2020高考数学《圆锥曲线》专题复习
2020高考—圆锥曲线(解答+答案)
2020年高考——圆锥曲线1.(20全国Ⅰ文21)(12分)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.2.(20全国Ⅰ理20)(12分)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.3.(20全国Ⅱ文19)(12 分)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.4.(20全国Ⅱ理19)(12分)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.5.(20全国Ⅲ文21)(12分)已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.6.(20全国Ⅲ理20)(12分)已知椭圆222:1(05)25x y C m m+=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.7.(20新高考Ⅰ22)(12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.8.(20天津18)(本小题满分15分)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.9.(20浙江21)(本题满分15分)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.10.(20江苏18)(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.11.(20北京20)(本小题15分)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.参考答案:1.解:(1)由题设得(,0),(,0),(0,1)A a B a G -.则(,1)AG a =,(,1)GB a =-.由8AG GB ⋅=得218a -=,即3a =.所以E 的方程为2219x y +=.(2)设1122(,),(,),(6,)C x y D x y P t .若0t ≠,设直线CD 的方程为x my n =+,由题意可知33n -<<. 由于直线PA 的方程为(3)9t y x =+,所以11(3)9ty x =+.直线PB 的方程为(3)3t y x =-,所以22(3)3ty x =-.可得12213(3)(3)y x y x -=+.由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0m y y m n y y n ++++++=.①将x my n =+代入2219xy +=得222(9)290m y mny n +++-=.所以212122229,99mn n y y y y m m -+=-=-++. 代入①式得2222(27)(9)2(3)(3)(9)0m n m n mn n m +--++++=. 解得3n =-(舍去),32n =. 故直线CD 的方程为32x my =+,即直线CD 过定点3(,0)2. 若0t =,则直线CD 的方程为0y =,过点3(,0)2.综上,直线CD 过定点3(,0)2.2.解:(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线PA 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).3.解:(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-. 由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.4.解:(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,设00(,)M x y ,则220022143x y c c +=,2004y cx =,故20024143x x c c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而||5MF =,故05x c =-,代入①得22(5)4(5)143c c c c --+=,即2230c c --=,解得1c =-(舍去),3c =. 所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.5.解:(1)由题设可得54=,得22516m =,所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ,故11APQ △的面积为1522=. 22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q的距离为26,故22AP Q △的面积为152262⨯=. 综上,APQ △的面积为52.6.解:(1)由题设可得54=,得22516m =, 所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >,由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ 的距离为2,故11APQ △的面积为1522=.22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q故22AP Q △的面积为1522=. 综上,APQ △的面积为52.7.解:(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++-=. 于是2121222426,1212km m x x x x k k -+=-=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=, 可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k-+---+-+=++.整理得(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =--≠. 所以直线MN 过点21(,)33P -. 若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=. 又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P -. 令Q 为AP 的中点,即41(,)33Q . 若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP ==. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.8.(Ⅰ)解:由已知可得3b =.记半焦距为c ,由||||OF OA =可得3c b ==.又由222a b c =+,可得218a =.所以,椭圆的方程为221189x y +=. (Ⅱ)解:因为直线AB 与以C 为圆心的圆相切于点P ,所以AB CP ⊥.依题意,直线AB 和直线CP 的斜率均存在.设直线AB 的方程为3y kx =-.由方程组223,1,189y kx x y =-⎧⎪⎨+=⎪⎩消去y ,可得()2221120k x kx +-=,解得0x =,或21221k x k =+.依题意,可得点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭.因为P 为线段AB 的中点,点A 的坐标为(0,3)-,所以点P 的坐标为2263,2121k k k -⎛⎫ ⎪++⎝⎭.由3OC OF =,得点C 的坐标为(1,0),故直线CP 的斜率为2230216121k k k --+-+,即23261k k -+.又因为AB CP ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =,或1k =. 所以,直线AB 的方程为132y x =-,或3y x =-.9.(Ⅰ)由116p =得2C 的焦点坐标是1(,0)32. (Ⅱ)由题意可设直线:(0,0)l x my t m t =+≠≠,点00(,)A x y .将直线l 的方程代入椭圆221:12x C y +=得222(2)220m y mty t +++-=, 所以点M 的纵坐标22M mt y m =-+. 将直线l 的方程代入抛物线22:2C y px =得2220y pmy pt --=,所以02M y y pt =-,解得202(2)p m y m+=, 因此22022(2)p m x m+=. 由220012x y +=得2421224()2()160m m p m m =+++≥,所以当m,t =时,p.10.解:(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c , 则2224,3,1a b c ===.所以12AF F △的周长为226a c +=.(2)椭圆E 的右准线为4x =.设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--,2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥, 则123(1,0),(1,0),(1,)2F F A -. 所以直线:3430.AB x y -+= 设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=. 由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解; 由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-. 代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.11.。
2020年高考数学圆锥曲线解答题必刷热点题型(附答案解析)
2020年高考数学圆锥曲线解答题必刷热点题型1.(2020•蚌埠三模)如图,设抛物线21:4C x y =与抛物线22:2(0)C y px p =>在第一象限的交点为2(,)4t M t ,点A ,B 分别在抛物线2C ,1C 上,AM ,BM 分别与1C ,2C 相切.(1)当点M 的纵坐标为4时,求抛物线2C 的方程;(2)若[1t ∈,2],求MBA ∆面积的取值范围.2.(2020•威海一模)已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,点3(1,)2P -是椭圆上一点,12||F F 是1||PF 和2||PF 的等差中项.(Ⅰ)求椭圆的标准方程;(Ⅱ)若A 为椭圆的右顶点,直线AP 与y 轴交于点H ,过点H 的另一直线与椭圆交于M 、N 两点,且6HMA PHN S S ∆∆=,求直线MN 的方程.3.(2020•濮阳一模)已知O 为坐标原点,抛物线2:2(0)C x py p =>的焦点坐标为1(0,)2,点A ,B 在该抛物线上且位于y 轴的两侧,3OA OB =u u u r u u u r g .(Ⅰ)证明:直线AB 过定点(0,3);(Ⅱ)以A ,B 为切点作C 的切线,设两切线的交点为P ,点Q 为圆22(1)1x y -+=上任意一点,求||PQ 的最小值.4.(2020•辽阳一模)已知抛物线2:2(0)C x py p =>的焦点为F ,直线l 与抛物线C 交于P ,Q 两点.(1)若l 过点F ,抛物线C 在点P 处的切线与在点Q 处的切线交于点G .证明:点G 在定直线上.(2)若2p =,点M 在曲线y =MP ,MQ 的中点均在抛物线C 上,求MPQ ∆面积的取值范围.5.(2020•东莞市模拟)已知抛物线2:4E y x =,过抛物线焦点F 的直线1分别交抛物线E 和圆22:(1)1F x y -+=于点A 、C 、D 、B (自上而下).(1)求证:||||AC BD g 为定值;(2)若||AC 、||CD 、||DB 成等差数列,求直线l 的方程.6.(2020•天津一模)已知抛物线2:C y =的焦点为椭圆2222:1(0)x y E a b a b +=>>的右焦点,C 的准线与E 交于P ,Q 两点,且||2PQ =.(1)求E 的方程;(2)过E 的左顶点A 作直线l 交E 于另一点B ,且(BO O 为坐标原点)的延长线交E 于点M ,若直线AM 的斜率为1,求l 的方程.。
(完整版)2020年高考理科数学《圆锥曲线》题型归纳与训练,推荐文档
2y0
2y0
令 x=0,得 yM=-x0-2,从而|BM|=1-yM=1+x0-2.
y0-1 直线 PB 的方程为 y= x0 x+1.
x0
x0
令 y=0,得 xN=-y0-1,从而|AN|=2-xN=2+y0-1.
1 所以四边形 ABNM 的面积 S=2|AN|·|BM|
1 =2
( )2y0 x20+4y20+4x0y0-4x0-8y0+4 2x0y0-2x0-4y0+4
2020 年高考理科数学《圆锥曲线》题型归纳与训练 【题型归纳】
题型一 求曲线的方程
例 1 已知 F1(2, 0) , F2 (2, 0) ,点 P 满足| PF1 | | PF2 | 2 ,记点 P 的轨迹为 E .求轨迹 E 的方程. 【答案】 x2 y2 1
3
【解析】由| PF1 | | PF2 | 2 4 | F1F2 | 可知:点 P 的轨迹 E 是以 F1, F2 为焦点的双曲 线的右支,
x2 y2 例 2 已知椭圆 C:a2+b2=1 过 A(2,0),B(0,1)两点. (1)求椭圆 C 的方程及离心率;
1
(2)设 P 为第三象限内一点且在椭圆 C 上,直线 PA 与 y 轴交于点 M,直线 PB 与 x 轴交于点 N,求证:四边形 ABNM 的面积为定值.
x2
3
【答案】(1) 4 +y2=1,e= 2 (2)2.
1+
=2.
x0-2 = 2x0y0-x0-2y0+2 = x0y0-x0-2y0+2
2
从而四边形 ABNM 的面积为定值.
【易错点】(1).想不到设出 P(x0,y0)后,利用点斜式写出直线 PA,PB 的方 程.不会由直线 PA,PB 的方程求解|BM|,|AN|;
【2020届】高考数学圆锥曲线专题复习:圆锥曲线整合
专题--圆锥曲线高考题研究2011-7.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为()AB C .2D .32011-14.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上,离心率为2。
过F 1的直线交于C ,A B 两点,且2ABF 的周长为16,那么C 的方程为 。
2011-20.(本小题满分12分)在平面直角坐标系xOy 中, 已知点A (0,-1),B 点在直线3y =-上,M 点满足//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(I )求C 的方程;(II )P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.2010-(12)已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15),则E 的方程为(A )22136x y -= (B ) 22145x y -= (C ) 22163x y -= (D )22154x y -= 2010-(15)过点A(4,1)的圆C 与直线10x y --=相切于点 B(2,1).则圆C 的方程为 . 2010-(20)(本小题满分12分)设12,F F 分别是椭圆E:22221x y a b+=(a>b>0)的左、右焦点,过1F 斜率为1的直线l 与E 相较于A,B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求E 的离心率;(Ⅱ)设点P (0,-1)满足PA PB =,求E 的方程2009-(4)双曲线24x-212y=1的焦点到渐近线的距离为()(A)(B)2 (C(D)12009-(13)设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点。
若AB的中点为(2,2),则直线 的方程为_____________.2009-(20)(本小题满分12分)已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.(Ⅰ)求椭圆C的方程;(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,OPOM=λ,求点M的轨迹方程,并说明轨迹是什么曲线。
【2020届】高考数学圆锥曲线专题复习:圆锥曲线常用解法、常规题型与性质
圆锥曲线八种解题方法、七种常规题型和性质(有相应例题详解) 总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
2020高考数学(文科,通用)复习课件:专题6第3讲圆锥曲线中的热点问题.ppt
3.弦的中点问题 有关弦的中点问题,应灵活运用“点差法”,“设 而不求法”来简化运算.
热点分类突破
➢ 热点一 圆锥曲线中的范围、最值问题 ➢ 热点二 圆锥曲线中的定值、定点问题 ➢ 热点三 圆锥曲线中的探索性问题
热点一 圆锥曲线中的范围、最值问题
例 1 (2013·浙江)如图,点 P(0,-1)是椭 圆 C1:xa22+by22=1(a>b>0)的一个顶点,C1 的长轴是圆 C2:x2+y2=4 的直径.l1,l2 是 过点 P 且互相垂直的两条直线,其中 l1 交圆 C2 于 A,B 两点,l2 交椭圆 C1 于另一点 D.
则所得弦长|P1P2|= 1+k2|x2-x1|或|P1P2|=
|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的 关系,即作如下变形: |x2-x1|= x1+x22-4x1x2, |y2-y1|= y1+y22-4y1y2. (2)当斜率k不存在时,可求出交点坐标,直接运算(利 用两点间距离公式).
∴ S P F1Q =3∴ S P F1Q ∈(0,3),
∴当直线PQ与x轴垂直时 S P F1Q 最大,且最大面积为3.
设△PF1Q内切圆半径为r,
则S
P F1Q
=
1 2
(|PF1|+|QF1|+|PQ|)·r=4r≤3.
即rmax=
3 4
,此时直线PQ与x轴垂直,△PF1Q内切圆面积
(2)直线与双曲线的位置关系的判定方法: 将直线方程与双曲线方程联立,消去y(或x),得到一个 一元方程ax2+bx+c=0(或ay2+by+c=0). ①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时, 直线与双曲线相切;当Δ<0时,直线与双曲线相离. ②若a=0时,直线与渐近线平行,与双曲线有一个交点.
2020年高考山东版高考理科数学 10.4 圆锥曲线的综合问题
(1)求C的方程; (2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的 中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.
解析
(1)由题意有
a2 a
b2
= 2 2
, a42 + b22 =1,解得a2=8,b2=4.
所以C的方程为x 2 +y 2 =1.
84
(2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).将y=kx+b代
入x 2 +y 2 =1得(2k2+1)x2+4kbx+2b2-8=0.
84
故xM=x1 x2
2
= 2kb
2k 2 1
,yM=k·xM+b=2 k 2b1
.
于是直线OM的斜率kOM=xy MM =-2 1k ,即kOM·k=-12 .
消去y得(4k2+3)x2-8k2x+4k2-12=0,
得xM= 12 · 4k82k2
3
= 4k 2
4k 2
3
,yM=k(xM-1)=-4 k32k
3
,
同理可得xN= 4
4 3k
2
,yN=- 1 (xN-1)= 3k
k
4 3k
2
,
若M,N关于x轴对称后得到M',N',
则得到的直线M'N'与MN关于x轴对称,
是k>0,k≠3.
由(1)得OM的方程为y=- 9 x.
k
设点P的横坐标为xP.
由
y
9 k
高考数学《圆锥曲线》解答题专题复习题
高考数学《圆锥曲线》解答题专题复习题1.已知双曲线22221(00)y x a b a b-=>>,与双曲线22142x y -=有相同的渐近线,且经过点M.(1)求双曲线C 的标准方程.(2)已知直线0x y m -+=与曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆2220x y +=上,求实数m 的值.2.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为椭圆C 的左、右焦点,112A F =.(1)求椭圆C 的方程;(2)设与x 轴不垂直的直线l 交椭圆C 于P 、Q 两点(P 、Q 在x 轴的两侧),记直线1A P ,2A P ,2A Q ,1A Q 的斜率分别为1k ,2k ,3k ,4k .(i )求12k k 的值;(ii )若()142353k k k k +=+,求2F PQ △面积的取值范围.3.已知双曲线()2222Γ:10,0x y a b a b-=>>的左右顶点分别为点,A B ,其中2AB =,且双曲线过点()2,3C .(1)求双曲线Γ的方程;(2)设过点()1,1P 的直线分别交Γ的左、右支于,D E 两点,过点E 作垂直于x 轴的直线l ,交线段BC 于点F ,点G 满足EF FG =.证明:直线DG 过定点,并求出该定点.4.已知双曲线C 的渐近线方程是y =,点()2,3M在双曲线C 上.(1)求双曲线C 的离心率e 的值;(2)若动直线l :1y kx =+与双曲线C 交于A ,B 两点,问直线MA ,MB 的斜率之和是否为定值?若是,求出该定值;若不是,请说明理由.5.已知椭圆C 的中心在原点,一个焦点为()10F ,(1)求椭圆C 的标准方程;(2)设过焦点F 的直线l 与椭圆C 交于A 、B 两点,1F 是椭圆的另一个焦点,若1ABF 内切圆的半径r =l 的方程.6.已知椭圆2222:1(0)x y C a b a b +=>>的离心率e =C经过点2⎛ ⎝⎭.(1)求椭圆C 的标准方程;(2)过点()2,0P 且斜率不为零的直线与椭圆C 交于,B D 两点,B 关于x 轴的对称点为A ,求证:直线AD 与x 轴交于定点Q .7.已知椭圆221:4T x y +=,1F 、2F 为椭圆的左右焦点,C 、D 为椭圆的左、右顶点,直线1:2l y x m =+与椭圆T 交于A 、B 两点.(1)若12m =-,求AB ;(2)设直线AD 和直线BC 的斜率分别为1k 、2k ,且直线l 与线段12F F 交于点M ,求12k k 的取值范围.8.已知椭圆()2222:10x y C a b a b +=>>12D ⎫⎪⎭,点,A B 分别是椭圆C 的左、右顶点.(1)求椭圆C 的方程;(2)过点()4,0E 的直线l 与椭圆C 交于,P Q 两点(P 在,E Q 之间),直线,AP BQ 交于点M ,记,ABM PQM 的面积分别为12,S S ,求12S S的取值范围.第8题图第9题图9.如图,已知椭圆C 的焦点为()11,0F -,()21,0F,椭圆C 的上、下顶点分别为,A B ,右顶点为D ,直线l 过点D 且垂直于x 轴,点Q 在椭圆C 上(且在第一象限),直线AQ 与l 交于点N ,直线BQ 与x 轴交于点M .(1)求椭圆C 的标准方程;(2)判定AOM (O 为坐标原点)与ADN △的面积之和是否为定值?若是,请求出该定值;若不是,请说明理由.10.已知双曲线过点(A ,它的渐近线方程是20x y ±=.(1)求双曲线的标准方程;(2)若直线l 交C 于,P Q 两点,直线,AP AQ 的倾斜角互补,求直线l 的斜率.11.已知点(2,0)A -,(2,0)B ,平面内一动点M 满足直线AM 与BM 的斜率乘积为14-.(1)求动点M 的轨迹C 的方程;(2)直线l 交轨迹C 于,P Q 两点,若直线AP 的斜率是直线BQ 的斜率的4倍,求坐标原点O 到直线l 的距离的取值范围.12.若双曲线E :2221(0)x y a a-=>y =kx -1与双曲线E 的右支交于A ,B 两点.(1)求k 的取值范围;(2)若AB =,点C 是双曲线上一点,且()OC m OA OB =+,求k ,m 的值.13.已知1F ,2F 分别是椭圆G22+22=1>>0的左、右焦点,且焦距为MN 平行于x 轴,且114F M F N +=.(1)求椭圆E 的方程;(2)设A ,B 为椭圆E 的左右顶点,P 为直线:4l x =上的一动点(点P 不在x 轴上),连AP 交椭圆于C 点,连PB 并延长交椭圆于D 点,试问是否存在λ,使得ACD BCD S S λ= 成立,若存在,求出λ的值;若不存在,说明理由.14.平面上的动点(,)P x y 到定点(0,1)F 的距离等于点P 到直线1y =-的距离,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)直线:l y x m =+与曲线C 相交于A ,B 两点,线段AB 的中点为M .是否存在这样的直线l ,使得MF AB ⊥,若存在,求实数m 的值,若不存在,请说明理由.15.已知双曲线()22:1,,24x C y M m -=,斜率为k 的直线l 过点M .(1)若0m =,且直线l 与双曲线C 只有一个交点,求k 的值;(2)已知点(2,0)T ,直线l 与双曲线C 有两个不同的交点A ,B ,直线,TA TB 的斜率分别为12,k k ,若12k k +为定值,求实数m 的值.16.已知椭圆(2222:10)x y C a b a b+=>>的离心率为12,左焦点F 与原点O 的距离为1,正方形PQMN 的边PQ ,MN 与x 轴平行,边PN ,QM 与y 轴平行,2112,,,7777P M ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,过F 的直线与椭圆C 交于A ,B 两点,线段AB 的中垂线为l .已知直线AB 的斜率为k ,且0k >.(1)若直线l 过点P ,求k 的值;(2)若直线l 与正方形PQMN 的交点在边PN ,QM 上,l 在正方形PQMN 内的线段长度为s ,求sAB的取值范围.17.已知F 是椭圆C :2222+1(0)x y a b a b=>>的一个焦点,点13,2M 在椭圆C 上.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 分别相交于A ,B 两点,且12OA OB k k +=-(O 为坐标原点),求直线l 的斜率的取值范围.参考答案1.(1)2212x y -=(2)2m =±2.(1)2211612x y +=(2)(i )34-;(ii )950,2⎛ ⎝⎭3.(1)2213y x -=(2)证明略,(1,0)B 4.(1)2(2)是,35.(1)2212x y +=(2)1x y =±+6.(1)2212x y +=(2)证明略7.(1(2)7⎡-+⎣8.(1)2214x y +=(2)()0,19.(1)2212x y +=(2210.(1)2214x y -=(2)11.(1)2214x y +=(0)y ≠(2)6(0,)512.(1)((2)51,24k m ==±13.(1)2214x y +=(2)存在,314.(1)24x y =;(2)不存在15.(1)12k =±或k =(2)2m =.16.(1)1k =(2)12,78⎛ ⎝⎦17.(1)2214x y +=(2)1[,0)(1,)4-+∞。
2020高考专题复习—圆锥曲线
一、2020年高考虽然推迟,但是一定要坚持多练习,加油!二、高考分析1、分值、题型、难度设置圆锥曲线是高中数学的重要内容之一,分值约占14﹪,即20分左右,题型一般为二小一大,例如,2005年高考为一道选择题,一道填空题一道解答题。
小题基础灵活,解答题一般在中等以上,一般具有较高的区分度。
考试内容:椭圆、双曲线、抛物线的定义,标准方程,简单的几何性质,椭圆的参数方程。
主要题型:(1)定义及简单几何性质的灵活运用;(2)求曲线方程(含指定圆锥曲线方程及轨迹方程);(3)直线与圆锥曲线的位置关系问题(交点、弦长、中点弦及斜率、对称问题),确定参数的取值范围;(4)在导数、不等式、函数、向量等知识网络交汇点上的问题。
2、命题方向解析几何内容多,范围广,综合度高,其特点是:数形结合,形象思维,规律性强,运算量大,综合性好。
主要考察运算能力,逻辑思维能力,以及分析问题和解决问题的综合能力。
涉及函数、方程、不等式、三角、向量和导数等方面的内容,以及数形结合、分类讨论、等价转化等数学思想方法。
要注意一些立意新,角度好,有创意的题目,特别要关注在向量和解析几何交汇点上的命题趋势,两者通过坐标自然融合,既考查基(2D . 3 +1础知识、基本方法,又平淡之中见功夫,强化区分功能,突出对能力的考查,从不同的思维层次上考察能力,有较好的思维价值。
三、 专题复习2.1 考查直线和圆锥曲线方程等有关基础知识和基本方法,要特别重视圆锥曲线定义的灵活应用,反映思维品质。
例 1.1)如图,在正方体 A B C D - ABCD 的侧1 1 1DC面 AB 内有1AB动点 P 到直线 AB 与直线 B C 距离相等,则动点 1 1P 所在的曲线的形状为: )PD 1A 1B 1C 1AB ABAB AB PPPPA 1(A)B 1A 1(B)B 1A 1(C)B 1 A 1(D) B 1分析:本题主要考查抛物线定义,线面垂直关系及点到直线的距离等概念,情景新,角度好,有创意,考查基础知识和基本方法。
【高考冲刺】人教A版 高中数学2020届 高考复习专题--圆锥曲线(含解析)
圆锥曲线一、知识结构 1.方程的曲线在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线.点与曲线的关系若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0两条曲线的交点若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则 f 1(x 0,y 0)=0点P 0(x 0,y 0)是C 1,C 2的交点⇔ f 2(x 0,y 0)=0方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点.2.圆圆的定义 点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程 (1)标准方程圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为(-2D ,-2E,半径是24F -E D 22+.配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F-E D 22+当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E); 当D 2+E 2-4F <0时,方程不表示任何图形.点与圆的位置关系已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内, |MC |=r ⇔点M 在圆C 上, |MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +.(3)直线和圆的位置关系①直线和圆有相交、相切、相离三种位置关系 直线与圆相交⇔有两个公共点 直线与圆相切⇔有一个公共点 直线与圆相离⇔没有公共点 ②直线和圆的位置关系的判定 (i)判别式法(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d=22C Bb Aa BA +++与半径r 的大小关系来判定.3.椭圆、双曲线和抛物线椭圆 双曲线 抛物线轨迹条件点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a = 点集:{M ||MF 1|-|MF 2|. =±2a,|F 2F 2|>2a}.点集{M ||MF |=点M 到直线l 的距离}.圆形标准方程 22a x +22by =1(a >b >0)22a x -22b y =1(a >0,b >0)y 2=2px(p >0)顶点A 1(-a,0),A 2(a,0);B 1(0,-b),B 2(0,b) A 1(0,-a),A 2(0,a) O(0,0)轴 对称轴x=0,y=0 长轴长:2a 短轴长:2b 对称轴x=0,y=0 实轴长:2a 虚轴长:2b 对称轴y= 焦点F 1(-c,0),F 2(c,0) 焦点在长轴上 F 1(-c,0),F 2(c,0) 焦点在实轴上 F(2P,0) 焦点对称轴上焦距|F 1F 2|=2c , c=b2-a2|F 1F 2|=2c, c=b2a2+曲 线 性 质准线x=±c a 2准线垂直于长轴,且在椭圆外. x=±ca 2准线垂直于实轴,且在两顶点的内侧.x=-2p 准线与焦点位于顶点两侧,且到顶点的距离相等.离心率e=ac,0<e <1 e=ac,e >1 e=14.圆锥曲线的统一定义平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线.其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率. 当0<e <1时,轨迹为椭圆 当e=1时,轨迹为抛物线 当e >1时,轨迹为双曲线 5.坐标变换坐标变换在解析几何中,把坐标系的变换(如改变坐标系原点的位置或坐标轴的方向)叫做坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点的坐标与曲线的方程.坐标轴的平移坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫做坐标轴的平移,简称移轴.坐标轴的平移公式设平面内任意一点M ,它在原坐标系xOy 中的坐标是9x,y),在新坐标系x ′O ′y ′中的坐标是(x ′,y ′).设新坐标系的原点O ′在原坐标系xOy 中的坐标是(h,k),则x=x ′+hx ′=x-h (1)或(2)y=y ′+ky ′=y-k公式(1)或(2)叫做平移(或移轴)公式. 中心或顶点在(h,k)的圆锥曲线方程中心或顶点在(h,k)的圆锥曲线方程见下表.方程焦点焦线对称轴 椭圆22h)-(x a +22k)-(y b =1(±c+h,k) x=±c a 2+hx=h y=k 22h)-(x b +22k)-(y a =1 (h,±c+k) y=±c a 2+kx=h y=k 双曲线22h)-(x a -22k)-(y b =1 (±c+h,k) =±c a 2+kx=h y=k 22k)-(y a -22h)-(x b=1 (h,±c+h)y=±ca 2+kx=h y=k二、知识点、能力点提示(一)曲线和方程,由已知条件列出曲线的方程,曲线的交点说明在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简.特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求出的曲线方程才能准确无误.另外,要求会判断曲线间有无交点,会求曲线的交点坐标.三、考纲中对圆锥曲线的要求:考试内容:.椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程;.双曲线及其标准方程.双曲线的简单几何性质;.抛物线及其标准方程.抛物线的简单几何性质;考试要求:.(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程;.(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质;.(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质;.(4)了解圆锥曲线的初步应用。
【2020届】高考数学圆锥曲线专题复习:圆锥曲线综合题
解几综合题1.如图,()A m 和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-,O 为坐标原点,动点P 满足OP OA OB =+.(Ⅰ)求m n ⋅的值;(Ⅱ)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(Ⅲ)若直线l 过点E (2,0)交(Ⅱ)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程.2. 如图,在平面直角坐标系中,已知动点()y x P ,,y PM ⊥轴,垂足为M ,点N 与点P 关于x 轴对称, 4=⋅MN OP(1)求动点P 的轨迹W 的方程(2)若点Q 的坐标为()0,2,A 、B 为W 上的两个动点,且满足QB QA ⊥,点Q 到直线AB 的距离为d ,求d 的最大值3. 已知直线l 过椭圆E:2222x y +=的右焦点F ,且与E 相交于,P Q 两点. ① 设1()2OR OP OQ =+(O 为原点),求点R 的轨迹方程;② 若直线l 的倾斜角为060,求1||PF4. 在双曲线1131222=-x y 的上半支有三点A ,B ,C ,其中B 是第一象限的点,F 为双曲的上焦点.若线段AC 的中点D 在直线y=6上,且|AF|,|BF|,|CF|构成等差数列. (Ⅰ)求点B 的坐标;(Ⅱ)若直线l 经过点D ,且在l 上任取一点P (不同于D 点),都存在实数λ,使得 ||||(CP AP +=λ证明:直线l 必过定点,并求出该定点的坐标。
5. 如图,椭圆两焦点F 1、F 2与短轴两端B 1、B 2正好是正方形的四个顶点,且焦点到椭圆上一点最近距离为.12-(I )求椭圆的标准方程;(II )过D(0,2)的直线与椭圆交于不同的两点M 、N ,且M 在D 、N 之间,设λ=||DN DM ,求λ的取值范围.6. 已知F 1、F 2分别是椭圆)0,0(12222>>=+b a by a x 的左、右焦点,其左准线与x 轴相交于点N ,并且满足,.2||,221121==F F NF F F (1)求此椭圆的方程;(2)设A 、B 是这个椭圆上的两点,并且满足]31,51[,∈=λλ当NB NA 时,求直线AB 的斜率的取值范围.7. 已知O 为坐标原点,点E 、F 的坐标分别为(-1,0)、(1,0),动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .(Ⅰ)求点M 的轨迹W 的方程; (Ⅱ)点0(,)2mP y 在轨迹W 上,直线PF 交轨迹W 于点Q ,且PF FQ λ=,若12λ≤≤,求实数m 的范围.8. 已知点A (-1,0),B (1,-1)和抛物线.x y C 4:2=,O 为坐标原点,过点A 的动直线l 交抛物线C 于M 、P ,直线MB 交抛物线C 于另一点Q ,如图.(I )若△POM 的面积为25,求向量OM 与OP 的夹角; (II )试探求点O 到直线PQ 的距离是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.9. 设不等式组⎩⎨⎧x +y >0,x -y >0表示的平面区域为D .区域D 内的动点P 到直线x +y =0和直线x -y =0的距离之积为1.记点P 的轨迹为曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)过点F (2,0)的直线与曲线C 交于A ,B 两点.若以线段AB 为直径的圆与y 轴相切,求线段AB 的长.10. 如图,在△OSF 中,c OF a OS OSF ==︒=∠,,90(c a ,均为正常数),E 、P 是平面OSF内的动点,且满足0=⋅OF SE ,),(R ∈=λλ向量PE c PF a +与PE c PF a -垂 直。
2020年高考数学圆锥曲线
2020高考数学知识再梳理---------圆锥曲线知识梳理:(1)椭圆的标准方程及其性质:(2)双曲线的标准方程及其性质:(3)抛物线的标准方程及其性质:2020高考数学知识再梳理---------圆锥曲线配套练习:1.在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.2.在平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标是3,则点M 到此双曲线的右焦点的距离为________.3.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是________.4.设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a 且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为________.5. 设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,一个交点的坐标为(15,4),则此双曲线的标准方程是________________.6. 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为____________. 7.如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是________.8. 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =________.9. 椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为2c ,若直线y =2x 与椭圆的一个交点的横坐标为c ,则椭圆的离心率为________.10.在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.11.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,离心率为32,过F 1且垂直于x轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明1kk1+1kk2为定值,并求出这个定值.12. 如图,在平面直角坐标系xOy中,椭圆C∶x2a2+y2b2=1(a>b>0)的离心率为32,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN 相交于点T.求证:点T在椭圆C上.13. 设椭圆E:x2a2+y21-a2=1的焦点在x轴上.(1)若椭圆E的焦距为1,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q.证明:当a变化时,点P在某定直线上.14.已知椭圆C :x 2m 2+y 2=1(常数m >1),P 是曲线C 上的动点,M 是曲线C 的右顶点,定点A 的坐标为(2,0).(1)若M 与A 重合,求曲线C 的焦点坐标; (2)若m =3,求P A 的最大值与最小值;(3)若P A 的最小值为MA ,求实数m 的取值范围.配套练习:1.在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.1.解析 建立关于m 的方程求解∵c 2=m +m 2+4,∴e 2=c 2a 2=m +m 2+4m=5,∴m 2-4m +4=0,∴m =2.答案 22.在平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标是3,则点M 到此双曲线的右焦点的距离为________.2.解析 法一 x =3代入x 24-y 212=1,y =±15,不妨设M (3,15),右焦点F (4,0).∴MF =1+15=4.法二 由双曲线第二定义知,M 到右焦点F 的距离与M 到右准线x =a 2c =1的距离比为离心率e =c a =2,∴MF 3-1=2,MF =4.答案 43.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是________.3.解析 由题意知c =3,e =c a =32,所以a =2;b 2=c 2-a 2=9-4=5,故所求双曲线方程为x 24-y 25=1. 答案 x 24-y 25=14.设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a 且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为________.4.解析 不妨设F 1,F 2分别为双曲线的左、右焦点,点P 在双曲线的右支上,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a , 求得|PF 1|=4a ,|PF 2|=2a .又在△PF 1F 2中,∠PF 1F 2=30°,所以∠PF 2F 1=90°,求得|F 1F 2|=23a ,故双曲线C 的离心率e =23a 2a = 3.答案35. 设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,一个交点的坐标为(15,4),则此双曲线的标准方程是________________.5.解析 法一 x 227+y 236=1的焦点坐标是(0,±3),设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),根据定义2a =|(15)2+12-(15)2+72|=4,故a =2.又b 2=32-22=5,故所求双曲线方程为y 24-x 25=1. 法二 x 227+y 236=1的焦点坐标是(0,±3),设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则a 2+b 2=9,16a 2-15b 2=1,解得a 2=4,b 2=5,故所求双曲线方程为y 24-x 25=1.法三 设双曲线方程为x 227-λ+y 236-λ=1(27<λ<36),由于双曲线过点(15,4),故1527-λ+1636-λ=1,解得λ1=32,λ2=0(舍去),故所求双曲线方程为y 24-x 25=1.答案 y 24-x 25=1[规律方法] 本例可有三种解法:一是根据双曲线的定义直接求解,二是待定系数法;三是共焦点曲线系方程,其要点是根据题目的条件用含有一个参数的方程表示共焦点的二次曲线系,再根据另外的条件求出参数.6. 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为____________. 6.解析 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由e =22,知c a =22,故b 2a 2=12.由于△ABF 2的周长为|AB |+|BF 2|+|AF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,故a =4.∴b 2=8,∴椭圆C 的方程为x 216+y 28=1.答案 x 216+y 28=17.如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是________.7.解析 由题意可知|F 1F 2|=23,∴c = 3.设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0).∵|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a ,∴|AF 2|=2+a ,|AF 1|=2-a .在Rt △F 1AF 2中,∠F 1AF 2=90°,∴|AF 1|2+|AF 2|2=|F 1F 2|2,即(2-a )2+(2+a )2=(23)2,∴a =2,∴e =c a =32=62.答案62[规律方法] 求解圆锥曲线的离心率,基本思路有两种:一是根据圆锥曲线的定义、方程、性质等分别求出a ,c ,然后根据离心率的定义式求解;二是根据已知条件构造关于a ,c 的方程,多为二次齐次式,然后通过方程的变形转化为离心率e 的方程求解,要灵活利用椭圆、双曲线的定义求解相关参数.8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =________. 9.椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为2c ,若直线y =2x 与椭圆的一个交点的横坐标为c ,则椭圆的离心率为________.8.因为双曲线的离心率e =c a =2,所以b =3a ,所以双曲线的渐近线方程为y =±ba x =±3x ,与抛物线的准线x =-p 2相交于A ⎝⎛⎭⎫-p 2,32p ,B ⎝⎛⎭⎫-p 2,-32p ,所以△AOB 的面积为12×p 2×3p =3,又p >0,所以p =2.9.因为直线与椭圆的一个交点的横坐标为c ,所以这个交点的坐标为⎝⎛⎭⎫c ,b 2a ,则有b 2a=2c ,即有b 2=a 2-c 2=2ac ,e 2+2e -1=0,解得e =2-1(另一个解不符合要求,舍去). 答案 (1)2 (2)2-110.在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.10.解 (1)设F 1(-c,0),F 2(c,0)(c >0). 由题意可得|PF 2|=|F 1F 2|,即(a -c )2+b 2=2c . 整理得2⎝⎛⎭⎫c a 2+c a -1=0, 得c a =12或c a =-1(舍),所以e =12(2)由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2,直线PF 2方程为y =3(x -c ).A ,B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3(x -c ).消去y 并整理,得5x 2-8cx =0,解得x 1=0,x 2=85c ,得方程组的解⎩⎨⎧x 1=0,y 1=-3c ,⎩⎨⎧x 2=85c ,y 2=335c .不妨设A ⎝⎛⎭⎫85c ,335c ,B ()0,-3c .设点M 的坐标为(x ,y ),则AM →=⎝⎛⎭⎫x -85c ,y -335c ,BM →=(x ,y +3c ).由y =3(x -c ),得c =x -33y .于是AM →=⎝⎛⎭⎫8315y -35x ,85y -335x ,BM →=(x ,3x ).由题意知AM →·BM →=-2,即⎝⎛⎭⎫8315y -35x ·x +85y -335x ·3x =-2,化简得18x 2-163xy -15=0.将y =18x 2-15163x 代入c =x -33y ,得c =10x 2+516x >0,所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0).[规律方法] (1)求轨迹方程时,先看轨迹的形状能否预知,若能预先知道轨迹为何种圆锥曲线,则可考虑用定义法求解或用待定系数法求解. (2)讨论轨迹方程的解与轨迹上的点是否对应,要注意字母的取值范围.11.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,离心率为32,过F 1且垂直于x轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线PF 1,PF 2的斜率分别为k 1,k 2,若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值. 11.解 (1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a ,由题意知2b 2a =1,即a =2b 2.又e =c a =32,所以a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)法一 如图,由题意知|F 1M ||MF 2|=|PF 1||PF 2|,即|PF 1|4-|PF 1|=c +m c -m =3+m 3-m ,整理得m =32(|PF 1|-2). 又a -c <|PF 1|<a +c ,即2-3<|PF 1|<2+ 3. ∴-32<m <32.故m 的取值范围是m ∈⎝⎛⎭⎫-32,32. 法二 由题意知PF 1→·PM →|PF 1→||PM →|=PF 2→·PM→|PF 2→||PM →|,即PF 1→·PM →|PF 1→|=PF 2→·PM →|PF 2→|.设P (x 0,y 0),其中x 20≠4,将向量坐标化得m (4x 20-16)=3x 30-12x 0.所以m =34x 0,而x 0∈(-2,2),所以m ∈⎝⎛⎭⎫-32,32. (3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0.所以Δ=0.即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又x 204+y 20=1,所以16y 20k 2+8x 0y 0k +x 20=0.故k =-x 04y 0,由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0所以1kk 1+1kk 2=1k ⎝⎛⎭⎫1k 1+1k 2=⎝⎛⎭⎫-4y 0x 0·⎝⎛⎭⎫2x 0y 0=-8.所以1kk 1+1kk 2为定值,这个定值为-8.12. 如图,在平面直角坐标系xOy 中,椭圆C ∶x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线x -y +2=0相切. (1)求椭圆C 的方程;(2)已知点P (0,1),Q (0,2),设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T .求证:点T 在椭圆C 上. 12.(1)解 由题意知b =22= 2. 因为离心率e =c a =32,所以ba =1-⎝⎛⎭⎫c a 2=12.所以a =2 2.所以椭圆C 的方程为x 28+y 32=1.(2)证明 由题意可设M ,N 的坐标分别为(x 0,y 0),(-x 0,y 0),则直线PM 的方程为y =y 0-1x 0x +1.①直线QN 的方程为y =y 0-2-x 0x +2.②法一 联立①②解得x =x 02y 0-3,y =3y 0-42y 0-3,即T ⎝ ⎛⎭⎪⎫x 02y 0-3,3y 0-42y 0-3由x 208+y 202=1可得x 20=8-4y 20, 因为18⎝⎛⎭⎫x 02y 0-32+12⎝ ⎛⎭⎪⎫3y 0-42y 0-32=x 20+4(3y 0-4)28(2y 0-3)2=8-4y 20+4(3y 0-4)28(2y 0-3)2=32y 20-96y 0+728(2y 0-3)2=8(2y 0-3)28(2y 0-3)2=1.所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上. 法二 设T (x ,y )联立①②解得x 0=x2y -3,y 0=3y -42y -3,因为x 208+y 202=1,所以18⎝⎛⎭⎫x 2y -32+12⎝ ⎛⎭⎪⎫3y -42y -32=1.整理得x 28+(3y -4)22=(2y -3)2,所以x 28+9y 22-12y +8=4y 2-12y +9,即x 28+y 22=1. 所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上.[规律方法] (1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.13. 设椭圆E :x 2a 2+y 21-a 2=1的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1,F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q .证明:当a 变化时,点P 在某定直线上. 13.(1)解 因为焦距为1,且焦点在x 轴上,所以2a 2-1=14,解得a 2=58.故椭圆E 的方程为8x 25+8y 23=1.(2)证明 设P (x 0,y 0),F 1(-c,0),F 2(c,0), 其中c =2a 2-1.由题设知x 0≠c ,则直线F 1P 的斜率kF 1P =y 0x 0+c .直线F 2P 的斜率kF 2P =y 0x 0-c .故直线F 2P 的方程为y =y 0x 0-c(x -c ).当x =0时,y =cy 0c -x 0,即点Q 坐标为⎝⎛⎭⎫0,cy 0c -x 0.因此,直线F 1Q 的斜率为kF 1Q =y 0c -x 0.由于F 1P ⊥F 1Q ,所以kF 1P ·kF 1Q =y 0x 0+c ·y 0c -x 0=-1.化简得y 20=x 20-(2a 2-1),①将①代入椭圆E 的方程,由于点P (x 0,y 0)在第一象限. 解得x 0=a 2,y 0=1-a 2. 即点P 在定直线x +y =1上.14.已知椭圆C :x 2m 2+y 2=1(常数m >1),P 是曲线C 上的动点,M 是曲线C 的右顶点,定点A 的坐标为(2,0).(1)若M 与A 重合,求曲线C 的焦点坐标; (2)若m =3,求P A 的最大值与最小值;(3)若P A 的最小值为MA ,求实数m 的取值范围.14.解 (1)由题意知m =2,椭圆方程为x 24+y 2=1,c =4-1=3,∴左、右焦点坐标分别为(-3,0),(3,0). (2)m =3,椭圆方程为x 29+y 2=1,设P (x ,y ),则P A 2=(x -2)2+y 2=(x -2)2+1-x 29=89⎝⎛⎭⎫x -942+12(-3≤x ≤3)∴当x =94时,P A min =22;当x =-3时,P A max =5.(3)设动点P (x ,y ),则P A 2=(x -2)2+y 2=(x -2)2+1-x 2m2=m 2-1m 2⎝⎛⎭⎫x -2m 2m 2-12-4m 2m 2-1+5(-m ≤x ≤m ). ∵当x =m 时,P A 取最小值,且m 2-1m 2>0,∴2m 2m 2-1≥m 且m >1,解得1<m ≤1+ 2.。
【2020届】高考数学圆锥曲线专题复习:圆锥曲线之轨迹方程的求法
圆锥曲线之轨迹方程的求法(一)【复习目标】□1. 了解曲线与方程的对应关系,掌握求曲线方程的一般步骤;□2. 会用直接法、定义法、相关点法(坐标代换法)求方程。
【基础练习】1.到两坐标轴的距离相等的动点的轨迹方程是( )A .y x =B .||y x =C .22y x =D .220x y +=2.已知点(,)P x y 4,则动点P 的轨迹是( )A .椭圆B .双曲线C .两条射线D .以上都不对3.设定点1(0,3)F -、2(0,3)F ,动点P 满足条件129(0)PF PF a a a+=+>,则点P 的轨迹( ) A .椭圆 B .线段 C. 不存在 D .椭圆或线段4.动点P 与定点(1,0)A -、(1,0)B 的连线的斜率之积为1-,则P 点的轨迹方程为______________.【例题精选】一、直接法求曲线方程根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简。
即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。
例1.已知ABC ∆中,2,AB BC m AC==,试求A 点的轨迹方程,并说明轨迹是什么图形.练习:已知两点M (-1,0)、N (1,0),且点P 使MP MN ,PM PN ,NM NP 成公差小于零的等差数列。
点P 的轨迹是什么曲线?二定义法若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程。
例1.⊙C :22(16x y +=内部一点0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于BQ R A P o yx P ,求点P 的轨迹方程.例2.设动点(,)(0)P x y x ≥到定点1(,0)2F 的距离比它到y 轴的距离大12。
记点P 的轨迹为曲线C 求点P 的轨迹方程;练习.若动圆与圆1)2(:221=++y x C 相外切,且与直线1=x 相切,则动圆圆心轨迹方程是 .三代入法有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的。
2020高考数学复习—圆锥曲线练习试卷含答案
高考数学复习—圆锥曲线练习试卷 第Ⅰ卷 (选择题 共50分)一、选择题(10×5′=50′)1.已知有向线段PQ 的起点P (-1,1),终点Q (2,2), 若直线l :x +my +m =0与有向线段PQ 的延长线相交,如图所示, 则m 的取值范围是 ( )A.⎪⎭⎫ ⎝⎛23,31 B.⎪⎭⎫ ⎝⎛--32,3 C.(-∞,-3) D.⎪⎭⎫ ⎝⎛+∞-,322.若P (x 1,y 1)是直线l :f (x ,y )=0上的一点,Q (x 2,y 2)是直线l 外一点,则方程f (x ,y )=f (x 1,y 1)+f (x 2,y 2)表示的直线 ( )A.与l 重合B.与l 相交于点P C.过点Q且与l 平行 D.过点Q 且与l 相交 3.直线l :y =kx +1(k ≠0),椭圆E :1422=+y m x .若直线l 被椭圆E 所截弦长为d ,则下列直线中被椭圆E 所截弦长不是d 的直线是 ( )A.kx +y +1=0B.kx -y -1=0C.kx +y -1=0D.kx +y =04.若m 、n 是不大于6的非负整数,则C m 6x 2+C n 6y 2=1表示不同的椭圆的个数为 ( )A.A 27B.C 26C.A 24D.C 245.在椭圆上一点A 看两焦点F 1、F 2的视角为直角,设AF 1的延长线交椭圆于点B ,又|AB |=|AF 2|,则椭圆的离心率e 可能为 ( )第1题图A.2-22B.36- C.2-1 D.23-6.F 1、F 2分别为椭圆1422=+y x 的左、右焦点,AB 为其过点F 2且斜率为1的弦,则A F 1·B F 1的值为 ( )A.523 B.326 C.546 D.57.如果把圆C :x 2+y 2=1沿向量a =(1,m )平移到C ′,且C ′与直线3x -4y =0相切,则m 的值为 ( )A.2或-21 B.2或21 C.-2或21 D.-2或-218.在圆x 2+y 2=5x 内,过点⎪⎭⎫⎝⎛23,25有n 条弦的长度成等差数列,最小弦长为数列的首项a 1,最大弦长为a n ,若公差d ∈⎥⎦⎤⎢⎣⎡31,61,那么n 的取值集合为( )A.{3,4,5}B.{4,5,6}C.{3,4,5,6}D.{4,5,6,7} 9.若当p (m ,n )为圆x 2+(y -1)2=1上任意一点时,不等式m+n+c ≥0恒成立,则c 的取值范围是 ( )A.-1-2≤c ≤2-1 B.2-1≤c ≤2+1C.c ≤-2-1 D.c ≥2-110.过抛物线y 2=8(x +2)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,使|AF |>|BF |,过点A 作与x 轴垂直的直线交抛物线于点C ,则△BCF的面积是 ( )A.64B.32C.16D.8 二、填空题(4×4′=16′)11.一个圆周上有10个点,每两点连成一条弦,这些弦在圆内的交点最多有 个.12.设圆C 经过点M (-2,0)和点N (9,0),直线l 过坐标原点,圆C 与直线l 相交于点P 、Q ,当直线l 绕原点在坐标平面内旋转时,弦PQ 长度的最小值是 .13.函数y =x1的图象是平面上到两定点距离之差的绝对值等于定长的点的轨迹,则这个定长是 .14.椭圆12222=+b y a x (a>b>0)的两焦点为F 1、F 2,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为 . 三、解答题(4×10′+14′=54′)15.对任意的实数λ,直线(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2)的距离为d ,求d 的取值范围.16.已知椭圆E :12222=+b y a x (a>b>0),以F 1(-c ,0)为圆心,以a-c 为半径作圆F 1,过点B 2(0,b )作圆F 1的两条切线,设切点为M 、N.(1)若过两个切点M 、N 的直线恰好经过点B 1(0,-b )时,求此椭圆的离心率;(2)若直线MN 的斜率为-1,且原点到直线MN 的距离为4(2-1),求此时的椭圆方程;(3)是否存在椭圆E ,使得直线MN 的斜率k 在区间(-33,22)内取值?若存在,求出椭圆E 的离心率e 的取值范围;若不存在,请说明理由.17.椭圆的焦点在y 轴上,中心在原点,P 为椭圆上一点,F 1、F 2为椭圆两焦点,点P 到两准线的距离分别为556和5512,且PF 1⊥PF 2.(1)求椭圆的方程;(2)过点A (3,0)的直线l 与椭圆交于M 、N 两点,试判断线段MN 的中点Q 与点B (0,2)的连线能否过椭圆的顶点,若能则求出l 的方程,若不能则说明理由.18.椭圆E 的中心在原点O ,焦点在x 轴上,离心率e =32,过点C (-1,0)的直线l 交椭圆于A 、B 两点,且满足:CA =λBC .(1)若λ为常数,试用直线l 的斜率k (k ≠0)表示△OAB 的面积; (2)若λ为常数,当△OAB 的面积取得最大值时,求椭圆E 的方程;(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程.19.有一张矩形纸片ABCD,如图(1)所示那样折叠,使每次折叠后,点A都落在DC边上,试确定:是否存在一条曲线,使这条曲线上的每一点都是某条折痕(满足以上条件)与该曲线的切点,且每条折痕与该曲线相切[如图(2)].第19题图圆锥曲线练习参考答案一、选择题1.B 易知k PQ =31)1(212=---,直线x+my+m =0过点M (0,-1).当m =0时,直线化为x =0,一定与PQ 相交,所以m ≠0. 当m ≠0时,k 1=-m1.考虑直线l 的两个极限位置.(1)l 经过点Q ,即直线为l 1,则k 1l =2302)1(2=---.(2)l 与PQ 平行,即直线为l 2,则k 2l =k PQ =31.∴31<-m1<23.∴-3<m <-32.故选B.2.C 由题意知f (x 1,y 1)=0,f (x 2,y 2)=m (m 为非零常数).所以方程f (x ,y )=f (x 1,y 2)+f (x 2,y 2),即f (x ,y )-m=0.所以f (x )表示的直线过点Q,且平行于直线l .3.D 因为A 、B 、C 三个选项分别是直线l 关于x 轴、原点、y 轴的对称直线,又椭圆E 关于x 轴、原点、y 轴都对称,所以A 、B 、C 三个选项所表示的直线被椭圆E 所截弦长都是d .故选D.4.C 因为C m6只有4个不同的值,故选C.5.B 由题意知|AF 1|≠|AF 2|.∴2(|AF 1|2+|AF 2|2)>(|AF 1|+|AF 2|)2.∴2×4c 2>4a 2.∴e =ac >22≈0.707.对照备选答案,只有B 可能.6.C 分析 本题可把直线AB 与椭圆两方程联立求出A 、B 坐标后写出A F 1、B F 1的坐标表示,再按定义进行.也可先求出向量A F 2、B F 2,利用A F 1·B F 1=(21F F +A F 2)·(21F F +B F 2)来做.解法一 ⎪⎩⎪⎨⎧-==+3,1422x y y x 消去y 得5x 2-83x +8=0,设A (x 1,y 1),B (x 2,y 2). ∴A F 1·B F 1=(x 1+3,y 1)·(x 2+3,y 2)=(x 1+3,x 1-3)·(x 2+3,x 2-3)=(x 1+3)(x 2+3)+(x 1-3)(x 2-3)=2(x 1x 2+3)=2(58+3)=546,选C.解法二 设直线AB 方程为⎪⎪⎩⎪⎪⎨⎧=+=223t y t x ,代入椭圆方程1422=+y x ,有5t 2+26t -2=0A F 1·B F 1=(21F F +A F 2)·(21F F +B F 2)=(21F F )2+21F F ·(A F 2+B F 2)+A F 2·B F 2=(23)2+23·⎪⎪⎭⎫ ⎝⎛-562·21+⎪⎭⎫ ⎝⎛-52=546.选C. 7.A 平移后圆的方程为(x -1)2+(y -m )2=1.由题意知平移后所得的圆的圆心到直线的距离d =2243|43|+-m =1,解得m =2或-21.8.D 如图,⊙C 的圆心为C (0,25),半径R =|CB |=25,最短弦a 1=|AB |=4,最长弦a n =|DE |=5.由a n =a 1+(n -1)d ,得d =1111-=--n n a an ,已知d ∈⎥⎦⎤⎢⎣⎡31,61,∴n -1∈[3,6],n ∈[4,7],即n =4,5,6,7.选D.9.D 本题是解析几何题型,而又求数的范围,故适合用数形结合思想直观解之.如图,圆C 恒在直线y =-x-c 上方,至少直线l 与圆相切于A 点,若l 交y 轴于B ,∵k l =-1,∴△ABC 为等腰直角三角形.|AB |=|AC |=1,|BC |=2,必有B (-2+1,0),即直线的纵截距-c ≤-2+1时圆恒在直线l 上方,∴c ≥2-1.选D.10.C 分析 如图由抛物线关于x 轴对称知∠AFC =90°,第8题图解第9题图解△BFC 为Rt △,只须求FB 、FC 之长即可.解 抛物线顶点为(-2,0),且焦参数p =4,知焦点F (0,0)为原点. ∴直线AB 的方程为y=x ,代入抛物线方程:x 2=8(x +2). 即(x -4)2=32,∴x =4±42.故有A (4+42,4+42),B (4-42,4-42),C (4+42,-4-42).由条件知∠AFx =∠CFx =45°,∴在△BFC 中∠BFC =90°. ∴S △BFC =21|FB|·|FC |=212222)424()424()424()424(--++⋅-+-=22)424()424(+-=32-16=16.∴选C.二、填空题11.210 分析 本题直接求解较难,可转化为求圆的内接四边形的个数(由于每一个四边形,对应着对角线的一个交点),从而使问题简化.解 在圆内相交于一点的两弦,可作为一个四边形的两条对角线,它对应着一个圆内接四边形.反之,每一个圆内接四边形,都对应着对角线的一个交点.这样,圆内接四边形与弦在圆内的交点可建立一一对应的关系.因此,弦在圆内的交点最多有C 410=210个.12.62当直线l 绕原点O 旋转到使OC 垂直于l 时,|PQ |最小.因为O 为PQ 的中点,所以由相交弦定理得|OP ||OQ |=|OM ||ON |=18,即|OP |2=18,所以|OP |=32.所以|PQ |=2|OP |=62.13.22 由⎪⎩⎪⎨⎧==.,1x y x y 得A (-1,-1)、B (1,1),所以2a =|AB |=22.14.3-1 设过左焦点F 1的正三角形的边交椭圆于点A ,则|AF 1|=c ,|AF 2|=3c .∴2a =(1+3)c .∴e =ac =13312-=+. 三、解答题15.解 将原方程化为(2x -y -6)+λ(x-y -4)=0,它表示的是过两直线2x -y -6=0和x -y -4=0交点的直线系方程,但其中不包括直线x -y -4=0.因为没有λ的值使其在直线系中存在.解方程组⎩⎨⎧=--=--.04,062y x y x 得⎩⎨⎧-==.2,2y x 所以交点坐标为(2,-2).当所求直线过点P和交点时,d 取最小值为0;当所求直线与过点P和交点的直线垂直时,d 取最大值,此时有d =24)22()22(22=--++.但是此时所求直线方程为x-y -4=0.而这条直线在直线系中不存在.所以d 的取值范围是[)24,0.16.解 (1)圆F 1的方程是(x+c )2+y 2=(a-c )2,因为B 2M 、B 2N 与该圆切于M 、N 点,所以B 2、M 、F 1、N 四点共圆,且B 2F 1为直径,则过此四点的圆的方程是(x +2c )2+(y -2b )2=422b c+,从而两个圆的公共弦MN 的方程为cx +by +c 2=(a-c )2,又点B 1在MN 上,∴a 2+b 2-2ac =0,∵b 2=a 2-c 2, ∴2a 2-2ac -c 2=0,即e 2+2e -2=0,∴e =3-1.(负值已舍去)(2)由(1)知,MN 的方程为cx+by+c 2=(a-c )2,由已知-bc =-1. ∴b=c ,而原点到MN 的距离为d =aa ac bc c a c |2||)(|22222-=+--=|2c-a |=(2)a ,∴a =4,b2=c2=8,所求椭圆方程是181622=+y x; (3)假设这样的椭圆存在,由(2)则有-22<-b c <-33,∴33<b c <22,∴31<22bc <21,∴31<222c a c -<21.故得2<222c c a -<3,∴3<22ca <4,求得21<e <33,即当离心率取值范围是(21,33)时,直线MN 的斜率可以在区间(22,-33)内取值.17.解 (1)设椭圆的方程为12222=+a y b x (a>b>0),c =22b a -, |PF 1|=m ,|PF 2|=n ,则由题意和椭圆的性质得m+n =2a ,n =2m ,m 2+n 2=4c 2,551822=ca解得a =3,b =2,c =5.故所求的椭圆方程为19422=+y x . (2)由(1)知直线l 与椭圆相交时斜率一定存在,故设l 的方程为y =k (x -3),代入19422=+y x ,整理得(9+4k 2)x 2-24k 2x +36k 2-36=0 由Δ=(-24k 2)2-4(9+4k 2)(36k 2-36)>0, 得-553553<<k .设M (x 1,y 1),N (x 2,y 2),Q (x 0,y 0)则x 0=222149122k k x x +=+,y 0=k (x 0-3)=-24927k k+当k =0时,Q 为坐标原点,BQ 过椭圆顶点(0,3)和(0,-3),此时l 的方程为y =0;当k ≠0时,x 0≠0,则直线BQ 的方程为y =002x y -x +2,若直线BQ 过顶点(2,0),则002x y -×2+2=0,即x 0+y 0=2,所以22249274912k k k k +++=2⇒4k 2-27k -18=0, 解得k =8113327-或k =8113327+(舍去)此时l 的方程为y =8113327-x +2若直线BQ 过顶点(-2,0),则002x y -×(-2)+2=0,即x 0-y 0=-2,所以22249274912k kk k +-+=-2⇒20k 2+27k +18=0.方程无实根,直线l 不存在 18.解 设椭圆方程为12222=+b y a x (a>b >0). 由e =ac=32及a 2=b 2+c 2得a 2=3b 2,故椭圆方程为x 2+3y 2=3b 2①(1)∵直线l :y =k (x +1)交椭圆于A (x 1,y 1),B (x 2,y 2)两点,并且CA =λBC (λ≥2),∴(x 1+1,y 1)=λ(-1-x 2,-y 2),即⎩⎨⎧λ-=+λ-=+2121)1(1y y x x ②把y =k (x +1)代入椭圆方程,得(3k 2+1)x 2+6k 2x +3k 2-3b 2=0,且k 2(3b 2-1)+b 2>0,∴x 1+x 2=-13622+k k , ③x 1x 2=1333222+-k b k , ④∴S △OAB =21×1×|y 1-y 2|=21|λ+1|·|y 2|=2|1|+λ·|k |·|x 2+1|. 联立②、③得x 2+1=)13)(1(22+λ-k ,∴S △OAB =11-λ+λ·13||2+k k (k ≠0),(2)S △OAB =11-λ+λ·||1||31k k +≤32111⋅-λ+λ(λ≥2).当且仅当3|k |=||1k ,即k =±33时,S △OAB 取得最大值,此时,x 1+x 2=-1,又∵x 1+1=-λ(x 2+1), ∴x 1=11-λ,x 2=1-λλ-,代入④得3b 2=22)1(1-λ+λ故此时椭圆的方程为x 2+3y2=22)1(1-λ+λ(λ≥2).(3)由②、③联立得:x 1=1)13)(1(22-+λ-λ-k ,x 2=1)13)(1(22-+λ--k , 将x 1、x 2代入④,得3b 2=1)13()1(422++⋅-λλk .由k2=λ-1得3b 2=1)23()1(42+-λ⋅-λλ=⎥⎥⎦⎤⎢⎢⎣⎡-λ-λ+-λ)23()1(2)1(13422+1. 易知,当λ≥2时,3b 2是λ的减函数,故当λ=2时,(3b 2)max =3. 故当λ=2,k =±1时,椭圆短半轴长取得最大值,此时椭圆方程为x 2+3y 2=3.19.解 以AD 的中点为原点建立直角坐标系(如图), 设|AD |=p ,则点A 的坐标为(0,-2p ).A ′是DC 上任意一点,EF 是A 与A ′重合时的折痕,易证:EF 是AA ′的中垂线,过A ′作A ′T ⊥DC ,交EF 于T ,设T 的坐标为(x ,y ),于是有|A ′T |=2p -y ,|AT |=22)2(p y x ++,由|TA ′|=|AT |,得 (2p -y )2= x 2+(y +2p )2,整理得y =-p21x 2,由此可知点T 的轨迹为一段抛物线,下面证明每一条折痕EF 与抛物线y =-p21x 2相切于点T ,设AA ′的斜率为k ,则易得k =A x p ',由于EF 是AA ′的中垂线,所以EF 的方程为y =-)2(A A xx p x ''-. 联立直线EF与抛物线的方程:⎪⎪⎩⎪⎪⎨⎧-=--=''.21),2(2x py xx p x y A A第19题图解得x 2-2x A ′·x +x 2A ′=0,(x -x A ′)2=0,解得重根x =x A ′,直线EF 与抛物线y =-p21x 2相切于点T ,故存在一条曲线(抛物线),这条曲线(抛物线)上的每一点都是某条折痕与该曲线的切点,且每条折痕与该曲线相切.。
专题20 圆锥曲线综合-2020年高考数学(理)母题题源解密(全国Ⅰ专版)(解析版)
专题20 圆锥曲线综合【母题来源一】【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1). 则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线P A 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.【母题来源二】【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF |+|BF |=4,求l 的方程; (2)若,求|AB |. 【答案】(1)3728y x =-;(2【解析】设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-.从而12(1)592t --=,得78t =-. 所以l 的方程为3728y x =-. (2)由3AP PB =可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==. 323AP PB =故||3AB =. 【名师点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及平面向量、弦长的求解方法,解题关键是能够通过直线与抛物线方程的联立,利用根与系数的关系构造等量关系.【母题来源三】【2018年高考全国Ⅰ卷理数】设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.【答案】(1)y x =y x =-(2)见解析. 【解析】(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为或(1,,所以AM 的方程为2y x =-+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=.所以21221222422,2121x x x k k k x k -+==++, 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+.从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.【命题意图】(1)了解椭圆或抛物线的实际背景,了解椭圆或抛物线在刻画现实世界和解决实际问题中的作用. (2)掌握椭圆或抛物线的定义、几何图形、标准方程及简单性质. (3)了解圆锥曲线的简单应用. (4)理解数形结合的思想. 【命题规律】解析几何的解答题一般难度较大,多为试卷的压轴题之一,常考查直线与圆锥曲线的位置关系及最值范围、定点、定值、存在性问题及证明问题,多涉及最值求法,综合性强.从近三年高考情况来看,多考查直线与椭圆或抛物线的位置关系,常与向量、圆等知识相结合,解题时,充分利用数形结合思想,转化与化归思想.同时注重数学思想在解题中的指导作用,以及注重对运算能力的培养. 【方法总结】(一)求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.【注意】用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为22100()mx ny m n m n >>+≠=,且. (二)用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程. (三)直线与圆锥曲线的弦长问题有三种解法:(1)过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义可优化解题.(2)将直线的方程与圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长. (3)它体现了解析几何中的设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系.(四)圆锥曲线中的定点、定值问题定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.1.(西藏日喀则市2020届高三上学期学业水评测试(模拟)数学试题)已知椭圆C :22221(0)x y a b a b+=>>经过点⎫⎪⎪⎝⎭(1)求椭圆C 的方程;(2)过点()2,0M 的直线l 交椭圆于A ,B 两点,F 为椭圆C 的左焦点,若5FA FB ⋅=,求直线l 的方程.【答案】(1)22132x y +=;(2)20x y --=或20x y +-=.【解析】 【分析】(1)由,b a ===,可得2221132c c⎝⎭+=,将点,12⎛⎫ ⎪ ⎪⎝⎭代入,利用待定系数法即可求解.(2)设直线l 的方程为2x my =+,设点()11,A x y 、()22,B x y ,将直线与椭圆方程联立,消x ,利用韦达定理可得122823m y y m -+=+,122223y y m =+,再利用向量数量积的坐标运算即可求解. 【详解】(1)设椭圆C 的焦距为()20c c >,则3c a =,∴a =,b =,所以,椭圆C 的方程为2222132x y c c +=,将点,12⎛⎫ ⎪⎪⎝⎭的坐标代入椭圆C的方程得2221132c c⎝⎭+=, 解得1c =,则b ==a ==因此,椭圆C 的方程为22132x y +=.(2)若直线l 斜率为0,则,A B 为长轴的两交点, 此时0FA FB ⋅<不合题意,设直线l 的方程为2x my =+,设点()11,A x y 、()22,B x y ,将直线l 的方程代入椭圆的方程, 并化简得()2223820m y my +++=,()()22264422324210m m m ∆=-⨯⨯+=->,解得m <或m >, 由韦达定理可得122823m y y m -+=+,122223y y m =+, ()()11111,3,FA x y my y =+=+,同理可得()223,FB m y y =+,所以()()()()21212121233139FA FB my my y y m y y m y y ⋅=+++=++++()22222124952323m m m m +=-+=++, 即22429523m m -+=+,解得:1m =±,符合题意, 因此,直线l 的方程为20x y --=或20x y +-=. 【点睛】本题考查了待定系数法求椭圆方程、直线与椭圆的位置关系,此题要求有较高的计算能力,属于中档题.2.(重庆市巴蜀中学2020届高三下学期适应性月考九数学试题)已知椭圆1C :22163x y +=的长轴为AB ,动点P 是椭圆上不同于A ,B 的任一点,点Q 满足AP AQ ⊥,BP BQ ⊥. (1)求点Q 的轨迹2C 的方程;(2)过点()0,6R 的动直线l 交2C 于M ,N 两点,y 轴上是否存在定点S ,使得RSM RSN π∠+∠=总成立?若存在,求出定点S ;若不存在,请说明理由.【答案】(1)221126y x +=(0y ≠);(2)存在,()0,2S .【解析】 【分析】(1)设()00,P x y (00y ≠),(),Q x y , ()A ,)B,根据AP AQ ⊥,BP BQ ⊥,由0AP AQ ⋅=,0BP BQ ⋅=,利用代入求解.(2)设()11,M x y ,()22,N x y ,假设存在这样的点()0,S t ,当直线l 的斜率存在时,设方程为6y kx =+与椭圆方程联立, 根据RSM RSN π∠+∠=,由0MS NS k k +=,结合韦达定理求解. 【详解】(1)设()00,P x y (00y ≠),(),Q x y ,()A,)B,AP AQ ⊥,BP BQ ⊥,0AP AQ ∴⋅=,0BP BQ ⋅=,((000000x x y y x x y y ⎧+=⎪∴⎨-+=⎪⎩解得002x x y y =-⎧⎪⎨=-⎪⎩代入2200163x y +=,得点Q 的轨迹2C 的方程为221126y x +=(0y ≠).(2)设()11,M x y ,()22,N x y ,假设存在这样的点()0,S t 满足RSM RSN π∠+∠=,当直线l 的斜率存在时,设为6y kx =+,代入椭圆221126y x+=中,得()22212240k x kx +++=,122122k x x k -∴+=+,122242x x k ⋅=+, ()()2221449624840k k k ∆=-+=->, RSM RSN π∠+∠=,0MS NS k k ∴+=,即12120y t y tx x --+=, 即()()2112x y t x y t -+-,()()211266x kx t x kx t =+-++-,()()()()1212222241212262620222k kkx x t x x kt t k k k -=+-+=+-=-=+++, 0k ≠,2t ∴=,即()0,2S ;当斜率不存在时,直线l 也过()0,2.综上,y 轴上存在定点()0,2S ,使得RSM RSN π∠+∠=总成立. 【点睛】本题主要考查椭圆方程的求法,直线与椭圆的位置关系以及定点问题,还考查了运算求解的能力,属于中档题.3.(四川省绵阳市江油中学2020-2021学年高三8月第二次考试文科数学试题)已知A (0,2),B (0,﹣2),动点P (x ,y )满足PA ,PB 的斜率之积为12-. (1)求动点P 的轨迹C 的方程;(2)已知直线l :y =kx +m ,C 的右焦点为F ,直线l 与C 交于M ,N 两点,若F 是△AMN 的垂心,求直线l 的方程.【答案】(1)2284x y +=1(x ≠0);(2)y =x 83-.【解析】 【分析】(1)根据动点P (x ,y )满足PA ,PB 的斜率之积为12-,可得P 的坐标之间的关系,且横坐标不为0,求出P 的轨迹方程;(2)由(1)可得右焦点F 的坐标,联立直线与椭圆的方程可得两根之和及两根之积,由F 是△AMN 的垂心可得AF ⊥MN ,NF ⊥AM ,可得m 的值. 【详解】(1)因为动点P (x ,y )满足PA ,PB 的斜率之积为12-, 所以2212y y x x -+⋅=-(x ≠0), 整理可得2284x y +=1,所以动点P 的轨迹C 的方程:2284x y +=1(x ≠0);(2)由(1)可得右焦点F (2,0),可得k AF 2002-==--1, 因为F 为垂心,所以直线MN 的斜率为1, 设M (x 1,y 1),N (x 2,y 2),联立直线l 与椭圆的方程:2228y x mx y =+⎧⎨+=⎩,整理得:3x 2+4mx +2m 2﹣8=0, △=16m 2﹣4×3×(2m 2﹣8)>0,即m 2<12,x 1+x 243m =-,x 1x 22283m -=,因为AM ⊥NF , 所以k AM ⋅k NF =﹣1,即121222y y x x -⋅=--1, 整理可得y 2(y 1﹣2)+x 1(x 2﹣2)=0, 即y 1y 2+x 1x 2﹣2x 1﹣2y 2=0, 即y 1y 2+x 1x 2﹣2x 1﹣2(x 2+m )=0, 整理可得y 1y 2+x 1x 2﹣2(x 1+x 2)﹣2m =0,而y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2283m -= 所以283m --243m -⋅-2m 2283m -+=0, 解得m 83=-或m =2(舍), 所以直线l 的方程为:y =x 83-.【点睛】本题主要考查轨迹方程的求法,直线与椭圆的位置关系以及垂心的应用,还考查了运算求解的能力,属于中档题.4.(2020届河北省衡水中学高三卫冕联考数学试题)如图所示椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为1A ,2A ,上、下顶点分别为1B ,2B ,右焦点为F ,13A F =,离心率12e =.(1)求椭圆C 的方程;(2)过点(0,1)E 作斜率为的直线l 与椭圆C 交于点M ,N (点N 在第一象限),直线1MB 与直线2NB 交于点T ,求点T 的坐标.【答案】(1)22143x y +=;(2)10,3).【解析】 【分析】(1)根据13A F =及12e =可求,a b 的值,从而可得椭圆的方程. (2)联立直线方程和椭圆方程可求,M N 的坐标,再求得直线12,MB NB 的方程后可得点T 的坐标. 【详解】解:(1)由13A F =及12e =, 可知32112a c a c c a +=⎧=⎧⎪⇒⎨⎨==⎩⎪⎩,所以2223b a c =-=,所以椭圆C 的方程为22143x y +=.(2)依题可设过点(0,1)E 且斜率为52的直线5:12l y x =+,()11,M x y ,()22,N x y , 联立方程组2221437520512x y x x y x ⎧+=⎪⎪⇒+-=⎨⎪=+⎪⎩, 解得11x =-,227x =,则132y =-,2127y =, 所以31,2M ⎛⎫--⎪⎝⎭,212,77N ⎛⎫⎪⎝⎭, 由(1)知,1B,2(0,B .所以直线13:2MB y x ⎫=+⎪⎭,①直线2:62NB y x ⎛=+- ⎝⎭,②由①②,解得103x y ⎧=⎪⎨=⎪⎩,所以点T的坐标为10,3). 【点睛】本题考查椭圆方程的求法、直线与椭圆的相交时交点坐标的求法、直线与直线的交点的求法,后两者均需联立曲线的方程,消元后求解即可,本题属于中档题.5.(广西钦州市第一中学2021届高三8月月考数学试题)已知椭圆22:24C x y +=. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =上,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.【答案】(1)2c e a ==(2)【解析】试题分析:(1)由椭圆C 的方程可以求椭圆C 的离心率(2)设椭圆C 的椭圆方程,结合OA OB ⊥,得出结果.(1)由题意,椭圆C 的标准方程为22142x y +=,所以224,2a b ==,从而2222c a b =-=,因此2,a c ==C的离心率2c e a ==. (2)设点A ,B 的坐标分别为00(,2),(,)t x y ,其中00x ≠, 因为OA OB ⊥,所以0OA OB ⋅=,即0020tx y +=,解得02y t x =-,又220024x y +=, 所以22200||()(2)AB x t y =-+-=2200002()(2)y x y x ++-=2220002044y x y x +++ =2220002042(4)42x x x x --+++=22002084(04)2x x x ++<≤, 因为22002084(04)2x x x +≥<≤,且当204x =时间等号成立,所以2||8AB ≥, 故线段AB长度的最小值为考点:本小题主要考查椭圆的标准方程与几何性质、两点距离公式、不等式等基础知识,试题注重了知识的结合,考查了平面向量与圆锥曲线的结合、不等式与函数的结合等,有一定的综合性,考查转化与化归等数学思想,考查正确的计算能力,考查同学们分析问题与解决问题的能力.6.(山东省泰安市2020届高三第四轮模拟复习质量数学试题)已知椭圆1C :()222210x y a b a b +=>>的左、右顶点分别是双曲线2C :2221x y m -=的左、右焦点,且1C 与2C相交于点⎝⎭. (1)求椭圆1C 的标准方程; (2)设直线l :13y kx =-与椭圆1C 交于A ,B 两点,以线段AB 为直径的圆是否恒过定点?若恒过定点,求出该定点;若不恒过定点,请说明理由.【答案】(1)2212x y +=;(2)过定点,()0,1.【解析】 【分析】(1)将两个曲线的交点当然双曲线的方程可得m 的值,进而求出双曲线的左右焦点,即椭圆的左右顶点,再将交点的坐标代入椭圆的方程可得b 的值,进而求出椭圆的方程;(2)由对称性可得圆的圆心在y 轴上,设M 的坐标,设A ,B 的坐标,将直线与椭圆联立,求出两根之和及两根之积,求出数量积0MA MB ⋅=,求出M 的坐标. 【详解】(1)将⎝⎭代入2221x y m -=,解得21m = ∴2212a m =+=将⎝⎭代入22212x y b += 解得21b =∴椭圆1C 的标准方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,由221312y kx x y ⎧=-⎪⎪⎨⎪+=⎪⎩整理得()2291812160k x kx +--=, ∴12212918k x x k +=+,12216918x x k-=+ ()22144649180k k ∆=++>.由对称性可知,以AB 为直径的圆若恒过定点,则定点必在y 轴上. 设定点为()00,M y ,则()110,MA x y y =-,()220,MB y y y =-()()121020MA MB x x y y y y ⋅=+--()212120120x x y y y y y y =+-++()()22121212012021339k x x k x x x x y k x x y ⎡⎤=+-+-+-++⎢⎥⎣⎦()()2212012001211339k x x k y x x y y ⎛⎫=+-+++++ ⎪⎝⎭()22200021819615918y k y y k-++-=+0=∴202001096150y y y ⎧-=⎨+-=⎩解得01y = ∴()0,1M∴以线段AB 为直径的圆恒过定点()0,1. 【点睛】本题考查求椭圆,双曲线的方程,及直线与圆锥曲线的综合,及以线段的端点为直径的圆的性质,属于难题.7.(四川省内江市2020届高三下学期第三次模拟考试数学试题)已知椭圆()2222:10y x C a b a b+=>>的离,且椭圆上一点到两个焦点的距离之和为(1)求椭圆C 的方程;(2)斜率为k 的动直线l 与椭圆C 交于A 、B 两点,点1,03S ⎛⎫- ⎪⎝⎭在直线l 上,求证无论直线l 如何转动,以AB 为直径的圆恒过点()1,0T .【答案】(1)2212y x +=;(2)证明见解析.【解析】 【分析】(1)根据椭圆的离心率,以及椭圆的定义及性质,列出方程组求解,即可得出a =1c =,1b =,进而可求出椭圆方程;(2)由题意可得,直线l 的方程为13y k x ⎛⎫=+⎪⎝⎭,设()11,A x y ,()12,B x y ,将直线l 的方程代入椭圆方程,根据韦达定理,计算0TA TB ⋅=,即可证明结论成立.(1)因为椭圆的离心率为2,则2c e a ==;又椭圆上一点到两个焦点的距离之和为2a =,由22222c a a b a c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩,解得a =1c =,1b =, 故所求椭圆方程为2212y x +=;(2)证:由题意可得,直线l 的方程为13y k x ⎛⎫=+ ⎪⎝⎭, 设()11,A x y ,()12,B x y ,则代入椭圆方程2212y x +=,整理得:()22222182039k k k x x -+++=.∵点S 在椭圆内,∴此方程必有二实根1x ,2x ,且()2122232k x x k +=-+,()21221892k x x k -⋅=+. 于是,()()11221,1,TA TB x y x y ⋅=--()()1212111133x x k x k x ⎛⎫⎛⎫=--++⋅+ ⎪ ⎪⎝⎭⎝⎭()()()()22212121113939k x x k x x k =++-+++ ()()()()()()222222211182392092k k k k k k k ⎡⎤=+---+++=⎣⎦+可知TA TB ⊥,即以AB 直径的圆过点T .本题主要考查待定系数法求椭圆的方程,考查椭圆中存在定点满足某条件的问题,熟记椭圆的标准方程及椭圆的简单性质即可,属于常考题型.8.(湖南省长沙市雅礼中学2020届高三高考数学模拟试题(一)(a 卷))在平面直角标系xOy 中,点P ⎛ ⎝⎭在椭圆()2222:10x y M a b a b +=>>(1)求椭圆M 的标准方程;(2)过椭圆M 的右顶点A 作椭圆M 的两条弦AB 、AC ,记直线AB 、AC ,BC 的斜率分别为1k 、2k 、k ,其中1k 、2k 的值可以变化,当1k =,求1212k k k k --的所有可能的值.【答案】(1)2214x y +=;(2)14.【解析】 【分析】(1)由题意可得221314a b+=,c e a ==,求出,a b ,即得椭圆M 的标准方程;(2)点()2,0A .设()11,B x y ,()22,C x y ,直线BC 的方程为()2y x m m =+≠-.把,直线BC 的方程代入椭圆M 的方程,结合韦达定理,即求答案. 【详解】(1)根据题意221314a b+=,离心率c e a ==2a =,1b =,所以椭圆M 的标准方程为:2214x y +=.(2)点()2,0A .设()11,B x y ,()22,C x y ,直线BC 的方程为()2y x m m =+≠-.由2214y x m x y =+⎧⎪⎨+=⎪⎩,可得()2258410x mx m ++-=. ① 1x ,2x 是方程①的两个根,()22264454116800,m m m m ∴∆=-⨯⨯-=-+><<2m ≠-.1285m x x ∴+=-,()212415m x x -=. ()()()()212121212121212211111112224m x m x m k k k k k k x x x x x x +⎛⎫⎛⎫++∴--=---=---=- ⎪⎪---++⎝⎭⎝⎭()()()()222222511114444116444555m m m mm m ++=-=-=-=-++++.故1212k k k k --的所有可能的值为14. 【点睛】本题考查椭圆的标准方程,考查与椭圆有关的定值问题,属于较难的题目.9.(四川省内江六中2020届高三高考数学强化训练试题(三))设椭圆:C 22221x y a b+=(0a b >>)的左右顶点为12A A ,,上下顶点为12B B ,,菱形1122A B A B 的内切圆C ',椭圆的离心率为2. (1)求椭圆C 的方程;(2)设M N ,是椭圆上关于原点对称的两点,椭圆上一点P 满足PM PN =,试判断直线PM PN ,与圆C '的位置关系,并证明你的结论.【答案】(1)22163x y += (2)直线PM 、PN 与圆C '相切,证明见解析 【解析】 【分析】(1)由离心率得a =,用两种方法表示出菱形1122A B A B 的面积可求得,b a ,得椭圆方程;(2)设()11M x y ,,()22P x y ,.当直线PM 的斜率存在时,设直线PM 的方程为y kx m =+,代入椭圆方程,用韦达定理得1212,x x x x +,利用OP OM ⊥,即12120x x y y +=得,k m 的关系,求出圆心C '到直线PM 的距离可得直线与圆的位置关系.直线PM 的斜率不存在时,直接计算可得,由对称性PN 的结论也可得.【详解】(1)设椭圆的半焦距为c .由椭圆的离心率为2知,b c a =,. 设圆C '的半径为r,则r ab =,2,解得b =a =∴椭圆C 的方程为22163x y += (2)∵M N ,关于原点对称,PM PN =,∴OP MN ⊥. 设()11M x y ,,()22P x y ,.当直线PM 的斜率存在时,设直线PM 的方程为y kx m =+.由直线和椭圆方程联立得()2226x kx m ++=,即()222124260k x kmx m +++-=,∴12221224212621km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩. ∵()11OM x y =,,()22OP x y =,,∴()()12121212OM OP x x y y x x kx m kx m ⋅=+=+++()()()22222121222264112121m km k x x km x x m k km m k k --=++++=+⋅+⋅+++()222322021m k k --==+, ∴22220m k --=,2222m k =+, ∴圆C '的圆心O 到直线PMr ==,∴直线PM 与圆C '相切.当直线PM 的斜率不存在时,依题意得()11,N x y --,()11,P x y -. 由PM PN=得1122x y =,∴2211x y =,结合2211163x y +=得212x =, ∴直线PM 到原点O, ∴直线PM 与圆C '也相切. 同理可得,直线PN 与圆C '也相切.∴直线PM 、PN 与圆C '相切【点睛】本题考查求椭圆的标准方程,考查直线与椭圆相交问题,考查直线与圆的位置关系.直线与椭圆相交,一般采取设而不求思想,即设交点坐标1122(,),(,)x y x y ,设直线方程y kx m =+,由直线方程与椭圆方程联立,消元后用韦达定理得1212,x x x x +,把这个结论代入其他条件求解. 10.(甘肃省天水市一中2020届高三一轮复习第一次模拟考试数学试题)已知椭圆C :22221(0)x y a b a b +=>>(1)求C 的方程; (2)若斜率为12-的直线l 与椭圆C 交于P ,Q 两点(点P ,Q 均在第一象限),O 为坐标原点,证明:直线OP ,PQ ,OQ 的斜率依次成等比数列.【答案】(1) 2214x y +=.(2)见解析.【解析】 【分析】(1)根据题中条件,得到2c ac ⎧=⎪⎨⎪=⎩,再由222b a c =-,求解,即可得出结果; (2)先设直线l 的方程为12y x m =-+,()11,P x y ,()22,Q x y ,联立直线与椭圆方程,结合判别式、韦达定理等,表示出1212OP OQ y y k k x x =,只需和2PQ k 相等,即可证明结论成立. 【详解】(1)由题意可得22c a c ⎧=⎪⎨⎪=⎩,解得2{a c ==, 又2221b ac =-=,所以椭圆方程为2214x y +=.(2)证明:设直线l 的方程为12y x m =-+,()11,P x y ,()22,Q x y , 由221214y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消去y ,得()222210x mx m -+-= 则()()222481420m m m∆=--=->,且1220x xm +=>,()212210x x m =->故()22121212121111122422m y y x m x m x x m x x m -⎛⎫⎛⎫=-+-+=-++=⎪⎪⎝⎭⎝⎭ ()212122121212111424OP OQPQ x x m x x m y y k k k x x x x -++==== 即直线OP ,PQ ,OQ 的斜率依次成等比数列. 【点睛】本题主要考查求椭圆的标准方程,以及椭圆的应用,熟记椭圆的标准方程以及椭圆的简单性质即可,属于常考题型.11.(甘肃省白银市靖远县2020届高三高考数学第四次联考试题)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,且椭圆C的右顶点到直线0x y -+=的距离为3. (1)求椭圆C 的方程;(2)过点(2,0)P 的直线l 与椭圆C 交于A ,B 两点,求OAB 面积的最大值(O 为坐标原点).【答案】(1)22182x y +=;(2)2.【解析】 【分析】(1)由离心率的值及右顶点到直线0x y -=的距离为3和a ,c ,b 之间的关系求出a ,b 的值,进而求出椭圆的方程;(2)设直线l 的方程与椭圆联立求出两根之和及两根之积,进而求出面积的表达式,换元,由均值不等式的可得面积的最大值. 【详解】(1)由椭圆的方程可得右顶点(,0)a,所以右顶点到直线0x y -+=的距离为3d ==,0a >可得:a =由离心率c e a ===,可得c =222862b a c =-=-=, 所以椭圆C 的方程为:22182x y +=;(2)由题意显然直线l 的斜率不为0,设直线l 的方程为:2x my =+,设1(A x ,1)y ,2(B x ,2)y ,联立直线l 与椭圆的方程可得:222{182x my x y =++=,整理可得:22(4)440m y my ++-=,12244my y m -+=+,12244y y m-=+ 所以1211··22OABSOP y y =-===设2t ,取等号时,0m =,即斜率不存在, 这时24AOBS==, 当0m ≠,2t >,则2222t m =-,所以2442422AOBt St t t ==++- 令2()f t t t =+,2t >,则22222()10t f t t t -=-+=>'恒成立,所以()f t 在2t >单调递增,无最小值,也无最大值,所以2442422AOBt St t t ==++-无最大值, 综上所述当且仅当2t =,即0m =时,所以OAB 面积的最大值为2. 【点睛】本题考查求椭圆的方程及直线与椭圆的综合及均值不等式的应用,考查了利用韦达定理搭桥建立各个变量之间的关系,从而求得圆锥曲线的最值问题,计算量相对较大,属于较难题.12.(新高考课改专家2021届高三数学命题卷试题)已知椭圆C :()222210x y a b a b+=>>的右焦点为F ,下顶点为1B ,上顶点为2B ,离心率为12,且122FB FB ⋅=-. (1)求椭圆C 的标准方程;(2)设椭圆C 的右顶点为A ,椭圆C 上有一点P (不与A 重合),直线PF 与直线2x =相交于M .若AM =P 的横坐标.【答案】(1)22143x y +=;(2)0或85【解析】 【分析】(1)由所以22122FB FB c b ⋅=-=-,又12c e a ==,得2a c =,又222a c b -=联立即可求解; (2)可求出M 坐标,可知直线PF 斜率存在且不为0,求出斜率,即可得出直线方程,联立直线与椭圆就能求得P 的横坐标. 【详解】(1)由题意:12(,0),(0,),(0,)F c B b B b =-=,所以22122FB FB c b ⋅=-=-, 又12c e a ==,2a c ∴=, 又222a c b -=,联立以上三式得:224,3a b ==,所以椭圆的标椎方程22143x y +=;(2)3AM ,可知2,3M ,()1,0F ,则直线斜率30321k ,所以直线PF 方程为)1y x =-,代入椭圆可得2580x x ,解得0x =或85x =, 所以点P 的横坐标为0或85. 【点睛】本题考查了椭圆的标椎方程的求法和直线相交的求解,属于基础题.13.(安徽省合肥市2020届高三下学期第三次教学质量检测数学试题)在平面直角坐标系xOy 中,已知点P 是椭圆E :24x +y 2=1上的动点,不经过点P 的直线l 交椭圆E 于A ,B 两点.(1)若直线l 经过坐标原点,证明:直线PA 与直线PB 的斜率之积为定值;(2)若0OA OB OP ++=,证明:△ABP 三边的中点在同一个椭圆上,并求出这个椭圆的方程.【答案】(1)证明见解析;(2)证明见解析,椭圆的方程为2241x y +=.【解析】 【分析】(1)设11(,)A x y ,22(,)P x y ,则11(,)B x y --,再将PA PB k k ⋅表示出来,根据,A B 在椭圆上化简,证得直线PA 与直线PB 的斜率之积为定值;(2)设11(,)A x y ,22(,)B x y ,33(,)P x y ,由0OA OB OP ++=,得1230x x x ++=,1230y y y ++=,再得到AB 的中点1212(,)22x x y y D ++,化简得33(,)22x y D --,又223314x y +=,则2233()4()122x y-+-=,知D 在椭圆2241x y +=上,同理可得,AP BP 的中点都在椭圆2241x y +=,得证. 【详解】(1)设11(,)A x y ,22(,)P x y ,则11(,)B x y --, 则PA PBk k ⋅2212122122121221y y y y y y x x x x x x ----=⋅=----, 又222214x y +=,221114x y +=,相减得222221211()4y y x x -=--,得PA PB k k ⋅14=-,即直线PA 与直线PB 的斜率之积为定值,定值为14-.(2)设11(,)A x y ,22(,)B x y ,33(,)P x y ,由0OA OB OP ++=, 得1230x x x ++=,1230y y y ++=, AB 的中点1212(,)22x x y y D ++,化简得33(,)22x y D --, 又223314x y +=,则2233()4()122x y -+-=,知D 在椭圆2241x y +=上,同理可得,AP BP 的中点都在椭圆2241x y +=,即△ABP 三边的中点在同一个椭圆上,这个椭圆的方程为2241x y +=.【点睛】本题考查了椭圆的标准方程及结构特征,考查了学生观察、分析能力,运算能力,属于中档题.14.(福建省三明第一中学2020届高三模拟(六)数学试题)已知椭圆22122:1(0)x y C a b a b+=>>的一焦点F 与抛物线22:4C y x =.(1)求椭圆1C 的标准方程;(2)过焦点F 的直线l 与抛物线2C 交于A 、B 两点,与椭圆1C 交于C 、D 两点,求||||CD AB 的最大值.【答案】(1)2212x y +=;(2)4. 【解析】 【分析】(1)首先求出抛物线的焦点坐标,可得c 的值,结合离心率以及222a b c =+,即可求出椭圆1C 的标准方程(2)分析直线斜率存在与不存在两种情况,当斜率不存在时可直接求出AB 、CD 即可得比值,当斜率存在时,设出直线的方程和椭圆方程联立,运用弦长公式把||||CD AB 用斜率k 表示出来,然后用基本不等式求最值. 【详解】(1)因为抛物线22:4C y x =的焦点坐标为(1,0),所以椭圆的一个焦点坐标为(1,0)F ,即1c = ,又椭圆离心率为2,所以2c a =,故可求得a = 所以2221b a c =-=,所以椭圆1C 的标准方程为2212x y +=(2)当直线l 的斜率不存在时,直线:1l x =,此时易求得||4AB =,CD =,所以||||4CD AB =, 当直线l 的斜率存在时,设直线:(1)l y k x =-,联立椭圆方程得:()2222124220kxk x k +-+-=设()11,C x y ,()22,D x y ,则2122412k x x k +=+,21222212k x x k -=+所以||CD ==所以)221||12k CD k +=+同理,将直线方程与曲线2C 联立得:()2222240k x k x k -++=设()33,A x y ,()44,B x y ,则234224k x x k++=,341x x = 所以()2234224124||22k k AB x x k k++=++=+=所以)()()22222221||121||44121222k CD k AB k k k k ++===<⎛⎫+++ ⎪⎝⎭所以||||4CD AB ≤||||CD AB的最大值为4. 【点睛】本题主要考查了求椭圆的标准方程,考查了直线和椭圆的位置关系,考查了弦长公式以及基本不等式求最值,属于较难题.15.(湖北省武汉外国语学校2020届高三下学期高考冲刺押题联考(一)数学试题)已知椭圆()2222:10x y E a b a b+=>>,长轴长为4,P 为椭圆E 上一点,F 为椭圆的右焦点,满足PF 与x 轴垂直,且32PF =. (1)求椭圆E 的方程;(2)已知Q 为直线4x =上一点,直线QF 与椭圆E 依次交于A ,B 两点(按照Q 、A 、F 、B 的顺序),证明:QA FA QBFB=.【答案】(1)22143x y +=;(2)证明详见解析.【解析】 【分析】(1)2a =和P x c =可得椭圆的标准方程;(2)设直线方程和各点的坐标,则根据直线上的两点间距离公式、斜率公式、韦达定理代入QA FA QBFB=等式显然成立,可得证明. 【详解】(1)由题意可知24a =,可得2a =,P x c =代入椭圆的方程可得:232b PF a ==,可得23b =.从而椭圆的方程为:22143x y +=.(2)由题意可知直线AB 的斜率肯定存在,设():1AB y k x =-,()11,A x y ,()22,B x y ,()4,Q t ,根据已知有2112x x <<<, 由根据直线上的两点间距离公式及斜率公式得QA 114t y k x -=-,则1QA x =-,同理,2QB x =-,12,FA x FB x =-=-所以1244QA x QB x -==-,1211FA x FBx -==-, 根据题意,等价于证明:11224141x x x x --=--,分式化整式可得:()12122580x x x x -++=①,联立22143y kx k x y =-⎧⎪⎨+=⎪⎩得:()22224384120k x k x k +-+-=,由韦达定理可得:2122843k x x k +=+,212241243k x x k -=+,代入①得:222282440804343k k k k --+=++, 化简得:()222824408430k k k --++=,显然成立. 【点睛】本题考查了椭圆的标准方程和性质,直线和椭圆的位置关系,韦达定理.。
【2020届】高考数学圆锥曲线专题复习:圆锥曲线综合题答案
【2020届】高考数学圆锥曲线专题复习:圆锥曲线综合题答案解几综合题答案1.解:(Ⅰ)由已知得()(,) 11 22OA OB m n mn ?=?=-=-分14m n ∴?= …………4分(Ⅱ)设P 点坐标为(x ,y )(x >0),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+- …………5分∴)x m ny m n =+=-?? 消去m ,n 可得2243y x mn -=,又因14mn = 8分∴ P 点的轨迹方程为221(0)3y x x -=>它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支…………9分(Ⅲ)设直线l 的方程为2x ty =+,将其代入C 的方程得 223(2)3ty y +-=即 22(31)1290t y ty -++=易知2(31)0t -≠(否则,直线l的斜率为,它与渐近线平行,不符合题意)又22214436(31)36(1)0t t t ?=--=+>设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==--∵ l 与C 的两个交点,M N 在y 轴的右侧12122121222222(2)(2)2()491224313134031x x ty ty t y y t y y t t t t t t t =++=+++-=?+?+--+=->-∴ 2310t -<,即2103t <<又由 120x x +>同理可得 2103t << …………11分由3ME EN =得1122(2,)3(2,)x y x y --=- ∴121223(2)3x x y y -=-??-=?由122222123231t y y y y y t +=-+=-=--得 22631t y t =-由21222229(3)331y y y y y t =-=-=-得 222331y t =--消去2y 得2222363(31)31t t t =--- 解之得:2115t = ,满足2103t << …………13分故所求直线l 存在,其方程为:15250x y --=或15250x y +-= 2. (I )由已知()y M ,0,()y x N -, 2分则()()422,,22=-=-?=?y x y x y x MN OP ,即12422=-y x 4分(II )设()11,y x A ,()22,y x B ,如图,由QB QA ⊥可得()()()()022,2,221212211=+--=-?-=?y y x x y x y x QB QA 5分①若直线x AB ⊥轴,则21x x =,24||||2121-==x y y此时()()()02422221212121=---=+--x x y y x x ,则0128121=+-x x ,解之得,61=x 或21=x但是若21=x ,则直线AB 过Q 点,不可能有QB QA ⊥所以61=x ,此时Q 点到直线AB 的距离为4 7分②若直线AB 斜率存在,设直线AB 的方程为m kx y +=,则=-+=4222y x m kx y ()042412222=+++-m kmx x k 则()()>+--=?≠-0421241601222222m k m k k ,即>+-≠-024012222k m k又124221--=+k km x x ,12422221-+=k m x x 9分∴()()()22121m x x km x x k m kx m kx y y +++=++=124122124124222222222222222--=--+---+=k m k k m m k k m k k k m k∴()()()()2121221122,2,2y y x x y x y x +--=-?-=?()=+++-=21212142y y x x x x 01241248128124222222222=--+--+-+-+k m k k k k km k m 则012822=++k km m ,可得k m 6-=或k m 2-=若k m 2-=,则直线AB 的方程为()2-=x k y ,此直线过点Q ,这与QB QA ⊥矛盾,舍若k m 6-=,则直线AB 的方程为k kx y 6-=,即06=--k y kx 12分此时若0=k ,则直线AB 的方程为0=y ,显然与QB QA ⊥矛盾,故0≠k ∴41141|4|22<+=+-=k k k d 13分由①②可得,4max =d 14分3. 解:① 设1122(,),(,),(,)P x y Q x y R x y112211()(,)[(,)(,)]22OR OP OQ x y x y x y =+?=+121222x x x y y y +?=+?=??..........1’由222x x y y +=?+=,易得右焦点(1,0)F ......................2’ 当直线l x ⊥轴时,直线l 的方程是:1x =,根据对称性可知(1,0)R ........3’ 当直线l 的斜率存在时,可设直线l 的方程为(1)y k x =-代入E 有2222(21)4220k x k x k +-+-=2880k ?=+>2122421k x x k +=+....................................................5’于是(,):R x y x =21222221x x k k +=+ (1)y k x =-消去参数k 得2220x y x +-=而(1,0)R 也适上式,故R 的轨迹方程是2220x y x +-=..................8’②设椭圆另一个焦点为'F ,在'PF F ?中0'120,|'|2,PFF F F ∠==设||PF m =,则|'|PF m = 由余弦定理得2220)222cos120m m m =+-??m ?=.............10’同理,在'QF F ?,设||QF n =,则|'|QF m = 也由余弦定理得2220)222cos60n n n =+-??n ?=’于是1111||||PF QF m n +=+=+=..........................14’ 4. 解:(I )设B(x 0,y 0),A(x 1,y 1),C(x 2,y 2)∵双曲线1131222=-x y 的离心率为125,∴F 对应的准线方程为512=y ,由双曲线的定义得|,512|125||,125|512|||11-=∴=-y AF y AF …………(12分)又A 在双曲线的上半支,∴y 1≥12,)4().512(125||),512(125||)3().512(125||201分分 -=-=-=∴y CF y BF y AF∵|AF|,|BF|,|CF|构成等差数列,∴2|BF|=|AF|+|CF|,∴26113126)(21022210==-=+=x x y y y y 得代入,∴点B 的坐标为)6,26(.…………………………(6分)(II )∵在l 上任取一点P (不同于D 点),都存在实数λ,使得(+=λ,∴在∠APC 的角平分线上,………………………………(7分)∵线段AC 的中点为D 点,∴△APC 是等腰三角形,PD 是线段AC 的垂直平分线,………………(8分)∴设直线l 的方程为),2(6212121x x x y y x x y +----=-),(13,11312,11312,)(2621222122221212122212121y y x x x y x y y y x x x y y x x y -=-∴=-=---+---=-∴作差得又,21362121+---=-∴x y y x x y l 的方程为直线………………(11分)故直线l 恒过点(0,225).…………………………(12分) 5. 解:(I )设椭圆的标准方程为12222=+by a x ,因B 1F 1B 2F 2是正方形,所以b=c ,又a 2= b 2+ c 2,所以b a 2=,…………①由于椭圆上的左(右)顶点到左(右)焦点的距离最近,所以12-=-c a ,②由①②知1,2===c b a ,∴椭圆的标准方程为:.1222=+y x (II )当直线的斜率存在,设直线MN 的方程为2+=kx y 解方程组=++=122y x kx y消去.230,034)21(222>>?=+++k kx x k y 得由得设),(),,(2211y x N y x M ,则221214k k x x +-=+……………… ③ .213221k x x +=………………④又因M 在DN 之间,所以DN DM λ=,即212211),2,()2,(x x y x y x λλ=∴-=-,于是λλλλ212212212221)1(,)1(,x x x x x x x x x x =+++=+=,……………⑤ 将③④代入⑤得λλ2222213)1()214(k k k +=++-,整理得.)1(316121,)1(3121162222λλλλ++=+∴+=+k k …………………………8分 .331,34)1(3161,341211,23222<<<+<∴<+<∴>λλλ由此解得kk又.131,10<<∴<<λλ …………………………………………………………10分当直线的斜率不存在时,直线MN 的方程为x 31,0==这时,.31=∴λ ……………………………………………………………………………11分综上所述,λ的取值范围是.1,31??∈λ …………………………………………12分 6. 解:(1)由于2||,221121==F F NF F F ,+===-==∴.,1||1,2||22221221c b a NF caF F c 解得==1222b a ,从而所求椭圆的方程为.1222=+y x (4分)(2)N B A NB NA ,,,∴=λ 三点共线,而点N 的坐标为(-2,0).设直线AB 的方程为)2(+=x k y ,其中k 为直线AB 的斜率,依条件知k ≠0.由=++=12),2(22y x x k y 消去x 得22)21(22=+-y y k ,即.02412222=+-+y k y kk 根据条件可知??≠<+?-=?.0,0128)4(222k kk k 解得.22||0<<="">设),(),,(2211y x B y x A ,则根据韦达定理,得+=+=+.122,1242221221k k y y k k y y 又由),2(),2(,2211y x y x +=+=λλ得=+=+∴.),2(22121y y x x λλ 从而+=+=+.122,124)1(222222k k y k k y λλ 消去.128)1(222+=+k y λλ得(8分)令3151],31,51[,)1()(212≤<≤∈+=λλλλλλφ任取,则22212121)1()1()()(λλλλλφλφ+-+=-.0)11)((2121>--=λλλλ(10分)]31,51[)(是区间λφ∴上的减函数,从而)51()()31(φλφφ≤≤,即536)(316≤≤λφ, 5361283162≤+≤∴k ,解得.22||0,21626221<<≤≤-≤≤-k k k 适合或因此直线AB 的斜率的取值范围是].2 1,62[]62,21[ -- (12分)7. 解:(Ⅰ)∵0MN AF ?=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =,∴ ||||2||ME MF m EF +=>, (4)分∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =,∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).……………………………6分(Ⅱ)设11(,)Q x y ∵ 0(,)2mP y ,PF FQ λ=,∴ 1011(1),2.m x y y λλ?-=--=? ∴ 1101(1),21.m x y y λλλ?=+-=-??……………………………8分由点P 、Q 均在椭圆W 上,∴ 22220222211,411(1) 1.2(1)y m y m m m λλλ?+=?-+-+=?-?……………………………10分消去0y 并整理,得2211m m m λ-+=-,由221121m m m -+-≤≤及1m >,解得12m <≤.……………………………14分8. 解:(I )设点P y y P y y M ),,4(),,4(222121、M 、A 三点共线,,4,14,4414,2121211222121211=∴+=+--=+=∴y y y y y y y y y y y y k k DM A M 即即………(2分).544212221=+?=?∴y y y y OM …………………………………………………(3分)设∠POM =α,则.5cos ||||=??α.5sin ||||,25=??∴=αS ROM 由此可得tanα=1.……………………(5分)又.45,45),,0(??=∴∈与故向量απα……………………(6分)(II )设点M y y Q ),,4(323、B 、Q 三点共线,,QM BQ k k =∴)9(.04,4))(1(,141,441431312331331233232131233分即即即=+++-=++∴+=-+--=+y y y y y y y y y y y y y y y y y y,0444,4,432322121=+++?∴==y y y y y y y y 即即.(*)04)(43232=+++y y y y ……………………………………(10分))4(4,4442232232232232y x y y y y PQ y y y y y y k PQ-+=-∴+=--=的方程是直线即.4)(,4))((323222322x y y y y y y x y y y y =-+-=+-即……………………(12分)由(*)式,,4)(43232++=-y y y y 代入上式,得).1(4))(4(32-=++x y y y 由此可知直线PQ 过定点E (1,-4).故存在定一点 E (1,-4),使PE ∥.QF …………………………………………(14分)9. (Ⅰ)解:由题意可知,平面区域D 如图阴影所示.设动点P (x ,y ),则|x +y |2?|x -y |2=1,即|x 2-y 2|=2.………………………………4分∵P ∈D .∴x +y >0,x -y >0,即x 2-y 2>0.∴x 2-y 2=2(x >0).即曲线C 的方程为x 22-y 22=1(x >0).…………6分(Ⅱ)解法一:设A (x 1,y 1),B (x 2,y 2),∴以线段AB 为直径的圆的圆心Q (x 1+x 22,y 1+y 22),∵以线段AB 为直径的圆与y 轴相切,∴半径r =12|AB |=x 1+x 22.即|AB |=x 1+x 2.①……………………………………………………………………8分∵曲线C 的方程为x 22-y 22=1(x >0),∴F (2,0)为其焦点,相应的准线方程为x =1,离心率e =2.根据双曲线的定义可得, |AF |x 1-1=|BF |x 2-1=2,∴|AB |=|AF |+|BF |=2(x 1-1)+2(x 2-1)=2(x 1+x 2)-22.②…………………12分由①,②可得,x 1+x 2=2(x 1+x 2)-22.由此可得x 1+x 2=4+22.∴线段AB 的长为4+22.……………………………………………………………14分(Ⅱ)解法二:∵曲线C 的方程为x 22-y 2=1(x >0),∴F (2,0)为其焦点,相应的准线为l :x =1,离心率e =2.分别过A ,B 作AA '⊥l ,BB '⊥l ,垂足分别为A ',B '.设AB 中点Q ,过Q 点作QQ '⊥y 轴,垂足为Q '.由双曲线的定义可得,|AF ||AA '|=|BF ||BB '|=2,∴|AF |=2|AA '|,|BF |=2|BB '|.…………………10分 |AB |=|AF |+|BF |=2(|AA '|+|BB '|) 根据梯形中位线性质可得 |AA '|+|BB '|=2(|QQ '|-1).∴|AB |=2?2(|QQ '|-1).①…………………………12分∵以线段AB 为直径的圆与y 轴相切,∴|QQ '|=12|AB |.②把②代入①得|AB |=22(12|AB |-1),解得|AB |=4+22.……………………………………………………………………14分(Ⅱ)解法三:设A (x 1,y 1),B (x 2,y 2).∵直线AB 过点F (2,0),当AB ⊥x 轴时,|AB |=22,以线段AB 为直径的圆与y 轴相离,不合题意.∴设直线AB 的方程为y =k (x -2).代入双曲线方程x 2-y 2=2得,x 2-k 2(x -2)2=2,即(1-k 2)x 2+4k 2x -(4k 2+2)=0,∵直线与双曲线交于A ,B 两点,∴k ≠±1.∴x 1+x 2=4k 2k 2-1,x 1x 2=4k 2k 2-1.∴|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)[? ??4k 2k 2-12-4?4k 2+2k 2-1]……………………………………………………9分∵以线段AB 为直径的圆与y 轴相切,∴圆的半径12|AB |与圆心到y 轴的距离12(x 1+x 2)相等.即12(1+k 2)[? ??4k 2k 2-12-4?4k 2+2k 2-1]=12(x 1+x 2).∴12(1+k 2)[? ??4k 2k 2-12-4?4k 2+2k 2-1]=12?4k 2k 2-1.………………………………………12分化简得k 4 -2k 2-1=0,解得k 2=1+2(k 2=1-2不合,舍去).经检验,当k 2=1+2时,直线与曲线C 有两个不同的交点。
2020年高考文科数学一轮复习大题篇—圆锥曲线综合问题
2020年高考文科数学一轮复习大题篇一圆锥曲线综合问题【归类解析】题型一范围问题【解题指导】解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用己知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.【例】已知椭圆C:务+*=l(a>b>0)与双曲线§一,2=1的离心率互为倒数,且直线x—y—2=0经过椭圆的右顶点.(1)求椭圆C的标准方程;(2)设不过原点。
的直线与椭圆C交于M, N两点,且直线OM,MN,ON的斜率依次成等比数列,求△。
初V面积的取值范围.【解】(1)・.•双曲线的离心率为罕,.,・椭圆的离心率g弓=平.又,直线尤一y—2=0经过椭圆的右顶点,.••右顶点为点(2,0),即"=2,c=*,b=l,...椭圆方程为号+廿=1.(2)由题意可设直线的方程为(导0,m^O),M(xi,yi),Ng y2).y=kx+m9消去y,并整理得(1+4好)计+8切ix+4(冰一1)=0,则X[+X28hn m2—1+4好'皿=~1+4矽于是yiyi—(Axi+m)(kx2+m)=l^xiX2+km(xi+工2)+m2.又直线OM,MN,ON的斜率依次成等比数列,y2砂X1X2+饥X]+x2X2X1X2+m2则1+4好^-nr—O.由EO得好=},解得k=4又由A=64lrnr—16(1+4^)(m2—1)=16(4好一农2+1)>o,得Q<m2<2,显然m2#l(否则X1x2=0,利,X2中至少有一个为0,直线OM,ON中至少有一个斜率不存在,与已知矛盾).设原点。
2020高考数学复习-圆锥曲线
2020高考虽然延迟,但是练习一定要跟上,加油,少年!已知双曲线C 的实半轴长和虚半轴长的乘积为3,C 的两个焦点分别为F 1、F 2,直线L 过F 2且与直线F 1F 2的夹角为ϕ,tg ϕ=221,L 与线段F 1F 2的垂直平分线的交点是P ,线段PF 2与双曲线C 的交点为Q(且|PQ |∶|PF 2=2∶1),求双曲线的方程.解:如图,以直线F 1F 2为x 轴,线段F 1F 2的垂直平分线为y 轴建立坐标系.设双曲线C 的方程为22ax -22b y =1 (a >b >0)设F 1,F 2的坐标分别为(-c,0)、(c,0),其中C=22b a +,则点P 的坐标为(0,-221,c). 由线段的定比分点公式可得Q 点的坐标为(32c,- 221c). 将Q 点坐标代入双曲线方程得229a 4c -223621c b =1,整理得16(a b )4-41(ab )2-21=0 解得(ab )2=3或(ab )2=-167(舍去) 由(a b )2=3和题设ab=3,解得a=1,b=3.故所求双曲线方程为x 2-3y2=1.已知点P 在直线x=2上移动,直线l 通过原点且OP 垂直 ,过点A(1,0)和点P 的直线m 和直线l 交于点Q ,求点Q 的轨迹方程,并指出该轨迹的名称和它 的焦点坐标.解:设点P 的坐标为(2,y 1),则直线OP 的斜率 k OP =2y 1. ∵l ⊥直线OP .∴直线l 的斜率k 1满足k OP ·k 1=-1,即2y 1·k 1=-1,得k 1=-12y .又直线l 过原点,所以l 的方程为y=-12y x. ∵直线m 过点A(1,0),P(2,y 1). ∴m 的方程为y 1x-y-y 1=0 由l 的方程得y 1=-y x 2代入m 的方程得-y x 2-x-y+yx2=0,即2x 2+y 2-2x=0.显然点Q 与点A(1,0)不重合,故x ≠1. 又2x 2+y 2-2x=0可化为41)21(2 x +212y =1 (x ≠1),已知椭圆的焦点为F 1(0,-1)和F 2(0,1),直线 y=4是椭圆的一条准线.(1)求椭圆方程;(2)设点P 在椭圆上,且│PF 1│-│PF 2│=1,求 tan ∠F 1PF 2的值. 解:如图.(1)设所求椭圆方程为22ay +22b x =1,(a > b >0)由F 1(0,-1)和F 2(0,1),知c=1,得a 2=b 2+1, ①由一条准线方程为y=4知,ca 2=4 ②又a 2=b 2+c 2③由①、②、③解得a 2=4,b 2=3.故所求椭圆方程为42y +32x =1.(2)由椭圆定义及a=2有│PF 1│+│PF 2│=4 ① 由题设有│PF 1│-│PF 2│=1 ② 解出│PF 1│=25,│PF 2│=23,又│F 1F 2 │=2. 在△PF 1F 2中,∠F 1PF 2=θ, ∴cos θ=2122122212PF PF F F PF PF ⋅-+=53,从而sin θ=54,tg θ=34,tg ∠F 1PF 2=34. 四、能力训练 (一)选择题1.“点M 的坐标是方程f(x ,y)=0的解”是“点M 在方程f(x ,y)=0曲线上”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分又非必要条件2.抛物线x=-42Y 的焦点坐标是( )A.(0,1)B.(-1,0)C.(0,-161)D.(-161,0) 3.椭圆(1-m)x 2-my 2=1的长轴长是( ) A.m m --112 B. 112--m m C.m m --2 D. mm---12 4.下列各对双曲线中,既有相同离心率又有相同渐近线的是( )A.32x -y 2=1和92y -32x =1B. 32x -y 2=1和y 2-32x =1 C.y 2-32x =1和x 2-32y=1D. 32x -y 2=-1和32y -92x =1 5.抛物线x 2-4y=0上一点P 到焦点的距离为3,那么P 的纵坐标是( )A.3B.2C.25D.-26.已知椭圆22a x +22by =1 (a >b >0)的两 个焦点把夹在两条准线间的线段三等分,那么这个椭圆的离心率是( )A.21 B. 31 C.32 D. 33 7.圆x 2+y 2-2axsin α-2bycos α-a 2cos 2α=0在x 轴上截得的弦长是( )A.2aB.2│a │C.2│a │D.4│a │8.过双曲线的一个焦点,有垂直于实轴的弦PQ ,F ′是另一个焦点,若∠PF ′Q=2π,则双曲线离心率是( )A.2+2B. 2+1C. 2D. 2-1 9.抛物线y 2+4y-4x=0的准线方程是( ) A.x=0 B.y=0 C.x=-2 D.y=-2 10.椭圆的两准线方程分别为x=433,x=-417,一个 焦点坐标为(6,2),则椭圆方程是( )A.161)-(x 2+92)-(y 2=1B.162)(x 2++92)(y 2+=1C.252)-(x 2+92)-(y 2=1D.252)(x 2++92)(y 2+=111.设双曲线22a x -22by =1的两条渐近线含 实轴的夹角为θ,而离心率e ∈[2,2],则θ的取值范围是( )A.[6π,2π]B.[3π,2π]C.[2π,32π] D.[32π,π]12.椭圆92x +42y =1的弦AB 被点(1,1)平分,则 AB 所在的直线方程是( )A.4x-9y-11=0B.4x+9y-13=0C.9x+4y-10=0D.9x-4y-5=013.和x 轴相切,且和圆x 2+y 2=1外切的动圆圆心的轨迹方程是( )A.x 2=2y+1B.x 2=-2y+1C.x 2=2y+1或x 2=-2y+1D.x 2=2│y │+114.如果椭圆a x 2+b y 2=1 (a >b >0)和曲线m x 2+ny 2=1(m >0,n>0)有相同的焦点F 1和F 2 ,P 是这两条曲线的交点,则│PF 1│·│PF 2│的值是( )A.a-mB.41(a-m) C.a 2-m 2 D.a -m15.已知0<a <1<b ,那么曲线a 2x 2-a 2y 2=log a b 是( ) A.焦点在x 轴的双曲线 B.焦点在y 轴的椭圆 C.焦点在x 轴的等轴双曲线 D.焦点在y 轴的等轴双曲线(二)填空题16.直线xsin α+ycos α=m(常量α∈(0,2π)) 被圆x 2+y 2=2所截的弦长为343,则m=________.17.设椭圆13m 2+x -m 2y 2=1的准 线平行于x 轴,则m 的取值范围是________.18.如果方程x 2cos2θ+y 2sin θ=1,表示椭圆,那么θ 角的取值范围是_________.19.设双曲线C :16x 2-9y 2=1椭圆的焦点恰为双 曲线C 实轴上的两个端点,椭圆与双曲线离心率为互为倒数,则此椭圆方程是________.(三)解答题20.已知两圆C 1∶x 2+y 2+4x-4y-5=0 C 2∶x 2+y 2-8x+4y+7=0(1)证明此两圆相切,并求过切点的公切线方程. (2)求过点(2,3)且与两圆相切于上述切点的圆的方程.21.(1)椭圆22a x +22by =1上一点P 与两焦点 F 1F 2连线所成的角∠F 1PF 2=α,求△F 1PF 2的面积;(2)将上题的椭圆变成双曲线22a x -22b y =1 ,求△F 1PF 2的面积.22.抛物线的顶点在原点,它的准线过双曲线22a x -22by =1的一个焦点,并与双曲线的实轴垂直,又双曲线与抛物线的一个交点是(1. 5,6),求抛物线和双曲线的方程.23.已知椭圆252x +212y =1,左、右焦点分别为 F 2、F 1,右准线为L ,问能否在椭圆上求得一点P ,使│PF 1│是P 到L 的距离d 与│PF 2│的比例中项?若能,求出P 点坐标,若不能,说明理由.24.试就k 的取值(k ∈R ,且k ≠4)讨论方程k-42x +(k-2)y 2=1+k 所表 示曲线的形状.25.已知椭圆22x +62y =1中有一内接△PAB ,∠X OP=60°,且k PA +k PB =0(1)求证:直线AB 斜率是定值; (2)求△ABP 的面积的最大值.能力训练参考答案(一)1.C 2.B 3.C 4.D 5.B 6.D 7.B 8.B 9.C 10.C 11.C 12.B 13.D 14.A 15.D(二)16.±36;17.(-31,-41);18.2k π<θ<2k π+4π或2k π+4π<θ<2k π+π(k ∈ Z);19. 252x +92y =1(三)20.解 两圆方程化为:c 1:(x+2)2+(y-2)2=13 C2∶(x-4)2+(y+2)2=13 ,C 1、c 2圆心分别为(-2,2)、(4,-2),半径都是13,圆心距d=2)?(24)?-(-2++=213,即圆心距等于两圆半径之和,故两 圆外切,因连心线斜率为k 1=4-2-22+=-32,解方 程组 x 2+y 2+4x-4y-5=0 x 2+y 2-8x+4y+7=0得切点坐标为(1 ,0),∴公切线方程为y=23(x-1),即3x-2y-3=0,(两圆相外切时,两圆方程相 减得根轴方程,即过切的公切线方程).(2)与两圆相切于点(1,0)的圆圆心必在直线y=-23(x-1)上,且(x-1)2+y 2=(x-2)2+(y-3)2,解上面两方程组成的方程组得圆心坐标为(-4,310),r 2=9325,∴所求圆方程为(x-4)2+(y-310)2=9325,即3x 2+3y 2+24x-20y-2 7=0.21.(1)(2c)2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cosa=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|(1+cosa)∴|PF 1|·|PF 2|=22cos 2c?-4(a?2α⋅,S=21|PF 1||PF 2|sina=b 2tg 2α,(2)(2c)2=(|PF 1|-|PF 2|)2+2|PF 1||PF 2|(1-cos α),|PF 1|·|PF 2|=2sin 22a?-4(c?2⋅⋅,S=b2ctg 2α. 22.双曲线焦距是2b?a?+设抛物线方程为y2=4x 2b a?+;(1.5,6)在其上,∴b?a?+=1故抛物线方程为y 2=4x,又a?5.1-b?6=1,a 2+b 2=1,∴双曲线方程是4x 2-34y?=1; 23.a=5,b=21,c=2,e=32,设若有点P ,使|PF 1|2=d ·|PF 2|, 即21PF PF =2PF d =e 1=25 |PF 1|+|PF 2|=10,25|PF 1|+|PF 2|=10;|PF 2|=720;|PF 1|=25 |PF 2|=750 ;|PF 1|-|PF 2|=730>2c ,∴P 不存在; 24.k <-1或k >4实轴在y 轴上的双曲线;-1<k <2,实轴在x 轴上的双曲线2<k <4,k=3时, 圆k ≠3,即k ∈(2,3)∪(3,4)是长轴为y 轴的椭圆.y=3x25.(1) ⇒ P(1,3 ),2x?+6y?=1 由k PA +k PB =0 L PA ∶y-3=k(x-1) L PB :y-3 =-k(x-1)可求得x A =3k 3-k 32-k?2+ x B =k 2+23 k-3 k AB =3(定值),y B =3336k -k?3-2++k y B=3336k k?3-2+++k(2)|AB | =34162b -,P 到AB 的距离d=2b ,S △PAB =21|AB |·d =21[]36-6)-(b 3122-≤3,S △PAB 最大值是3.。
【600分考点-700分考法】2020版高考数学(理科):专题(10)圆锥曲线课件(附答案)
考点一 椭圆 4.椭圆中的特殊量
9
考点一 椭圆
对于椭圆
由焦半径公式
可得,椭
圆上任一点P到焦点F1的最小距离为a-c,最大距离为a+c,此时点P在长轴 的两端点处;由椭圆的对称性知,点P到焦点F2也有相同的结论.
(2)椭圆的焦点弦
当直线和椭圆相交时,截在椭圆内的线段(包括端点)叫做椭圆的弦.当弦过
焦点时,称其为焦点弦.
设
是椭圆
上两点,若弦AB过左焦点F1,则
10
考点一 椭圆
(3)椭圆的焦点三角形
设F1,F2为椭圆 则△PF1F2为焦点三角形. 如图所示,
的左、右焦点,P为椭圆上异于左、右顶点的点,
11
考点一 椭圆
⑥焦点三角形的周长是2(a+c).
⑦若焦点三角形的内切圆圆心为I,延长PI交线段F1F2于点Q, (角平分线定理),
求椭圆方程一般采取“先定位,后定量”的方法.所谓定位,就是研究 一下此椭圆是不是标准形式的椭圆,其焦点在x轴上还是在y轴上;所谓定量就 是求出椭圆的a,b,c,从而写出椭圆的方程.
14
考点一 椭圆 2.椭圆系方程
15
考点一 椭圆
例1、求适合下列条件的椭圆的标准方程:
(1)两个焦点的坐标分别是(-12,0),(12,0),椭圆上一点P到两焦点的距离的和
19
考点一 椭圆
20
考点一 椭圆
21
考点一 椭圆 方法2 椭圆定义的应用
椭圆定义的应用类型及方法
(1)利用定义确定平面内的动点的轨迹是否为椭圆;
(2)利用定义解决与焦点三角形相关的周长、面积及最值问题.利用定义和余弦定
理可求得|PF1|·|PF2|,再结合
进行转化,进而求得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线一、知识结构 1.方程的曲线在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫 做方程的曲线.点与曲线的关系 若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0; 点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0两条曲线的交点 若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则 f 1(x 0,y 0)=0 点P 0(x 0,y 0)是C 1,C 2的交点⇔f 2(x 0,y 0) =0方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有 交点.2.圆 圆的定义点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程 (1)标准方程圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为(-2D ,-2E ,半径是24F-E D 22+.配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E ); 当D 2+E 2-4F <0时,方程不表示任何图形.点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内, |MC |=r ⇔点M 在圆C 上, |MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +. (3)直线和圆的位置关系①直线和圆有相交、相切、相离三种位置关系 直线与圆相交⇔有两个公共点 直线与圆相切⇔有一个公共点 直线与圆相离⇔没有公共点 ②直线和圆的位置关系的判定 (i)判别式法(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d=22C Bb Aa BA +++与半径r 的大小关系来判定.3.椭圆、双曲线和抛物线椭圆、双曲线和抛物线的基本知识见下表.椭 圆双曲线抛物线轨迹条件 点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a = 点集:{M ||MF 1|-|MF 2|.=±2a,|F 2F 2|>2a}. 点集{M | |MF |=点M 到直线l 的距离}.圆 形曲线 性 质标准方程 22ax +22b y =1(a >b >0) 22a x -22by =1(a >0,b >0)y 2=2px(p >0)顶 点A 1(-a,0),A 2(a,0);B 1(0,-b),B 2(0,b)A 1(0,-a),A 2(0,a) O(0,0)轴 对称轴x=0,y=0长轴长:2a 短轴长:2b对称轴x=0,y=0 实轴长:2a 虚轴长:2b 对称轴y=焦 点F 1(-c,0),F 2(c,0) 焦点在长轴上 F 1(-c,0),F 2(c,0) 焦点在实轴上 F(2P,0) 焦点对称轴上焦 距|F 1F 2|=2c ,c=b2-a2|F 1F 2|=2c, c=b2a2准 线x=±ca 2准线垂直于长轴,且在椭圆外.x=±ca 2准线垂直于实轴,且在两顶点的内侧.x=-2p 准线与焦点位于顶点两侧,且到顶点的距离相等.离心率 e=a c,0<e <1 e=ac,e >1 e=14.圆锥曲线的统一定义平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之 比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线.其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率. 当0<e <1时,轨迹为椭圆 当e=1时,轨迹为抛物线 当e >1时,轨迹为双曲线 5.坐标变换坐标变换 在解析几何中,把坐标系的变换(如改变坐标系原点的位置或坐标轴的方向)叫做 坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点 的坐标与曲线的方程.坐标轴的平移 坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫 做坐标轴的平移,简称移轴.坐标轴的平移公式 设平面内任意一点M ,它在原坐标系xOy 中的坐标是9x,y),在新坐标系x ′O′y′中的坐标是(x′,y′).设新坐标系的原点O′在原坐标系xOy中的坐标是(h,k),则x=x′+h x′=x-h(1) 或(2)y=y′+k y′=y-k公式(1)或(2)叫做平移(或移轴)公式.中心或顶点在(h,k)的圆锥曲线方程中心或顶点在(h,k)的圆锥曲线方程见下表.方程焦点焦线对称轴椭圆22h)-(xa+22k)-(yb=1 (±c+h,k)x=±ca2+hx=hy=k 22h)-(xb+22k)-(ya=1 (h,±c+k)y=±ca2+kx=hy=k双曲线22h)-(xa-22k)-(yb=1 (±c+h,k)=±ca2+kx=hy=k 22k)-(ya-22h)-(xb=1 (h,±c+h)y=±ca2+kx=hy=k抛物线(y-k)2=2p(x-h) (2p+h,k) x=-2p+h y=k (y-k)2=-2p(x-h) (-2p+h,k) x=2p+h y=k (x-h)2=2p(y-k) (h, 2p+k) y=-2p+k x=h (x-h)2=-2p(y-k) (h,- 2p+k) y=2p+k x=h二、知识点、能力点提示(一)曲线和方程,由已知条件列出曲线的方程,曲线的交点说明在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简 .特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求出的曲线方程才能准确无误.另外,要求会判断曲线间有无交点,会求曲线的交点坐标.三、考纲中对圆锥曲线的要求:考试内容:. 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程; . 双曲线及其标准方程.双曲线的简单几何性质; . 抛物线及其标准方程.抛物线的简单几何性质; 考试要求:. (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程; . (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质; . (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质; . (4)了解圆锥曲线的初步应用。
四.对考试大纲的理解高考圆锥曲线试题一般有3题(1个选择题, 1个填空题, 1个解答题), 共计22分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查以圆锥曲线的基本概念和性质为主, 难度在中等以下,一般较容易得分,解答题常作为数学高考中的压轴题,综合考查学生数形结合、等价转换、分类讨论、逻辑推理等诸方面的能力,重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 往往结合平面向量进行求解,在复习应充分重视。
求圆锥曲线的方程【复习要点】求指定的圆锥曲线的方程是高考命题的重点,主要考查识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤. 定形——指的是二次曲线的焦点位置与对称轴的位置.定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx 2+ny 2=1(m >0,n >0).定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. 【例题】【例1】 双曲线2224b y x =1(b ∈N )的两个焦点F 1、F 2,P 为双曲线上一点, |OP |<5,|PF 1|,|F 1F 2|,|PF 2|成等比数列,则b 2=_________.解:设F 1(-c ,0)、F 2(c ,0)、P (x ,y ),则 |PF 1|2+|PF 2|2=2(|PO |2+|F 1O |2)<2(52+c 2), 即|PF 1|2+|PF 2|2<50+2c 2,又∵|PF 1|2+|PF 2|2=(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|,依双曲线定义,有|PF 1|-|PF 2|=4, 依已知条件有|PF 1|·|PF 2|=|F 1F 2|2=4c 2 ∴16+8c 2<50+2c 2,∴c 2<317, 又∵c 2=4+b 2<317,∴b 2<35,∴b 2=1. 答案:1【例2】 已知圆C 1的方程为()()3201222=-+-y x ,椭圆C 2的方程为 12222=+b y a x ()a b >>0,C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程。
解:由.,2,22,222222c b c a a c e ====得 设椭圆方程为.122222=+by bx设).1,2().,().,(2211由圆心为y x B y x A .2,42121=+=+∴y y x x又,12,12222222221221=+=+b y b x b y b x两式相减,得.022222122221=-+-b y y b x x,0))((2))((21212121=-++-+y y y y x x x x又.1.2.421212121-=--=+=+x x y y y y x x 得)..2(1--=-∴x y AB 的方程为直线即3+-=x y 将得代入,1232222=++-=b y b x x y.021812322=-+-b x x.07224.22>-=∆∴b C AB 相交与椭圆直线由.3204)(222122121=-+=-=x x x x x x B A 得.3203722422=-⋅b 解得 .82=b 故所有椭圆方程.181622=+y xyxC 1F 2F 1OAB【例3】 过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程.解法一:由e =22=a c ,得21222=-a b a ,从而a 2=2b 2,c =b . 设椭圆方程为x 2+2y 2=2b 2,A (x 1,y 1),B (x 2,y 2)在椭圆上. 则x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,(x 12-x 22)+2(y 12-y 22)=0,.)(221212121y y x x x x y y ++-=--设AB 中点为(x 0,y 0),则k AB =-2y x , 又(x 0,y 0)在直线y =21x 上,y 0=21x 0,于是-2y x =-1,k AB =-1, 设l 的方程为y =-x +1.右焦点(b ,0)关于l 的对称点设为(x ′,y ′),⎩⎨⎧-='='⎪⎪⎩⎪⎪⎨⎧++'-='=-''b y x b x y bx y 11 1221解得则由点(1,1-b )在椭圆上,得1+2(1-b )2=2b 2,b 2=89,1692=a . ∴所求椭圆C 的方程为2291698y x + =1,l 的方程为y =-x +1.解法二:由e =21,22222=-=ab a ac 得,从而a 2=2b 2,c =b . 设椭圆C 的方程为x 2+2y 2=2b 2,l 的方程为y =k (x -1), 将l 的方程代入C 的方程,得(1+2k 2)x 2-4k 2x +2k 2-2b 2=0, 则x 1+x 2=22214k k +,y 1+y 2=k (x 1-1)+k (x 2-1)=k (x 1+x 2)-2k =-2212k k +.直线l :y =21x 过AB 的中点(2,22121y y x x ++),则2222122121k k k k +⋅=+-, 解得k =0,或k =-1.若k =0,则l 的方程为y =0,焦点F (c ,0)关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k =0舍去,从而k =-1,直线l 的方程为y =-(x -1),即y =-x +1,以下同解法一.BAy=12xoyxF 2F 1解法3:设椭圆方程为)1()0(12222>>=+b a b y a x直线不平行于y 轴,否则AB 中点在x 轴上与直线AB x y 过21=中点矛盾。