相交线与平行线培优训练培优拔高训练

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1

2 3 4

5 6

相交线与平行线

1、如图,要把角钢(1)弯成120°的钢架(2),则在角钢(1)上截去的缺口是_____度。

第2

题 第3题 第4题 2、如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=°

,则AEF ∠=( ) 3、如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( )

4.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o ,那么∠2的度数是( ) 5.如图,将直尺与三角尺叠放在一起,在图中标记的所有角中,与∠2互余的角是 .

第5题 第6题

6.光线a 照射到平面镜CD 上,然后在平面镜 AB 和CD 之间来回反射,这时光线的入射角等于反射角,

即∠1=∠6,∠5=∠3,∠2=∠4。若已知∠1=55°,∠3=75°,那么∠2等于( )

8如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数。

9: 如图1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠C .

10.如图,直线AB 、CD 被直线EF 所截,∠AEF +∠CFE =180°,∠1=∠2,则图中的∠H 与∠G 相等吗? 11、(动手操作实验题)如图所示是小明自制对顶角的“小仪器”示意图: (1)将直角三角板ABC 的AC 边延长且使AC 固定;

(2)另一个三角板CDE 的直角顶点与前一个三角板直角顶点重合;

(3)延长DC ,∠PCD 与∠ACF 就是一组对顶角,已知∠1=30°,∠ACF 为多少? 12、把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )

A 、115°

B 、120°

C 、145°

D 、135

1 A

E

D

C

B

F

2

1

1

23456a A

B C D A

1

B

C D

E

F

G

H

2 1 2

3

13、如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,如果∠1=40°,则∠2的度数是( ) A 、30° B 、45° C 、40° D 、50°

14、如图,l ∥m ,等腰直角三角形ABC 的直角顶点C 在直线m 上,若∠β=20°,则∠α的度数为( ) A 、25° B 、30° C 、20° D 、35°

15、如图,AB ∥EF ∥CD ,∠ABC=46°,∠CEF=154°,则∠BCE 等于( ) A 、23° B 、16° C 、20° D 、26°

16、将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( ) A 、43° B 、47° C 、30° D 、60°

17、如图,已知l1∥l2,MN 分别和直线l1、l2交于点A 、B ,ME 分别和直线l1、l2交于点C 、D ,点P 在MN 上(P 点与A 、B 、M 三点不重合).

(1)如果点P 在A 、B 两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由; (2)如果点P 在A 、B 两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论). 18、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等. (1)如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °.

(2)在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.

(3)由(1)、(2),请你猜想:当两平面镜a 、b 的夹角∠3= °时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、

b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由吗?

3

2

1n

m

b

a

A B

C D

E

F

19、潜望镜中的两个镜子MN 和PQ 是互相平行的,如图所示,光线AB 经镜面反射后, ∠1=∠2,∠3=∠4,试说明,进入的光线AB 与射出的光线CD 平行吗?为什么?

20、如图(6),DE ⊥AB ,EF ∥AC ,∠A=35°,求∠DEF 的度数。

21.如图(1),直线a 与b 平行,∠1=(3x+70)°,∠2=(5x+22)°,求∠3的度数。

22.已知:如图(2), AB ∥EF ∥CD ,EG 平分∠BEF ,∠B+∠BED+∠D =192°,

∠B -∠D=24°,求∠GEF 的度数。

23.如图(3),已知AB ∥CD ,且∠B=40°,∠D=70°,求∠DEB 的度数。

24.如图(4),直线AB 与CD 相交于O ,EF ⊥AB 于F ,GH ⊥CD 于H , 求证EF 与GH 必相交。

25.平面上n 条直线两两相交且无3条或3条以上直线共点,有多少个不同交点?

26.6个不同的点,其中只有3点在同一条直线上,2点确定一条直线,问能确定多少条直线?

B

D

E

F G B

C

E F

G

H O

3

2l b

4

F

27.10条直线两两相交,最多将平面分成多少块不同的区域?

28.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线( )条 A .6 B . 7 C .8 D .9

29.平面上三条直线相互间的交点个数是 ( )

A .3

B .1或3

C .1或2或3

D .不一定是1,2,3

30.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有( ) A .36条 B .33条 C .24条 D .21条

31.已知平面中有n 个点C B A ,,三个点在一条直线上,E F D A ,,,四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这n 个点作一条直线,那么一共可以画出38条不同的直线,这时n 等于( ) (A )9 (B )10 (C )11 (D )12

32.若平行直线AB 、CD 与相交直线EF 、GH 相交成如图示的图形,则共得同旁内角( ) A .4对 B .8对 C .12对 D .16对

33.如图,已知FD ∥BE ,则∠1+∠2-∠3=( )A .90° B .135° C .150° D .180°

第 5 题

第 6 题

第7题

34.如图,已知AB ∥CD ,∠1=∠2,则∠E 与∠F 的大小关系 ;

35.平面上3条直线最多可分平面为 个部分。

36.如图,已知AB ∥CD ∥EF ,PS ⊥GH 于P ,∠FRG=110°,则∠PSQ = 。 39.已知:如图,AB ∥CD ,求证:∠B+∠D+∠F=∠E+∠G

40.如图,已知CB ⊥AB ,CE 平分∠BCD ,DE 平分∠CDA ,∠EDC+∠ECD =90°,求证:DA ⊥AB

第 15 题

相关文档
最新文档