0在(1,+∞)上存在唯一实根f 0,且满足f 0∈(3,4).当1<f <f 0时,f (f )<0,即f′(f )<0,当f >f 0时,f (f )>0,即f′(f )>0, 所以函数f (f )=f +f ln ff −1在(1,f 0)上单调递减,在(f 0,+∞)上单调递增. ∴[f (f )]min =f (f 0)=f 0(1+ln f 0)f 0−1=f 0(1+f 0−2)f 0−1=f 0∈(3,4),∴f <[f (f )]min =f 0∈(3,4),故整数f 的最大值是3.()2110k h x x x '=--≤()0,+∞()2211024k x x x x ⎛⎫≥-+=--+> ⎪⎝⎭14k ≥()1,04k h x '==12x =k 1,4⎡⎫+∞⎪⎢⎣⎭(Ⅲ)由(Ⅱ)知,f (f )=f +f ln ff −1是[4,+∞)上的增函数, ∴当f >f ≥4时,f +f ln ff −1>f +f ln ff −1. 即f (f −1)(1+ln f )>f (f −1)(1+ln f ).整理,得ff ln f +f ln f >ff ln f +f ln f +(f −f ). ∵f >f ,∴ff ln f +f ln f >ff ln f +f ln f .即ln f ff +ln f f >ln f ff +ln f f .即ln (f ff f f )>ln (f ff f f ).∴(ff f )f >(ff f )f . (五)把其中一个看作自变量,另一个看作参数【例】 已知a R ∈,函数()()2ln 12f x x x ax =+-++(Ⅰ)若函数()f x 在[)2,+∞上为减函数,求实数a 的取值范围;(Ⅱ)设正实数121m m +=,求证:对)1()(f x f ≥上的任意两个实数1x ,2x ,总有()()()11221122f m x m x m f x m f x +≥+成立【分析】(Ⅰ)将问题转化为()0f x '≤在[)+∞∈,2x 上恒成立,可得112+-≤x x a ,令()121h x x x =-+, 可判断出()h x 在[)2,+∞上单调递增,即()()min 2h x h =,从而可得a 的范围;(Ⅱ)构造函数()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-,且121x x -<≤;利用导数可判断出()F x 在(]21,x x ∈-上是减函数,得到()()2F x F x ≥,经验算可知()20F x =,从而可得()()()122122f m x m x m f x m f x +≥+,从而可证得结论.【解析】(Ⅰ)由题意知:()121f x x a x '=-++ 函数()f x 在[)2,+∞上为减函数,即()0f x '≤在[)+∞∈,2x 上恒成立即112+-≤x x a 在[)+∞∈,2x 上恒成立,设()121h x x x =-+当2≥x 时,11=+y x 单调递减,2=y x 单调递增()h x ∴在[)2,+∞上单调递增 ()()min 1112433h x h ∴==-=,113a ∴≤,即a 的取值范围为11,3⎛⎤-∞ ⎥⎝⎦(Ⅱ)设121x x -<≤,令:()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-则()()()()21221220F x f m m x m m f x =+-+=⎡⎤⎣⎦()()()()()112211122F x m f m x m x m f x m f m x m x f x '''''∴=+-=+-⎡⎤⎣⎦()()1221222222210m x m x x x m m x m x m x m x x +-=-+=-+=-≥,122m x m x x ∴+≥()121f x x a x '=-++,令()()g x f x =',则()()21201g x x '=--<+ ()f x ∴'在()1,x ∈-+∞上为减函数,()()122f m x m x f x ''∴+≤()()11220m f m x m x f x ''∴+-≤⎡⎤⎣⎦,即()0F x '≤()F x ∴在(]21,x x ∈-上是减函数,()2()0F x F x ∴≥=,即()0F x ≥ ()()()1221220f m x m x m f x m f x ∴+--≥(]21,x x ∴∈-时,()()()122122f m x m x m f x m f x +≥+121x x -<≤ ,()()()11221122f m x m x m f x m f x ∴+≥+【变式训练】 已知函数f (f )=f f −f ,f (f )=(f +f )ln (f +f )−f .(1)若f =1,f ′(f )=f ′(f ),求实数f 的值.(2)若f ,f ∈f +,f (f )+f (f )≥f (0)+f (0)+ff ,求正实数f 的取值范围.【解析】(1)由题意,得f′(f)=f f−1,f′(f)=ln(f+f),由f=1,f′(f)=f′(f)…①,得f f−ln(f+1)−1=0,,令f(f)=f f−ln(f+1)−1,则f′(f)=f f−1f+1>0,所以f′(f)在(−1,+∞)单调递增,因为f″(f)=f f+1(f+1)2又f′(0)=0,所以当−1<f<0时,f′(f)>0,f(f)单调递增;当f>0时,f′(f)<0,f(f)单调递减;所以f(f)≤f(0)=0,当且仅当f=0时等号成立.故方程①有且仅有唯一解f=0,实数f的值为0.(2)解法一:令f(f)=f(f)−ff+f(f)−f(0)−f(0)(f>0),则f′(f)=f f−(f+1),所以当f>ln(f+1)时,f′(f)>0,f(f)单调递增;当0<f<ln(f+1)时,f′(f)<0,f(f)单调递减;故f(f)≥f(ln(f+1))=f(ln(f+1))+f(f)−f(0)−f(0)−f ln(f+1)=(f+f)ln(f+f)−(f+1)ln(f+1)−f ln f.令f(f)=(f+f)ln(f+f)−(f+1)ln(f+1)−f ln f(f>0),则f′(f)=ln(f+f)−ln(f+1).(i)若f>1时,f′(f)>0,f(f)在(0,+∞)单调递增,所以f(f)>f(0)=0,满足题意.(ii)若f=1时,f(f)=0,满足题意.(iii)若0<f<1时,f′(f)<0,f(f)在(0,+∞)单调递减,所以f(f)<f(0)=0.不满足题意.综上述:f≥1.(六)利用根与系数的关系,把两变量用另一变量表示【例】(2020山西高三期末)设函数1()ln ()f x x a x a R x=--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 和2x ,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2k a =-若存在,求出a 的值,若不存在,请说明理由. 【解析】(1)()f x 定义域为()0,∞+,()22211'1a x ax f x x x x-+=+-=, 令()221,4g x x ax a =-+∆=-,①当22a -≤≤时,0∆≤,()'0f x ≥,故()f x 在()0,∞+上单调递增, ②当2a <-时,>0∆,()0g x =的两根都小于零,在()0,∞+上,()'0f x >, 故()f x 在()0,∞+上单调递增,③当2a >时,>0∆,()0g x =的两根为12x x ==,当10x x <<时,()'0f x >;当12x x x <<时,()'0f x <;当2x x >时,()'0f x >; 故()f x 分别在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减.(2)由(1)知,2a >,因为()()()()1212121212ln ln x x f x f x x x a x x x x --=-+--. 所以()()1212121212ln ln 11f x f x x x k a x x x x x x --==+⋅--,又由(1)知,121=x x ,于是1212ln ln 2x x k a x x -=--,若存在a ,使得2k a =-,则1212ln ln 1x x x x -=-,即1212ln ln x x x x -=-,亦即222212ln 0(1)x x x x --=> 再由(1)知,函数()12ln h t t t t=--在()0,∞+上单调递增,而21>x ,所以22212ln 112ln10x x x -->--=,这与上式矛盾,故不存在a ,使得2k a =-. 【变式训练】 已知函数21()2ln 2f x x x a x =-+,其中0a >. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x ,2x ,证明:123()()2f x f x -<+<-.【解析】(1)解:由题得22'()2a x x af x x x x-+=-+=,其中0x >,考察2()2g x x x a =-+,0x >,其中对称轴为1x =,44a ∆=-. 若1a ≥,则,此时()0g x ≥,则'()0f x ≥,所以()f x 在(0,)+∞上单调递增;若,则∆>0,此时220x x a -+=在R 上有两个根111x a =--,211x a =+-,且1201x x <<<,所以当时,()0g x >,则'()0f x >,()f x 单调递增;当12(,)x x x ∈时,()0g x <,则'()0f x <,()f x 单调递减;当2(,)x x ∈+∞时,()0g x >,则'()0f x >,()f x 单调递增,综上,当1a ≥时,()f x 在(0,)+∞上单调递增;当时,()f x 在(0,11)a --上单调递增,在(11,11)a a --+-上单调递减,在(11,)a +-+∞上单调递增.(2)证明:由(1)知,当时,()f x 有两个极值点1x ,2x ,且122x x +=,12x x a =,所以()()2212111222112ln 2ln 22fx f x x x a x x x a x +=-++-+ ()()()2212121212ln ln 2x x x x a x x =+-+++ ()()()212121212122ln 2x x x x x x a x x ⎡⎤=+--++⎣⎦()21224ln ln 22a a a a a a =--+=--. 令()ln 2h x x x x =--,01x <<,则只需证明3()2h x -<<-, 由于'()ln 0h x x =<,故()h x 在(0,1)上单调递减,所以()(1)3h x h >=-.又当01x <<时,ln 11x -<-,(ln 1)0x x -<,故()ln 2(ln 1)22h x x x x x x =--=--<-, 所以,对任意的01x <<,3()2h x -<<-. 综上,可得()()1232fx f x -<+<-.【变式训练】已知函数21ln 02f x ax x a x=-+≥()(). (1)讨论函数f (x )的极值点的个数;(2)若f (x )有两个极值点1x ,2x ,证明:1234ln 2f x f x +>-()(). 【解析】(1)由题意,函数221ln ln 22f x ax x x ax x x=-+=--+(), 得2121'21ax x f x ax x x -+-=--+=(),0x ∈+∞(,), (i )若0a =时;1x f x x-'=(), 当01x ∈(,)时,()0f x '<,函数()f x 单调递减;当),(∞+∈1x 时,()0f x '>,函数()f x 单调递增,所以当1x =,函数()f x 取得极小值,1x =是()f x 的一个极小值点;(ii )若0a >时,则180a ∆=-≤,即18a ≥时,此时0f x '≤(),()f x 在(0,)+∞是减函数,()f x '无极值点,当108a <<时,则180a ∆=->,令0=')(x f ,解得114x a =,214x a+=,当10x x ∈(,)和2x x ∈+(,)∞时,0f x '<(),当12x x x ∈(,)时,0>')(x f , ∴()f x 在1x 取得极小值,在2x 取得极大值,所以()f x 有两个极值点, 综上可知:(i )0a =时,()f x 仅有一个极值点;(ii).当18a ≥时,()f x 无极值点; (iii)当108a <<,()f x 有两个极值点. (2)由(1)知,当且仅当108a ∈(,)时,()f x 有极小值点1x 和极大值点2x ,且1x ,2x 是方程2210ax x 的两根,∴1212x x a +=,1212x x a=, 则222121121211ln ln 22f x f x ax x ax x x x +=-++-+()() 22121212ln 2ln 2x x a x x x x =-+-+++()()()22111ln[]42a a a a a=---+11ln 1242a a a =++-1ln 1ln 24a a =+--,设1ln ln 24g a a a =++-()1,1(0,)8a ∈,则221141044a g a a a a -'=-=<(),∴10,8a ∈()时,()a g 是减函数,1()()8g a g >,∴1ln 3ln 234ln 28g a >+-=-(), ∴1234ln 2f x f x +>-()(). 三、跟踪训练1.已知函数1()ln ()f x x a x a R x=-+∈. (1)讨论函数()y f x =的单调性; (2)若10<<b ,1()()g x f x bx x=+-,且存在不相等的实数1x ,2x ,使得()()12g x g x =,求证:0a <且2211a x x b ⎛⎫> ⎪-⎝⎭. 【解析】(1)由题意,函数1()ln ()f x x a x a R x =-+∈,可得22211'()1(0)a x ax f x x x x x++=++=>, 当0a ≥时,因为0x >,所以210x ax ++>,所以'()0f x >,故函数()f x 在(0,)+∞上单调递增;当20a -≤<时,240a ∆=-≤,210x ax ++≥,所以'()0f x >, 故函数()f x 在(0,)+∞单调递增;当2a <-时,'()0f x >,解得02a x -<<或2a x ->,'()0f x <,解得22a a x ---<<,所以函数()f x 在区间⎛⎫⎪ ⎪⎝⎭上单调递减,在区间⎛⎫⎪ ⎪⎝⎭和区间⎫+∞⎪⎪⎝⎭上单调递增. 综上所述,当2a ≥-时,函数()f x 在(0,)+∞上单调递增,当2a <-时,函数()f x 在区间⎛⎫⎪ ⎪⎝⎭上单调递减,在区间0,2a ⎛⎫-- ⎪ ⎪⎝⎭和区间⎫+∞⎪⎪⎝⎭上单调递增. (2)由题知()(1)ln g x b x a x =-+,则'()1ag x b x=-+.当0a ≥时,0)('>x g ,所以()g x 在(0,)+∞上单调递增,与存在不相等的实数1x ,2x ,使得12()()g x g x =矛盾,所以0a <.由12()()g x g x =,得1122(1)ln (1)ln b x a x b x a x -+=-+, 所以()()2121ln ln (1)a x x b x x --=--,不妨设120x x <<,因为10<<b ,所以212101ln ln x x a b x x -=>--,欲证2121a x x b ⎛⎫< ⎪-⎝⎭,只需证2211221ln ln x x x x x x ⎛⎫-> ⎪-⎝⎭,只需证2121ln ln x x x x ->-21x t x =,1t >,等价于证明1ln t t->ln 0t -<,令()ln 1)h t t t =->,'()0h t =<,所以)(t h 在区间(1,)+∞上单调递减,所以()(1)0h t h <=,从而ln 0t <得证,于是2211a x x b ⎛⎫> ⎪-⎝⎭. 2.【2020河北省衡水市高三期末】已知函数f (f )=f ln f −f 2.(1)令f (f )=f (f )+ff ,若f =f (f )在区间(0,3)上不单调,求f 的取值范围;(2)当f =2时,函数f (f )=f (f )−ff 的图象与f 轴交于两点f (f 1,0),f (f 2,0),且0<f 1<f 2,又f ′(f )是f (f )的导函数.若正常数f ,f 满足条件f +f =1,f ≥f .试比较f ′(ff 1+ff 2)与0的关系,并给出理由【解析】(1)因为f (f )=f ln f −f 2+ff ,所以f ′(f )=ff −2f +f , 因为f (f )在区间(0,3)上不单调,所以f ′(f )=0在(0,3)上有实数解,且无重根, 由f ′(f )=0,有f =2f 2f +1=2(f +1+1f +1)−4,f ∈(0,3),令t=x+1>4则y=2(t+1f )−4在t>4单调递增,故f ∈(0,92)(2)∵f ′(f )=2f −2f −f ,又f (f )−ff =0有两个实根f 1,f 2,∴{2fff 1−f 12−ff 1=02fff 2−f 22−ff 2=0,两式相减,得2(ln f 1−ln f 2)−(f 12−f 22)=f (f 1−f 2), ∴f =2(ln f 1−ln f 2)f 1−f 2−(f 1+f 2),于是f ′(ff 1+ff 2)=2ff 1+ff 2−2(ff 1+ff 2)−2(ln f 1−ln f 2)f 1−f 2+(f 1+f 2)=2ff 1+ff 2−2(ln f 1−ln f 2)f 1−f 2+(2f −1)(f 2−f 1).∵f ≥f ,∴2f ≤1,∴(2f −1)(f 2−f 1)≤0. 要证:f ′(ff 1+ff 2)<0,只需证:2ff1+ff 2−2(ln f 1−ln f 2)f 1−f 2<0,只需证:f 1−f 2ff 1+ff 2−ln f1f 2>0.(*)令f 1f 2=f ∈(0,1),∴(*)化为1−fff +f +ln f <0,只需证f (f )=ln f +1−fff +f <0f ′(f )=1f −1(ff +f )2>0∵f (f )在(0,1)上单调递增,f (f )<f (1)=0,∴ln f +1−fff +f<0,即f 1−f 2ff +f +ln f 1f 2<0.∴f ′(ff 1+ff 2)<0.2.(2020·江苏金陵中学高三开学考试)已知函数f (x )=12ax 2+lnx ,g (x )=-bx ,其中a ,b∈R,设h (x )=f (x )-g (x ),(1)若f (x )在x=√22处取得极值,且f′(1)=g (-1)-2.求函数h (x )的单调区间;(2)若a=0时,函数h (x )有两个不同的零点x 1,x 2 ①求b 的取值范围;②求证:x 1x 2e 2>1.【答案】(1)在区间(0,1)上单调增;在区间(1,+)上单调减.(2)①(−1f ,0)②详见解析【解析】试题分析:(1)先确定参数:由f ′(1)=f (−1)−2可得a=b-3. 由函数极值定义知f ′(√22)=√22f +√2=0所以a=" -2,b=1" .再根据导函数求单调区间(2)①当f =0时,f (f )=ln f +ff ,原题转化为函数f (f )=−ln ff与直线f =f 有两个交点,先研究函数f (f )=−ln ff图像,再确定b 的取值范围是(−1f ,0). ②f 1f 2f 2>1⇔f 1f 2>f 2⇔ln f 1f 2>2,由题意得ln f 1+ff 1=0,ln f 2+ff 2=0,所以ln f 1f 2ln f 2−ln f 1=f 1+f2f 2−f 1,因此须证ln f 2−ln f 1>2(f 2−f 1)f 2+f 1,构造函数f (f )=ln f −2(f −1)f +1,即可证明 试题解析:(1)因为f ′(f )=ff +1f ,所以f ′(1)=f +1,由f ′(1)=f (−1)−2可得a=b-3.又因为f (f )在f =√22处取得极值,所以f ′(√22)=√22f +√2=0,所以a=" -2,b=1" .所以f (f )=−f 2+ln f +f ,其定义域为(0,+)f′(f )=−2f +1f +1=−2f 2+f +1f =−(2f +1)(f −1)f令f′(f )=0得f 1=−12,f 2=1,当f ∈(0,1)时,f′(f )>0,当f ∈(1,+)f′(f )<0,所以函数h (x )在区间(0,1)上单调增;在区间(1,+)上单调减.(2)当f =0时,f (f )=ln f +ff ,其定义域为(0,+).①由f (f )=0得f =-ln ff,记f (f )=−ln ff,则f′(f )=ln f −1f 2,所以f (f )=−ln ff在(0,f )单调减,在(f ,+∞)单调增,所以当f =f 时f (f )=−ln ff取得最小值−1f .又f (1)=0,所以f ∈(0,1)时f (f )>0,而f ∈(1,+∞)时f (f )<0,所以b 的取值范围是(−1f ,0). ②由题意得ln f 1+ff 1=0,ln f 2+ff 2=0,所以ln f 1f 2+f (f 1+f 2)=0,ln f 2−ln f 1+f (f 2−f 1)=0, 所以ln f 1f 2ln f2−ln f 1=f 1+f 2f 2−f 1,不妨设x1<x2,要证f 1f 2>f 2, 只需要证ln f 1f 2=f 1+f2f 2−f 1(ln f 2−ln f 1)>2.即证ln f 2−ln f 1>2(f 2−f 1)f 2+f 1,设f =f2f 1(f >1),则f (f )=ln f −2(f −1)f +1=ln f +4f +1−2, 所以f′(f )=1f −4(f +1)2=(f −1)2f (f +1)2>0,所以函数f (f )在(1,+)上单调增,而f (1)=0,所以f (f )>0即ln f >2(f −1)f +1,所以f 1f 2>f 2.考点:函数极值,构造函数利用导数证明不等式3.【福建省2020高三期中】已知函数f (f )=f f (f f −ff +f )有两个极值点f 1,f 2. (1)求f 的取值范围;(2)求证:2f 1f 2<f 1+f 2.【解析】(1)因为f (f )=f f (f f −ff +f ),所以f ′(f )=f f (f f −ff +f )+f f (f f −f )=f f (2f f −ff ),令f ′(f )=0,则2f f =ff ,当f =0时,不成立;当f ≠0时,2f =ff f ,令f (f )=f ef,所以f ′(f )=1−ff f ,当f <1时,f ′(f )>0,当f >1时,f ′(f )<0,所以f (f )在(−∞,1)上单调递增,在(1,+∞)上单调递减,又因为f (1)=1f ,当f →−∞时,f (f )→−∞,当f →+∞时,f (f )→0, 因此,当0<2f <1f 时,f (f )有2个极值点,即f 的取值范围为(2f ,+∞).(2)由(1)不妨设0<f 1<1<f 2,且{2f f 1=ff 12f f 2=ff 2,所以{ff2+f 1=fff +fff 1ff2+f 2=fff +fff 2,所以f 2−f 1=ln f 2−ln f 1,要证明2f 1f 2<f 1+f 2,只要证明2f 1f 2(ln f 2−ln f 1)<f 22−f 12,即证明2ln (f 2f 1)<f 2f 1−f 1f 2,设f 2f 1=f (f >1),即要证明2ln f −f +1f <0在f ∈(1,+∞)上恒成立,记f (f )=2ln f −f +1f (f >1),f ′(f )=2f −1−1f 2=−f 2+2f −1f 2=−(f −1)2f 2<0,所以f (f )在区间(1,+∞)上单调递减,所以f (f )<f (1)=0,即2ln f −f +1f <0,即2f 1f 2<f 1+f 2.4.【安徽省示范高中皖北协作区2020届高三模拟】已知函数f (f )=−12f 2+2f −2f ln f . (1)讨论函数f (f )的单调性;(2)设f (f )=f ′(f ),方程f (f )=f (其中f 为常数)的两根分别为f ,f (f <f ),证明:f ′(f +f2)<0.注:f ′(f ),f ′(f )分别为f (f ),f (f )的导函数.【解析】(1)函数f (f )的定义域为(0,+∞),f ′(f )=−f +2−2f f=−f2+2f −2ff,令f (f )=−f 22f −2f ,f =4−8f ,①当f ≤0时,即f ≥12时,恒有f (f )≤0,即f ′(f )≤0, ∴函数f (f )在(0,+∞)上单调减区间.②当f >0时,即f <12时,由f (f )=0,解得f 1=1−√1−2f ,f 2=1+√1−2f , (i )当0<f <12时,当f ∈(0,f 1),(f 2,+∞)时,f (f )<0,即f ′(f )<0, 当f ∈(f 1,f 2)时,f (f )>0,即f ′(f )>0,∴函数f (f )在(0,f 1),(f 2,+∞)单调递减,在(f 1,f 2)上单调递增.(ii )当f ≤0时,f (0)=−2f ≥0,当f ∈(f 2,+∞)时,f (f )<0,即f ′(f )<0, 当f ∈(0,f 2)时,f (f )>0,即f ′(f )>0,∴函数f (f )在(f 2,+∞)单调递减,在(0,f 2)上单调递增. 证明(2)由条件可得f (f )=−f +2-2ff,f >0,∴f ′(f )=−1+2ff 2,∵方程f (f )=f (其中f 为常数)的两根分别为f ,f (f <f ),∴{f (f )=f f (f )=f可得ff =2f ,∴f ′(f +f2)=−1+8f (f +f )2=−1+4ff (f +f )2=−1+4ff +f f+2,∵0<f <f , ∴0<ff <1, ∴ff +f f >2,∴f ′(f +f2)=−1+4ff +ff+2<−1+1=0.5.(2020江苏徐州一中高三期中)设函数()ln 1nf x x m x =+-,其中n ∈N *,n ≥2,且m ∈R .(1)当2n =,1m =-时,求函数()f x 的单调区间;(2)当2n =时,令()()22g x f x x =-+,若函数()g x 有两个极值点1x ,2x ,且12x x <,求()2g x 的取值范围;【答案】(1)见解析;(2)12ln 2,04-⎛⎫⎪⎝⎭;(3)见解析【解析】 【分析】(1)将2n =,1m =-代入解析式,求出函数的导数,从而即可得到函数()f x 的单调区间;(2)由题意知()221ln g x x x m x =-++,求导,从而可得2220x x m -+=,由方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <)可得102m <<,由方程得2x =,且2112x <<,由此分析整理即可得到答案;(3)求出函数的导数,得到()f x 的单调性,求出()f x 的最小值,通过构造函数结合零点存在性定理判断函数的零点即可. 【详解】(1)依题意得,()2ln 1f x x x =--,()0,x ∈+∞,∴ ()21212x f x x x x='-=-.令()0f x '>,得x >()0f x '<,得0x << 则函数()f x在0,2⎛⎫⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增. (2)由题意知:()221ln g x x x m x =-++.则()22222m x x mg x x x x='-+=-+,令()0g x '=,得2220x x m -+=,故方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <),则()412002m m⎧∆=->⎪⎨>⎪⎩,, 解得102m <<.由方程得2x =2112x <<.由222220x x m -+=,得22222m x x =-+.()()222222222122ln g x x x x x x =-++-+,2112x <<. ()22214ln 02g x x x ⎛'⎫=--> ⎪⎝⎭,即函数()2g x 是1,12⎛⎫ ⎪⎝⎭上的增函数, 所以()212ln204g x -<<,故()2g x 的取值范围是12ln2,04-⎛⎫⎪⎝⎭. 6.(2019·江苏徐州一中高三月考)已知函数()alnxf x x=,g (x )=b (x ﹣1),其中a ≠0,b ≠0 (1)若a =b ,讨论F (x )=f (x )﹣g (x )的单调区间;(2)已知函数f (x )的曲线与函数g (x )的曲线有两个交点,设两个交点的横坐标分别为x 1,x 2,证明:()12122x x g x x a++>. 【答案】(1)见解析(2)见解析 【解析】 【分析】(1)求导得()()222111lnx aF x a x lnx x x-⎛⎫'=-=--⎪⎝⎭,按照a >0、 a <0讨论()F x '的正负即可得解; (2)设x 1>x 2,转化条件得()1212112122x x x x x g x x ln a x x x +++=⋅-,令121x t x =>,()121t p t lnt t -=-⋅+,只需证明()0p t >即可得证. 【详解】(1)由已知得()()()1lnx F x f x g x a x x ⎛⎫=-=-+⎪⎝⎭,∴()()222111lnx a F x a x lnx x x-⎛⎫'=-=-- ⎪⎝⎭,当0<x <1时,∵1﹣x 2>0,﹣lnx >0,∴1﹣x 2﹣lnx >0,; 当x >1时,∵1﹣x 2<0,﹣lnx <0,∴1﹣x 2﹣lnx <0.故若a >0,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 故若a <0,F (x )在(0,1)上单调递减,在(1,+∞)上单调递增.(2)不妨设x 1>x 2,依题意()1111lnx ab x x =-, ∴()2111alnx b x x =-①,同理得()2222alnx b x x =-②由①﹣②得,∴()()()2211122121221x alnb x x x x b x x x x x =--+=-+-, ∴()()1212121x lnx bx x a x x +-=-,∴()()()121211212121221x x x x x bg x x x x x x ln a a x x x +++=+⋅⋅+-=⋅-, 故只需证1211222x x x ln x x x +⋅->,取∴121x t x =>,即只需证明121t lnt t +⋅>-,1t ∀>成立, 即只需证()1201t p t lnt t -=-⋅>+,1t ∀>成立, ∵()()()()222114011t p t t t t t -'=-=++>,∴p (t )在区间[1,+∞)上单调递增,∴p (t )>p (1)=0,∀t >1成立,故原命题得证.【点睛】本题考查了导数的综合运用,考查了转化化归思想与计算能力,属于难题. 7.(2020·广西南宁二中高三(文))已知函数()()2ln 1,f x x ax x =++-()()21ln ln 12g x a x x ax x x=--+-+(Ⅰ)若0a >,讨论函数()f x 的单调性;(Ⅱ)设()()()h x f x g x =+,且()h x 有两个极值点12,x x ,其中11(0,]x e∈,求()()12h x h x -的最小值.(注:其中e 为自然对数的底数)【答案】(Ⅰ)见解析;(Ⅱ)最小值为4e. 【解析】 【分析】(Ⅰ)对函数()f x 求导,对a 分情况讨论即可确定()f x 的单调区间;(Ⅱ)先对()h x 求导,令导数式等于0由韦达定理求出两个极值点12,x x 的关系1212,1x x a x x +=-= ,所以211111,x a x x x ==--,整理()()12h x h x -,构造关于1x 的函数()x ϕ ,求导根据单调性确定最值即可。
小姚数学140系列之导数压轴题系列之双变量问题
小姚数学140系列之导数压轴题系列导数中双变量的函数构造近年来高考数学非常流行考双变量问题,优选各种考试的经典母题,以期为高三同学带来一些思路上的开拓。
小姚特别为高三学子带来常见技巧处理方式,助你突破140分!经典考题展现1.已知函数().(1)若函数是单调函数,求的取值范围;(2)求证:当时,都有.解:(1)函数的定义域为,∵,∴,∵函数是单调函数,∴或在上恒成立,①∵,∴,即,,令,则,当时,;当时,.则在上递减,上递增,∴,∴;②∵,∴,即,,由①得在上递减,上递增,又,时,∴;综上①②可知,或;(2)由(1)可知,当时,在上递减,∵,∴,即,∴,要证,只需证,即证,令,,则证,令,则,∴在上递减,又,∴,即,得证.2.已知函数f (x )=ax 2+x ln x (a ∈R)的图象在点(1,f (1))处的切线与直线x +3y =0垂直.(1)求实数a 的值;(2)求证:当n >m >0时,ln n -ln m >m n -nm .[解](1)因为f (x )=ax 2+x ln x ,所以f ′(x )=2ax +ln x +1,因为切线与直线x +3y =0垂直,所以切线的斜率为3,所以f ′(1)=3,即2a +1=3,故a =1.(2)证明:要证ln n -ln m >m n -n m ,即证ln n m >m n -n m ,只需证ln n m -m n +nm >0.令n m =x ,构造函数g (x )=ln x -1x +x (x ≥1),则g ′(x )=1x +1x2+1.因为x ∈[1,+∞),所以g ′(x )=1x +1x2+1>0,故g (x )在(1,+∞)上单调递增.由已知n >m >0,得n m >1,所以g (1)=0,即证得ln n m -m n +nm >0成立,所以命题得证.3.(2017·石家庄质检)已知函数f (x )=a x -x 2ex (x >0),其中e 为自然对数的底数.(1)当a =0时,判断函数y =f (x )极值点的个数;(2)若函数有两个零点x 1,x 2(x 1<x 2),设t =x2x 1,证明:x 1+x 2随着t 的增大而增大.解:(1)当a =0时,f (x )=-x 2e x (x >0),f ′(x )=-2x ·e x --x 2·e x e x 2=xx -2e x,令f ′(x )=0,得x =2,当x ∈(0,2)时,f ′(x )<0,y =f (x )单调递减,当x ∈(2,+∞)时,f ′(x )>0,y =f (x )单调递增,所以x =2是函数的一个极小值点,无极大值点,即函数y =f (x )有一个极值点.(2)证明:令f (x )=a x -x 2e x =0,得x 32=a e x ,因为函数有两个零点x 1,x 2(x 1<x 2),所以x 1321=a e x 1,x 322=a e x 2,可得32ln x 1=ln a +x 1,32ln x 2=ln a +x 2.故x 2-x 1=32ln x 2-32ln x 1=32ln x 2x 1.又x 2x 1=t ,则t >12=tx 1,2-x 1=32ln t,解得x 1=32ln t t -1,x 2=32t ln t t -1.所以x 1+x 2=32·t +1ln tt -1.①令h (x )=x +1ln xx -1,x ∈(1,+∞),则h ′(x )=-2ln x +x -1x x -12.令u (x )=-2ln x +x -1x,得u ′(x ).当x ∈(1,+∞)时,u ′(x )>0.因此,u (x )在(1,+∞)上单调递增,故对于任意的x ∈(1,+∞),u (x )>u (1)=0,由此可得h ′(x )>0,故h (x )在(1,+∞)上单调递增.因此,由①可得x 1+x 2随着t 的增大而增大.4.(2016·全国乙卷)已知函数f (x )=(x -2)e x +a (x -1)2有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ).①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.取对数,做差将两个零点x 1,x 2(x 1<x 2),用t 表示,注意的隐含范围。
导数中的双变量问题
故 f(x)在0,b+1 1上单调递增,在b+1 1,+∞上单调递减. 综上,当 b≤-1 时,f(x)在(0,+∞)上单调递增;当 b>-1 时,f(x)在0,b+1 1
上单调递增,在b+1 1,+∞上单调递减.
(2)若 0<a<2,b=1,实数 x1,x2 为方程 f(x)=m-ax2 的两个不等实根,求证:
令 h(x)=f(x)-mx =ln x+x2-3x-mx ,x∈[1,10], 所以 h′(x)=1x+2x-3+xm2≤0 在[1,10]上恒成立, 则m≤-2x3+3x2-x在[1,10]上恒成立. 设F(x)=-2x3+3x2-x(x∈[1,10]), 则 F′(x)=-6x2+6x-1=-6x-122+21. 当x∈[1,10]时,F′(x)<0,所以函数F(x)在[1,10]上单调递减, 所以F(x)min=F(10)=-2×103+3×102-10=-1 710, 所以m≤-1 710, 故实数m的取值范围为(-∞,-1 710].
近年高考应考,常涉及“双变量”或“双参”相关问题,能力要求高,破解问 题的关键:一是转化,即由已知条件入手,寻找双变量满足的关系式,并把含 双变量问题转化为含单变量的问题,二是巧妙构造函数,再借用导数,判断函 数的单调性,从而求其最值.
考向1 与双变量有关的恒成立问题
【典例1】 已知函数f(x)=ln x+ax2-3x.
点津突破
1.利用 f′(1)=0,得 a 的方程,解方程求 a 的值,再求 f′(x)=0 的实数解,并判断 在实数解的两侧 f(x)的导数值符号,得 f(x)的极值. 2.“ 双 变 量 不 等 式 ” 变 “ 单 变 量 不 等 式 ” : 双 变 量 不 等 式 “f(x1) - f(x2)>m(xx21-x2x1)”可化为“f(x1)-xm1>f(x2)-xm2”,只需构造函数 h(x)=f(x)- mx ,判断其在[1,10]上单调递减,从而转化为单变量不等式“h′(x)=1x+2x-3+ xm2≤0 在[1,10]上恒成立”.分离参数 m,构造新函数,借助函数最值求 m 的取 值范围.
专题07 函数中的双变量问题(学生版) -2025年高考数学压轴大题必杀技系列导数
专题7 函数中的双变量问题函数与导数一直是高考中的热点与难点, 近几年高考试卷及各地模拟试卷中常出现在函数背景下借组导数处理含有两个变量的等式与不等式问题,这类问题由于变量多,不少同学不知如何下手,其实如能以函数思想为指导,把双变量问题转化为一个或两个一元函数问题,再利用导数就可有效地加以解决.(一) 与函数单调性有关的双变量问题此类问题一般是给出含有()()1212,,,x x f x f x 的不等式,若能通过变形,把不等式两边转化为同源函数,可利用函数单调性定义构造单调函数,再利用导数求解.常见结论:(1)若对任意12,x x D Î,当12x x ¹时恒有()()12120f x f x x x ->-,则()y f x =在D 上单调递增;(2)若对任意12,x x D Î,当12x x ¹时恒有()()1212f x f x k x x ->-,则()y f x kx =-在D 上单调递增;(3)若对任意12,x x D Î,当12x x ¹时恒有()()121212f x f x kx x x x ->-,则()k y f x x =+在D 上单调递增;(4)若对任意12,x x D Î,当12x x ¹时恒有()()121212f x f x x x x x ->+-,则()2y f x x =-在D 上单调递增.【例1】(2024届四川省仁寿第一中学校高三上学期调研)已知函数212ln ()xf x x +=.(1)求()f x 的单调区间;(2)存在12,(1,)x x Î+¥且12x x ¹,使()()1212ln ln f x f x k x x -³-成立,求k 的取值范围.【解析】(1)由题意得()34ln xf x x -¢=,令()0f x ¢=得1x =,(01),x Î时,()0f x ¢>,()f x 在(0,1)上单调递增;,(1)x Î+¥时,()0f x ¢<,()f x 在(1,)+¥上单调递减;综上,()f x 单调递增区间为(0,1),单调递减区间为(1,)+¥.(2)由题意存在12,(1,)x x Î+¥且12x x ¹,不妨设121x x >>,由(1)知,(1)x Î+¥时,()f x 单调递减.()()1212ln ln f x f x k x x -³-等价于()()()2112ln ln f x f x k x x -³-,即()()2211ln ln f x k x f x k x +³+,即存在12,(1,)x x Î+¥且12x x >,使()()2211ln ln f x k x f x k x +³+成立.令()()ln h x f x k x =+,则()h x 在(1,)+¥上存在减区间.即234ln ()0kx x h x x-¢=<在(1,)+¥上有解集,即24ln x k x <在(1,)+¥上有解,即2max 4ln x k x æö<ç÷èø,(1,)x Î+¥;令()24ln x t x x =,(1,)x Î+¥,()()3412ln x t x x -¢=,(x Î时,()0t x ¢>,()t x在(上单调递增,)x ¥Î+时,()0t x ¢<,()t x在)+¥单调递减,∴max 2()e t x t ==,∴2ek <. (二) 与极值点有关的双变量问题与极值点12,x x 有关的双变量问题,一般是根据12,x x 是方程()0f x ¢=的两个根,确定12,x x 的关系,再通过消元转化为只含有1x 或2x 的关系式,再构造函数解题,有时也可以把所给条件转化为12,x x 的齐次式,然后转化为关于21x x 的函数,此外若题中含有参数也可考虑把所给式子转化为关于参数的表达式.【例2】(2024届黑龙江省双鸭山市高三下学期第五次模拟)已知函数2()ln (1)(R)f x x a x a x=+-+Î.(1)当1a =-时,讨论()f x 的单调性;(2)若()1212,x x x x <是()f x 的两个极值点,证明:()()21f x f x -<【解析】(1)当1a =-时,2()ln 1,()f x x x f x x=+++的定义域为(0,)+¥,所以2222122(2)(1)()1x x x x f x x x x x¢+-+-=-+==,令()0f x ¢=,解得1x =,当(0,1)x Î时,()0f x ¢<,当(1,)x Î+¥时,()0f x ¢>,故()f x 在(0,1)上单调递减,在(1,)+¥上单调递增.(2)222122()ax x f x a x x x ¢-+-=--=,由题意可知,()1212,x x x x <是方程220ax x -+-=的两根,则102180a a ì>ïíïD =->î,解得108a <<,所以121x x a +=,122x x a =,要证()()21f x f x -<====即证()()22112122ln 1ln 1x a x x a x x x éù+-+-+-+êúëû只需证()()122211122lnx x x a x x x x x -+--<需证()()212211122ln2x x x a x x x x x -<-=++令21(1)x t t x =>,则需证2(1)ln 1t t t -<++,设()ln 1)g t t t =>,则2111111442222111(1)11222()02t t t t t t t g t t t tt---¢æö-ç÷----+èø=-==-<,所以函数()g t 在(1,)+¥上单调递减,所以()(1)0g t g <=,因此ln t <由1t >得,2(1)01t t ->+,所以2(1)ln 1t t t -<+,故()()21f x f x -<,【例3】(2023届云南省曲靖市高三下学期第二次联考)已知函数()()21ln 402f x x a x x a =+->.(1)当3a =时,试讨论函数()f x 的单调性;(2)设函数()f x 有两个极值点()1212,x x x x <,证明:()()12ln 10f x f x a +>-.【解析】(1)当3a =时,()213ln 42f x x x x =+-定义域为()0,x Î+¥,()()()2133434x x x x f x x x x x---+=+-==¢,令()0f x ¢=解得1x =或3,且当01x <<或3x >时,()0f x ¢>,当13x <<时,()0f x ¢<,所以当01x <<或3x >时,()f x 单调递增,当13x <<时,()f x 单调递减,综上()f x 在区间()0,1,()3,+¥上单调递增,()f x 在区间()1,3单调递减.(2)由已知()21ln 42f x x a x x =+-,可得()244a x x af x x x x-+=+-=¢,函数()f x 有两个极值点()1212,x x x x <,即240x x a -+=在()0,¥+上有两个不等实根,令()24h x x x a =-+,只需()()00240h a h a ì=>ïí=-<ïî,故04a <<,又124x x +=,12x x a =,所以()()221211122211ln 4ln 422f x f x x a x x x a x x æöæö+=+-++-ç÷ç÷èøèø()()()2212121214ln ln ln 82x x a x x x x a a a =-+++++=--,要证()()12ln 10f x f x a +>-,即证ln 8ln 10a a a a -->-,只需证()1ln 20a a a -+-<,令()()1ln 2m a a a a =-+-,()0,4a Î,则()11ln 1ln a m a a a a a-=-++=-¢,令()()n a m a ¢=,则()2110n a a a¢=--<恒成立,所以()m a ¢在()0,4a Î上单调递减,又()110m ¢=>,()12ln202m =-<¢,由零点存在性定理得,()01,2a $Î使得()00m a ¢=,即001ln a a =,所以()00,a a Î时,()0m a ¢>,()m a 单调递增,()0,4a a Î时,()0m a ¢<,()m a 单调递减,则()()()()0000000max 00111ln 2123m a m a a a a a a a a a ==-+-=-+-=+-,又由对勾函数知0013y a a =+-在()01,2a Î上单调递增,所以00111323022a a +-<+-=-<,所以()0m a <,即()()12ln 10f x f x a +>-得证.(三) 与零点有关的双变量问题与函数零点12,x x 有关的双变量问题,一般是根据12,x x 是方程()0f x =的两个根,确定12,x x 的关系,再通过消元转化为只含有1x 或2x 的关系式,再构造函数解题,有时也可以把所给条件转化为12,x x 的齐次式,然后转化为关于21x x 的函数,有时也可转化为关于12x x -的函数,若函数中含有参数,可考虑把参数消去,或转化为以参数为自变量的函数.【例4】(2024届四川省南充高中高三下学期月考)已知函数())ln 2f x x a =-ÎR .(1)讨论函数()f x 的单调性,并求()f x 的极值;(2)若函数()f x 有两个不同的零点12,x x (12x x <),证明:1e a<<.【解析】(1)函数()f x 的定义域为(0,)+¥,由题意,()1f x x ==¢,当0a £时,()0f x ¢>,函数()f x 在(0,)+¥单调递增,无极值.当0a >时,令()0f x ¢=,得21x a =∴()f x 在210,a æöç÷èø单调递增,在21,a ¥æö+ç÷èø单调递减,所以函数()f x 在21x a =时取极大值,极大值为212ln 2f a a æö=--ç÷èø,无极小值.x210,a æöç÷èø21a 21,a ¥æö+ç÷èø()f x ¢+-()f x 递增极大值递减(212t t ==,且12x x <,则有1122ln ln t at t at =ìí=î,两式相减可得,1212ln ln t t a t t-=-1a <.12121ln ln t t a t t-<=-12ln 0t t Û>,令u =121ln02ln 0(01)t u u u t u >Û-+><<,设()12ln g u u u u =-+,则()222212110u u g u u u u -+-=--=<¢,所以()g u 在()0,1上单调递减,所以()()10g u g >=1a<.1122ln ln t at t at =ìí=î,两式子相加得,()1212ln t t a t t =+e >,即证212e t t >,由上式只需证()122a t t +>,即证()1121212112221ln ln 2ln 201t t t t t t t t t t t t --×+>Û-<-+,令12t v t =,11212211ln 20ln 20(01)11t t t v v v t t v t --æö-<Û-<<<ç÷+èø+,设()()1ln 2011v h v v v v -æö=-<<ç÷+èø,则()22(1)0(1)v h v v v +¢-=>,所以()h v 在()0,1上单调递增,所以()()10h v h <=e >.综上:1e a<<. (四) 独立双变量,各自构造一元函数此类问题一般是给出两个独立变量,通过变形,构造两个函数,再利用导数知识求解.【例5】(2024届陕西省宝鸡实验高中高三一模)已知函数2()ln (,,1)x f x a x x a b a b R a =+--Î>,e 是自然对数的底数.(1)当e,4a b ==时,求整数k 的值,使得函数()f x 在区间(,1)k k +上存在零点;(2)若存在12,[1,1],x x Î-使得12|()()|e 1f x f x -³-,试求a 的取值范围.【解析】(1)2()e 4x f x x x =+--,()e 21x f x x ¢\=+-,(0)0f ¢\=当0x >时,e 1x >,()0f x ¢\>,故()f x 是(0,)+¥上的增函数,同理()f x 是(,0)-¥上的减函数,2(0)30,(1)e 40,(2)e 20f f f =-<=-<=->,且2x >时,()0f x >,故当0x >时,函数()f x 的零点在()1,2内,1k \=满足条件.同理,当0x <时,函数()f x 的零点在()2,1--内,2k \=-满足条件,综上1,2k =-.(2)问题Û当[1,1]x Î-时,max min max min |()()|()()e 1f x f x f x f x -=-³-,()ln 2ln 2(1)ln x x f x a a x a x a a ¢=+-=+-,①当0x >时,由1a >,可知10,ln 0,()0x a a f x ¢->>\>;②当0x <时,由1a >,可知10,ln 0,()0x a a f x ¢-<>\<;③当0x =时,()0f x ¢=,()f x \在[1,0]-上递减,[0,1]上递增,\当[1,1]x Î-时,min max ()(0),()max{(1),(1)}f x f f x f f ==-,而1(1)(1)2ln f f a a a--=--,设1()2ln (0),g t t t t t =-->22121()1(1)0g t t t t¢=+-=-³Q (仅当1t =时取等号),()g t \在(0,)+¥上单调递增,而(1)0g =,\当1t >时,()0g t >即1a >时,12ln 0a a a-->,(1)(1),(1)(0)e 1f f f f \>-\-³-即ln e 1e ln e a a -³-=-,构造()ln (1)h a a a a =->,易知()0¢>h a ,()h a \在(1,)+¥递增,e a \³,即a 的取值范围是[e,)+¥.(五) 构造一元函数求解双变量问题当两个以上的变元或是两个量的确定关系在解题过程中反复出现.通过变量的四则运算后,把整体处理为一个变量,从而达到消元的目的.【例6】(2024届山东省菏泽市高考冲刺押题卷)已知函数2()ln 1(02)f x tx x x t =-+<£.(1)求函数()f x 的单调区间(2)若0a b >>,证明:2244a b a b <-.【解析】(1)()ln 2,0f x t x t x x ¢=+->,令()()ln 2g x f x t x t x ¢==+-,所以()2,0tg x x x¢=->,由()0g x ¢>可得02t x <<,由()0g x ¢<可得2t x >,所以()f x ¢在(0,)2t 上单调递增,在(,)2t+¥上单调递减,所以max ()(ln ln 222t t tf x f t t t t ¢¢==+-=.又因为02t <£,所以ln02t£,即()0f x ¢£,且()f x ¢至多在一个点处取到0.所以()f x 在(0,)+¥上单调递减,故()f x 的单调递减区间为()0,+¥,没有单调递增区间.(2)证明2244a b a b <-,只需证:22222222222222+)))()11((ln 24(a b a b a b a b a b a b --<-++-,即证:2222222222222ln a b a b a b a b a b a b ++-<---+,令2222,0a b x a b a b +=>>-,所以1x >,只需证:12ln x x x<-,即证:22ln 10x x x -+<,由(1)知,当2t =时,2()2ln 1f x x x x =-+在(0,)+¥上单调递减,1x >()(1)0f x f <=,即22ln 10x x x -+<,所以2244a b a b<-.(六) 独立双变量,把其中一个变量看作常数若问题中两个变量没有明确的数量等式关系,有时可以把其中一个当常数,另外一个当自变量【例7】已知函数,(1)若函数在处的切线也是函数图像的一条切线,求实数a 的值;(2)若函数的图像恒在直线的下方,求实数a 的取值范围;(3)若,且,证明:>【解析】 (1),在处切线斜率,,所以切线,又,设与相切时的切点为,则斜率,则切线的方程又可表示为,由,解之得.(2)由题可得对于恒成立,即对于恒成立,令,则,由得,x20,e a æöç÷èø2e a2e a æö+¥ç÷èø,()h x ¢+0-()h x ↗极大值↘则当时,,由,得:,即实数的取值范围是.(3)由题知,由得,当时,,单调递减,因为,所以,即,所以,①同理,②①+②得,()ln (0)af x x a x=×>()e xg x =0x =()f x ()f x 10x y -+=12,(,)e 2a a x x Î12x x ¹412()x x +212a x x ()e xg x ¢=()g x 0x =()01k g ¢==()01g =:1l y x =+()ln1af x x =¢-l ()f x 000,ln a x x x æöç÷èø()00ln 1a k f x x ¢==-l ()000000ln 1ln ln 1a a ay x x x x x x x x æöæö=--+=-+ç÷ç÷èøèø00ln 111ax x ì-=ïíï=î2e a =()10f x x --<0x >ln 10ax x x--<0x >()ln 1a h x x x x =--()ln 2ah x x =¢-()0h x ¢=2ea x =0x >()22max 1e ea a h x h æö==-ç÷èø210e a -<20e a <<a ()20,e ()ln 1af x x=¢-()0f x ¢=e a x =e a x a <<()0f x ¢<()()ln 0af x x a x=>112x x x a +<<()()112f x f x x >+()112112ln ln a ax x x x x x >++121112lnln x x a a x x x x +>+122212ln ln x x a ax x x x +>+1212121212lnln ln x x x x a a ax x x x x x æöç÷èø>+++++因为,由得,即,所以,即,所以.(七) 双变量,通过放缩消元转化为单变量问题此类问题一般是把其中一个变量的式子放缩成常数,从而把双变量问题转化为单变量问题【例8】(2024届河北省衡水市高三下学期联合测评)过点(),P a b 可以作曲线e x y x =+的两条切线,切点为,A B .(1)证明:()1ea b a ->-;(2)设线段AB 中点坐标为()00,x y ,证明:00a y b x +>+.【解析】(1)证明:设切点(),e tA t t +,1e xy ¢=+,所以e 1e t tPAt bk t a+-=+=-,即关于t 的方程()1e 0tt a b a --+-=有两个不相等的实数根.设()()1e t f t t a b a =--+-,则()()e 0tf t t a =-=¢,t a =.当t a <时,()0f t ¢<,则()f t 在(),a ¥-上单调递减;当t a >时,()0f t ¢>,则()f t 在(),a ¥+上单调递增,所以()f t 在t a =处取值得最小值,即()e af a b a =--.当t ®+¥时,()f t ¥®+,当t ®-¥时,()f t b a ®-,若满足方程有两个不相等的实数根,则0e 0ab a b a ->ìí--<î,于是0e a b a <-<,即()ln b a a -<,得()()()ln b a b a b a a --<-,设()ln g x x x =,()ln 10g x x +¢==,得1ex =,在10,e æöç÷èø上,()0g x ¢<,则()g x 单调递减,在1,e ¥æö+ç÷èø上,()0g x ¢>,则()g x 单调递增,所以()ln g x x x =,在1e x =处取得最小值,即11e e g æö=-ç÷èø,所以()1e a b a ->-.(2)证明:设()()1122,,,A x y B x y ,则()()12012011e e 22x x y y y x =+=++,即()()12001211e e 22x x y x y y -=+=+,121221121224x x x x x x x x x x +++=++³12x x a +<121a x x +>12ln 0ax x >+1212ln ln 4ln a a a x x x x +>+421212a a x x x x æö>ç÷+èø()421212x x a x x +>在点()()1122,,,A x y B x y 处的切线方程都过(),P a b ,于是,由()()1111e 1e x xb x a x --=+-,得()1110e x b a x a --++=,由()()2222e 1e x xb x a x --=+-,得()2210e x b a x a --++=两式相减整理得:()121212e e e x x x x x x b a +--=-,()()()()1212121200e 1e ee e 2x x x x x x x x b a y x +----=-+-()()121212122212e e e 2e 2e e x x x x x x x x x x ++éù-=--êú-ëû()()1212121212e 12e e 2e e x x x x x x x x x x +--éù=--+êú-ëû,不妨设1212,0x x m x x >=->,所以()1212e 02e e x x x x +>-,则()12e e m mh m m =-+,()12e 220e m mh m ¢=--£-=,所以()h m 在()0,¥+上单调递减,于是()()00h m h <=,于是()()000b a y x ---<,即00a y b x +>+.【例1】(2024届陕西省西安市一中高三考前模拟)已知函数()2e 2xx f x a =++.(1)若4a =-,求()f x 的极值;(2)若0a >,不相等的实数,m n 满足()()228f m f n m n +=++,求证:0m n +<.【解析】(1)依题意,()2e 42x f x x =-+,则()2e 4xf x =¢-,令()0f x ¢=,解得ln 2x =,故当(),ln 2x ¥Î-时,()0f x ¢<,当()ln 2,x ¥Î+时,()0f x ¢>,故函数()f x 在(),ln 2¥-上单调递减,在()ln 2,¥+上单调递增,故函数()f x 的极小值为()ln 244ln 2264ln 2f =-+=-,无极大值;(2)令()()222e 2x g x f x x ax x =-=+-+,则()2e 2xg x x a =¢-+,令()e xt x x =-,则()e 1x t x ¢=-,当0x <时,()0t x ¢<,当0x >时,()0t x ¢>,所以函数()t x 在(),0¥-上单调递减,在()0,¥+上单调递增,所以()()e 010x t x x t =-³=>,又0a >,所以()()2e 0xg x x a =-+>¢,所以()g x 在R 上单调递增,()()228f m f n m n +=++,即()()8g m g n +=,因为()04g =,所以,0m n ¹,要证0m n +<,即证n m <-,只需证()()g n g m <-,即()()8g m g m -<-,即()()8g m g m +->,令函数()()()22e 2e 24x x h x g x g x x -=+-=+-+,则()2e 2e 4x x h x x -=--¢,令()()x h x j =¢,则()2e 2e 40xx x j -=-¢+³,所以()h x ¢为R 上的增函数,当0x <时,()()00h x h ¢¢<=,当0x >时,()()00h x h ¢¢>=,所以()h x 在(),0¥-上单调递减,在()0,¥+上单调递增,所以对任意0m ¹,都有()()()()08h m g m g m h =+->=,从而原命题得证.【例2】(2024届河北省衡水市部分示范性高中高三下学期三模)已知()e xf x x =-.(1)求()f x 的单调区间和最值;(2)定理:若函数()f x 在(,)a b 上可导,在[]a b ,上连续,则存在(,)a b x Î,使得()()()f b f a f ξb a-¢=-.该定理称为“拉格朗日中值定理”,请利用该定理解决下面问题:若0m n <<,求证:()2e e 111m n m n m n m æö-<+-ç÷èø.【解析】(1)()e 1x f x ¢=-,令()0f x ¢=,解得0x =,当(,0)x Î-¥时,()0,()¢<f x f x 单调递减;当,()0x Î+¥时,()0,()¢>f x f x 单调递增. 当0x =时,()f x 取得最小值1,无最大值;(2)要证2e e 11(1)m n m n m n m æö-<+-ç÷èø,只需证2e e (1)()m n m n m m n -<+-,因为0m n <<,故只需证2e e (1)m nm n m m n->+-. 令()e (0)x g x x x =>,显然()g x 在(,)m n 上可导,在[]m n ,上连续,故由拉格朗日中值定理知存在(,)m n x Î,使得e e()m nm n g m nx ¢-=-,而()(1)e 0,()x g x x g x ¢¢=+>在(0,)+¥上单调递增,因为m n x <<,故()()g g m x ¢¢>,即()(1)e m g m x ¢>+,故只需证2(1)e (1)m m m +³+即可,因为0m >,故只需证e 1m m ³+.由(1)知e 1x x ³+恒成立,因此原命题得证.【例3】(2024届天津市部分区高三二模)已知,R a b Î,函数()sin ln f x x a x b x =++.(1)当0,1a b ==-时,求()f x 的单调区间;(2)当1,02a b =-¹时,设()f x 的导函数为()f x ¢,若()0f x ¢>恒成立,求证:存在0x ,使得()01f x <-;(3)设01,0a b <<<,若存在()12,0,x x Î+¥,使得()()()1212f x f x x x =¹>.【解析】(1)由函数()sin ln f x x a x b x =++,可得其定义域为()0,¥+,当0,1a b ==-时,可得()ln f x x x =-,则()111x f x x x¢-=-=,当()0,1x Î时,可得()0f x ¢<,()f x 单调递减;当()1,x ¥Î+时,可得()0f x ¢>,()f x 单调递增,\函数()f x 的单调递增区间为()1,¥+,单调递减区间为()0,1.(2)当1,02a b =-¹时,可得()1sin ln 2f x x x b x =-+,则()11cos 2bf x x x =-+¢,Q ()0f x ¢>恒成立,即11cos 02b x x -+>恒成立,令()11cos ,02bh x x x x=-+>,若0b <,则0b x <,存在2b x =-,使得111cos 21cos 022222b b b h æöæöæö-=---=---<ç÷ç÷ç÷èøèøèø,即()0f x ¢<,不符合题意,>0b \,取30e bx -=,则001x <<,可得()3301esin e 312bb f x --=--<-,即存在0x ,使得()01f x <-.(3)由函数()sin ln f x x a x b x =++,可得()1cos bf x a x x ¢=++,设12x x <,由()()12f x f x =,可得111222sin ln sin ln x a x b x x a x b x ++=++,则()()()22121211sin sin ln ln lnx x x a x x b x x b x -+-=--=-,又由sin y x x =-,可得'1cos 0y x =-³,\函数sin y x x =-为单调递增函数,\2211sin sin x x x x ->-,即2121sin sin x x x x -<-,\()()2211ln1x b a x x x -<+-,设()1ln 21x h x x x -=-´+,可得()()()()222114011x h x x x x x -=-=+¢³+,\当1x >时,()()10h x h >=,即ln 2x >\2>即ln 4x =>\21ln 44x x >=代入可得:()()()()21411b a x x a ×-<+-=+,则()241b a -×<++,\>【例4】(2024届四川省百师联盟高三联考三)已知函数()214ln 2f x x x a x =-+.(1)当1a =时,求曲线()f x 在点()()1,1f 处的切线方程;(2)设函数()y f x =有两个不同的极值点1x ,2x .证明:()()2121135ln 244f x f x a a +--≥.【解析】(1)当1a =时()214ln 2x f x x x =-+,()14f x x x ¢=-+,()171422f =-=-,()14121f ¢=-+=-,则切线方程为()7212y x +=--,化简得4230x y ++=.(2)证明:由题()244a x x af x x x x=¢-+=-+,函数()f x 有两个极值点1x ,2x ,即240x x a -+=在()0,¥+上有两个不等实根,令()24h x x x a =-+,只需故()()00240h a h a ì=>ïí=-<ïî,故04a <<.又124x x +=,12x x a =,所以()()221211122211ln 4ln 422f x f x x a x x x a x x æöæö+=+-++-ç÷ç÷èøèø()()()2212121214ln ln ln 82x x a x x x x a a a =-+++++=--.若证()()2121135ln 244f x f x a a +--≥,即证21135ln 8ln 244a a a a a ----≥,即2113ln ln 0244a a a a a --++≥.令()2113ln ln 244x x x x x x j =--++,()0,4x Î,()11ln 2x x xx j æö¢=+-ç÷èø,则()x j ¢在()0,4上递增,且有()01j ¢=,当()0,1x Î时,()0x j ¢<,所以()x j 在()0,1上递减;当()1,4x Î时,()0x j ¢>,所以()x j 在()1,4上递增;所以()()113ln11ln101244x j j =--++=≥,()0,4x Î.即()()2121135ln 244f x f x a a +--≥得证.【例5】(2024陕西省西安八校高三下学期联考)已知函数的图象在处的切线过原点.(1)求的值;(2)设,若对总,使成立,求整数的最大值.【解析】(1)易知的定义域为,又,的图象在处的切线方程为,将代入,得;(2).当时,取得最小值,.由(1)知,.,得的定义域为.则,易知单调递增,又.即在上有唯一解,故.()()()e ln 1R ,xf x m x x m f x =-+-Î()()1,1f m ()()()2,2g x f x x h x x x a =-=-+()10,x ¥"Î+2x $ÎR ()1g x >()2h x a ()f x ()()0,,1e f ¥+=()()e 1,1e 1x mf x f m x¢¢=-+=-+()f x \()()1,1f ()()e e 11y m x -=-+-0,0x y ==1m =()222(1)1h x x x a x a =-+=-+-\1x =()h x ()()min []11h x h a ==-1m =()e ln 1x f x x x \=-+-()()e ln 1,x g x x g x =--()0,¥+()1e xg x x =¢-()1e 0xy x x=->()120,1e 102g g æö¢¢=-ç÷èø()0g x ¢=1,12æöç÷èø0x 000011e ,e x x x x ==于是当时,在上单调递减;当时,在上单调递增.在处取得极小值也是最小值.则,对总,使成立,只需,得.故整数的最大值为.1.(2024届广东省汕头市第二次模拟)设M 是由满足下列条件的函数()f x 构成的集合:①方程()0fx x-=有实根;②()f x 在定义域区间D 上可导,且()f x ¢满足()01f x ¢<<.(1)判断()ln 322x xg x =-+,()1,x Î+¥是否是集合M 中的元素,并说明理由;(2)设函数()f x 为集合M 中的任意一个元素,证明:对其定义域区间D 中的任意a 、b ,都有()()a b a b -£-f f .2.(2024届山东省滨州市高三下学期二模)定义:函数()f x 满足对于任意不同的12,[,]x x a b Î,都有()()1212f x f x k x x -<-,则称()f x 为[],a b 上的“k 类函数”.(1)若2()13x f x =+,判断()f x 是否为[]1,3上的“2类函数”;(2)若2()(1)e ln 2xx f x a x x x =---为[1,e]上的“3类函数”,求实数a 的取值范围;(3)若()f x 为[1,2]上的“2类函数”,且(1)(2)f f =,证明:1x ",2[1,2]x Î,()()121f x f x -<.3.(2024届辽宁省沈阳市第一二〇中学高三最后一卷)设函数()21ln 2f x x x x ax =--的两个极值点分别为()1212,x x x x <.(1)求实数a 的取值范围;(2)若不等式()12a x x l <+恒成立,求正数l 的取值范围(其中e 271828=L .为自然对数的底数).00x x <<()()0,g x g x ¢<()00,x 0x x >()()0,g x g x ¢>()0,x ¥+()g x \0x x =()000min 015e ln 112,2xg x x x x æö=--=+-Îç÷èø\()10,x ¥"Î+2x $ÎR ()()12g x h x >11a ³-2a £a 24.(2024届湖南省高三“一起考”大联考下学期模拟)已知函数()2f x ax =,()lng x x =,函数()f x ,()g x 有两条不同的公切线(与()f x ,()g x 均相切的直线)1l ,2l .(1)求实数a 的取值范围;(2)记1l ,2l 在y 轴上的截距分别为1d ,2d ,证明:121d d +<-.5.(2024届天津市民族中学高三下学期4月模拟)已知函数()()22ln 0f x x x a x a =-+>.(1)当2a =时,试求函数图象在点()()1,1f 处的切线方程;(2)若函数()f x 有两个极值点1x 、()212x x x <;(ⅰ)求a 的取值范围;(ⅱ)不等式()12f x mx ³恒成立,试求实数m 的取值范围.6.(2024届陕西省部分学校(菁师联盟)高三下学期5月份高考适应性考试)已知函数()2ln f x x x x =-.(1)求曲线()y f x =在2e x =处的切线方程;(2)若()()12f x f x =,且12x x <.求证:212e x x +<.7.(2024届广东省广州市二模)已知函数()()21e x f x a x x -=++.(1)讨论()f x 的零点个数;(2)若()f x 存在两个极值点,记0x 为()f x 的极大值点,1x 为()f x 的零点,证明:0122x x ->.8.(2024届重庆市名校联盟高三下学期全真模拟)T 性质是一类重要的函数性质,具有T 性质的函数被称为T 函数,它可以从不同角度定义与研究.人们探究发现,当()y f x =的图像是一条连续不断的曲线时,下列两个关于T 函数的定义是等价关系.定义一:若()y f x =为区间(),a b 上的可导函数,且()y f x ¢=为区间(),a b 上的增函数,则称()y f x =为区间(),a b 上的T 函数.定义二:若对()12,,x x a b "Î,()0,1l "Î,都有()()()()121211f x x f x f x l l l l éù+-£+-ëû恒成立,则称()y f x =为区间(),a b 上的T 函数.请根据上述材料,解决下列问题:(1)已知函数()πtan 02f x x x æö=Îç÷èø,,.①判断()y f x =是否为π0,2x æöÎç÷èø上的T 函数,并说明理由;②若π0,2a b æöÎç÷èø,且π22a b +=,求()()2f f a b +的最小值(2)设11111m n m n >>+=,,,当00a b >>,时,证明:11m na b ab m n+³.9.(2024届河南省九师联盟高三下学期5月联考)已知函数1()ln (0)f x a x a x=+¹.(1)若()f x a >对,()0x Î+¥恒成立,求a 的取值范围;(2)当3a =时,若关于x 的方程211()42f x x x b x =-++有三个不相等的实数根1x ,2x ,3x ,且1x <23x x <,求b 的取值范围,并证明:314x x -<.10.(2024届湖北省宜荆荆随恩高三5月联考)设函数,(1)讨论的单调性.(2)若函数存在极值,对任意的,存在正实数,使得(ⅰ)证明不等式.(ⅱ)判断并证明与的大小.11.(2024届江西省上饶市六校高三5月第二次联合考试)已知函数.(1)若,求的极值;(2)若,求的最大值.12.(2024届山西省临汾市高三下学期考前适应性训练)已知函数.(1)求在处的切线方程;(2)若曲线与直线有且仅有一个交点,求的取值范围;(3)若曲线在处的切线与曲线交于另外一点,求证:.13.(2024届江苏省扬州市仪征市四校高三下学期4月联合学情检测)已知函数.()()24ln 42f x x ax a x =-+-a ÎR()f x ()f x 120x x <<0x ()()()()21021f x f x f x x x ¢-=-212121ln ln 2x x x x x x ->-+122x x +0x ()()ln ,,0f x x a x b a b a =--ιR 1a b ==()f x ()0f x ³ab ()()21ln 12=++f x x x ()f x 0x =()y f x =y ax =a ()y f x =()()(),0m f m m >()y f x =()(),n f n 21mm n m -<<-+()()()ln 0f x mx x m =->(1)若恒成立,求的取值范围;(2)若有两个不同的零点,证明.14.(2024届河北省保定市高三下学期第二次模拟)已知函数为其导函数.(1)若恒成立,求的取值范围;(2)若存在两个不同的正数,使得,证明:.15.(2024届云南省高中毕业生第二次复习统一检测)已知常数,函数.(1)若,求的取值范围;(2)若、是的零点,且,证明:.()0f x £m ()f x 12,x x 122x x +>()ln ,()f x ax x x f x ¢=-()1f x £a 12,x x ()()12f x f x=0f ¢>0a >221()2ln 2f x x ax a x =--20,()4x f x a ">>-a 1x 2x ()f x 12x x ¹124x x a +>。
函数导数中双变量问题的四种转化化归思想
2012 年 第 8 期 数学通讯(上半月) 8-12处理函数双变量问题的六种解题思想吴享平(福建省厦门第一中学) 361000在解决函数综合题时, 我们经常会遇到在某个范围内都可以任意变动的双变量问题, 由 于两个变量都在变动,因此不知把那个变量当成自变量进行函数研究,从而无法展开思路, 造成无从下手的之感, 正因为如此, 这样的问题往往穿插在试卷压轴题的某些步骤之中, 是 学生感到困惑的难点问题之一, 本文笔者给出处理这类问题的六种解题思想, 希望能给同学 们以帮助和启发。
一、改变“主变量”思想例1.已知 f (x) x 2 mx 1 m,在|m| 2时 恒成立,求实数 x 的取值范围 .分析: 从题面上看,本题的函数式 f (x)是以 x 为主变量 ,但由于该题中的“恒”字是 相对于变量m 而言的,所以该题应把 m 当成主变量,而把变量 x 看成系数,我们称这种思 想方法为改变“主变量”思想。
解: x 2 mx 1 m m(x 1) x 2 1 0 在| m| 2时 恒成立,即关于 m 为自 变量的一次函数 h(m) (x 1)m x 21在 m [ 2,2] 时的函数值恒为非负值得 x x 2 22x x 33 00x3或 x 1。
对于题目所涉及的两个变元, 已知其中一个变元在题设给定范围内任意变动, 求另一个 变元的取值范围问题,这类问题我们称之为“假”双变元问题,这种“假”双变元问题,往 往会利用我们习以常的 x 字母为变量的惯性“误区”来设计,其实无论怎样设计,只要我们 抓住“任意变动的量”为主变量, “所要求范围的量”为常数,便可找到问题所隐含的自变 量,而使问题快速获解。
二、指定“主变量”思想例2 .已知 0 m n,试比较 e n m ln(m 1) 与1 ln(n 1)的大小,并给出证明m,n ,这里不妨把 m 当成常数,指定 n 为主变量 x ,解答如下xm解:构造函数 f (x) e x m ln(m 1) 1 ln(x 1),x [m, ) ,m 0,f (x)min f(m) 0,于是,当 0 m n 时,f (n) e n m ln(m 1) 1 ln(n 1) 0即 e n m ln(m 1) >1 ln(n 1)。
高考专题 导数双变量问题
导数专题——导数背景下双变量问题(内含极值点偏移)类型一 消参构造)(21x x f ±或者)(21x x f 化二元函数为一元函数处理 【例1】已知函数()()1ln a f x a x x a x+=--∈R . (1)求函数()f x 的单调区间;(2)当e a <<x 的方程()1a f ax ax+=-有两个不同的实数解12,x x ,求证:22124x x x x +<.【解析】(1)()f x 的定义域为(0)+∞,,()21a a f x x x +'=-221x ax ax -+++=()()211x x a x -+-+⎡⎤⎣⎦=.①当10a +>,即1a >-时,)1(0x a ∈+,,()0f x '>,1()x a ∈++∞,,()0f x '<, ∴函数()f x 的单调递增区间是(0)1a +,,单调递减区间是(1)a ++∞,. ②当10a +≤,即1a ≤-时,0()x ∈+∞,,()0f x '<,∴函数()f x 单调递减区间是(0)+∞,,无单调递增区间.(2)设()()1a g x f ax ax+=+()ln ln a a x x =+-, ()()()10a x g x x x-'∴=>. 当01x <<时,()0g x '>,函数()g x 在区间(0)1,上单调递增; 当1x >时,()0g x '<,函数()g x 在区间(1)+∞,上单调递减;()g x ∴在1x =处取得最大值.方程()1a f ax ax+=-有两个不同的实数解12x x ,. ∴函数()g x 的两个不同的零点12,x x ,一个零点比1小,一个零点比1大.不妨设1201x x <<<,由()10g x =,且()20g x =,得()11ln x ax =,且()22ln x ax =,则111x x e a =,221x x e a =,121221x x x x e a +∴=, 1212212121x x x x e x x a x x +∴=⋅++, 令12x x t +=,()te h t t=,()()221tt t e t e t e h t t t -⋅-'==. 12t x x =+,1201x x <<<,1t ∴>.()0h t '>.函数()h t 在区间(1)+∞,上单调递增,()()1h t h e >=,()12122212121x xx x e ex x a x x a+∴=⋅>++. e a <<2144e e a e ∴>=,121214x x x x ∴>+. 又120x x +>,12124x x x x ∴+<.【例2】已知函数)()(a ax e e x f x x +-=有两个极值点21,x x . (1)求a 的取值范围; (2)求证:21212x x x x +<.【解析】(1)因为)2()(ax e e x f x x -=',令0)(='x f ,即ax e x =2①当0=a 时,无解 ②当0≠a 时,x e x a =2,令x e x x g =)(,则x ex x g -='1)( 易得)(x g 在)1,(-∞上单调递增,在),1(+∞上单调递减又因为0)(,)(,,1)1(→+∞→-∞→-∞→=x g x x g x eg 时,时所以当ea 120<<,即e a 2>时,)(x f 有两个极值点.(2)由(1)设2110x x <<<,且有⎪⎩⎪⎨⎧==212122ax e ax e x x即1212x x e x x =-,两边取对,得1212ln x xx x =- 要证21212x x x x +<,即证))((ln212211221x x x x x x x x -+<,即211212ln 2x xx x x x -< 令)1(12>=t t x x ,只需证明01ln 2)(<+-=tt t t h 在),1(+∞上恒成立即可 由于0)1(112)(222<--=--='tt t t t h ,所以)(t h 在),1(+∞上单调递减, 即0)1()(=<h t h ,原式得证. 【例3】已知函数()ln )R (f x x ax a a =-+∈. (1)求函数()f x 的单调区间;(2)当1a =时,对任意的0m n <<,求证:()()()1n m f m m f n m--<+. 【解析】(1)()()110axf x a x xx-'=-=>. 当0a ≤时,()0f x '>恒成立,()f x ∴的单调递增区间为(0)+∞,,无单调递减区间;当0a >时,由()0f x '>得10x a<<,由()0f x '<,得1x a>,()f x ∴的单调递增区间为10,a ⎛⎫ ⎪⎝⎭单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭.(2)1a =时,()()ln 10f x x x x =-+>,由(1)知()f x 在()0,1上为增函数,在()1+∞,上为减函数,()()ln 110f x x x f ∴=-+≤=,ln 1x x ∴≤-,当且仅当1x =时,取“=”.()()f n f m -()()ln 1ln 1n n m m =-+--+()ln nn m m=--. ()11n m n m nm m m m--=-++ 0m n <<,11m ∴+>,0n m ->,1nm>.()1n m n m m -∴--<-+,∴只要证明ln1n nm m<-即可. 又1nm>,∴上式成立()()()1n m f n f m m m -∴-<+. 技巧二 借助极值点偏移处理双变量问题【例4】已知函数()2x af x e x c⎛⎫=-- ⎪⎝⎭,其定义域为(0)+∞,.(其中常数 2.71828e =…,是自然对数的底数)(1)求函数()f x 的单调递增区间;(2)若函数()f x 为定义域上的增函数,且()()124f x f x e +=-,证明:122x x +≥.【解析】(1)函数()2xa f x e x x ⎛⎫⎪⎝=-⎭-的定义域是()0,+∞,()()()221x e x x a f x x --'=.①若0a ≤,由()0f x '>,得1x >,∴函数()f x 的单调递增区间是()1,+∞.②若01a <<,由()0f x '>,得1x >或0x <<∴函数()f x 的单调递增区间是和.()1,+∞. ③若1a =,()()()22110x e x x f x x+-'=≥,∴函数()f x 的单调递增区间是()0,+∞.④若1a >,由()0f x '>,得x >01x <<,∴函数()f x 的单调递增区间是(0)1,和)+∞.综上,若0a ≤,函数()f x 的单调递增区间是(1)+∞,;若01a <<,函数()f x 的单调递增区间是和(1)+∞,; 若1a =,函数()f x 的单调递增区间是()0,+∞;若1a >,函数()f x 的单调递增区间是(0)1,和)+∞ (2)函数()f x 为定义域()0,+∞上的增函数,由(1)可知,1a =,()12x f x e x x ⎛⎫∴=--⎪⎝⎭. ()12f e =-,()()()12421f x f x e f ∴+=-=.不妨设1201x x <≤≤,欲证122x x +≥,只需证212x x ≥-, 即证()()212f x f x ≥-,又只需证()()1142e f x f x --≥-,即证()()1124f x f x e +-≤-令()()()2g x f x f x =+-,01x <≤,只需证()()1g x g ≤,()()()()2222221312x xe x x g x ex x x --⎡⎤+-'=--⎢⎥-⎢⎥⎣⎦, 1x e x ≥+.()()22221211x x e e x x --∴=≥-+=.()()2222132x e x xx x -+-∴--()2312xx x -≥+--()322312x x x x -++=-()()()2212102x x x x ---=≥-. ()()()()22222213102x xe x x g x ex x x --⎡⎤+-'∴=--≥⎢⎥-⎢⎥⎣⎦. ()g x ∴单调递增,即()()1g x g ≤,从而122x x +≥得证.【例5】已知函数2()(2)e (1)x f x x a x =-+-有两个零点. (1)求a 的取值范围;(2)设12,x x 是()f x 的两个零点,证明:122x x +<.【解析】(1)()0,+∞(2)当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从而22()(2)0g x f x =-<,故122x x +<.解析:(1)'()(1)e 2(1)(1)(e 2)x x f x x a x x a =-+-=-+. ①设0a =,则()(2)e ,()x f x x f x =-只有一个零点,②设0a >,则当(,1)x ∈-∞时,'()0f x <;当()1,x ∈+∞时,'()0f x >,所以()f x 在(),1-∞上单调递减,在()1,+∞上单调递增.又(1)e,(2)f f a =-=,取b 满足0b <且ln 2ab <,则223()(2)(1)022a f b b a b a b b ⎛⎫>-+-=-> ⎪⎝⎭, 故()f x 存在两个零点.③设0a <,由'()0f x =得1x =或ln(2)x a =-.若e 2a ≥-,则ln(2)1a -≤,故当()1,x ∈+∞时,'()0f x >,因此()f x 在()1,+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.若e 2a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
再次例谈导数压轴题中双变量问题的常用解法
长沙市明达中学吴祥云
今日在“玩转高中数学交流群”中,由河南的贾老师提供一常规题,很多老师作出了不同的解答,我在这里把它们总结起来,供大家交流学习。
题目虽然简单,但是方法的讲述由浅入深,学生会更容易接受一些。
闲话少说,先上题:
已知函数f(x)=x
e x
,f(x1)=f(x2),x1≠x2,求证:x1+x2>2.
解析:f′(x)=1−x
e x
,易得 f(x)在(−∞,1)递增,(1,+∞)递减,其图像如图,为了更好的看图,横纵轴单位长度取得不同,不妨设0<x1<1<x2,以下是几种不同的证明思路:
思路一:(极值点偏移问题+构造对称函数)
令g(x)=f(2−x)−f(x),(0<x<1)
则g′(x)=(1−x)e x−e2−x
e x e2−x
<0,则g(x)在(0,1)递减
∴g(x)>g(1)=0,即f(2−x)>f(x),∴f(2−x1)> f(x1)=f(x2),又2−x1>1,x2
>1,f(x)在(1,+∞)递减,
∴2−x1<x2,即x1+x2>2。
思路二:(极值点偏移+对数平均不等式)
f(x1)=f(x2)⇒x1
e x1
=
x2
e x2
⇒lnx1−x1=lnx2−x2⇒lnx1−lnx2=x1−x2
⇒
x1−x2
lnx1−lnx2
=1,由对数平均不等式
x1−x2
lnx1−lnx2
<
x1+x2
2
(证明略),
得x1+x2
2
>1,即x1+x2>2。
思路三:(差值消元)
令x2−x1=t>0,x1
e x1=x2
e x2
⇒x2
x1
=e x2
e x1
=e x2−x1=e t⇒x1=t
e t−1
,x2=t
e t−1
+t,
∴x1+x2=
2t
e t−1
+t,欲证x1+x2>2即证
2t
e t−1
+t<2即
e t(2−t)
2+t
<1,
令g(t)=e t(2−t)
2+t
,则g′(t)=
e t(−t2)
(2+t)2
<0,故g(t)在(0,+∞)递减,
点评:构造对称函数为极值点偏移问题的通法。
点评:含指数或者对数的不等式问题中,指对互化是常用技巧,而对数平均不等的功能更是巨大。
∴g (t )<g (0)=0,∴x 1+x 2>2。
思路四:(比值消元)
令x 2x 1=t,则t >1,x 1e x 1=x 2e x 2⇒x 2x 1=e x 2
e x 1
=t ⇒x 2−x 1=lnt,又x 2=tx 1, ∴x 1=lnt t −1,x 2=tlnt t −1,欲证x 1+x 2>2即证lnt t −1+tlnt t −1
>2, 即证lnt >2(t−1)
t+1,令g (t )=lnt −2(t−1)
t+1,(t >1),g ′(t )=(t−1)2
(1+t )2>0,
故g (t )在(0,+∞)递增,∴g (t )>g (0)=0,∴lnt >
2(t −1)t +1,∴x 1+x 2>2。
思路五:(构造对称函数)
f ′(x )=1−x e x ,易证不等式1−x e x −1−x e =(1−x )(1e x −1e
)≥0, 令g ′(x )=1−x
e ,则g (x )=
−(1−x)22e +c,(c 为常数) 由g (1)=f (1)=1e 得 c =1e ,g (x )=−(1−x )2
2e +1
e , 结合两个函数导数的关系作出如右图所示图像,
(此处可用不等式来说明,这里省略)
x 3<x 1<x 4<x 2,又g (x )的图像关于
x =1对称,∴x 3+x 4=2,∴x 1+x 2>x 3+x 4
=2,∴x 1+x 2>2。
后记:“玩转高中数学交流群”是以讨论全国1卷及新高考的QQ 群,这里有来自全国的优秀教师,群主安老师更是无所不能,无所不精,无论你是教师还是学生,都期待你的加入与参与,群号:721144129。
点评:在含指数式的双变量问题中,差值消元是常用策略,而构造函数时又体现了“指数找基友”的思想。
点评:将条件转化成对数式以后,比值消元则是对数式常用的策略,而构造函数时又体
现了“对数单身狗”的思想。
点评:思路五由山东济南徐伟老师提供。
本思路源自于本题是一道极值点偏移问题,
可以考虑找到一个关于极值点对称的函数进行交点的代换,则可得到证明。
其中对这
个函数的要求是很苛刻的,本人也没有太多研究,故抛转引玉给读者们进行探究学习。