圆周角定理 课件
合集下载
数学九年级上第三篇第四节《圆周角》课件
数学九年级上第三篇第四节《圆周 角》课件
目录
• 圆周角基本概念与性质 • 圆周角定理及其推论 • 弧长与扇形面积计算 • 圆锥曲线中圆周角应用 • 拓展延伸:其他几何图形中圆周角应用 • 总结回顾与课堂练习
01 圆周角基本概念与性质
圆周角定义及特点
圆周角定义
顶点在圆上,并且两边都和圆相 交的角叫做圆周角。
圆周角性质总结
01
02
03
性质1
在同圆或等圆中,如果两 个圆周角相等,那么它们 所对的弧也相等。
性质2
在同圆或等圆中,如果两 条弧相等,那么它们所对 的圆周角也相等。
性质3
在同圆或等圆中,同弧或 等弧所对的圆周角相等, 都等于这条弧所对的圆心 角的一半。
02 圆周角定理及其推论
圆周角定理内容
ห้องสมุดไป่ตู้圆周角定义
圆柱、圆锥等立体图形中圆周角应用
圆柱中的圆周角
圆柱侧面展开图是一个矩形,其相邻两边夹角即为圆周角。利用圆周角定理可解决圆柱中 的相关问题。
圆锥中的圆周角
圆锥侧面展开图是一个扇形,其圆心角即为圆锥的顶角,而圆周角则为顶角的一半。利用 这些性质可解决圆锥中的相关问题。
圆周角定理在立体图形中的应用
在解决立体图形的问题时,可利用圆周角定理将问题转化为平面问题,从而简化计算过程 。
设扇形半径为r cm,则根据扇 形面积计算公式有 (45° × π × r²) / 360 = 24cm²,解得 r≈4.37cm(保留两位小数)。 再根据弧长计算公式,弧长 = 45° × 4.37cm × π / 180 ≈ 3.43cm(保留两位小数)。
04 圆锥曲线中圆周角应用
圆锥曲线基本概念回顾
典型例题解析
目录
• 圆周角基本概念与性质 • 圆周角定理及其推论 • 弧长与扇形面积计算 • 圆锥曲线中圆周角应用 • 拓展延伸:其他几何图形中圆周角应用 • 总结回顾与课堂练习
01 圆周角基本概念与性质
圆周角定义及特点
圆周角定义
顶点在圆上,并且两边都和圆相 交的角叫做圆周角。
圆周角性质总结
01
02
03
性质1
在同圆或等圆中,如果两 个圆周角相等,那么它们 所对的弧也相等。
性质2
在同圆或等圆中,如果两 条弧相等,那么它们所对 的圆周角也相等。
性质3
在同圆或等圆中,同弧或 等弧所对的圆周角相等, 都等于这条弧所对的圆心 角的一半。
02 圆周角定理及其推论
圆周角定理内容
ห้องสมุดไป่ตู้圆周角定义
圆柱、圆锥等立体图形中圆周角应用
圆柱中的圆周角
圆柱侧面展开图是一个矩形,其相邻两边夹角即为圆周角。利用圆周角定理可解决圆柱中 的相关问题。
圆锥中的圆周角
圆锥侧面展开图是一个扇形,其圆心角即为圆锥的顶角,而圆周角则为顶角的一半。利用 这些性质可解决圆锥中的相关问题。
圆周角定理在立体图形中的应用
在解决立体图形的问题时,可利用圆周角定理将问题转化为平面问题,从而简化计算过程 。
设扇形半径为r cm,则根据扇 形面积计算公式有 (45° × π × r²) / 360 = 24cm²,解得 r≈4.37cm(保留两位小数)。 再根据弧长计算公式,弧长 = 45° × 4.37cm × π / 180 ≈ 3.43cm(保留两位小数)。
04 圆锥曲线中圆周角应用
圆锥曲线基本概念回顾
典型例题解析
圆周角定理 课件
AD=BD=5
3 2 cm.
在 Rt△AOD 中,OD=
OA2-AD2
=
5 2
cm,所以
∠OAD=30°,
所以∠AOD=60°.
所
以
∠AOB
=
2∠AOD
=
120
°
,
所
以
∠ACB
=
1 2
∠AOB=60°.因为∠AOB=120°,所以劣弧A︵EB的度数为
︵ 120°,优弧ACB的度数为 240°.
所以∠AEB=12×240°=120°. 所以此弦所对的圆周角为 60°或 120°.
所以 OG∥CF.所以∠AOB=∠FCB,(2 分) 所以∠DAO=90°-∠AOB, ∠FBC=90°-∠FCB,(4 分) 所以∠DAO=∠FBC.(6 分)
(2)连接 AB,AC, 因为 BC 为直径, 所以∠BAC=π2, 又因为 AD⊥BC, 所以∠BAD=∠BCA,(8 分)
︵︵ 又因为AB=AF, 所以∠ABF=∠BCA,(9 分) 所以∠ABF=∠BAD, 所以 AE=BE.(10 分)
类型 2 利用定理及推论进行证明(规范解答)
[典例 2] 如图所示,BC 是半圆 O 的直径,AD⊥BC, ︵︵
垂足为 D,AB=AF,BF 与 AD、AO 分别交于点 E、G. (1)证明:∠DAO=∠FBC; (2)证明:AE=BE.
︵︵ [规范解答] (1)连接 FC,OF,因为AB=AF,OB =OF, 所以点 G 是 BF 的中点, OG⊥BF. 因为 BC 是⊙O 的直径, 所以 CF⊥BF.(1 分)
反过来,弧的度数相等,它们所对圆心角的度数也相 等.2.由于圆心角的度数与它所对弧的度数相等,所以圆周 角的度数等于它所对弧的度数的一半.
圆周角定理教学课件
4 圆周角和圆心角的关系
第1课时 圆周角定理
北师版 九年级下册
探索:
你能仿照圆心角的定义给圆周角下个定义吗?
圆周角定义: 顶点在圆 上,并且两边都和圆相 交的角叫圆周角.
特征:
① 角的顶点在圆上.
A
.
O
B
C
② 角的两边都与圆相交.
1 、判别下列各图形中的角是不是圆周角,并说明理由。
不是
不是
是
图1
2
圆心在角的边上
圆心在角内
圆心在角外
A
AD
A
C
C
C
●O
●O
●O
B
B B
提示:圆周角定理是承上启下的知识点,要予以重视.
AB BC
运用新知,深化理解
1.如图,已知BD是⊙0的直径,点A、C在⊙O上, ,∠AOB=60°
,则∠BDC的度数是(
)
A. 20° B. 25° C. 30 ° D. 40°
提示:能否转化为1的情况? 过点B作直径BD.由1可得:
AD C
∠ABD
= 1∠AOD,∠CBD
2
= 1∠COD,
2
●O
∴ ∠ABC = 1∠AOC.
2
B
你能写出这个命题吗?
一条弧所对的圆周角等于它所 对的圆心角的一半.
圆周角和圆心角的关系
• 如果圆心不在圆周角的一边上,结果会怎样?
• 3.当圆心(O)在圆周角(∠ABC)的外部时,圆周角 ∠ABC与圆心角∠AOC的大小关系会怎样?
运用新知
1.如图,已知BD是⊙0的直径,点A、C在⊙O上,, ∠AOB=60°,则∠BDC的度数是( ) A. 20° B. 25° C. 30° D. 40°
第1课时 圆周角定理
北师版 九年级下册
探索:
你能仿照圆心角的定义给圆周角下个定义吗?
圆周角定义: 顶点在圆 上,并且两边都和圆相 交的角叫圆周角.
特征:
① 角的顶点在圆上.
A
.
O
B
C
② 角的两边都与圆相交.
1 、判别下列各图形中的角是不是圆周角,并说明理由。
不是
不是
是
图1
2
圆心在角的边上
圆心在角内
圆心在角外
A
AD
A
C
C
C
●O
●O
●O
B
B B
提示:圆周角定理是承上启下的知识点,要予以重视.
AB BC
运用新知,深化理解
1.如图,已知BD是⊙0的直径,点A、C在⊙O上, ,∠AOB=60°
,则∠BDC的度数是(
)
A. 20° B. 25° C. 30 ° D. 40°
提示:能否转化为1的情况? 过点B作直径BD.由1可得:
AD C
∠ABD
= 1∠AOD,∠CBD
2
= 1∠COD,
2
●O
∴ ∠ABC = 1∠AOC.
2
B
你能写出这个命题吗?
一条弧所对的圆周角等于它所 对的圆心角的一半.
圆周角和圆心角的关系
• 如果圆心不在圆周角的一边上,结果会怎样?
• 3.当圆心(O)在圆周角(∠ABC)的外部时,圆周角 ∠ABC与圆心角∠AOC的大小关系会怎样?
运用新知
1.如图,已知BD是⊙0的直径,点A、C在⊙O上,, ∠AOB=60°,则∠BDC的度数是( ) A. 20° B. 25° C. 30° D. 40°
28.3 课时2 圆周角定理及其性质 课件 (共21张PPT) 冀教版数学九年级上册
推论2:在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所 对的弧也相等.
2 2 0 0 2
3.下列命题是真命题的是( B ) ①在同圆中,相等的弦所对的圆心角相等
②相等的圆心角所对的弧相等
③圆既是轴对称图形,又是中心对称图形
A.①② B.①③ C.②③ D.①②③
2 2 0 0 2
探究新知
一、圆周角的定义及性质
圆心角顶点发生变化时,我们可以得到几种情况?
.A
A.
.A
.
.
.
O
O
O
B
C
B
C
∵OA = OB, ∴∠A = ∠B. ∴∠AOC = 2∠B. 即∠ABC = ∠AOC.
●
O
B
你能写出这个命题吗?
2 2 0 0 2
圆上一条弧所对的圆周角等于它所对的圆心角的一半.
如果圆心不在圆周角的一边上,结果会怎样?
2.当圆心( O )在圆周角(∠ABC )的内部时,圆周角∠ABC 与圆心角∠AOC 的大小
证明: ∠ACB = ∠AOB
∠BAC = ∠BOC
∠AOB = 2∠BOC
∠ACB = 2∠BAC
2 2 0 0 2
O
A
C
B
当堂检测
1.判断 (1)同一个圆中等弧所对的圆周角相等 (√ ) (2)相等的弦所对的圆周角也相等 (×) (3)同弦所对的圆周角相等 (×)
2 2 0 0 2
2.指出图中的圆周角.
关系会怎样? 提示:能否转化为 1 的情况?
AD C
过点 B 作直径 BD. 由 1 可得:
●O
∠ABD = ∠AOD,∠CBD = ∠COD,
∴ ∠ABC = ∠AOC.
2 2 0 0 2
3.下列命题是真命题的是( B ) ①在同圆中,相等的弦所对的圆心角相等
②相等的圆心角所对的弧相等
③圆既是轴对称图形,又是中心对称图形
A.①② B.①③ C.②③ D.①②③
2 2 0 0 2
探究新知
一、圆周角的定义及性质
圆心角顶点发生变化时,我们可以得到几种情况?
.A
A.
.A
.
.
.
O
O
O
B
C
B
C
∵OA = OB, ∴∠A = ∠B. ∴∠AOC = 2∠B. 即∠ABC = ∠AOC.
●
O
B
你能写出这个命题吗?
2 2 0 0 2
圆上一条弧所对的圆周角等于它所对的圆心角的一半.
如果圆心不在圆周角的一边上,结果会怎样?
2.当圆心( O )在圆周角(∠ABC )的内部时,圆周角∠ABC 与圆心角∠AOC 的大小
证明: ∠ACB = ∠AOB
∠BAC = ∠BOC
∠AOB = 2∠BOC
∠ACB = 2∠BAC
2 2 0 0 2
O
A
C
B
当堂检测
1.判断 (1)同一个圆中等弧所对的圆周角相等 (√ ) (2)相等的弦所对的圆周角也相等 (×) (3)同弦所对的圆周角相等 (×)
2 2 0 0 2
2.指出图中的圆周角.
关系会怎样? 提示:能否转化为 1 的情况?
AD C
过点 B 作直径 BD. 由 1 可得:
●O
∠ABD = ∠AOD,∠CBD = ∠COD,
∴ ∠ABC = ∠AOC.
圆周角定理的推论课件
图 3-4-6
圆周角定理的推论
10
[ 解 析 ] 首 先 利 用 等 腰 三 角 形 的 性 质 得 出 ∠DBC = ∠DCB,进而利用圆内接四边形的性质得出∠EAD=∠DCB, 再利用圆周角定理得出∠DAE 与∠DAC 相等.
解:∠DAE 与∠DAC 相等. 理由:∵DB=DC,∴∠DBC=∠DCB.
6
[解析] 连接 AD,由 AB 是⊙O 的直径得到∠ADB=90°,再 根据直角三角形两锐角互余计算出∠A 的度数,然后根据圆周角 定理即可得到∠C 的度数.
解:连接 AD,如图.
∵AB 是⊙O 的直径,∴∠ADB=90°.
∵∠ABD=55°,
∴∠A=90°-55°=35°,
∴∠BCD=∠A=35°.
∵∠DAE 是四边形 ABCD 的一个外角,
∴∠DAE+∠DAB=∠DCB+∠DAB=180°,
∴∠DAE=DCB,
∴∠DBC=∠DAE.
又∵∠DAC=∠DBC,∴∠DAE=∠DAC.
圆周角定理的推论
11
[归纳总结]圆内接四边形性质的推广: 圆内接四边形的对角互补,外角等于与它相邻的内角的对角.因此常利用圆 内接四边形的性质,结合圆周角定理及其推论来探求角的相等关系或互补关 系.在进行有关计算或证明时,常添加辅助线构造圆周角或圆内接四边形.
圆周角定理的推论
17
圆周角定理的推论
7
观察与思考
如图,在⊙O中,∠ABD =110°,求∠C的大小.
A B
四边形ABCD的四个点都在 ⊙O上,像这样的四边形叫做 圆内接四边形,这个圆叫做 C 四边形的外接圆。
D
思考:1、∠ABD与∠C有怎样的关系? 2、由此我们可以得到怎样的结论?
圆周角-PPT课件
E
20°
30°
∴∠ABF=∠D=20°,∠FBC=∠E=30°.
∴∠x=∠ABF+∠FBC=50°.
A F
C
下列说法是否正确,为什么?
拓展巩固
“在同圆或等圆中,同弦或等弦所对的圆周角相等”.
一条弦所对应的圆周角有两类.
D
如图所示,连接BO、EO. 显然,∠C与∠D所对应的圆心角和为 ,
O.
所以36根0°据圆周角定理可知∠C+∠D = . 180°
通过积极引导,帮助学生有意识地积累活动经验,获得成功的 体验.
知识回顾
O
1.圆心角的定义?
顶点在圆心的角叫圆心角.
A
B
2.图中∠ACB 的顶点和边有哪些特点?
C
考考你:你能仿照圆心角的定义,给下
图中象∠ACB 这样的角下个定义吗?
O
A
B
探索新知
顶点在圆上,并且两边都和圆相交 的角叫圆周角.(两个条件必须同时具备,缺一不可)
24.1 圆的有关性质
24.1.4 圆周角
教学目标
【知识目标】 理解圆周角的概念。探索圆周角与同弧所对的圆心角之间的关
系,并会用圆周角定理及推论进行有关计算和证明. 【能力目标】
经历探索圆周角定理的过程,初步体会分类讨论的数学思想, 渗透解决不确定的探索型问题的思想和方法,提高学生的发散思维能 力. 【情感目标】
意两点,连接AB,AC,BD,CD.∠A与∠D相等吗? 请说明理由.
D
同弧所对的圆周角相等.
问题2 如图,若
,那么 ∠A与∠B相等吗?
想一想: 反过来,若∠A=∠B,那么
成立吗?
AB E
O
C
圆周角定理 课件
(2)因为△ABE∽△ADC, 所以AABE=AADC,即 AB·AC=AD·AE. 又 S=12AB·AC·sin ∠BAC,且 S=12AD·AE, 所以 AB·AC·sin ∠BAC=AD·AE. 则 sin ∠BAC=1. 又∠BAC 为三角形内角, 所以∠BAC=90°.
2.已知 AD 是△ABC 的高,AE 是△ABC 的外接圆的直径. 求证:∠BAE=∠DAC. 证明:连接 BE,因为 AE 为直径, 所以∠ABE=90°. 因为 AD 是△ABC 的高,所以∠ADC=90°. 所以∠ADC=∠ABE. 因为∠E=∠C,所以∠BAE=90°-∠E, ∠DAC=90°-∠C. 所以∠BAE=∠DAC.
5.如图,△ABC 的角平分线 AD 的延长线交 它的外接圆于点 E. (1)证明:△ABE∽△ADC; (2)若△ABC 的面积 S=12AD·AE, 求∠BAC 的大小. 解:(1)证明:由已知条件可得∠BAE=∠CAD. 因为∠AEB 与∠ACB 是同弧上的圆周角, 所以∠AEB=∠ACD. 故△ABE∽△ADC.
利用圆周角进行计算
[例 2] 如图,已知 BC 为半⊙O 的直径, AD⊥BC,垂足为 D,BF 交 AD 于 E,且 AE =BE.
(1)求证: AB= AF ; (2)如果 sin ∠FBC=35,AB=4 5,求 AD 的长. [思路点拨] BC 为半⊙O 的直径,连接 AC,构造 Rt△ABC.
4.如图,△ABC ຫໍສະໝຸດ 接于⊙O,OD⊥BC 于 D,∠A=50°,则
∠OCD 的度数是
()
A.40° C.50°
B.25° D.60°
解析:连接 OB.因为∠A=50°,所以弦 BC 所 对的圆心角∠BOC=100°,∠COD=12∠BOC =50°,∠OCD=90°-∠COD=40°. 答案:A
人教版数学九年级上册圆周角的概念和圆周角定理课件
(1)∠D=____3_5°,理由是 __同__弧__所__对_的__圆__周__角_相__等_____;
(2)∠BOC=____7_0°,理由是
__同__弧__所__对__的__圆__周__角__等__于__该__弧__所__对_ __的__圆__心__角__的__一__半__.___________.
DAC 1 DOC . 2
∴ DAC DAB 1 (DOC BOD) , 2
即BAC 1 BOC. 2
议一议
一条弧所对的圆周角等于它所 对的圆心角的一半. 同弧或等弧所对的圆周角相等。
思考
C
A
O
B
如图,AB是直径,则∠ACB=_9_0_°。 半圆(或直径)所对的圆周角是直角, 90度的圆周角所对的弦是直径。
∵ ∠BAC=∠BFC (同弧
B
所对的圆周角相等).
A
D
F
E O
C
请你说一说 这节课你有哪些收获和困惑? 圆周角定义及定理。
课后作业 课本P89第3题,P90第14题; 练习册P7∠BAC的内部或外部时, BAC 1 BOC 的关系还成立吗?
2
思考与探索
证明:作直径AD.
∵BAD 1 BOD ,
2
DAC 1 DOC. 2
∴ BAD DAC 1 (BOD DOC ) , 2
即BAC 1 BOC .
2
思考与探索
证明:作直径AD.
∵BAD 1 BOD , 2
思考与探索
3.当圆心O在∠BAC的一边上时,圆周角 ∠BAC与圆心角∠BOC之间有怎样的数量关系? 你能证明你的发现吗?
思考与探索
4.BAC 1 BOC .
证明:
2
(2)∠BOC=____7_0°,理由是
__同__弧__所__对__的__圆__周__角__等__于__该__弧__所__对_ __的__圆__心__角__的__一__半__.___________.
DAC 1 DOC . 2
∴ DAC DAB 1 (DOC BOD) , 2
即BAC 1 BOC. 2
议一议
一条弧所对的圆周角等于它所 对的圆心角的一半. 同弧或等弧所对的圆周角相等。
思考
C
A
O
B
如图,AB是直径,则∠ACB=_9_0_°。 半圆(或直径)所对的圆周角是直角, 90度的圆周角所对的弦是直径。
∵ ∠BAC=∠BFC (同弧
B
所对的圆周角相等).
A
D
F
E O
C
请你说一说 这节课你有哪些收获和困惑? 圆周角定义及定理。
课后作业 课本P89第3题,P90第14题; 练习册P7∠BAC的内部或外部时, BAC 1 BOC 的关系还成立吗?
2
思考与探索
证明:作直径AD.
∵BAD 1 BOD ,
2
DAC 1 DOC. 2
∴ BAD DAC 1 (BOD DOC ) , 2
即BAC 1 BOC .
2
思考与探索
证明:作直径AD.
∵BAD 1 BOD , 2
思考与探索
3.当圆心O在∠BAC的一边上时,圆周角 ∠BAC与圆心角∠BOC之间有怎样的数量关系? 你能证明你的发现吗?
思考与探索
4.BAC 1 BOC .
证明:
2
九年级数学《圆周角》课件
方法一:
C
A
解:连接BC ∵AB为直径
D O
∴∠BCA=90°
(直径所对的圆周角为直角)
B
∴∠BCD+∠DCA=90°,∠ACD=15°
∴∠BCD=90°-15=75°
∴∠BAD=∠BCD=75°(同弧所对的圆周角相
等)
4.如图,AB是⊙O的直径,∠C=15°,求 ∠BAD的度数。
C
A
方法二:
解:连接OD
并且两边都和圆相交的角
A
叫圆周角.
特征:
① 角的顶点在圆上.
② 角的两边都与圆相交. B
.
O C
根据圆心与圆周角的位置关系
归纳同学们的意见我们得到以下几种情况。
A
C
A C
A C
O
B ①
O
O
B
B
②
③
圆周角和圆心角的关系
▪ 1.首先考虑一种特殊情况:
▪ 当圆心(O)在圆周角(∠ABC)的一边(BC)上时,圆周角
情境导入
• 当球员在B,D,E处射门时, 他所处的位置对球门AC 分别形成三个张角∠ABC, ∠ADC,∠AEC.你能观察 到这三个角有什么共同 特征吗?
A
E B
C D
1.顶点在圆上 2.两边和圆相交
A
E
●O
C
B
D
1、了解圆周角的概念。 2、会推导证明圆周角定理并会灵活运用。 3、灵活运用圆周角定理推论解决问题。
老师提示:能否转化为1的情况? 过点B作直径BD.由1可得:
AD C
●O
∠ABD
=
1∠AOD,∠CBD
2
=1 ∠COD,
《圆周角》课件精品 (公开课)2022年数学PPT全
第二十四章 圆
24.1 圆的有关性质
24.1.4 圆周角
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解圆周角的概念,会叙述并证明圆周角定理. 2.理解圆周角与圆心角的关系并能运用圆周角定理解 决简单的几何问题.(重点、难点) 3.理解掌握圆周角定理的推论及其证明过程和运用. (难点)
导入新课
复习引入
(5)√
A B
(6)√
二 圆周角定理及其推论
测量与猜测
如图,连接BO,CO,得圆心角∠BOC.试猜想∠BAC与 ∠BOC存在怎样的数量关系.
BAC1BOC 2
推导与论证
圆心O在∠BAC 的一边上
圆心O 在∠BAC
的 内部
圆心O在∠BAC 的外部
n圆心O在∠BAC的一边上(特殊情形)
OA=OC ∠A= ∠C ∠BOC= ∠ A+ ∠C
证明猜想
∵ 弧BCD和弧BAD所对的圆心角的和是周角, ∴∠A+∠C=180°, 同理∠B+∠D=180°,
归纳总结
推论:圆的内接四边形的对角互补.
想一想
图中∠A与∠DCE的大小有何关系?
∵ 弧BCD和弧BAD所对的圆心角的和是周角,
∴∠A+∠C=180°,
D
同理∠B+∠D=180°, A
延长BC到点E,有
2∠BOC. 求证:∠ACB=2∠BAC.
证明: ACB1AOB,
2
1
BAC BOC,
O
2
∠AOB=2∠BOC,
A
C B
∴∠ACB=2∠BAC
9.船在航行过程中,船长通过测定角数来确定是否遇到
暗礁,如图,A、B表示灯塔,暗礁分布在经过A、B两
24.1 圆的有关性质
24.1.4 圆周角
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解圆周角的概念,会叙述并证明圆周角定理. 2.理解圆周角与圆心角的关系并能运用圆周角定理解 决简单的几何问题.(重点、难点) 3.理解掌握圆周角定理的推论及其证明过程和运用. (难点)
导入新课
复习引入
(5)√
A B
(6)√
二 圆周角定理及其推论
测量与猜测
如图,连接BO,CO,得圆心角∠BOC.试猜想∠BAC与 ∠BOC存在怎样的数量关系.
BAC1BOC 2
推导与论证
圆心O在∠BAC 的一边上
圆心O 在∠BAC
的 内部
圆心O在∠BAC 的外部
n圆心O在∠BAC的一边上(特殊情形)
OA=OC ∠A= ∠C ∠BOC= ∠ A+ ∠C
证明猜想
∵ 弧BCD和弧BAD所对的圆心角的和是周角, ∴∠A+∠C=180°, 同理∠B+∠D=180°,
归纳总结
推论:圆的内接四边形的对角互补.
想一想
图中∠A与∠DCE的大小有何关系?
∵ 弧BCD和弧BAD所对的圆心角的和是周角,
∴∠A+∠C=180°,
D
同理∠B+∠D=180°, A
延长BC到点E,有
2∠BOC. 求证:∠ACB=2∠BAC.
证明: ACB1AOB,
2
1
BAC BOC,
O
2
∠AOB=2∠BOC,
A
C B
∴∠ACB=2∠BAC
9.船在航行过程中,船长通过测定角数来确定是否遇到
暗礁,如图,A、B表示灯塔,暗礁分布在经过A、B两
课件3:一 圆周角定理
再见
点评:当题目结论与比例式有关时,可考虑证明三角形相似.
3.在⊙O 内有一个内接四边形 ABCD,AC 与 BD 交于点 E, 求证:ABEE=ABDC.
︵︵ 证明:由AB=AB, 得∠ADE=∠ACB. 又∠AED=∠BEC,
∴△AED∽△BEC,即ABEE=ABDC.
4.如图所示,已知⊙O中,∠AOB=2∠BOC,求 证∠ACB=2∠BAC. 分析:利用圆周角定理证明. 证明:∵∠ACB=∠AOB, ∠AOB=2∠BOC, ∴∠ACB=∠BOC. 又∵∠BAC=∠BOC, ∴∠ACB=2∠BAC.
►变式BC=4 cm,则OD =__2_c_m____. 2.如图所示,圆O上一点C在直径AB上的射影为D,CD=4,BD=8,圆 O的半径r=___5_____.
题型二 证明问题
例2 已知AD是△ABC的高,AE是△ABC的外接圆的直径,求证: ∠BAE=∠DAC. 分析:题目中出现圆的直径,想到直径所对的圆周角是直 角.因此,连接BE,得到∠ABE=90°.同时,在△ABE与 △ADC中,又有同弧所对的圆周角∠C与∠E相等,从而结论 得以证明. 证明:如图,连接BE.
一 圆周角定理
圆周角定理 圆上一条弧所对的圆周角等于它所对的圆心角的一半.
圆心角定理
圆心角的度数等于它所对弧的度数. 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所 对的弧也相等. 推论2
半圆(或直径)所对的圆周角是直角;900的圆周角所对的 弦是直径
题型一 角、弦、弧长计算
例1 在半径为5 cm的圆内有长为5 cm的弦AB,求此弦所对 的圆周角. 解析:如图所示,
【正解】根据题意画出大致示意图如图所示,∠AOB 为弦 AB 所对的圆心角,∠C 和∠D 是弦 AB 所对的圆周角. ∵AB=OA=OB, ∴△AOB 为等边三角形, ∴∠AOB=60°,∴∠C=30°,∴∠D=150°, ∴弦 AB 所对的圆心角为 60°,所对的圆周角为 30°或 150°. 易错点:对圆周角的概念理解不清 【疑难点辨析】顶点在圆上且两边都和圆相交的角叫做圆周角,一 条弦所对的圆周角应有两种情况.
圆周角定理 课件
AE AB
2.(1)∵AB是⊙O的直径, ∴∠ACB=90°,由∠ABC=30°, ∴∠CAB=60° 又OB=OC,∴∠OCB=∠OBC=30°, ∴∠BOD=60°,∴∠CAB=∠BOD.
(2)在Rt△ABC中,∠ABC=30°,得AC=1 AB,
2
又OB=1 AB,∴AC=OB.
2
由BD切⊙O于点B,得∠OBD=90°.
2
2
答案:35°
对圆周角的两点认识 (1)圆周角的度数不等于它所对弧的度数.由圆周角定理和圆心 角定理综合知:圆周角的度数等于它所对弧的度数的一半. (2)圆上的一条弦所对的圆周角不一定相等.一般有两种情况: 相等或互补,弦所对的优弧与所对的劣弧上的点所成的圆周角 互补,所对同一条弧上的圆周角都相等,直径所对的圆周角既 相等又互补.
2.如图,在⊙O中,弦AB=16,点C在⊙O上,且sin C= 4 . 求
5
⊙O的半径长.
【解析】1.连接CD, ∵AC是⊙O的直径,∴∠ABC=90°. ∵BC=1,AB= 3, ∴AC=2, ∵BD平分∠ABC,∴ AD DC, ∴AD=CD,在Rt△ACD中,由勾股定理得,AD=2. 答案: 2
运用圆周角定理及推论进行证明
利用圆中角的关系证明时的关注点 (1)分析已知和所求,找好所在的三角形,并根据三角形所在圆 上的特殊性,寻求相关的圆周角作为桥梁去求解. (2)当圆中出现直径时,要注意寻找直径所对的圆周角,然后在 直角三角形中处理相关问题.
【典例训练】
1.如图,已知△ABC内接于⊙O,AB=AC,
在△ABC和△ODB中,
CAB BOD ACB OBD AC OB
∴△ABC≌△ODB.
2.对推论2的理解 (1)在圆中,直径是一条特殊的弦,其所对的圆周角是直角, 所对的弧是半圆. (2)利用上述性质便可得到直角三角形,然后利用直角三角形解 决相关问题.
2.(1)∵AB是⊙O的直径, ∴∠ACB=90°,由∠ABC=30°, ∴∠CAB=60° 又OB=OC,∴∠OCB=∠OBC=30°, ∴∠BOD=60°,∴∠CAB=∠BOD.
(2)在Rt△ABC中,∠ABC=30°,得AC=1 AB,
2
又OB=1 AB,∴AC=OB.
2
由BD切⊙O于点B,得∠OBD=90°.
2
2
答案:35°
对圆周角的两点认识 (1)圆周角的度数不等于它所对弧的度数.由圆周角定理和圆心 角定理综合知:圆周角的度数等于它所对弧的度数的一半. (2)圆上的一条弦所对的圆周角不一定相等.一般有两种情况: 相等或互补,弦所对的优弧与所对的劣弧上的点所成的圆周角 互补,所对同一条弧上的圆周角都相等,直径所对的圆周角既 相等又互补.
2.如图,在⊙O中,弦AB=16,点C在⊙O上,且sin C= 4 . 求
5
⊙O的半径长.
【解析】1.连接CD, ∵AC是⊙O的直径,∴∠ABC=90°. ∵BC=1,AB= 3, ∴AC=2, ∵BD平分∠ABC,∴ AD DC, ∴AD=CD,在Rt△ACD中,由勾股定理得,AD=2. 答案: 2
运用圆周角定理及推论进行证明
利用圆中角的关系证明时的关注点 (1)分析已知和所求,找好所在的三角形,并根据三角形所在圆 上的特殊性,寻求相关的圆周角作为桥梁去求解. (2)当圆中出现直径时,要注意寻找直径所对的圆周角,然后在 直角三角形中处理相关问题.
【典例训练】
1.如图,已知△ABC内接于⊙O,AB=AC,
在△ABC和△ODB中,
CAB BOD ACB OBD AC OB
∴△ABC≌△ODB.
2.对推论2的理解 (1)在圆中,直径是一条特殊的弦,其所对的圆周角是直角, 所对的弧是半圆. (2)利用上述性质便可得到直角三角形,然后利用直角三角形解 决相关问题.
圆周角定理 课件
4.推论2:半圆(或直径)所对的圆周角是_直__角___;90°的 圆周角所对的弦是__直_径___.
圆周角定理
【例 1】 如图所示,弦 AB 和 CD 相交于点 P,求证:∠
APD=12(A︵D 的度数+B︵C 的度数).
【解题探究】 由于∠APD既不是圆周 角,也不是圆心角,为此我们要把它转所对的圆周角等于它 所对__圆_心__角___的一半.
2 . 圆 心 角 定 理 : 圆 心 角 的 度 数 等 于 它 所 对 _ _弧_ _ _ 的 度 数 .
3 . 推 论 1 : 同 弧 或 等 弧 所 对 的 圆 周 角 _ _ _相_ _等_ _ _ ; 同 圆 或 等 圆中,相等的圆周角所对的弧也相等.
圆周角定理的推论 【例2】 如图所示,已知AD是△ABC
外接圆的直径,CE⊥AD交AD于点F, 交AB于点E,求证:AC2=AB·AE.
【解题探究】 欲证 AC2=AB·AE,需证AACB=AACE,从而需
证△ACE∽△ABC.
【证明】如图所示,连接 CD, ∵AD 是⊙O 的直径,∴∠ACD=90°. ∵CE⊥AD,∴∠ACE=90°-∠CAD
=∠ADC=∠B.
又∠CAE=∠BAC, ∴△ACE∽△ABC.∴AACB=AACE. 故 AC 2=AB·AE.
从要证的线段关系分析出要证的两个三角形相 似是关键.
圆周角定理的应用
【例 3】 如图所示,△ABC 的角平分线 AD 的延长线交 它的外接圆于点 E.
(1)求证:△ABE∽△ADC; (2)若△ABC 的面积 S=12AD·AE,求∠BAC 的大小.
【解析】(1)证明:∵∠BAE=∠EAC=∠DAC, ∠BEA=∠BCA=∠DCA,
∴△ABE∽△ADC.
圆周角定理
【例 1】 如图所示,弦 AB 和 CD 相交于点 P,求证:∠
APD=12(A︵D 的度数+B︵C 的度数).
【解题探究】 由于∠APD既不是圆周 角,也不是圆心角,为此我们要把它转所对的圆周角等于它 所对__圆_心__角___的一半.
2 . 圆 心 角 定 理 : 圆 心 角 的 度 数 等 于 它 所 对 _ _弧_ _ _ 的 度 数 .
3 . 推 论 1 : 同 弧 或 等 弧 所 对 的 圆 周 角 _ _ _相_ _等_ _ _ ; 同 圆 或 等 圆中,相等的圆周角所对的弧也相等.
圆周角定理的推论 【例2】 如图所示,已知AD是△ABC
外接圆的直径,CE⊥AD交AD于点F, 交AB于点E,求证:AC2=AB·AE.
【解题探究】 欲证 AC2=AB·AE,需证AACB=AACE,从而需
证△ACE∽△ABC.
【证明】如图所示,连接 CD, ∵AD 是⊙O 的直径,∴∠ACD=90°. ∵CE⊥AD,∴∠ACE=90°-∠CAD
=∠ADC=∠B.
又∠CAE=∠BAC, ∴△ACE∽△ABC.∴AACB=AACE. 故 AC 2=AB·AE.
从要证的线段关系分析出要证的两个三角形相 似是关键.
圆周角定理的应用
【例 3】 如图所示,△ABC 的角平分线 AD 的延长线交 它的外接圆于点 E.
(1)求证:△ABE∽△ADC; (2)若△ABC 的面积 S=12AD·AE,求∠BAC 的大小.
【解析】(1)证明:∵∠BAE=∠EAC=∠DAC, ∠BEA=∠BCA=∠DCA,
∴△ABE∽△ADC.