一元二次方程的解法——配方法课件ppt

合集下载

湘教版九年级数学上册课件:2.2 一元二次方程的解法 (共35张PPT)

湘教版九年级数学上册课件:2.2  一元二次方程的解法 (共35张PPT)

反过来,如果d和h是方程 x2 + bx + c = 0 的两 个根,则方程的左边可以分解成
x2 + bx + c = (x - d )(x – h)= 0.
我们已经学习了用配方法、公式法和因式分解法 解一元二次方程,在具体的问题中,我们要根据方 程的特点,选择合适的方法来求解.
如何选择合适的方法来解一元二次方程呢?
x b b2 4ac ( b2 - 4ac ≥0) 2a
我们通常把这个式子叫作一元二次方程的求根公式.
由求根公式可知, 一元二次方程的根由方程的系
数a,b,c 决定, 这也反映出了一元二次方程的根与 系数a,b,c之间的一个关系.
运用一元二次方程的求根公式直接求每一个一元二 次方程的根,这种解一元二次方程的方法叫作公式法.
第2章 一元二次方程
2.2 一元二次方程的解法
2.2 一元二次方程的解法 —配方法
教学重、难 点
教 学 重 点 : 运 用 开 平 方 法 解 形 如 ( x+m ) 2=n(n≥0)
的方程;领会降次—转化的数学思想.
教学难点:通过根据平方根的意义解形如 x2=n 的方 程,将知识迁移到根据平方根的意义解形如(x+m)2 = n(n≥0)的方程.
用配方法解一元二次方程的一般步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
例 市区内有一块边长为15米的正方形绿地,经城市规 划,需扩大绿化面积,预计规划后的正方形绿地面积将 达到289平方米,这块绿地的边长增加了多少米?
解:这里 a 1 b 7 c 18

用配方法求解一元二次方程ppt课件

用配方法求解一元二次方程ppt课件
[解题思路]观察各个方程,通过变形,把方程转化为

点 适用直接开平方法的形式,利用直接开平方法求解.

[答案]解:(1)2x2=6,x2=3,


∴x=± ,∴x1= ,x2=- ;

(2)(x+1)2-8=0,移项,得(x+1)2=8,开平方,得
x+1=±2
,解得 x1=-1+2 ,x2=-1-2 ;

单 方程,一元二次方程的解有两个,特别注意开方后不要丢掉

读 负值.
2.2 用配方法求解一元二次方程






对点典例剖析
典例1 用直接开平方法解下列方程:
(1)2x2=6;
(2)(x+1)2-8=0;
(3)4x2+1=-4x;
(4)9(x-1)2=16(x+2)2.
2.2 用配方法求解一元二次方程

2-16=0;

解方程:(1)4(x-1)


(2)2x2+4x-1=0.


2.2 用配方法求解一元二次方程

[答案] 解:(1)整理,得(x-1)2=4,开方,得

题 x-1=2 或 x-1=-2,解得 x1=3,x2=-1;



2
2

(2)整理,得 x +2x= ,配方,得 x +2x+1= +1,
2.2 用配方法求解一元二次方程






■考点一
原理
一般

一元二次方程的解法--配方法PPT课件(华师大版)

一元二次方程的解法--配方法PPT课件(华师大版)

26 2 2
综合应用
例题3. 用配方法解决下列问题 1. 证明:代数式-2y2+2y-1的值不大于
1 2
2. 证明:代数式8x2-12x+ 7的值恒大于0.
课堂练习
1.方程x2+6x-5=0的左边配成完全平方后所得方 程为( A ). (A)(x+3)2=14 (B) (x-3)2=14 (C) (x+6)2=14 (D)以上答案都不对 2.用配方法解下列方程,配方有错的是( C ) (A)x2-2x-99=0 化为 (x-1)2=100 (B) 2x2-3x-2=0 化为 (x- 3/4 )2=25/16 (C)x2+8x+9=0 化为 (x+4)2=25 (D) 3x2-4x=2 化为(x-2/3)2=10/9
例题2. 用配方法解下列方程
2x2+8x-5=0
解: x2 4x 5
2
x2 4x 4 5 4
2
x 22 13
2 x2
26
2
练习2. 用配方法解下 列方程
1. 5x2+2x-5=0 2. 3y2-y-2=0 3. 3y2-2y-1=0 4. 2x2-x-1=0
x1
26 2 2
x2
x 2 6x 9 7 9 两边都加上一次项系数一半的平方
x 32 16 用直接开
x 3 4 平方法解 x1 1 x2 7 方程
用配方法解一元二次方程的步骤
1、 常数项 移到方程右边. 2、将方程左边配成一个 完全平方 式。 (两边都加上 一次项系数一半的平方 ) 3、用 直接开平方法 解出原方程的解。
课堂练习
3.若实数x、y满足(x+y+2)(x+y-1)=0,

一元二次方程配方法PPT课件

一元二次方程配方法PPT课件
处理所遇到的问题的? (2)对于形如x2+px+q=0这样的方程,在
什么条件下才有实数根?
1.一般地,对于形如x2=a(a≥0)的方程,
根据平方根的定义,可解得 x1 a,x2 a
这种解一元二次方程的方法叫做开平方法.
2.把一元二次方程的左边配成一个完全平方 式,然后用开平方法求解,这种解一元二次方程的 方法叫做配方法.
练习3:用配方法解下列方程: (1) x2+12x =-9 (2) -x2+4x-3=0
4. 用配方法说明:不论k取何实数,多项式 k2-3k+5的值必定大于零.
思考:先用配方法解下列方程: (1) x2-2x-1=0 (2) x2-2x+4=0 (3) x2-2x+1=0
然后回答下列问题: (1)你在求解过程中遇到什么问题?你是怎样
一般地,对于形如x2=a(a≥0)的方程,
根据平方根的定义,可解得 x1 a,x2 a
这种解一元二次方程的方法叫做开平方法.
例1.用开平方法解下列方程: (1)3x2-27=0; (2)(2x-3)2=7
巩固练习 1 (1)方程 x2 0.25的根是 X1=0.5, x2=-0.5
(2)方程 2x2 18 的根是 X1=3, x2=—3 (3) 方程 (2x 1)2 9的根是 X1=2, x2=-1
(1)x2+8x+ 16 =(x+4)2 (2)x2-4x+ 4 =(x- 2)2 (3)x2-__6_x+ 9 =(x- 3 )2
配方时, 等式两边同时加上的是一次项系数一 半的平方
例2:用配方法解下列方程 (1)x2+6x=1 (2)x2=6-5x
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.

一元二次方程解法——配方法+课件

一元二次方程解法——配方法+课件
2
领悟: 1.配方法是解一元二次方程的通法 2.当常数项绝对值较大时,常用配方法。
例3.用配方法说明:
代数式 x2+8x+17的值总大于0.
变式训练1:
求代数式 x2+8x+17的值最小值.
变式训练2: 若把代数式改为: 领悟:利用配方法不但可以解方程,还可
以求得二次三项式的最值。 2x2+8x+17又怎么做呢?

1.用配方法说明:不论k取何实数, 多项 式k2-3k+5的值必定大于零. 2.解方程
3.已知

x y 20xy x y 81 0 b 37 2 2 a 3a b 0, 2 16
2 2 2 的基本步骤:
1、将二次项系数化为1:两边同时除以二次项系数; 2、移项:将常数项移到等号一边; 3、配方:左右两边同时加上一次项系数一半的平方; 4、等号左边写成( )2 的形式;
5、开平方:化成一元一次方程;
6、解一元一次方程; 7、写出方程的解.
问题引申
思维提高:解方程
x 4 x 9996 0
人教版九年级上册(新)
第21章 一元二次方程
21.2 解一元二次方程
一元二次方程的解法
---配方法
2、用配方法解下列方程:
(1)x2+8x-15=0
1 (2) x 2 x 0 4
2
(3)2x2-5x-6=0
2 2 1 (4) x x 2 3 3
(5) x2+px+q=0(p2-4q> 0)

一元二次方程的解法ppt课件

一元二次方程的解法ppt课件
的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根

公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=

,x
2=1

观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室

一元二次方程解法——配方法+课件

一元二次方程解法——配方法+课件

x 22 5.
开平方,得
x 2 5.
解这两个方程,得 x1 2 5 x2 2 5.
解:
练习:x2 6x 7 0.
二次项系数化1:两边同时
除以二次项系数,得
移项:将常数项移到等号一边,得 x2 6x 7.
x 配方:左右两边同时加上一次项 2 6x 32 7 32.
系数一半的平方,得
x2 6x 9 2.
写成()2 的形式,得
x 32 2.
开平方,得
x 3 2.
解这两个方程,得 x1 3 2 x2 3 2.
解:
练习: 2x2 3 7x.
二次项系数化1:两边同时
除以二次项系数,得
x2 3 7 x.
2
2
移项:将常数项移到等号一边,得 x2 7 x 3 .
2
2
配方:左右两边同时加上一次项 x2 7 x 7 2 7 2 3 .
系数一半的平方,得
2 4 4 2
写成()2 的形式,得
x
7 2

49

24 .
4 16 16
开平方,得 解这两个方程,得
两边同除以2,得 2x2 4x 22 4 22
避免x错 2误2 ,1必2,须x理1 解2 配2 方3, x法2 的2 过2 程3 及 道理,理解等式的性质。
易错点2:将代数式配方与方程配方混淆.
方方程程例错a如解x2:x2将:+2移xb2项xba2+,6xx得cx2=ac016(ax0≠x的021)两解3进x边与行除原12配以方方a程所相得同,而二
两边同除以2,得 x2 2x 8

配方法解一元二次方程PPT教学课件

配方法解一元二次方程PPT教学课件

B
A.1 B.2 C.3 D.4
有意义
中 ()
➢ 课前热身
5.
将分式x
2y x
中的x和y都扩大10倍,那么分式的值
D
A.扩大10倍
B.缩小10倍
C.扩大2倍
D.不变
6.当式子
x
|
2
x
| 5 4x
5
的值为零时,x的值是
B(
)
A.5 C.-1或5
B.-5 D.-5或5
7.当x=cos60°时,代数式x2 3x
(4)
y2
1 2
y
(__14_)_2
(
y__14 _)2
问题1 一桶油漆可刷的面积为1500d m2 ,李林用这桶
油漆恰好刷完10个同样的正方体形状的盒子的全部 外表面,你能算出盒子的棱长吗?
设正方体的棱长为xdm,
列方程10 6x2 1500
由此可得x2 25
x 5,
这种解法叫做什么?
化成最简分式.
解:原式=
( 1 5 x 2 x2 ) 60 46 3
( 7 )x 1 0.1x2 ) 60
60 20
157x=503x64x02x 2
40x2 50x 15 6x2 7x 3
=
15 50x 40x 7x 3 6x2
2
4=06xx22
50x 15 7x 3
c c c b d bd bd bd
2.分式的乘、除法法则
a · c = ac , a c = a · d = ad .
b
d bd
bd b
c bc
3.分式的乘方法则
a n =
b
an bn

人教版九年级数学上册一元二次方程的解法(二)配方法课件

人教版九年级数学上册一元二次方程的解法(二)配方法课件

例1.解下列方程:
2
1
x
8x 1 0

解:移项,得 x2-8x=-1,
配方,得 x2-8x+42=-1+42 ,
即 (x-4)2=15
由此可得 x 4 15,
x1 4 15, x2 4 15.
例1.解下列方程:
2
2
2
x
1 3x

解:移项,得 2x2-3x=-1,
二次项系数化为1,得
2
配方,得
3 3
1 3
x x ,
2 4
2 4
2
2

由此可得
3
1
x x ,
22
2
2
3 1
x ,
4 16
3
1
x ,
4
4
1
x1 1, x 2 .
2
例1.解下列方程:
3x
3
2
6x 4 0
1.理解配方法的概念.
2.掌握用配方法解一元二次方程及解决有关问题.(重点)
3.探索直接开平方法和配方法之间的区分和联系.(难点)
1.用直接开平方法解下列方程:
(1)4x2=1

1
2
x=
解:
4
直接开平方,得
1
x ,
2
1
1
x1 ,x2
2
2
(2)(x-1)2=3.
解:(x-1)2=± 3
加其他数行吗?
x2+6x=-4
2
两边都加上9(即( ) )

x2+6x+9=-4+9

《解一元二次方程配方法》PPT课件

《解一元二次方程配方法》PPT课件

1.(3 分)在△ABC 中,∠C=90°,b=3,c=2 3,则∠A=__3_0_°____, ∠B=__6__0_°___.
2.(3 分)(2013·荆州)在△ABC 中,∠A=120°,AB=4,AC=2,
则 sin B 的值是( D )
A.5147 3
B. 5 21
C. 7 21
D. 14
24.2 解一元二次方程
【易错盘点】 【例】用配方法解方程x2-6x-1=0. 【错解】移项,得x2-6x=1;配方,得x2-6x+(-3)2=1,即(x -3)2=1;开平方,得x-3=±1;解得x1=4,x2=2. 【错因分析】在配方时,方程的两边应同时加上一次项系数一半 的平方,而错解只在方程的左边加上一次项系数一半的平方,却忽 略了在方程的右边也应加上相同的数. 【正解】
35°
C.7cos 35°
B.cos735° D.7tan 35°
6.(3 分)如图是教学用直角三角板,边 AC=30 cm,∠C=90°,
tan ∠BAC= 33,则边 BC 的长为( C )
A.30 3 cm C.10 3 cm
B.20 3 cm D.5 3 cm
7.(3 分)如图,AC 是电杆 AB 的一根拉线,测得 BC=6 米,∠ACB
9.(3 分)在 Rt△ABC 中,∠C=90°,且∠A,∠B,∠C 的对边分 别为 a,b,c.
(1)已知 c=6,∠A=60°,则 a=__3__3__,b=__3____;
(2)已知 a=4,∠B=45°,则 b=__4____,c=_4___2__.
10.(4 分)(2013·鞍山)在△ABC 中,∠C=90°,AB=8,cos A=34, 则 BC 的长为__2__7____.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x 6 x 16
2
(x 3) =25
2
像这样,把方程的左边配成含有x的完 全平方形式,右边是非负数,从而可以用直 接开平方法来解方程的方法就做配方法。
用配方法解下列方程
二次项系数为1
x 8x 1 0 (x 1)(x 2) 2x 4
2
用配方法解下列方程
() 1 x 8x 1 0
2 x6
x
2
( x __) ( x __)
x
(5) x bx ___ ( x __)
2
2 x b 2
1 23 x 3
b ( )2 2
5 2 1 3 b 2
2
配方时, 等式 两边同时加 上的是一次 项系数一半 的平方。
2
2
x 6 x 16
2
以上解法中,为 什么在方程两 边加9?加其他 数行吗?
一元二次方程的解法(二)
配方法
Байду номын сангаас (1)方程 3x
2
1 5 的根是
x1 2,x2 2
(2)方程 4(x 1) 9 0 的根是
2
5 1 x1 , x 2 2 2
直接开平方法
x 2 p( p 0) (mx n) 2 p
x p
左边降次, 右边开平方
2.把方程 x 2 3 4x
2 A.(x 2) 1
2 C.(x 2) 7
配方,得( A )
2 B.(x 2) 28
D.(x 2) 21
2
3、用配方法说明:不论k取何实数,多项式 k2-3k+5的值必定大于零.
1、配方法:像这样,把方程的左边配成含有 x的完全平方形式,右边是非负数,从而可以 用直接开平方法来解方程的方法就做配方法。 2、用配方法解一元二次方程的步骤:
①移项 ②化1 ③配方 ④降次 ⑤定解
1、课本P42习题 2、3(做在作业本)
2、假期作业《新课程学习辅导》P20-23
mx n p
注意:当p<0时,方程没有实数根。
完全平方公式:
a a
2
2ab b (a b) ;
2 2
2
2ab b (a b) .
2 2
问题2 要使一块矩形场地的长比宽多6m, 并且面积为16 m2 , 场地的长和宽应各是多少?
解:设场地宽为xm,则长为(x+6)m, 根据长方形面积为16m2,列方程得
分析:
x 6 x 16
2
移项
两边同时加上9
x2 6 x 9 16 9 变成 (mx n) p( P 0)形式 ( x 3)2 25
2
左边降次
x 3 5
右边开方 得到两个一元一次方程
(mx n) p( P 0)
2
x 3 5, x+3=-5
2
解:移项,得
方程两边 b 2 同时加上 ( )
x 8x 1
2
2
配方,得
2 2 4 4 x 8x ___ 1 ___
2
(x 4)2 15
x 4 15
x1 15 4, x2 15 4
用配方法解下列方程
(x 1)(x 2) 2x 4
化二次项的系数为1,得 2
4 x 2x 3 配方,得
2 2
1 x1 1, x 2 2
3 1 x 4 4
4 2 x 2x 1 1 3 1 2 (x 1) 3 2 (x 1) 0
方程无解
解下列方程 课本P37 1(3)(4)
解:化为一般形式为 移项,得 配方,得
x x 2 1 2 1 2 2 x x ( ) 2( ) 2 2
2
x2 x 2 0
方程两边 b 2 同时加上 ( )
2
1 2 9 (x ) 2 4 1 3 x 2 2
x1 1, x 2 2
单号
解方程
2
双号
(1)x 10x 9 0
2
(3)x 4x 9 2x 11
2
7 (2)x x 0 4 (4)x(x 4) 8x 12
用配方法解下列方程
二次项系数不为1
2x 1 3x 2 3x 6 x 4 0
2
可以将二次项的系数化为1
用配方法解下列方程
x( x 6) 16 化为一般形式,得
x 6 x 16 0
2
怎样解这个 方程?能不 能用直接开 平方法?
请解这个 方程
解方程x 6 x 9 2 解方程x2 6 x 16 0
2
解: ( x 3) 2 2 x3 2 即 x 3 2, x 3 2 方程的两根为 x1 2 3, x2 2 3
填一填(根据 a2 2ab b2 (a b)2 )
5 (1) x 10 x ___ 5 ( x __)
2
二次项系数都为1
2
2
6 (2) x 12 x ___ 6 ( x __)
2
2 x 5
2
2
5 ( )2 (3) 5 x 5 ____ 2 2 x 1 2 2 ( ) 2 2 (4) x ___ 3
解:移项,得
2x 1 3x
2
化二次项的系数为1,得
2x 3x 1
2
解:移项,得
3x 6x 4 0
2
3x 6x 4
2
3 1 2 x x 2 2 配方,得 3 3 2 1 3 2 2 x x( ) ( ) 2 4 2 4 3 2 1 (x ) 4 16
3x 6x 2 0
2
4x 6x 0
2
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 化1:将二次项系数化为1; 配方:方程两边都加上一次项系数一半的平方; 开方:左边降次,右边开平方; 求解:解两个一元一次方程;(或者方程无解) 定解:写出原方程的解.
2 2 x 6x m 1.若 是一个完全平方式,则m的值是( C ) A. 3 B.-3 C.±3 D.以上都不对
相关文档
最新文档