(完整版)三角形中位线中的常见辅助线
初中数学三角形中14种辅助线添加方法
初中数学三角形中14种辅助线添加方法在三角形中,常用的辅助线有中线、高线、中垂线、角平分线等。
下面是三角形中14种辅助线添加方法:1. 三角形中线的添加方法:在三角形的每个顶点上作一条连接对边中点的线段,则这些线段交于一点,且该点到三角形各顶点的距离相等,即为三角形的重心。
2. 三角形中垂线的添加方法:从三角形的顶点向所对边作垂线,垂足分别为A、B、C,则三个垂足所在直线相交于一点,为三角形的垂心。
3. 三角形高线的添加方法:从三角形的顶点向所对边作垂线,垂线所在直线与所对边的交点称为底部端点,连接三个底部端点,则构成一个矩形,其中两个对角线分别为三角形的两个高。
4. 角平分线的添加方法:从角的顶点向其对边作角平分线,将角平分为两个相等的角,且角平分线上的任意一点到两侧边的距离相等。
5. 外接圆的添加方法:三角形三边的中垂线交于一点,则以该点为圆心,三角形三个顶点分别为圆上的三个点的圆称为三角形的外接圆。
6. 内切圆的添加方法:三角形三条边所在直线的交点为内心,以内心为圆心,作内切圆,该圆与三角形的三边相切。
7. 垂直平分线的添加方法:从线段的中点向垂直于该线段的方向作一条线段,则该线段垂直于原线段且平分其长度。
8. 外角平分线的添加方法:从三角形的一顶点作一条射线,使其不在所在直线内,将相邻两个角的外部划分成两个大小相等的角,则这条射线为该顶点所对的角的外角平分线。
9. 旁切圆的添加方法:以三角形的某一边为半径,在其外侧作一条与该边平行的直线,使其与另外两边所在直线相交,其交点则为旁切圆心。
10. 中位线的添加方法:连接三角形任意两个顶点,则连接这两个顶点的中点的线段称为三角形的中位线,三角形三条中位线交于一点,即为三角形重心。
11. 等腰三角形的中线、高线和垂心重合。
12. 等边三角形的中线、高线、垂心和外心重合。
13. 直角三角形的垂心落在斜边上,且斜边上的高线与斜边垂直。
14. 任意三角形的外心到三个顶点的距离相等。
全等三角形经典辅助线做法汇总
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变D C BAED F CB A换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法4)(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
全等三角形经典辅助线做法汇总
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
角平分线平行线,等腰三角形来添。
线段垂直平分线,常向两端把线连。
三角形中两中点,连接则成中位线。
也可将图对折看,对称以后关系现。
角平分线加垂线,三线合一试试看。
要证线段倍与半,延长缩短可试验。
三角形中有中线,延长中线等中线。
1. 等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中倍长中线,使延长线段与原中线长相等,构造全等三角形3. 角平分线在三种添辅助线4. 垂直平分线联结线段两端5.用“截长法”或“补短法” :遇到有二条线段长之和等于第三条线段的长,6. 图形补全法:有一个角为60 度或120 度的把该角添线后构成等边三角形7.角度数为30 、60 度的作垂线法:遇到三角形中的一个角为30 度或60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8. 计算数值法:遇到等腰直角三角形,正方形时,或30-60-90 的特殊直角三角形,或40-60-80 的特殊直角三角形, 常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法4)(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常是角平分线的性质定理或逆定理.(2 )可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
专题——三角形中常见的辅助线
三角形中常见的辅助线的作法一、斜边中线模型构成:Rt △ABC,∠ACB=090,D 为AB 边的中点 目的:找等量关系,或2倍(1/2)的关系。
结果:AD=CD=BD例 1 已知:△ABC 中,∠A=060,CE ⊥AB,BD ⊥AC 求证:DE=12BC例2、如图,直角三角形ABC 中,∠C=90 ,M 是AB 中点,AM=AN ,MN//AC 求证:MN=AC 例3已知:△ABC 中,CE ⊥AB,BD ⊥AC ,M,N 分别为BC,DE 的中点 求证:MN ⊥ED例4如图,在△ABC 中,∠B=2∠C ,AD ⊥BC 与D,M 为BC 边的中点,AB=10cm,则MD 长为多少?例5如图 ,Rt △ABC 中,∠C=090,CD 平分∠C ,E 为AB 中点,PE ⊥AB,交CD 延长线于P,那么∠PAC+∠PBC 的大小是多少?ADCMABDEC213N CE D B A MN CD BA MNMBCA等腰三角形底边的中线例1、如图所示,在ABC 中,AB=2AC ,AD 平分∠BAC 且AD=BD ,求证:CD ⊥AC例2如图所示,等腰直角三角形ABC ,∠BAC=90︒,点D 是BC 的中点 二、“三线合一”模型“角平分线”+垂线→等腰三角形”构成:OC 为∠A0B 的角平分线,BC ⊥OC 于C 点 目的:构造等腰三角形结果: ⑴[边]:BC=AC,OA=OB →OC 为△OAB 的中线⑵[角]:∠3=∠4,∠ACO=090→ OC 为△ABO 的高线 ⑶[全等]:△ACO ≌△BCO例 1 已知:AD 是△ABC 的∠A 的平分线,CD ⊥AD 于D,BE ⊥AD 于AD 的延长线于E,M 是BC 边上的中点。
求证:ME=MD例2已知:△ABC 为等腰直角三角形,∠A=090,∠1=∠2,CE ⊥BE求证:BD=2CE例3 已知:△ABC 中,CE 平分∠ACB ,且AE ⊥CE,∠AED+∠CAE=1800(∠3+∠4=1800)求证:DE ∥BC例4 已知:在△ABC 的两边AB 、AC 上分别取BD=CE ,F 、G 分别为DE 、BC 的中点,∠A 的平分线AT 交BC 于T 求证:FG ∥AT4321C BAO 654321MGFE D CB A 4321FE D BA54321F EDCBA MK N L FE DA例5、如图,AB=AE ,∠ABC=∠AED ,BC=ED ,点F 是CD 的中点 (1)求证:AF ⊥CD(2)在你连接BE 后,还能得出什么新结论?三、三角形中位线模型构成:△ABC 中,D 为AB 边中点目的:找中位线,构造:①2倍关系②相似三角形结果:①DE ∥BC,DE=12BC ②△ADE ∽△ABC例1 已知:在△ABC 中,AB=AC,AD ⊥BC 于D,DE ⊥AC 于E,F 为DE 中点 求证:AF ⊥BE例2 已知 BD 、CE 为△ABC 的角平分线,AF ⊥CE 于F,AG ⊥CE 于F,AG ⊥BD 于G求证:①FG ∥BC ② FG=12(AB+AC-BC)例3 已知 ,如图在ABCD 中,P 为CD 中点,AP 延长线交BC 延长线于E,PQ ∥CE 交DE 于Q求证:PQ=12BC例4 已知:梯形ABCD 中,AB=DC,AC ⊥BD,E 、F 为腰上中点,DL ⊥BC,M 为DL 与EF 的交点 求证:EF=DLA BCD E GFED HCB A4321G F N ME CD B AL MK HFEDCBAQ PED CBAOF DC BA108054321ECBAD例 5 已知:锐角△ABC 中,以AB 、AC 为斜边向外作等腰直角△ADB ,△AEC,M 为 BC 中点,连结DM 、ME四“补长截短”模型(1) 截长法: 构成:线段a,b,c目的:确定一线段,找令一线段的等量关系结果:→ a-b '=c ⇒a=b+c , b=b ' (2)补短法: 构成:线段a,b,c目的:构造一等长线段,再找等量关系结果:c=c ',b+c '=a ⇒a=b+c例1 已知:△ABC 中,AD 平分∠BAC求:(1)若∠B=2∠C,则AB+BD=AC (2) 若AB+BD=AC,则∠B=2∠C例2:在ABC 中,∠C=2∠B ,AD ⊥BCY 于D ,求证BD=AC+CD例3如图所示,等腰直角ABC 中,∠BAC=90︒过点A 做直线DE ,BD ⊥DE 于D ,CE ⊥DE 于E ,求证:DE=BD+CE例4已知:等腰△ABC 中,AB=AC, ∠A=0108,BD 平分∠ABC求证:BC=AB+DC7654321MG F EDCBAc ab c4321E BDCACD B ACBEDA54321GMFE D CB A例6、已知如图所示,在ABC 中,AB=AC ∠A=100︒,BD 平分∠ABC 交AC 于D求证:BC=AD+BD例 7 已知:在正方形ABCD 中,M 是CD 的中点,E 是CD 上一点,且∠BAE=2∠DAM求证:AE=BC+CE例 8已知:在正方形ABCD 中,E 为BC 上任一点,∠EAD 的平分线交DC 于F 求证:BE+DF=AE构造等边三角形、等腰三角形例9、如图,已知∠ABD=∠ACD=60︒∠ADB=90︒-12∠BDC 且∠BAC=20︒求:∠ACB 的度数。
三角形中位线中的常见辅助线(1)
三角形中位线中的常见辅助线知识梳理知识点一中点一、与中点有关的概念三角形中线的定义:三角形顶点和对边中点的连线等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形二、与中点有关的辅助线方法一:倍长中线解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。
方法二:构造中位线解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。
方法三:构造三线合一解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口其他位置的也要能看出方法四:构造斜边中线解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。
其他位置的也要能看出常见考点构造三角形中位线考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三角形底边中点、直角三角形斜边中点或其他线段中点;②延长三角形一边,从而达到构造三角形中位线的目的。
“题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用. 典型例题【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =. 举一反三1. 如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.2. 在ABC ∆中,90ACB ∠=︒,12AC BC =,以BC 为底作等腰直角BCD ∆,E 是CD 的中点,求证:AE EB ⊥且AE BE =.【例2】 已知四边形ABCD 的对角线AC BD =,E 、F 分别是AD 、BC 的中点,连结EF 分别交AC 、BD于M 、N ,求证:AMN BNM =∠∠. 举一反三1. 已知四边形ABCD 中,AC BD <,E F 、分别是AD BC 、的中点,EF 交AC 于M ;EF 交BD 于N ,AC 和BD 交于G 点.求证:GMN GNM ∠>∠.2. 已知:在ABC ∆中,BC AC >,动点D 绕ABC ∆的顶点A 逆时针旋转,且AD BC =,连结DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N .(1)如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F 重合,取AC 的中点H ,连结HE 、HF ,求证: AMF BNE ∠=∠(2)当点D 旋转到图2中的位置时,AMF ∠与BNE ∠有何数量关系?请证明.【例3】 如图,在五边形ABCDE 中,90ABC AED ∠=∠=︒,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.举一反三EDE DB C1.如图所示,在三角形ABC 中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE=DF .过E 、 F 分别作直线CA 、CB 的垂线,相交于点P ,设线段PA 、PB 的中点分别为M 、N .求证:(1)DEM FDN ∆∆≌;(2)PAE PBF ∠=∠.3. 已知:在ABC ∆中,分别以AB 、AC 为斜边作等腰直角三角形ABM ,和CAN ,P 是边BC 的中点.求证:PM PN =4. 如图所示,已知ABD ∆和ACE ∆都是直角三角形,且90ABD ACE ∠=∠=︒,连接DE ,设M 为DE 的中点. (1)求证MB MC =.(2)设BAD CAE ∠=∠,固定Rt ABD ∆,让Rt ACE ∆移至图示位置,此时MB MC =是否成立?请证明你的结论. 5. 在△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,M 是BC 边中点中点,连接MD 和ME(1)如图1所示,若AB=AC ,则MD 和ME 的数量关系是(2)如图2所示,若AB≠AC 其他条件不变,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程;(3)在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图3中补全图形,并直接判断△MED 的形状.图1 图2 图3【例4】 以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90BAD CAE ∠=∠=︒.连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是________;线段AM 与DE 的数量关系是________;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转θ︒(090θ<<)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.举一反三1. (1)如图1,BD 、CE 分别是ABC △的外角平分线,过点A 作AD BD AE CE ⊥⊥、,垂足分别为D E 、,连接DE .求证:()12DE BC DE AB BC AC =++,∥ (2)如图2,BD CE 、分别是ABC △的内角平分线,其他条件不变; (3)如图3,BD 为ABC △的内角平分线,CE 为ABC △的外角平分线,其他条件不变。
初中几何辅助线大全(最全版)
三角形中作辅助线的常用方法举例一、延长已知边构造三角形:分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。
证明:分别延长DA ,CB ,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义) 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE (AAS )∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC 。
(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。
)二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。
三、有和角平分线垂直的线段时,通常把这条线段延长。
分析:要证BD =2CE ,想到要构造线段2CE ,同时CE 与∠ABC 的平分线垂直,想到要将其延长。
证明:分别延长BA ,CE 交于点F 。
∵BE ⊥CF (已知)∴∠BEF =∠BEC =90° (垂直的定义)在△BEF 与△BEC 中,19-图DCBAEF 12ABCDE17-图O∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BEC (ASA )∴CE=FE=21CF (全等三角形对应边相等) ∵∠BAC=90° BE ⊥CF (已知)∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC在△ABD 与△ACF 中⎪⎩⎪⎨⎧∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC∴△ABD ≌△ACF (AAS )∴BD =CF (全等三角形对应边相等) ∴BD =2CE四、取线段中点构造全等三有形。
常见辅助线作法
辅助线的作法正确熟练地掌握辅助线的作法和规律,也是迅速解题的关键,如何准确地作出需要的辅助线,简单介绍几种方法: 方法一:从已知出发作出辅助线:例1.已知:在△ABC 中,AD 是BC 边的中线,E 是AD 的中点,F 是BE 延长线与AC 的交点,求证:AF=FC 21分析:题设中含有D 是BC 中点,E 是AD 中点,由此可以联想到三角形中与边中点有密 切联系的中位线,所以,可有如下2种辅助线作法:(1)过D 点作DN ∥CA ,交BF 于N ,可得N 为BF 中点,由中位线定理得DN=FC 21,再证△AEF ≌△DEN ,则有AF=DN ,进而有AF=FC 21(2)过D 点作DM ∥BF ,交AC 于M ,可得FM=CM ,FM=AF ,则有AF=FC 21方法二:分析结论,作出辅助线例2:如图,AD 是△ABC 的高,AE 是△ABC 的外接圆直径, 求证:AB ·AC=AE ·AD分析:要证AB ·AC=AE ·AD ,需证ACAEAD AB =(或AC AD AE AB =),需证△ABE ∽△ADC (或△ABD ∽△AEC ), 这就需要连结BE (或CE ),形成所需要的三角形,同时得∠ABE=∠ADC=900(或∠ADB=∠ACE=900)又∠E=∠C (或∠B=∠E ) 因而得证。
方法三:“两头凑”(即同时分析已知和结论)作出辅助线例3:过△ABC 的顶点C 任作一直线,与边AB 及中线AD 分别交于点F 和E ; 求证:AE ∶ED=2AF ∶FB分析:已知D 是BC 中点,那么在 三角形中可过中点作平行线得中位线;若要出现结论中的AE ∶ED ,则应有一条与EF 平行的直线。
所以,过D 点作DM ∥EF 交AB 于M ,可得FMAFFM AF ED AE 22==,再证BF=2FM 即可。
方法四:找出辅助线的一般规律,将对证题时能准确地作出所需辅助线有很大帮助。
(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
全等三角形问题中常见的辅助线的作法
ED F CBAD C BA全等三角形问题中常见的辅助线的作法三角形辅助线做法图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
常见辅助线的作法有以下几种:1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.本题的关键是如何把AB,AC,AD三条线段转化到同一个三角形当中.解:延长AD到E,使DE=DA,连接BE.又∵BD=CD;∠BDE=∠CDA.∴⊿BDE≌⊿CDA(SAS),BE=AC=5.∵AB-BE<AE<AB+BE.(三角形三边关系定理)即7-5<2AD<7+5.∴1<AD<6.【经验总结:见中线,延长加倍.】例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.BE+CF >EF证明:延长FD到点G,使DG=DF,连接BG∵BD=CD,FD=DG,∠BDG=∠CDF∴△BDG≌△CDF∴BG=CF∵ED⊥FG∴EF=EG在△ABG中,BE+BG>EG∵BG =CF,EG=EF∴BE+CF >EF例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.即AD 平分∠BAE应用:1、(09崇文二模)以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.二、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC所以AB=AN+BN=AC+BD3、如图,已知在ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。
初中数学常见辅助线
三角形中
等腰三角形:1.做高2.做底边延长线与腰相等
等边三角形:1.做高2.内切圆,外接圆(不常用)
30°三角形:1.做垂直2.做60°角的平分线(不常用)
三角形条件中出现中点:1.连接顶点和中点2.做中位线
三角形中出现交叉线(相似常用):1.做平行线2.构造相等的角如做角平分线
45°三角形:1.做高
四边形中
一般四边形:1.连接对角线(常用四点共圆)2.做角平分线,平行线,连接各边中点
平行四边形:常用做高,对角线,构造常用三角形
矩形正方形:对角线,构造相似三角形
菱形:由对角线垂直常构造直角三角形
梯形:做平行分成三角形和平行四边形,做高
直角梯形:做垂直分成直角三角形和矩形
等腰梯形:综合梯形和直角梯形方法,证明常需要全等
正多边形:构造三角形,内接圆、外接圆
圆中,切线问题,连半径证垂直(已知点在圆上)
做垂直证半径(未知点在圆上)
角类,弦类问题,做相等的圆周角圆心角
直角三角形,常用直径对的圆周角=90°
相交弦,弦切角定理,四点共圆,两圆相交等的定理常用连接相关两点
做关于直径对称的弦,角,点,弧,线段
部分问题需要用到平行
一个题中出现多个中点常用中位线
一个题中出现多个直角常用三角函数,直角三角形相似,射影定理
一个题中出现多处线段相等常用等腰三角形,对应线段等量代换,线段加减
一个题中以上常用的形内辅助线都没有思路的时候,可以试着做轴对称,内部线段的延长线。
折叠问题中常用连接对应点,垂直,相似定理。
三角形中点常用辅助线添加方法
三角形中点常用辅助线添加方法一.倍长中线法例1.如图①,在△ABC 中,AB=10, AC=6, AD 是BC 边上的中线,求AD 的取值范围. 解:如图②,延长AD,使得ED=AD,连接BE在△BDE 和△CDA 中:BD=CD,∠BDE=∠CDA, ED=AD∴△BDE ≌△CDA∴BE=AC=6∴AB -BE < KAE< <AB+BE∴ 10-6<AE<10+6又 ∵AD=21AE ∴2<AD<8二.倍长类中线法例2.如图①,在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC,延长BE 交AC 于点F.求证: AF=EF.证明:如图②,延长DE 至点G ,使得DE=DG,连接CG在△BDE 和△CDG 中:BD=CD,∠BDE=∠CDG, DE=DG∴ △BDE ≌△CDG (SAS)∴∠BED=∠DGC, BE=CG又∵ BE=AC∴ AC=GC∴∠EAC=∠DGC,又∵∠BED=AEF∴∠AEF= ∠FAE∴AF=EF例3:如图,在△ABC 中,AD 为∠A 的角平分线,M 为BC 的中点,AD//ME. 求证: BE=CF=3 证明:延长FM 至点G,使得FM=MG,连接BG在△BMG 和△CMF 中: BM=CM ,∠BMG=∠CMF, FM=GM∴△BMG ≌△CMF(SAS)∴∠G= ∠CFM ,BG=CF又∵AD//EM,∴∠BAD=∠E,∠DAF=∠EFA又∵∠BAD=∠DAF,∴∠E=∠EFA ∴ AE=AF又∵∠AFE=∠CFM ∴∠E=∠CFM ∴∠G=∠E∴ BE=BG=CF,∴AB+AC=AB+AF+FC=AB+AE+BE=BE+BE =2BE∴BE=CF=21(AB+AC)三.直角三角形斜边上的中线例4:如图,已知△ABC 中,BD 和CE 均为高线,点M 是BC 的中点,点N 是DE 的中点. 求证: MN ⊥DE.证明:连接EM 、DM∵点M 是BC 的中点∴在Rt △BEC 中,EM=21 BC, 在Rt △BDC 中,DM=21 BC ∴ EM=DM,又∵ EN=ND, ∴MN ⊥DE (三线合一 )四.构造三角形中位线例5:如图①,在四边形ABCD 中,E.F 分别是BC. AD 的中点,连接EF 并延长,分别与BA, CD 的延长线交于点M ,N,则∠BMF=∠CNE,求证: AB=CD.证明:如图②.连接BD,取DB 的中点G,连接EG.FG.∴点E 是BC 中点,∵ EG 是△BCD 的中位线∴ EG//CD, EG=21 CD, 同理,点F 是AD 的中点,∴FG// AB, FG=21AB, ∴∠BMF=∠GFE,∴∠CNE=∠GEF.又∵∠BMF= ∠CNE,∴∠GFE=∠GEF.∴ EG=FG. ∴ AB=CD.例6:如图①,△ABC 中, 点F 是BC 边的中点,D 是AC 边上一点,E 是AD 的中点,连接FE 并延长,交BA 的延长线于点G.若AB=DC=10,∠FEC=60° ,求EF 的长度解:连接BD,取DB 的中点H ,连接EH, FH.∵点E 是AD 的中点,H 是BD 的中点∴ EH 是△ABD 的中位线 ∴ EH=21 AB 同理FH 是△BCD 的中位线∴FH=21 CD 又∵ AB=CD, ∴ EH=FH ∴∠HEF=∠HFE又∵ FH 是△BCD 的中位线∴ FH// CD ∴∠HFE=∠FEC=60° ,∴△EFH 是等边三角形. ∴EF=EH=21 AB=21 X10=5课后巩固练习15题1.如图,四边形ABCD 中,∠DAB=90°,∠DCB=90°,E. F 分别是BD, AC 的中点,AC=8, BD=10, 求EF 的长.2.如图,已知D 为BC 中点,点A 在DE 上,且AB=CE,求证:∠BAD= ∠CED.3.如图,△ABC 中上,AC>AB,M 为BC 的中点,AD 是∠BAC 的平分线,若CF ⊥AD 交AD 的延长线于F. 求证: MF=21(AC -AB).4.在梯形ABCD 中,AD//BC, AB=AD+BC, E 为CD 的中点,求证: AE ⊥BE.5.如图,在△ABC 中,∠A=90°,D 是BC 的中点,DE ⊥DF.求证: BE 2 +CF 2 =EF 2.6.如图,在正方形ABCD 中,F 是AB 的中点,连接CF,作DE ⊥CF 于点M ,交BC 于点E.求证: AM=AD.7.如图,在四边形ABCD 中,AB=CD, E.F 分别是BC. CD 的中点,BA. CD 的延长线分别交EF 的延长线于点G. H.求证:∠BGE= ∠CHE.8.已知,△ABD 和△ACE 都是直角三角形,点C 在AB .上,且∠ABD=∠ACE=90°,连接DE,设M 为DE 的中点,连接MB, MC.求证: MB=MC.9.如图,在△ABC 中,N 是AC 上的一点,D 是BC 的中点,DM ⊥DN ,如果BM 2 +CN 2 =DM 2 +DN 2.求证: AD 2=41(AB 2 +AC 2 )10.如图,在△ABC 中,AB=AC=5, BC=6, M 为BC 的中点,MN ⊥AC 于点N,求MN 的长度。
(完整版)初二数学辅助线常用做法及例题(含答案)
DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
全等三角形六种常用辅助线的添加方法和技巧
全等三角形六种常用辅助线的添加方法和技巧下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!全等三角形是初中数学中的重要概念,对于解决与三角形相关的问题具有重要作用。
三角形中的常用辅助线
三角形中的常用辅助线例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE 垂直于BD,交BD的延长线于点E。
求证:BD=2CE。
思路分析:1)题意分析:本题考查等腰三角形的三线合一定理的应用2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。
例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。
求证:ΔABC是等腰三角形。
思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识。
2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。
例3:已知,如图,AC平分∠BAD,CD=CB,AB>AD。
求证:∠B+∠ADC=180°。
思路分析:1)题意分析:本题考查角平分线定理的应用。
2)解题思路:因为AC是∠BAD的平分线,所以可过点C作∠BAD的两边的垂线,构造直角三角形,通过证明三角形全等解决问题。
例4:如图,ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC于D,若EB=CF。
求证:DE=DF。
思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。
2)解题思路:因为DE、DF所在的两个三角形ΔDEB与ΔDFC不可能全等,又知EB=CF,所以需通过添加辅助线进行相等线段的等量代换:过E作EG//CF,构造中心对称型全等三角形,再利用等腰三角形的性质,使问题得以解决。
例5:△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ。
思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。
(完整版)全等三角形问题中常见的8种辅助线的作法(有答案)
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变D C BAED F CB A换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
专题:三角形全等常用辅助线及模型(答案)
专题:三角形全等常用辅助线及模型※题型讲练考点一三角形全等常见辅助线一:倍长中线法1.如图,在△ABC中,D为BC的中点.(1)求证:AB+AC>2AD;(2)若AB=5,AC=3,求AD的取值范围.解:(1)延长AD至点E,使DE=AD,连接BE.∵D为BC的中点,∴CD=BD.又∵AD=ED,∠ADC=∠EDB,∴△ADC≌△EDB.∴AC=EB.∵AB+BE>AE,∴AB+AC>2AD.(2)∵AB-BE<AE<AB+BE,∴AB-AC<2AD<AB+AC.∵AB=5,AC=3,∴2<2AD<8.∴1<AD<4.2.如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,M为BC的中点,求证:(1)DE=2AM;(2) AM⊥DE.证明:(1)延长AM至点N,使MN=AM,连接BN.∵M为BC的中点,∴BM=CM.又∵AM=MN,∠AMC=∠NMB,∴△AMC≌△NMB(SAS),∴AC=BN,∠C=∠NBM,∴∠ABN=∠ABC+∠NBM=∠ABC+∠C=180°-∠BAC=∠EAD.∵AD=AC,AC=BN,∴AD=BN.又∵AB=AE,∴△ABN≌△EAD(SAS),∴DE=NA.又∵AM=MN,∴DE=2AM.(2)互余证法,证明略;3.如图,△ABC中,BD=AC,∠ADC=∠CAD,E是DC的中点,求证:AD平分∠BAE.解:延长AE到M,使EM=AE,连结DM易证△DEM≌△CEA∴∠C=∠MDE, DM=AC又BD=AC∴DM=BD,又∠ADB=∠C +∠CAD,∠ADM=∠MDE+∠ADC,∠ADC=∠CAD∴∠ADM=∠ADB∴△ADM≌△ADB∴∠BAD=∠MAD即AD平分∠BAE考点二三角形全等常见辅助线二:截长补短法1.如图,已知AP∥BC,∠PAB的平分线与∠CBA的平分线相交于点E,CE的延长线交AP于点D.求证:AD+BC=AB.证明:在AB上截取AF=AD,∵AE平分∠PAB,∴∠DAE=∠FAE,在△DAE和△FAE中,∴△DAE≌△FAE(SAS),∴∠AFE=∠ADE.∵AD∥BC,∴∠ADE+∠C=180°,∵∠AFE+∠EFB=180°,∴∠EFB=∠C.∵BE平分∠ABC,∴∠EBF=∠EBC,在△BEF和△BEC中,∴△BEF≌△BEC(AAS),∴BC=BF,∴AD+BC=AF+BF=AB.2.如图,在四边形ABCD中,AB=AD,∠BAD=120°,∠B =∠ADC=90°.E、F分别是BC、CD上的点,且∠EAF=60°.求证:EF=FD+BE.证明:如图,延长FD到点G,使DG=BE,连结AG.∵∠B=∠ADC=90°,∴∠B=∠ADG=90°.∵AB=AD,∴△ABE≌△ADG.∴AE=AG,∠BAE=∠DAG.又∵∠BAD=120°,∠EAF=60°,∴∠BAE+∠FAD=60°,∠DAG+∠FAD=60°.即∠GAF=60°,∴∠EAF=∠GAF=60°.∴△EAF≌△GAF.∴EF=GF=FD+DG,∴EF=FD+BE.考点三三角形全等常见模型一:一线三等角1.如图,在△ABC中,AB=AC,P、M分别在BC、AC边上,且∠APM=∠B,若AP=MP,求证:PB=MC.证明:∵∠B+∠BAP=∠APM+∠CPM,∠B=∠APM,∴∠BAP=∠CPM.∵AB=AC,∴△ABC为等腰三角形.∴∠B=∠C,又∵AP=PM,∴△APB≌△PMC.∴PB=MC 2.如图,一次函数y=-23x+4的图象分别与x轴、y轴交于点A,B,以AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.则过B,C两点的直线表达式为y=15x+4.3.(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E,则线段BD、CE、DE之间的关系是:DE=BD+CE ;(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问(1)中结论是否成立?若成立,请你给出证明;若不成立,请说明理由.图①图②解:(1)DE=BD+CE.(2)当α为任意钝角时,结论DE=BD+CE仍成立,理由:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,⎩⎨⎧∠ABD=∠CAE,∠BDA=∠AEC,AB=CA,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.考点四三角形全等常见模型二:手拉手1.如图,△ABC,△CDE是等边三角形,B,C,E三点在同一直线上,连接AE、BD交于点O.(1)求证:AE=BD;(2)求∠BOE的度数;(3)若BD和AC交于点M,AE和CD交于点N,求证:CM=CN.解:(1)∵△ABC和△DCE均为等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°.∴∠BCD=∠ACE=120°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD.(2) ∠BOE的度数为120°;(3)∵△ACE≌△BCD,∴∠CBD=∠CAE.∵∠ACN=180°-∠ACB-∠DCE=60°,∴∠BCM=∠ACN.在△BCM和△ACN 中,∴△BCM≌△ACN(ASA),∴CM=CN.2.如图,∠BAD =∠CAE=90°,AB=AD,AE=AC,AF⊥CF,垂足为F.(1)求证:BC=DE.(2)求∠EAF的度数;(3)若AC=10,求四边形ABCD的面积.解:(1)易证△ABC≌△ADE(SAS),∴BC=DE.(2) ∠EAF的度数为135°;(3) 四边形ABCD的面积=三角形ACE的面积=50.※课后练习1.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是D,E.AD=3,BE=1,则DE的长是 2 .2.如图,C为线段AE上的一个动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②∠AOB=60°;③AP=BQ;④DE=DP.其中正确的是①②③.(填序号)3.如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE.证明:∵AB⊥AC,AD⊥AE,∴∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,∠BAD=∠CAE,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE,∴AD=AE.4.正方形ABCD中,E为BC上的一点,F为CD上的一点,∠EAF=45°,求证:BE+DF=EF.证明:延长EB使得BG=DF,连接AG,在△ABG和△ADF中,由AB=AD,∠ABG=∠ADF=90°,BG=DF,可得△ABG≌△ADF(SAS),∴∠DAF=∠BAG,AF=AG,又∵∠EAF=45°∴∠GAE=∠EAF=45°在△AEG和△AEF中,AE=AE,∠GAE=∠EAF,AG=AF∴△AEG≌△AEF(SAS),∴EF=GE= BG+BE即BE+DF=EF.5.如图,D是△ABC的边BC上的点,且CD=AB,∠ADB= ∠BAD,AE是△ABD的中线.求证:AC=2AE.解:延长AE到M ,使EM=AE,连结DM易证△DEM≌△BEA∴∠B=∠MDE, DM=AB又CD=AB∴DM=CD,又∠ADC=∠B+∠BAD,∠ADM=∠MDE+∠ADB,∠ADB=∠BAD∴∠ADM=∠ADC∴△ADM≌△ADC∴AC=AM=2AE6.如图,在△ABC中,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB,AD,CE交于O.(1)求∠AOC的度数;(2)求证:AC=AE+CD.解:(1)∵∠1+∠2+∠3+∠4=180°-∠B=120°,∠1=∠2,∠3=∠4,∴∠2+∠3=60°,∴∠AOC=180°-60°=120°;(2)在AC上截取AF=AE,连接OF,∵AE=AF,∠1=∠2,AO=AO,∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF,∵∠AOC=120°,∴∠AOE=∠DOC=60°,∴∠AOF=∠COF=60°,在△OFC和△ODC中,⎩⎨⎧∠FOC=∠DOC=60°,OC=OC,∠3=∠4,∴△OFC≌△ODC(ASA),∴FC=DC,∵AF+FC=AC,∴AC=AE+CD.7.Rt△ABC中,BC=AC,∠ACB=90°,D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上分别在点C 的两侧截取与线段CD相等的线段CE和CF,连接AE,BF.(1)当点D在线段AB上时(点D不与点A,B重合),如图1,线段BF,AD所在直线的位置关系为垂直,线段BF,AD的数量关系为相等.(2)当点D在线段AB的延长线上时,如图2,则(1)中的结论是否仍然成立?如果成立请证明;如果不成立,请说明理由.解:(2)成立.理由如下:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.8.如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D 是中点,求证:BE+CF>EF.证明:延长FD至G,使得GD=DF,连接BG,EG∵在△DFC和△DGB中,DF=DG∠CDF=∠BDGDC=DB,∴△DFC≌△DGB(SAS),∴BG=CF,∵在△EDF和△EDG中DF=DG∠FDE=∠GDE=90°DE=DE∴△EDF≌△EDG(SAS),∴EF=EG在△BEG中,两边之和大于第三边,∴BG+BE>EG又∵EF=EG,BG=CF,∴BE+CF>EF.9.如图,过线段AB的两个端点作射线AM、BN,使AM∥BN,按下列要求画图并回答:画∠MAB、∠NBA的平分线交于E(1)求∠AEB的度数;(2)过点E作一直线交AM于D,交BN于C,求证:DE=CE;(3)无论DC的两端点在AM、BN如何移动,只要DC经过点E,①AD+BC=AB;②AD+BC=CD谁成立?并说明理由.解:(1)∵AM∥BN,∴∠MAB+∠ABN=180°,又AE,BE分别为∠MAB、∠NBA的平分线,∴∠1+∠3=(∠MAB+∠ABN)=90°,∴∠AEB=180°-∠1-∠3=90°,即∠AEB为直角;(2)过E点作辅助线EF使其平行于AM,∵AM∥BN,EF∥BC,∴EF∥AD∥BC,∴∠AEF=∠4,∠BEF=∠2,∵∠3=∠4,∠1=∠2,∴∠AEF=∠3,∠BEF=∠1,∴AF=FE=FB,∴F为AB的中点,又EF∥AD∥BC,根据平行线等分线段定理得到E为DC中点,∴ED=EC;(3)由(2)中结论可知,无论DC的两端点在AM、BN如何移动,只要DC经过点E,总满足EF为梯形ABCD中位线的条件,所以总有AD+BC=2EF=AB.所以①成立。
全等三角形中的常用辅助线
全等三角形中的常用辅助线一、学习目标:归纳、掌握三角形中的常见辅助线二、重点、难点:1、全等三角形的常见辅助线的添加方法。
2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。
三、全等三角形证题的基本思路:全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。
全等三角形具有对应边相等和对应角相等的重要性质,因此利用全等三角形可证明某些线段或角相等,一般地,有如下两种情况。
1、条件充足时直接应用:在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2、条件比较隐蔽时,可通过添加辅助线构造全等三角形:在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。
四、教学过程:(一)、找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
(二)、全等三角形中的常用辅助线1、截长补短:一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,一般方法是截长法或补短法,截长法:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短法:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。
例1.如图1,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB .求证:AC=AE+CD . 分析:要证AC=AE+CD ,AE 、CD 不在同一直线上.故在AC 上截取AF=AE ,则只要证明CF=CD . 证明:在AC 上截取AF=AE ,连接OF .∵AD 、CE 分别平分∠BAC 、∠ACB ,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°.显然,△AEO ≌△AFO ,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60°在△DOC 与△FOC 中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC ≌△FOC , CF=CD ∴AC=AF+CF=AE+CD . 2、中线倍长三角形问题中遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形中位线中的常见辅助线知识梳理知识点一中点一、与中点有关的概念三角形中线的定义:三角形顶点和对边中点的连线等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形二、与中点有关的辅助线方法一:倍长中线解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。
方法二:构造中位线解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。
方法三:构造三线合一解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口其他位置的也要能看出方法四:构造斜边中线解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。
其他位置的也要能看出常见考点构造三角形中位线考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三角形底边中点、直角三角形斜边中点或其他线段中点;②延长三角形一边,从而达到构造三角形中位线的目的。
“题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用.CEDBA典型例题【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =.举一反三1. 如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.2. 在ABC ∆中,90ACB ∠=︒,12AC BC =,以BC 为底作等腰直角BCD ∆,E 是CD 的中点,求证:AE EB ⊥且AE BE =.EDCBA【例2】 已知四边形ABCD 的对角线AC BD =,E 、F 分别是AD 、BC 的中点,连结EF 分别交AC 、BD于M 、N ,求证:AMN BNM =∠∠.MNF EDCB A举一反三1. 已知四边形ABCD 中,AC BD <,E F 、分别是AD BC 、的中点,EF 交AC 于M ;EF 交BD 于N ,AC 和BD 交于G 点.求证:GMN GNM ∠>∠.GBCDEFM N AMN ABEF DC(N )M F EDCBA2. 已知:在ABC ∆中,BC AC >,动点D 绕ABC ∆的顶点A 逆时针旋转,且AD BC =,连结DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N .(1)如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F 重合,取AC 的中点H ,连结HE 、HF ,求证: AMF BNE ∠=∠(2)当点D 旋转到图2中的位置时,AMF ∠与BNE ∠有何数量关系?请证明.【例3】 如图,在五边形ABCDE 中,90ABC AED ∠=∠=︒,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.EDFCBA举一反三1.如图所示,在三角形ABC 中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE=DF .过E 、 F 分别作直线CA 、CB 的垂线,相交于点P ,设线段PA 、PB 的中点分别为M 、N .求证: (1)DEM FDN ∆∆≌; (2)PAE PBF ∠=∠.3. 已知:在ABC ∆中,分别以AB 、AC 为斜边作等腰直角三角形ABM ,和CAN ,P 是边BC 的中点.求证:PM PN =PNMCBA4. 如图所示,已知ABD ∆和ACE ∆都是直角三角形,且90ABD ACE ∠=∠=︒,连接DE ,设M 为DE 的中点.(1)求证MB MC =.(2)设BAD CAE ∠=∠,固定Rt ABD ∆,让Rt ACE ∆移至图示位置,此时MB MC =是否成立?请证明你的结论.EMDCBA EM DCBAEDEDBC5. 在△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,M 是BC 边中点中点,连接MD 和ME(1)如图1所示,若AB=AC ,则MD 和ME 的数量关系是(2)如图2所示,若AB≠AC 其他条件不变,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程; (3)在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图3中补全图形,并直接判断△MED 的形状.图1 图2 图3图【例4】 以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90BAD CAE ∠=∠=︒.连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是________;线段AM 与DE 的数量关系是________;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转θ︒(090θ<<)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.图①NM EDCB A图②NMEDCBA举一反三1. (1)如图1,BD 、CE 分别是ABC △的外角平分线,过点A 作AD BD AE CE ⊥⊥、,垂足分别为D E 、,连接DE .求证:()12DE BC DE AB BC AC =++,∥ (2)如图2,BD CE 、分别是ABC △的内角平分线,其他条件不变; (3)如图3,BD 为ABC △的内角平分线,CE 为ABC △的外角平分线,其他条件不变。
则在图2、图3两种情况下,DE BC 、还平行吗?它与ABC △三边又有怎样的数量关系?请你写出猜测,并给与证明.图1EDCBA图2BC EDAF ABCDE图32. 已知ABC ∆中,90ACB ∠=︒,AB 边上的高线CH 与ABC ∆的两条内角平分线AM 、BN 分别交于P 、Q 两点PM 、QN 的中点分别为E 、F .求证:EF AB ∥.QPEF MN HCBA【例5】 等腰梯形ABCD 中,AB CD ∥,AC BD =,AC 与BD 交于点O ,60AOB ∠=︒,P 、Q 、R 分别是OA 、BC 、OD 的中点,求证:PQR ∆是正三角形.Q P R O D CB A举一反三1. AD 是ABC ∆的中线,F 是AD 的中点,BF 的延长线交AC 于E .求证:13AE AC =. FA DE CB【例6】 如左下图,在梯形ABCD 中,AB CD ∥,E 、F 分别是AC 、BD 中点.求证:EF AB ∥,且()12EF AB CD =-. FECDBA举一反三2. 在课外小组活动时,小慧拿来一道题(原问题)和小东,小明交流原问题:如图1,已知ABC ∆,90ACB ∠=︒,45ABC ∠=︒,分别以AB BC ,为边向外作ABD ∆和BCE ∆,且DA DB =,EB EC =,90ADB BEC ∠=∠=︒,连接DE 交AB 于点F ,探究线段DF 与EF 的数量关系。
小慧同学的思路是:过点D 作DG AB ⊥于G ,构造全等三角形,通过推理使问题得解 小东同学说:我做过一道类似的题目,不同的是,30ABC ∠=︒,60ADB BEC ∠=∠=︒ 小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况。
请你参考小慧同学的思路,探究并解决这三位同学提出的问题: (1)写出原问题中DF 与EF 的数量关系(2)如图2,若30ABC ∠=︒,60ADB BED ∠=∠=︒,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;图1FEDCBA(3)如图3,若2,ADB BEC ABC ∠=∠=∠原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明。
图2FEDCBA图3FEDCBA真题演练1. 已知:AOB △中,2AB OB ==,COD △中,3CD OC ==,ABO DCO =∠∠. 连接AD BC 、、,点M 、 N 、P 分别为AO 、DO 、BC 的中点.(1)如图1,若A 、O 、C 三点在同一直线上,且60ABO =∠,则PMN △的形状是________________,此时ADBC=________; (2)如图2,若A 、O 、C 三点在同一直线上,且2ABO α=∠,证明PMN △∽BAO △,并计算ADBC的值(用含α的式子表示);(3)在图2中,固定AOB △,将COD △绕点O 旋转,直接写出PM 的最大值.NPOM DCBAOPNM DCBA图1 图22.如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形,M、N分别是CE、CF的中点. (1)求证:△DMN是等边三角形;(2)连接EF,Q是EF中点,CP⊥EF于点P. 求证:DP=DQ.同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.3. 在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠AC P .过点P 作PE ⊥AB 于点E ,PF ⊥AC 于点F .(1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论; (2)如图2,当AB AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1 图2AEFPB D CC E BAD F P4.探究问题:已知AD、BE分别为△ABC的边BC、AC上的中线,且AD、BE交于点O.(1)△ABC为等边三角形,如图1,则AO︰OD=__________;(2)当小明做完(1)问后继续探究发现,若△ABC为一般三角形(如图2),⑴中的结论仍成立,请你给予证明.(3)运用上述探究的结果,解决下列问题:如图3,在△ABC中,点E是边AC的中点,AD平分∠BAC , AD⊥BE于点F,若AD=BE=4.求:△ABC的周长.OED CBAOED CBAFED CBA图1 图2 图35. 如图1,在四边形ABCD 中,AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延长,分别与BA CD 、的延长线交于点M N 、,则BME CNE ∠=∠(不需证明).(温馨提示:在图1中,连结BD ,取BD 的中点H ,连结HE HF 、,根据三角形中位线定理,证明HE HF =,从而12∠=∠,再利用平行线性质,可证得BME CNE ∠=∠.)问题一:如图2,在四边形ADBC 中,AB 与CD 相交于点O ,AB CD =,E F 、分别是BC AD 、的中点,连结EF ,分别交DC AB 、于点M N 、,判断OMN △的形状,请直接写出结论.问题二:如图3,在ABC △中,AC AB >,D 点在AC 上,AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延长,与BA 的延长线交于点G ,若60EFC ∠=°,连结GD ,判断AGD △的形状并证明.DGFECBANMO FE D CBAEFHN M DCBA图1 图2 图36. 我们知道三角形三条中线的交点叫做三角形的重心.经过证明我们可得三角形重心具备下面的性质:重心到顶点的距离与重心到该顶点对边中点的距离之比为2:1.请你用此性质解决下面的问题.已知:如图,点O 为等腰直角三角形ABC 的重心,90CAB ∠=︒,直线m 过点O ,过A B C 、、三点分别作直线m 的垂线,垂足分别为点D E F 、、.(1)当直线m 与BC 平行时(如图1),请你猜想线段BE CF 、和AD 三者之间的数量关系并证明; (2)当直线m 绕点O 旋转到与BC 不平行时,分别探究在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段AD BE CF 、、三者之间又有怎样的数量关系?请写出你的结论,不需证明.图2图1CB30ABO DCO∠=∠=︒7.以平面上一点O为直角顶点,分别画出两个直角三角形,记作AOB和COD,其中(1)点E、F、M分别是AC、CD、DB的中点,连接FM、EM.(2)①如图1,当点D、C分别在AO、BO的延长线上时,FMEM=_______;②如图2,将图1中的AOB绕点O沿顺时针方向旋转α角(060α<<),其他条件不变,判断FMEM的值是否发生变化,并对你的结论进行证明;(3)如图3,若BO=N在线段OD上,且2NO=.点P是线段AB上的一个动点,在将AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.。