吸附作用和多相催化

合集下载

第02章 吸附作用与多相催化

第02章 吸附作用与多相催化
Basic types of catalytic fixed-bed reactors. (a) Adiabatic fixed-bed reactor; (b) multitubular fixed-bed reactor.
2.1.2多相催化反应的机理和步骤
多相催化反应中的吸附、表面反应和脱附过程
多相催化反应过程的步骤:
外扩散
①反应物从气流扩散到固体催化剂表面(外扩散 传质过程 →内扩散); (吸附);
内扩散 ②反应物分子在催化剂表面活性位上发生化学吸附作用形成表面物种 化学吸附 ③吸附态反应物分子(表面物种)在活性位上发生化学反应形成吸附态
产物分子(表面反应); ④吸附态产物分子从催化剂表面脱附形成气相产物(脱附);
表面反应
表面化学过程
脱 附 ⑤气相产物从固体催化剂表面扩散到气体 (液体)中(内扩散→外扩散)
2.1.3多相催化反应中的物理过程
外扩散和内扩散
外扩散
反应物分子从流体 体相通过附在气、 固边界层的静止气 膜(或液膜)到达 颗粒外表面,或者 产物分子从颗粒外 表面通过静止层进 入流体体相的过程, 称为外扩散过程。

表面反应的成功进行,要求原子态吸附分子,其化学 吸附不能太强,也不能太弱。

太强则不利于它们在催化剂表面上的迁移、接触;太
弱则会在进行表面反应之前脱附流失。

一般关联催化反应速率与吸附强度的曲线,呈现“火
山型”。
3、产物的脱附

脱附是吸附的逆过程,因此,遵循与吸附相同的规律。 产物的吸附不能太强。
配位数小于固体内原子的配位数;
每个表面原子受到一种内向的净作用力,将扩散到其附近
的气体分子吸附并形成化学键。

多相催化反应机理

多相催化反应机理

多相催化反应机理
多相催化反应是指在反应中存在两个或更多的相,如气体与固体的催化反应、液体与固体的催化反应等。

其机理可以分为以下几个步骤:
1. 吸附:反应物进入固体催化剂表面,通过吸附与催化剂发生物理或化学吸附作用。

这一步通常是决定整个反应速率的关键步骤,在反应过程中会产生吸附物。

2. 表面反应:吸附物上的反应物与其他吸附物相互作用,发生化学反应。

这一步骤通常是反应物转化为产物的关键步骤,其速率取决于吸附物的浓度和反应物之间的相互作用强度。

3. 解吸:反应物与产物从催化剂表面解吸,离开催化剂,进入反应体系中。

解吸过程可能是可逆的,有时会回到吸附阶段。

以上是一个基本的多相催化反应机理,在实际的多相催化反应中,还可能存在其他的步骤或中间体。

催化剂的种类和特性以及反应条件(如温度、压力、溶剂等)也会对反应机理产生影响。

第2章吸附作用与多相催化

第2章吸附作用与多相催化

图2.5 成型催化剂颗粒的构成
图 2.6 Schematic diagrams of the pore structure of a catalyst showing (a) an interpenetrating array of different sized pores and (b) interconnection of micro-, meso- and micro-pores.
物理吸附——研究催化剂纹理组织(物化性能的测定) 例如: 催化剂及其他多孔固体比表面的测定; 孔径分布的测定; 对沸石分子筛的研究。
化学吸附——研究催化剂的活性表面和活性中心结构。
4.化学吸附的分类
⑴离解化学吸附和非离解化学吸附
非离解化学吸附(缔合性化学吸附)
H
H
H2S S
离解化学吸附
*
均裂离解吸附
区别
物理吸附
化学吸附
推动力
范德华力
化学键力
活化能 热效应 选择性
0
接近凝聚热,低 (8~20kJ/mol)放热

多数较小(~50kJ/mol) 少数为0 称非活化吸附 接近化学反应热(40~800kJ/mol) 绝大部分为放热,也有吸热
有专一性
吸附层
单层或多层
单层
速度
一般较快,但受扩散控制
低温慢,高温快
⊿T= k × ⊿R
⊿ Q=mcp ⊿T
⑵计算法
▪吸附等温线法(所求出的吸附热为微分吸附热)
当吸附量为一定时(θ =const),吸附温度和平衡吸附压力 之间的关系可以用Clausius-Clapeyron方程描述
(lnTP)
q RT2
其中:θ代表一定的覆盖度

催化原理复习题-2018.

催化原理复习题-2018.
页脚
.
载体和助剂区别: 载体量大,活性作用缓和、不明显;助剂量少,活性作用明 显。 载体在催化剂中的作用: 1) 支撑作用:决定催化剂的基本物理结构和性能。如:孔结构,比表面,机械 强度等。 2)分散作用:提高活性组分利用率,减少活性组分的用量,降低成本。 3)助催化作用:a)提供附加活性中心,如双功能Pt/Al2O3;b)和活性组分相 互作用,形成具有催化性能的新表面物种。 4)稳定化作用:a)增加催化剂活性组分的抗毒性能,延长寿命;b)提高催化 剂的热稳定性, 如:Cu, Pd 200oC开始半溶,烧结失活, 载在Al2O3 或 SiO2 500oC下可长时间使用。
物理吸附和化学吸附的本质区别是它们的吸附力不同,物理吸附是范德华力; 化学吸附是化学键力。发生物理吸附时被吸附分子结构变化不大;发生化学吸附
页脚
.
时被吸附分子结构发生变化。另外物理吸附是单层或多层吸附,吸附时无选择性, 热效应较小,吸附速率较快不受温度影响,不需活化能;而化学吸附是单层吸附, 吸附时有选择性,热效应较大小,吸附速率较慢,需活化能; 2. 吸附强弱的度量方法:
kSbA pA pB 1 bA pA bC pC
第四章 固体酸碱催化剂及其催化作用
1. 酸、碱催化的定义和性质
3.催化作用的实现 A:改变反应历程,不参与最终产物 ; B:催化剂只能加速热力学上认为可能发生的反应,对于热力学计算表明不可能发 生的反应,使用任何化学催化剂是徒劳的。 C:催化剂只能加速反应趋向平衡,而不能改变化学平衡位置。 D:催化剂对化学反应具有选择性。 4.催化剂的稳定性指的是哪几个方面? (1)化学稳定性:保持稳定的化学组成和化合状态。 (2)耐热稳定性:能在反应条件下不因受热而破坏其物理化学状态,能在一定 温度范围内保持良好的稳定性。

吸附(物理吸附与化学吸附)在催化中的应用

吸附(物理吸附与化学吸附)在催化中的应用

物理吸附与化学吸附在催化中的应用摘要:吸附过程与催化作用在国民经济和环境保护方面具有重要意义。

他们是化学工业,石油炼制以及国民经济其他领域最活跃的研究课题之一。

这两个领域涉及到的都是表面现象,使用的都是多孔固体。

吸附是催化反应得以发展的最关键步骤之一,通过它揭示催化本质和研究催化性质越来越受到人们的重视,因此许多在线原位动态测量技术得以快速发展。

关键词:物理化学吸附表征测定孔结构气体探针1. 吸附现象吸附:当流体与多孔固体接触时, 流体中某一组分或多个组分在固体表面处产生积蓄, 此现象称为吸附。

吸附也指物质(主要是固体物质)表面吸住周围介质(液体或气体)中的分子或离子现象[1,2]。

实际上,人们很早就发现并利用了吸附现象,如生活中用木炭脱湿和除臭等。

随着新型吸附剂的开发及吸附分离工艺条件等方面的研究,吸附分离过程显示出节能、产品纯度高、可除去痕量物质、操作温度低等突出特点,使这一过程在化工、医药、食品、轻工、环保等行业得到了广泛的应用,例如:(1)气体或液体的脱水及深度干燥,如将乙烯气体中的水分脱到痕量,再聚合。

(2)气体或溶液的脱臭、脱色及溶剂蒸气的回收,如在喷漆工业中,常有大量的有机溶剂逸出,采用活性炭处理排放的气体,既减少环境的污染,又可回收有价值的溶剂。

(3)气体中痕量物质的吸附分离,如纯氮、纯氧的制取。

(4)分离某些精馏难以分离的物系,如烷烃、烯烃、芳香烃馏分的分离。

(5)废气和废水的处理,如从高炉废气中回收一氧化碳和二氧化碳,从炼厂废水中脱除酚等有害物质。

1.1吸附吸附属于一种传质过程,物质内部的分子和周围分子有互相吸引的引力,但物质表面的分子,其中相对物质外部的作用力没有充分发挥,所以液体或固体物质的表面可以吸附其他的液体或气体,尤其是表面面积很大的情况下,这种吸附力能产生很大的作用,所以工业上经常利用大面积的物质进行吸附,如活性炭、水膜等。

当液体或气体混合物与吸附剂长时间充分接触后,系统达到平衡,吸附质的平衡吸附量(单位质量吸附剂在达到吸附平衡时所吸附的吸附质量),首先取决于吸附剂的化学组成和物理结构,同时与系统的温度和压力以及该组分和其他组分的浓度或分压有关。

工业催化-第2章-吸附作用与多相催化

工业催化-第2章-吸附作用与多相催化
类型III,微分吸附热随覆盖度增加呈对数下降。 此类吸附称为费兰德利希(Frundlich)吸附。
后两类吸附热皆随覆盖度变化,称为真实吸附。 多数实验结果是属于后两类或由后两类派生出来的。
吸附热随覆盖度的关系图示
产生真实吸附的原因
1、表面不均匀
表面各处的组成、结构和周围的环境不同, 并存在棱、边、角及各类缺陷等,引起各吸 附中心的能量不同,对吸附分子的作用力不 同。
被吸附的气体称为吸附质。 吸附气体的固体称为吸附剂。 吸附质在固体表面上吸附后存在的状态
称为吸附态。
吸附作用几个关键概念
通常吸附是发生在固体表面的局部位置,这样 的位置称为吸附中心或吸附位。
吸附中心与吸附态共同构成表面吸附络合物。 当固体表面上的气体浓度由于吸附而增加,称
为吸附过程。 气体浓度在表面上减少的过程,则称为脱附过
相互作用或与气相分子作用进行化学反 应; (4)反应产物自催化剂内表面脱附; (5)反应产物离开催化剂表面向催化剂 周围的介质扩散。 上述步骤中的第(1)和(5)为反应物、产物 的扩散过程。(2)、 (3) 、(4)三步属于表 面进行的化学过程。
扩散与多相催化反应
扩散的类型
容积扩散:在孔径大于100 nm的大孔中的扩
吸附热的取号: 吸附是放热过程,但是习惯把吸附热都取成正值。
固体在等温、等压下吸附气体是一个自发过程, ΔG<0,气体从三维运动变成吸附态的二维运动,熵 减少, ΔS<0,ΔH=ΔG+TΔS, ΔH<0。
吸附热的分类
积分吸附热
等温条件下,一定量的固体吸附一定量的气体 所放出的热,用Q表示。积分吸附热实际上是各种不 同覆盖度下吸附热的平均值。显然覆盖度低时的吸 附热大。常用于区分物理吸附与化学吸附。

吸附在多相催化中的作用及其研究进展

吸附在多相催化中的作用及其研究进展

以 Al 2O3 为例, Al 2O3 晶体常以铝的羟 基化物脱水得到,结构为:
L 酸中心很容易吸水变为 B 酸中心:
表面两个 OH-脱水后,就露出一个 Al 3+ 离子和一个 O2-离子。 Al 3+ 离子为配位不饱 和, 可再吸收电子对, 因而是一种 L 酸中心。 由此可见, 氧化铝表面上具有可供反应 物吸附的 L 酸中心和 B 酸中心,同时还有 碱中心,能形成酸碱的协和催化反应。 2.2 半导体催化的化学吸附 半导体催化剂是一类应用很广的催化 剂, 主要用于无极化工的氧化和石油化工的 氧化脱氢反应上。 这种催化剂可以分为如下 三类: 第一类,P 型半导体:Cu2O; 第二类, 本征半导体: CuO, MgO, CaO; 第三类,n 型半导体: AlCO3, ZnO, Fe2O3。 本征半导体的原子与原子间组成共价 键,是价饱和状态。价电子填充于满带中, 每个能级有两个配对电子, 低温下导带中没 有价电子。 这种半导体导电时要依靠温度激 发,把少量价电子由满带激发到导带(空带) 中,导带中得到自由电子,这自由电子的导 电就叫做电子导电。 同时满带放走了部分价 电子后,由本来的电中性变为带正电, 。形 成所谓 “ 正空穴 ” ,正穴的移动也能产生电 流, 称为正穴导电。 电子导电又叫 n 型导电, 空穴导电又叫 p 型导电。 可见本征半导体的 导电,同时存在 n 型导电与 p 型导电。 另两种半导体。 过渡金属氧化物催化剂 大都属于这种类型。这些氧化物,如果按正 常分子式的化学计量比组成, 而且金属与非 金属元素,按照一定秩序排列,毫无缺损,
ra f ( A )
(C) 与吸附活化能成指数关系。占有高 于吸附吸附活化能 Ea 的那些分子才能被吸 附,它们 在全 部气体 分子中 所占 分率为 EXP(-Ea/RT)(有效分率)

催化作用基础第二章 吸附作用

催化作用基础第二章 吸附作用

第二章吸附作用一、概述凡气固多相催化反应,都包含吸附步骤.在反应过程中,至少有一种反应物参与吸附过程.多相催化反应的机理与吸附的机理不可分割.固体表面是敞开的,表面原子所处的环境与体相不同,配位不饱和,它受到了一个不平衡力的作用,当气体与清洁固体表面接触时,将与固体表面发生相互作用,气体在固体表面上出现了累积,其浓度高于气相,这种现象称吸附现象( adsorption).与吸收(absorption)不同,吸收发生在体相. 吸附气体的固体物质称为吸附剂.被吸附的气体称为吸附质.吸附质在表面吸附以后的状态称为吸附态.吸附发生在吸附剂表面的局部位置上,这样的位置就叫吸附中心或吸附位.吸附中心与吸附的物质共同构成表面吸附络合物.当固体表面上的气体浓度由于吸附而增加时,称吸附过程,反之,当气体在表面上的浓度减小时,则为脱附过程.二、物理吸附与化学吸附吸附可以分为物理吸附与化学吸附两种.它们的作用力不同.物理吸附是由分子间作用力,即van der W alls 力所产生.由于这种力较弱,故对分子结构影响不大,所以可把物理吸附类比为凝聚现象.化学吸附的作用力属于化学键力(静电与共价键力).由于此种力作用强,涉及到吸附分子和固体间的电子重排、化学键的断裂或形成,所以对吸附分子的结构影响较大.吸附质分子与吸附中心间借此种力形成吸附化学键.化学吸附类似化学反应.由于产生吸附的作用力不同,两种吸附有不同的特征,两者主要特征比较见表2.1.表2.1物理吸附与化学吸附主要特征比较化学吸附物理吸附.(A) 吸附热≥80kJ·mol-10-40kJ·mol-1这是化学吸附的充分,但不是必要的条件(B) 吸附速率常常需要活化,所以速率慢因不需活化,速率快(C) 脱附活化能≥化学吸附热凝聚热(D) 发生温度常常在高温下(高于气体的液化点)接近气体的液化点(E) 选择性有选择性,与吸附质、吸附剂的本性有关无选择性,任何气体可在任何吸附剂上吸附(F) 吸附层单层多层(G) 可逆性可逆或不可逆可逆表2.2和表2.3提供了某些气体的液化潜热、物理吸附热与化学吸附热,以供比较.表2.2某些气体的液化潜热和最大物理吸附热[4]Gas H2O2N2CO CO2CH4C2H4C2H2NH3H2O Cl2 q(kJ/mol) 0.92 6.69 5.61 6.02 25.10 9.12 14.64 24.01 23.26 44.22 18.41 q max(kJ/mol) 8.4 20.9 20.9 25.1 37.7 20.9 33.5 37.7 37.7 58.6 35.6表2.3某些气体的化学吸附热Q(kJ/mol)[4]气体Ti Ta Nb W Cr Mo Mn Fe Co Ni Rh Pt H2188 188 167 71 134 117O2720 494 293 N2586 293CO 640 192 176CO2682 703 552 456 339 372 222 225 146 184NH3301 188 155C2H4577 427 427 285 243 209三、吸附位能曲线吸附过程中,吸附体系(吸附质—吸附剂)的位能变化可以用吸附位能图表示.对大多数物理吸附而言,其位能变化原则上可以使用Lennard-Jones曲线来描述,该曲线原来是用以描述两个气体分子质点在相互靠近时的位能变化.当然在吸附场合就不单单是两个质点间的相互作用,而是吸附分子与表面上的许多原子间的相互作用.这种相互作用的总位能是吸附分子与每一个表面原子作用能量的加合.对这种加合,Lennard-Jones曲线给出的描述基本上是正确的.图2.1是表示分子物理吸附中位能变化的Lennard-Jones图,其中的X表示分子A2距表面无限远位能取作零时与表面的距离.随着分子与表面的接近,位能下降,到Y时发生了物理吸附,放出吸附热Q p,这是物理吸附热.当分子再靠近表面,因排斥作用增强、吸引作用相对减弱,使体系位能上升,由于稳定性原因,体系不能在这样的状态稳定存在.图2.1 A2分子在固体表面S上的物理吸附位能曲线[6]描述活性原子在固体表面上化学吸附的位能变化可用Morse公式近似计算得到,见图2.2的曲线.对大多数化学吸附来说,这种图给出的形状也是类似的.图2.2 活性原子A在固体表面S上的吸附位能曲线[6]X表示活性原子A与表面相距很远时的体系位能。

催化原理习题

催化原理习题

河南理工大学催化原理复习重点第2章催化剂与催化作用1.什么是催化剂?催化剂是一种能够改变一个化学反应的反应速度,却不改变化学反应热力学平衡位置,本身在化学反应中不被明显地消耗的化学物质。

什么是催化作用?催化作用是指催化剂对化学反应所产生的效应。

催化作用的特征有哪些?1、催化剂只能加速热力学上可以进行的反应2、催化剂只能加速化学反应趋于平衡,而不能改变平衡的位置(平衡常数)3、催化剂对反应具有选择性4、催化剂的使用寿命是有限的2.工业生产中可逆反应为什么往往选择不同的催化剂?第一,对某一催化反应进行正反应和进行逆反应的操作条件(温度、压力、进料组成)往往会有很大差别,这对催化剂可能会产生一些影响。

二,对正反应或逆反应在进行中所引起的副反应也是值得注意的,因为这些副反应会引起催化剂性能变化。

3.催化剂是如何加快化学反应速度的?催化剂通过改变化学反映历程,从而实现低活化能的化学反应途径进而加快了反应速度。

4.催化剂的活性、选择性的含义是什么?活性是指催化剂对反应进程影响的程度,具体是指反应速率增加的程度,催化剂的活性是判断其性能好坏的重要标志。

当反应物在一定的反应条件下可以按照热力学上几个可能的方向进行反应时,使用特定的催化剂就可以对其中一个方向产生强烈的加速作用。

这种专门对某一化学反应起加速作用的能力称为催化剂的选择性。

5.催化剂为什么具有寿命?影响催化剂的寿命的因素有哪些?催化剂在长期受热和化学作用下,会经受一些不可逆的物理的和化学的变化,如晶相变化,晶粒分散程度的变化,易挥发组分的流失,易熔物的熔融等导致活性下降至失活。

(1)催化剂热稳定性的影响(催化剂在一定温度下,特别是高温下发生熔融和烧结,固相间的化学反应、相变、相分离等导致催化剂活性下降甚至失活。

)(2)催化剂化学稳定性的影响(在实际反应条件下,催化剂活性组分可能发生流失、或活性组分的结构发生变化从而导致活性下降和失活。

)(3)催化剂中毒或被污染(催化剂发生结焦积炭污染或中毒。

多相催化

多相催化

多相催化多相催化反应是气态或液态反应物与固态催化剂在两相界面上进行的催化反应。

其历程至少包括反应物在催化剂表面上的化学吸附,吸附中间物的转化(表面反应)和产物脱附三个连续步骤。

阐明一个多相催化反应的历程,需揭示有关催化剂的活性部位和表面吸附中间物的结构和性质;吸附与催化反应的关系(如吸附分子之间反应或吸附分子与气相分子反应);催化剂表面活性部位如何在催化循环中获得再生以使催化反应能连续进行等。

一般是通过多相催化反应的动力学与催化剂的物理化学分析以获得对其历程的了解和应用,下面就让我来阐述具体的影响过程。

吸附质分子与固体表面原子(或分子)发生电子的转移、交换或共有,形成吸附化学键的吸附。

由于固体表面存在不均匀力场,表面上的原子往往还有剩余的成键能力,当气体分子碰撞到固体表面上时便与表面原子间发生电子的交换、转移或共有,形成吸附化学键的吸附作用。

化学吸附的主要特点是:仅发生单分子层吸附;吸附热与化学反应热相当;有选择性;大多为不可逆吸附;吸附层能在较高温度下保持稳定等。

化学吸附又可分为需要活化能的活化吸附和不需活化能的非活化吸附,前者吸附速度较慢,后者则较快。

化学吸附是多相催化反应的重要步骤。

研究化学吸附对了解多相催化反应机理,实现催化反应工业化有重要意义。

吸附特点与物理吸附相比,化学吸附主要有以下特点:①吸附所涉及的力与化学键力相当,比范德华力强得多。

②吸附热近似等于反应热。

③吸附是单分子层的。

因此可用朗缪尔等温式描述,有时也可用弗罗因德利希公式描述。

捷姆金吸附等温式只适用于化学吸附:V/Vm=1/a·㏑CoP。

式中V是平衡压力为p 时的吸附体积;Vm是单层饱和吸附体积;a和c0是常数。

④有选择性。

⑤对温度和压力具有不可逆性。

另外,化学吸附还常常需要活化能。

确定一种吸附是否是化学吸附,主要根据吸附热和不可逆性。

吸附机理可分3种情况:①气体分子失去电子成为正离子,固体得到电子,结果是正离子被吸附在带负电的固体表面上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、分子在金属表面的活化与吸附强度 金属催化剂可将双原子分子解离活化,为反应提供活化分子;
一般来说, 金属对气体分子化学吸附的强若顺序为:
表2-1 金属按其对气体分子化学吸附能力的分类
说明:
①强吸附的金属都是过渡 金属,有未配对的d电子 或d轨道,如Fe. ②吸附能力弱的都是非过 渡金属,属于价层为S或p 的金属,如Mg. “+”:强吸附 “-”:弱吸附
学键;
二、反应物分子的化学吸附
物理吸附与化学吸附区别
物理吸附是表面质点和吸附分子之间的分子力而 引起的。具体地是由永久偶极、诱导偶极、色散 力等三种范德华引力。物理吸附就好像蒸汽的液 化只是液化发生在固体表面上罢了。分子在发生 物理吸附后分子没有发生显著变化。
化学吸附是在催化剂表面质点吸附分子间的化学 作用力而引起的,如同化学反应一样,而两者之 间发生电子转移并形成离子型,共价型,自由基 型,络合型等新的化学键。吸附分子往往会解离 成原子、基团或离子。这种吸附粒子具有比原来 的分子较强的化学吸附能力。因此化学吸附是多 相催化反应过程不可缺少的基本因素。
其导电靠Zn原子结合电子,电子带负电,故ZnO为n-型(negative
Tpye),同属n-型半导体的有:Fe2O3、TiO2、CdO、V2O5、CuO等。
一、半导体氧化物上的化学吸附
②受热获氧,而使其氧化数升高。
三、表面反应
吸附到催化剂 表面的分子,只要温度足够高,就会成 为活性物种,在固体表面迁移,随之发生化学反应。
例如:
四、产物的脱附
第二节 吸附等温线
一、简单Langimuir吸附等温线
理想模型:①吸附表面是均匀的; ②吸附分子间无相互作用力; ③每个分子占据一个吸附位;
表达式:
p p 1 1 V Vm Vm K
n:是T和吸附物系的函数。 适用范围:吸附质的蒸汽压不可以太高,保证θ:0.2-0.8;
五、BET吸附等温式
BET等温式是建立在Langmuir吸附理论的基础上.
有两点假设:
①物理吸附为分子间作用力;被吸附分子与气相分子间仍有这种力,可 发生多层吸附;②吸附达平衡时,每层上的蒸发速度等于冷凝速度; 故对每层写出相应的吸附平衡式.
第三节 金属表面上的化学吸附
三、金属表面上化学吸附的应用
第四节 氧化物表面上的化学吸附
根据氧化物固体导电性能的差异,分为半导体和绝缘体. 一、半导体氧化物上的化学吸附 说明:
半导体氧化物最显著的特点是其阳离子有可调变的氧化 数,吸附的发生伴随着相当数量的电子在其表面与吸附质 之间传递,这些氧化物受热时有氧的得失. ①失去氧,阳离子的氧化数下降,甚至变为单质,如:
第一节 多相催化的基本原理
外扩散和内扩散
外扩散
内扩散
反应物分子从流 体体相通过附在 气、固边界层的 静止气膜(或液 膜)达到颗粒外 表面,或者产物 分子从颗粒外表 面通过静止层进 入流体体相的过 程,称为外扩散 过程。
反应物分子从 颗粒外表面扩 散进入到颗粒 孔隙内部,或 者产物分子从 孔隙内部扩散 到颗粒外表面 的过程,称为 内扩散过程。
一、简单Langimuir吸附等温线
p/V对p作图:
二、解离吸附的Langmuir等温式
解离吸附的示意式: 吸附速率方程: 脱附速率方程: 平衡时,
结论: 解离吸附分子在 表面上的覆盖率与分压的平方根成 正比.可用于判断所进行的吸附是否发生了解离吸附.
三、竞争吸附
A、B分子在同一吸附位上的吸附,称竞争吸附。 令A、B的覆盖率分别为θA、 θB,则空位(1- θA - θB )。 假设:两种分子的吸附都不发生解离,则:
三、竞争吸附
平衡时,
表明:竞争吸附中,一种物质的分压增加,其表面覆盖率增 加,而另一种物质的表面覆盖率减小。
四、非理想的吸附等温式
典型:Freundlich等温式
成因: ①表面是非均匀的;
②吸附分子之间有相互作用力; ③发生多层吸附;
Freundlich等温式: 式中,k:与T、吸附剂种类和表面积有关的经验常数。
子吸附态,可形成共价键、配位键或离子键。有不同的吸附 形式:
(1)吸附前先离解 不能直接和金属的“表面自由价”成键,必须先自 身解离,成为有自由价的基团,如分子氢、 饱和烃分子。
(2)具有孤对电子或π电子的分子,以非解离的方式吸附; 通过分子轨道的在杂化进行;如乙炔的化学吸附,吸附前是 Sp2杂化,吸附后则变为sp3杂化。
第二章 吸附作用和多相催化
1 多相催化的反应步骤 2 吸附等温线 3 金属表面上的化学吸附 4 氧化物表面上的化学吸附
第一节 多相催化的基本原理
一、五个基本步骤:
A、反应物分子从气流中向催化剂表面和孔内扩散; B、反应物分子在催化剂内表面的吸附; C、吸附态分子在催化剂表面上相互作用或与气 相
分子相互作用进行反应; D、产物自催化剂内表面脱附; E、反应物在孔道内扩散并扩散到反应气流中去
为充分发挥催化剂作用,应尽量消除扩散过程的影响
外扩散
阻力:气固(或液固)边界的静止层 消除方法:提高空速
内扩散
阻力:催化剂颗粒空隙内经和长度
消除方法:减小催化剂颗粒大小,增 大催化剂空隙直径
多相催化反应的化学过程
活性中间物进行化 学反应生成产物
2
反应物化学吸附 生成活性中间物
1
吸附的产物经过 脱附得到产物
BET等温式
p 1 C 1• p
V (常压饱和蒸气压; p:测试条件下的蒸气压; C:与吸附热有关的常数; Vm:表面形成单分子层所需气体体积.
化学吸附研究用的金属表面
研究常用的表面:金属丝,金属薄膜,金属泊片,金属单晶。 要求:表面一定要清洁无杂质。
一、金属表面分子的吸附态 分子吸附在催化剂表面与表面分子间形成吸附键,形成分
催化剂得以复原
3
4
二、反应物分子的化学吸附
多相催化反应中的吸附为化学吸附;分为两步 第一步:物理吸附 作用力为分子间力,吸附力弱,吸附热小(8~20KJ/mol); 可逆、无选择性。 第二步:化学吸附 借助化学键力,吸附热大(40~800KJ/mol)、具有选择性和
饱和性 固体表面有自由价,原子配位数小于体相原子的配位数; 表面原子受到一种向内的净作用力,吸附表面气体形成化
相关文档
最新文档