数学建模之层次分析法模型
数学建模——层次分析法模型
危害性分级模型的建立与求解1.基于层次分析模型对恐怖袭击事件危害性指标建立层次结构模型考虑到恐怖袭击事件的危害性、人员伤亡、经济损失、发生的时机、地域、针对的对象等等诸多因素有关,在构建指标体系时,无法全部考虑到所有指标,因此本文采用层次分析模型,以定性和定量相结合的方法处理指标。
根据上述分析可知, 影响恐怖事件危险性级别的因素有很多,但是,在构建综合评价指标体系时,很难一次性考虑全部细节,此时可以将问题分解成多个层次,而每个层次又包含多个要素,依据大系统理论的分解协调原理,由粗到细,从全局到局部地逐步深入分析,把危险性级别评价的诸多影响因素条理化、层次化,从而建立一个递阶层次分析模型具体的层次分析模型如图1所示。
通过附件1对所有数据指标分析,建立系统的递阶层次结构,第一层为目标层分为5大类,第二层为准则层,第三层为子准则层,第四层为方案层。
其结果目标层准则层子准则层方案层恐怖袭击危害性指标响应级别人员伤亡死亡人数级别1级别2级别3级别4级别5受伤人数被绑人数经济损失损失程度1损失程度2损失程度3损失程度4攻击类型攻击设施攻击个人攻击群体武器类型无杀伤力中小型杀伤力攻击设施1.2 构造成对比较矩阵上一层因素的同一层诸因素,用成对比较法和1~9比较尺度构建成对比较矩阵[1],直到最底层。
表2 标度------比较尺度解释标度 定义1 因素i 与因素j 相同重要 3 因素i 比因素j 稍重要 5 因素i 比因素j 较重要 7 因素i 比因素j 非常重要 9 因素i 比因素j 绝对重要2,4,6,8因素i 与因素j 的重要性的比值介于上述两个相邻等级之间倒数1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9因素j 与因素i 比较得到判断值为ij a 的互反数,ijji a a 1=1=ii a设要素为i F ,j F ;当i F 与j F 相比同等重要,有ij R =1 ;当i F 与j F 相比略为重要,有ij R =3/1 ;当i F 与j F 相比相当重要,有ij R =5/1 ;当i F 与j F 相比明显重要,有ij R =7/1 ;当i F 与j F 相比绝对重要,有ij R =9/1。
层次分析模型(数学建模)
第k层nk个元素对于第k-1层上第j个元素为 准则的单排序向量 uj(k)=(u1j(k),u2j(k),…,un j(k))T j=1,2,…nk-1 其中不受第j个元素支配的元素权重取零,
于是可得到nk×nk-1阶矩阵
u (k ) u21 = ( ) unk1 k
(k ) 11
1 A = ( aij ) n×n , aij > 0, a ji = aij
1/ 2 1 1/ 7 1/ 5 1/ 5 4 7 1 2 3 3 5 1/ 2 1 1
3 成对比较阵 5 A~成对比较阵 1 / 3 是正互反阵 A是正互反阵 1 1
要由A确定 要由 确定C1,… , Cn对O的权向量 确定 的权向量
1. 正互反阵的最大特征根和特征向量的性质 正互反矩阵A 是正单根, 正互反矩阵 的最大特征根λ是正单根, Ak e T 对应正特征向量w, 对应正特征向量 , lim T k = w, e = (1,1, L ,1) k →∞ e A e 定理1 定理1 正互反阵的最大特征根是正数, 正互反阵的最大特征根是正数, 特征向量是正向量。 特征向量是正向量。 定理2 定理2 n阶正互反阵 的最大特征根λ ≥ n , 阶正互反阵A的最大特征根 λ= n是A为一致阵的充要条件。 为一致阵的充要条件。 是 为一致阵的充要条件 一致性指标 CI =
“选择旅游地”思维过程的归 选择旅游地” 选择旅游地 纳 • 将决策问题分为 个层次:目标层 ,准则层 , 将决策问题分为3个层次 目标层O,准则层C, 个层次: 方案层P;每层有若干元素, 方案层 ;每层有若干元素, 各层元素间的关系 用相连的直线表示。 用相连的直线表示。 • 通过相互比较确定各准则对目标的权重,及各方 通过相互比较确定各准则对目标的权重, 案对每一准则的权重。 案对每一准则的权重。 • 将上述两组权重进行综合,确定各方案对目标的 将上述两组权重进行综合, 权重。 权重。 层次分析法将定性分析与定量分析结合起来 完成以上步骤,给出决策问题的定量结果。 完成以上步骤,给出决策问题的定量结果。
层次分析法-数学建模
层次分析法一、分析模型和一般步骤二、建立层次结构模型三、构造成对比较矩阵四、作一致性检验五、层次总排序及决策一.层次分析模型和一般步骤层次分析法是一种定性与定量分析相结合的多因素决策分析方法。
这种方法将决策者的经验判断给于数量化,在目标因素结构复杂且缺乏必要数据的情况下使用更为方便,因而在实践中得到广泛应用。
层次分析的四个基本步骤:(1)在确定决策的目标后,对影响目标决策的因素进行分类, 建立一个多层次结构;(2)比较同一层次中各因素关于上一层次的同一个因素的相对重要性,构造成对比较矩阵;(3)通过计算,检验成对比较矩阵的一致性,必要时对成对比较矩阵进行修改,以达到可以接受的一致性;(4)在符合一致性检验的前提下,计算与成对比较矩阵最大特征值相对应的特征向量,确定每个因素对上一层次该因素的权重;计算各因素对于系统目标的总排序权重并决策。
建立层次结构模型将问题包含的因素分层:最高层(解决问题的目的);中间层(实现总目标而采取的各种措施、必须考虑的准则等。
也可称策略层、约束层、准则层等);最低层(用于解决问题的各种措施、方案等)。
把各种所要考虑的因素放在适当的层次内。
用层次结构图清晰地表达这些因素的关系。
〔例1〕购物模型某一个顾客选购电视机时,对市场正在出售的四种电视机考虑了八项准则作为评估依据,建立层次分析模型如下:例2〕选拔干部模型对三个干部候选人二、厶、宀,按选拔干部的五个标准:品德、才能、资历、年龄和群众关系,构成如下层次分析模型:假设有三个干部候选人二、厶、宀,按选拔干部的五个标准:品德,才能,资历,年龄和群众关系,构成如下层次分析模型例3〕评选优秀学校某地区有三个学校,现在要全面考察评出一个优秀学校。
主要考虑以下几个因素:(1)教师队伍(包括平均学历和年龄结构)(2) 教学设施(3) 教学工作(包括课堂教学,课外活动,统考成绩和教学 管理) (4) 文体活动三、构造成对比较矩阵比较第i 个元素与第j 个元素相对上一层某个因素的重要性时,使用数量化的相对权重、来描述。
层次分析法(AHP)建模
新余高等专科学校 数学建模教练组 2005-
6
Mathematical Contest in Modeling
层次分析法
3
计算权向量并做一致性检验
什么是权重(权系数)? 在决策问题中,通常要把变量Z表成变量x1,x2, … , xn的线性组合:
z w1x1 w2 x2 wn xn
n
其中 wi 0, wi 1 w1, w2 ,...., w则n
1 例: A 1/ 2
2 1
6 4
列向量 归一化
0.6 0.3
0.615 0.308
0.545 0.364
按行求和
1.760 0.972
1/ 6 1/ 4 1
0.1 0.077 0.091
0.268
, 即为
归一化
0.587 0.324 w
0.089
1.769 Aw 0.974
0.268
1 (1.769 0.974 0.268) 3.009
比较因素的权向量,其不一致程度应在容许的范围内.如何确定这个范围?
Mathematical Contest in Modeling 第5讲: 层次分析法(AHP)建模
层次分析法基本简介 层次分析法的基本步骤
1. 建立层次结构模型 2. 构造成对比较阵(判断矩阵) 3. 计算权向量并做一致性检验 4. 计算组合权向量并做组合一致性检验
不完全层次结构模型
新余高等专科学校 数学建模教练组 (设计制作: syllen
权重(权系数)?
a. 将A的每一列向量归一化得 w~ij aij / n aij
w~ b. 对 ij
按行求和得w~i n w~ij
j 1
i 1
数学建模——层次分析法
数学建模——层次分析法层次分析法(Analytic Hierarchy Process,AHP)是一种用于复杂决策和评估问题的定量方法,旨在帮助决策者在多个准则和选项之间进行权衡和选择。
该方法由美国学者Thomas L. Saaty于1970年代初提出,已经广泛应用于管理、工程、经济学、环境科学等领域。
方法步骤:1.建立层次结构:将复杂的决策问题分解为不同层次的因素和准则,形成层次结构。
层次结构包括目标层、准则层和选择层。
2.创建比较矩阵:对每个层次内的准则和选择进行两两比较,确定它们之间的相对重要性。
使用尺度来表示两者之间的相对优先级,通常是1到9之间的数值。
3.计算权重:通过计算比较矩阵的特征向量,得出每个准则和选择的权重。
特征向量反映了每个准则和选择对目标的贡献程度。
4.一致性检验:检查比较矩阵的一致性,确保所做的两两比较是合理的。
如果比较矩阵不够一致,需要进行调整。
5.计算综合得分:将每个选择的权重与其所属准则的权重相乘,得出每个选择的综合得分。
综合得分反映了每个选择在整体目标中的重要性。
6.做出决策:根据综合得分,确定最佳选择。
较高的综合得分通常意味着更优选。
示例:选择旅游目的地假设你想选择一个旅游目的地,考虑了三个因素:景色美丽度、文化体验和交通便利性。
你将这三个因素作为准则,然后列出了三个潜在的旅游目的地:A、B 和C。
步骤:1.建立层次结构:2.目标层:选择最佳旅游目的地3.准则层:景色美丽度、文化体验、交通便利性4.选择层:A、B、C5.创建比较矩阵:比较准则之间的相对重要性,如景色美丽度相对于文化体验的比较,以及文化体验相对于交通便利性的比较。
使用1到9的尺度,表明一个因素比另一个因素重要多少。
6.计算权重:计算每个准则和每个选择的权重,使用特征向量法。
7.一致性检验:检查比较矩阵的一致性。
如果一致性不够,可能需要重新考虑比较。
8.计算综合得分:将每个选择的权重与其所属准则的权重相乘,得出每个选择的综合得分。
数学建模(层次分析法(AHP法))省公开课获奖课件市赛课比赛一等奖课件
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
方案层
P1 桂林
P2 黄山
P3 北戴河
例2 大学毕业生就业选择问题 取得大学毕业学位旳毕业生,在“双向选择”时,
用人单位与毕业生都有各自旳选择原则和要求。就 毕业生来说选择单位旳原则和要求是多方面旳,例 如:
①能发挥自己才干作出很好贡献(即工作岗位适合 发挥自己旳专长);
wn
1
w1 w2
即 aik akj aij i, j 1,2,, n
A
但在例2旳成对比较矩阵中, a23 7, a21 2, a13 4 a23 a21 a13
在正互反矩阵A中,若 aik akj aij ,(A 旳元素具有 传递性)则称A为一致阵。
定理:n 阶正互反阵A旳最大特征根max n, 当且仅当 =n时A为一致阵
这种措施旳特点是在对复杂旳决策问题旳 本质、影响原因及其内在关系等进行进一 步分析旳基础上,利用较少旳定量信息使 决策旳思维过程数学化,从而为多目旳、 多准则或无构造特征旳复杂决策问题提供 简便旳决策措施。
是对难于完全定量旳复杂系统作出决策旳 模型和措施。
层次分析法在经济、科技、文化、军事、 环境乃至社会发展等方面旳管理决策中都 有广泛旳应用。
比较同一层次中每个原因有关上一层次 旳同一种原因旳相对主要性
在拟定各层次各原因之间旳权重时,假如只是定 性旳成果,则经常不轻易被别人接受,因而Saaty 等人提出构造:成对比较矩阵A = (aij)nn,即: 1. 不把全部原因放在一起比较,而是两两相互比较。 2. 对此时采用相对尺度,以尽量降低性质不同旳诸 原因相互比较旳困难,以提升精确度。
数学建模第三讲层次分析法
数学建模第三讲层次分析法在数学建模的领域中,层次分析法(Analytic Hierarchy Process,简称 AHP)是一种相当实用且重要的决策方法。
它能够帮助我们在面对复杂的多准则决策问题时,做出更为合理、科学的决策。
那么,什么是层次分析法呢?简单来说,层次分析法就是把一个复杂的问题分解成若干个层次,通过两两比较的方式,确定各层次元素之间的相对重要性,最后综合这些比较结果,得出最终的决策方案。
比如说,我们要选择一个旅游目的地。
这时候,可能会考虑多个因素,比如景点吸引力、交通便利性、住宿条件、餐饮质量、费用等等。
这些因素就构成了不同的层次。
然后,我们会对每个因素进行两两比较,比如景点吸引力比交通便利性更重要吗?重要多少?通过这样的比较,我们就能给每个因素赋予一个相对的权重。
为了更清楚地理解层次分析法,我们来看看它的具体步骤。
第一步,建立层次结构模型。
这是层次分析法的基础。
我们需要把问题分解成目标层、准则层和方案层。
目标层就是我们最终要实现的目标,比如选择最佳的旅游目的地。
准则层就是影响目标实现的各种因素,像前面提到的景点吸引力、交通便利性等等。
方案层就是我们可以选择的具体方案,比如去三亚、去桂林、去丽江等等。
第二步,构造判断矩阵。
在这一步,我们要对同一层次的元素进行两两比较,比较它们对于上一层某个元素的重要性。
比较的结果通常用 1 9 标度法来表示。
比如说,如果因素 A 比因素 B 稍微重要,就给A 对B 的比较值赋 3;如果 A 比 B 明显重要,就赋 5;如果 A 比 B 极端重要,就赋 9。
反过来,如果 B 比 A 稍微重要,就给 B 对 A 的比较值赋 1/3,以此类推。
第三步,计算权重向量并进行一致性检验。
通过数学方法,比如特征根法,计算出每个判断矩阵的最大特征值和对应的特征向量。
这个特征向量就是我们所需要的权重向量。
但是,为了确保我们的判断是合理的,还需要进行一致性检验。
如果一致性比率小于 01,就认为判断矩阵的一致性是可以接受的;否则,就需要重新调整判断矩阵。
数学建模(层次分析法(AHP法))
判断矩阵元素a 判断矩阵元素 ij的标度方法
标度 1 3 5 7 9 2 , 4 , 6, 8 倒数 含义 表示两个因素相比, 表示两个因素相比,具有同样重要性 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素极端重要 上述两相邻判断的中值
层次分析法在经济、科技、文化、军事、 环境乃至社会发展等方面的管理决策中都 有广泛的应用。 常用来解决诸如综合评价、选择决策方案、 估计和预测、投入量的分配等问题。
层次分析法建模
一 、问题的提出 日常生活中有许多决策问题。 日常生活中有许多决策问题。决策是指 在面临多种方案时需要依据一定的标准选择 某一种方案。 某一种方案。 例1 某人准备选购一台电冰箱 他对市场上的6 他对市场上的6种不同类型的电冰箱进行了解 选取一些中间指标进行考察。例如电冰 指标进行考察 后,选取一些中间指标进行考察。例如电冰 箱的容量、制冷级别、价格、型式、耗电量、 箱的容量、制冷级别、价格、型式、耗电量、 外界信誉、售后服务等 外界信誉、售后服务等。
目标层
O(选择旅游地 选择旅游地) 选择旅游地
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
要比较各准则C1,C2,… , Cn对目标O的重要性 要比较各准则 对目标 的重要性
Ci :Cj ⇒aij
选 择 C1 旅 C2 游 C 3 地
C4 C5 C1
层次分析法(AHP法 层次分析法(AHP法)
Analytic Hierarchy Process
数学建模--层次分析法5 资金分配例子
问题的提出:
某工厂有一笔企业留成利润,要由领 导决定如何利用。可供选择的方案有: • 以奖金名义发给职工; • 扩建集体福利设施; • 引进新技术、新设备等。 为进一步促进企业发展,如何合理使 用这笔利润?
问题的分析:
上述三个方案的目的都是为了 更好地调动职工劳动积极性,提高 企业技术水平和改善职工物质生活, 都是为了促进企业更好的发展,因 此可以利用层次分析 层次分析来建立模型。 层次分析
2:构造判断矩阵C1-P,C2-P,C3-P: C1-P,C2-P,C3C1 P1 P1 P2 C2 P2 P3 C3 P1 P2 1 1/3 P2 1 5 P1 1 1/2 P2 3 1 P3 1/5 1 P2 2 1 W 0.75 0.25 W 0.167 0.833
(0.667, 0.333) T λmax均为2, 对应的特征向量分别为: (0.75 0.25)T5Fra bibliotek扩建福利事 业P2
3
引进新设备P3
1
3
5
求解的特征值:
Z C1 C2 C3 C1 1 5 3 C2 1/5 1 1/3 C3 1/3 3 1 W 0.105 0.637 0.258
由表可解出λmax =3.038,从而 W=(0.105,0.637,0.258) T由公式得 CI=0.019 CR=0.033
3:检验
总排序一致性检验: CI=a1*cI1+ a2*CI2+a3*CI3 =0.105×0+0.637 × 0 +0.258 × × 0=0 从而CR=0<0.1
4:结论
由上可知,层次总排序结果具有满意的一致性.所以合 理利用利润,所考虑的三种方案相对优先排序为: P3优于P2,P2优于P1. 利润分配比例为 P3占53.1%,P2占27.1 % ,P1占19.8 % .
数学建模模型常用的四大模型及对应算法原理总结
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
数学建模层次分析法
(Analytic Hierarchy Process) 建模
数学建模
模型背景 基本步骤 应用实例
一、模型背景
❖ 美国运筹学家匹兹堡大学教授Saaty在20世纪70 年代初提出的一种层次权重决策分析方法。
❖层次分析法(Analytic Hierarchy Process简称AHP) 是一种定性和定量分析相结合的决策分析方法。
对总目标Z的排序为
A1
A2
Am
a1, a2 ,, am
B层n个因素对上层 A中因素为 Aj
其层次单排序为
B1
B2
Bn b1 j ,b2 j ,,bnj ( j 1,2,, m)
层次 A A1
层次 B a1
B1
b11
B2
b21
.
.
.
.
.
.
Bn
bn1
A2 … Am B 层次总
a2
… am 排序权值
RI 0i RIi 0.58 i 1
CR CI / RI 0.087 / 0.58 0.015 0.1
C5
0.118 0.166 0.166 0.668
层次P的 总排序
0.3 0.246 0.456
层次分析法的优点
系统性——将对象视作系统,按照分解、比较、判断、综合 的思维方式进行决策。成为成为继机理分析、统 计分析之后发展起来的系统分析的重要工具;
w(2) (0.263, 0.475, 0.055, 0.090, 0.110)T
同样求第3层(方案)对第2层每一元素(准则)的权向量
方案层对C1(景色)的 成对比较阵
方案层对C2(费用)的 成对比较阵
…Cn
数学建模常见评价模型简介
数学建模常见评价模型简介Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998常见评价模型简介评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O ,准则层C ,方案层P ;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵标度值 含义1 两因素相比,具有同等重要性 3 两因素相比,前者比后者稍重要 5 两因素相比,前者比后者明显重要 7 两因素相比,前者比后者强烈重要 9 两因素相比,前者比后者极端重要2、4、6、8表示上述相邻判断的中间值以上各数值的倒数若指标i 与指标j 比较相对重要性用上述之一数值标度,则指标j 与指标i 的相对重要性用上述数值的倒数标度表1 1~9标度的含义设要比较各准则n C C C ,,,21 对目标O 的重要性,记判断矩阵为A显然,A 是正互反阵。
层次分析法-数学建模
步骤5 层次总排序即求各方案的综合得分
前面我们求的都是在一层中各因素的权重,这个过程称为单
层次排序。不妨设准则层权向量W (w1, w2,L , wn ),T 而方案层有 l
个方案可供选择,且每个方案的权向量分别为 1, 2,L , l 。那么 每个方案对最终目标的影响程度(C1,C2,L ,Cl )T 就可以通过下面的 式子算出来了。
合理分配企业利润
准则层 调动积极性 提高企业质量 改善生活条件
方案层 发奖金 扩展福利设施 引进人才和设备
在层次划分及因素选取时,我们要注意三点:
(1)上层对下层有支配作用;
(2)同一层因素不存在支配关系(相互独立);
(3)每层因素一般不要超过9个。 (心理学家通过实验认为,人对许多东西优劣及优劣 程度判断能力,最多大致在9个以内,超过这个范围就 会判断失真。例如,人们在面对琳琅满目的商品常常会 眼花缭乱,难以抉择。)
23
9
重要性
xi比 x j 相同 稍重要 重要
绝对 很重要 重要
aij
1
3
5
7
9
在每两个等级之间有一个中间状态, aij 可分别 取值 2 , 4 ,L , 8 。
例如:评价电影的好坏
目标层
评价
准则层 娱乐性 x1 艺术性 x2 教育性 x3
方案层 电影1
电影2
……
这
个人认为:
x1 : x2 3
层次分析法是将定性问题定量化处理的一种有效手 段。
面临各种各样的方案,要进行比较、判断、评价、 最后作出决策。这个过程主观因素占有相当的比重给用 数学方法解决问题带来不便。T.L.saaty等人20世纪在七 十年代提出了一种能有效处理这类问题的实用方法。
数学建模方法详解--三种最常用算法
数学建模方法详解--三种最常用算法一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵()1,0,ij ij ji n nijA a a a a ⨯=>=表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:,ij jk ik a a a ⋅= ,,1,2,,i j k n = (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记作λ)的特征向量(归一化后)作为权向量w ,即w 满足:Aw w λ= (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91-尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根λ的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n λ≥,而当n λ=时A 是一致阵.所以λ比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n λ-数值的大小衡量A 的不一致程度.Saaty将1nCI n λ-=- (3)定义为一致性指标.0CI =时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除λ外其余1n -个特征根的平均值.为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ',然后计算A '的一致性指标CI .n 1 2 3 4 5 6 7 8 9 10 11表1 随机一致性指标RI 的数值表中1,2n =时0RI =,是因为2,1阶的正互反阵总是一致阵.对于3n ≥的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI=< (4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:()()()1,3,4,k k k w W w k s -== (5)其中()kW 是以第k 层对第1k -层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:()()()()()132s s s w W W W w -= (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为()()p n p CI CI ,,1 (n 是第1-p 层因素的数目),随机一致性指标为RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51()()1,,p p nRI RI ,定义 ()()()()11,,P p p p n CI CI CI w -⎡⎤=⎣⎦ ()()()()11,,p p p p n RI RI RI w-⎡⎤=⎣⎦ 则第p 层的组合一致性比率为:()()(),3,4,,p p p CI CRp s RI== (7) 第p 层通过组合一致性检验的条件为()0.1pCR <.定义最下层(第s 层)对第一层的组合一致性比率为:()2*sP p CR CR ==∑ (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵 从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91-比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径.(五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题. 1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题. 定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根λ;2)λ对应正特征向量w (ω的所有分量为正数);3)w IA I I A k k k =T ∞→lim ,其中()T=1,1,1 I ,w 是对应λ的归一化特征向量.定理2 n 阶正互反阵A 的最大特征根n λ≥;当n λ=时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n λ=.2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量()0wb .计算()()1,0,1,2,k k w Aw k +==c .()1k w+ 归一化,即令()()()∑=+++=ni k ik k ww1111~~ωd .对于预先给定的精度ε,当 ()()()1||1,2,,k k i i i n ωωε+-<= 时,()1k w +即为所求的特征向量;否则返回be. 计算最大特征根()()111k n i k i in ωλω+==∑这是求最大特征根对应特征向量的迭代法,()0w 可任选或取下面方法得到的结果.(2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ij iji a aω==∑b .对ij ω按行求和得1ni ij j ωω==∑ c .将i ω归一化()*121,,,ni i n i w ωωωωωωT===∑ 即为近似特征向量. d. 计算()11n ii iAw n λω==∑,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij ω按行求积并开n 次方,即11nn i ij j ωω=⎛⎫= ⎪⎝⎭∏ .根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量()T=n w ωω,,1 的关系满iij ja ωω=,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ijωω相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: ()21,,11min i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (9) 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i ω的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:()21,,11min ln ln i nn iij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (10) 则化为求解关于ln i ω的线性方程组.可以验证,如此解得的i ω恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵()ij A a =构造修正阵()ij Aa = 的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i jθθθ≠≠⎧⎪==≠⎨⎪+=⎩ 为第行的个数, (11)θ表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵. (六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2 肉、面包、蔬菜三类食品所含的营养成分及单价食品 维生素A/(IU/g) 维生素B/(mg/g) 热量/(kJ/g) 单价/(元/g ) 肉 面包 蔬菜0.3527 025 0.0021 0.00060.0020 11.93 11.511.04 0.02750.0060. 0.007该人体重为55kg ,每天对各类营养的最低需求为:维生素A 7500国际单位 (IU)维生素B 1.6338mg热量 R 8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构② 根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵WD ED 13 E311max 2λ=,10CI =,100.1CR =<,主特征向量()0.75,0.25W T=故第二层元素排序总权重为()10.75,0.25W T=每日需求W营养D 蔬菜支出E维生素B 肉 价格F面包 维生素A 热量R表4 比较判断矩阵D ABRA 1 1 2 B112R 5.05.01111max 1113,0,0,0.58CI CR RI λ==== ,主特征向量()0.4,0.4,0.2W T= 故相对权重()210.4,0.4,0.2,0P T=③ 第三层组合一致性检验问题因为()()2111211112120;0.435CI CI CI W RI RI RI W ====,212200.1CR CR CI RI =+=<故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:()()221221120.3,0.3,0.15,0.25W P W P P W T===求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化 食品维生素A维生素B热量R单价F肉 0.0139 0.44680.4872 0.1051 面包 0.0000 0.1277 0.4702 0.4819 蔬菜0.98610.42550.04260.4310则最终的第四层各元素的综合权重向量为:()3320.2376,0.2293,0.5331W P W T==,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k =,20.2293x k =,30.5331x k =,代入()1LP123min 0.02750.0060.007f x x x =++131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x +≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩则得k f 0116.0min =()13.411375000.0017 1.6338..26.02828548.50k k s t LP k k ≥⎧⎪≥⎪⎨≥⎪⎪≥⎩容易求得1418.1k =,故得最优解()*336.9350,325.1650,755.9767x T=;最优值 *16.4497f =,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量()12,,,m b b b b = ,其中, 01j b <<,m 为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1njj j nj bb ≤≤===∑时,最大隶属原则最有效;而在()1max 01,jj nbc c ≤≤=<< 1nj j b nc ==∑时,最大隶属原则完全失效,且1max jj nb ≤≤越大(相对于1nj j b =∑而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max jj nb ≤≤在1njj b =∑中的比重有关,于是令:11max njjj nj b b β≤≤==∑ (12)显然,当11max 1,1njj j nj bb ≤≤===∑时,则1β=为β的最大值,当()1max 01jj nb c c ≤≤=<<,1njj bnc==∑时,有1n β=为β的最小值,即得到β的取值范围为:11n β≤≤.由于在最大隶属原则完全失效时,1n β=而不为0,所以不宜直接用β值来判断最大隶属原则的有效性.为此设:()()11111n n n n βββ--'==-- (13)则β'可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j nj b ≤≤1sec (jnj b ≤≤1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b bγ≤≤==∑ (14)可见: 当()1,1,0,0,,0b = 时,γ取得最大值12.当()0,1,0,0,,0b = 时,γ取得最小值0.即γ的取值范围为012γ≤≤,设()02120γγγ-'==-.一般地,β'值越大最大隶属原则有效程度越高;而γ'值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:()112121n n n n βββαγγγ'--⎛⎫=== ⎪'--⎝⎭ (15) 使用α指标能更准确地表明实施最大隶属原则的有效性.2. α指标的使用从α指标的计算公式看出α与γ成反比,与β成正比.由β与γ的取值范围,可以讨论α的取值范围: 当γ取最大值,β取最小值时,α将取得最小值0;当γ取最小值,β取最大值时,α将取得最大值:因为 0lim γα→=+∞,所以可定义0γ=时,α=+∞.即:0α≤<+∞.由以上讨论,可得如下结论:当α=+∞ 时,可认定施行最大隶属原则完全有效;当1α≤<+∞时,可认为施行最大隶属原则非常有效;当0.51α≤<时,可认为施行最大隶属原则比较有效,其有效程度即为α值;当00.5α<<时可认为施行最大隶属原则是最低效的;而当0α=时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据β值的大小来直接判断使用最大隶属原则的有效性而不必计算α值.根据α与β之间的关系,当0.7β≥,且4n >时,一定存在1α>.通常评价等级数取4和9之间,所以4n >这一条件往往可以忽略,只要0.7β≥就可免算α值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对()12,,,m b b b b = 进行归一化处理而得到b ',则可直接根据b '进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设(),,,D V A c ω=是一个带出发点s v 和收点t v 的容量-费用网络,对于任意(),ijv v A ∈,ijc表示弧(),i j v v 上的容量,ij ω表示弧(),i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧(),i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:()()()()()()(){}(),0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v Av v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c ω∈∈∈∈∈∈∈⎧-=⎪⎪-=-⎪⎪⎨⎪-=∈⎪⎪≤≤⎪⎩∑∑∑∑∑∑∑ 把条件(3)中的“容量大” 看作A 上的一个模糊子集A ,定义其隶属函数μ:[]0,1A →为:()()00,0,1,ij ij ij i j A d c c v ij c c v v e c cμμ--≤≤⎧⎪==⎨->⎪⎩其中 ()1,i j ij v v c A c -⎡⎤⎢⎥=⎢⎥⎣⎦∑ (平均容量)()()()()()()21,2211,,0,1lg ,1i j i j i j ij v v A ij ij v v A v v A A c c d A c c A c c -∈--∈∈⎧⎡⎤⎪⎢⎥-≤⎪⎢⎥⎣⎦⎪=⎨⎡⎤⎡⎤⎪⎢⎥⎢⎥-->⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩∑∑∑建立ij μ是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧(),i j v v ,人为地降低运价ij ω,形成“虚拟运价”ij ω,其中ij ω满足:ij c 越大,相应的ij ω的调整幅度也越大.选取ij ω为()1kij ij ij ωωμ=-,(),i j v v A ∈.其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij ω代替原模型M 中的ij ω,得到一个新的模型M '.用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价 此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一)灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理分别用时间序列()k的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各值均大于零,且数列有共同的起点.2. 求关联系数 ()()()()()()()()()0000min min ||max max ||||max max ||k i k k i k ikiki k k i k k i k ikx x x x x x x x ρξρ-+-=-+-3. 取分辨系数 01ρ<< 4. 求关联度()()11ni k i k k r n ξ==∑(二) 灰色预测1.灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模;(2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3)灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列(){}0k x ()1,2,,k n = 进行一次累加生成序列()()101kk i i x x =⎧⎫=⎨⎬⎩⎭∑()1,2,,k n =(2)对0x 数列进行光滑性检验:00,k λ∀>∃,当0k k >时:()()()()0011101k k k k i i x x x x λ--==<∑文献[11]进一步指出只要()()0101k k i i x x -=∑为k 的递减函数即可.(3)对1x 作紧邻生成:()()()()1111*1*,2,3,,k k k Z x x k n αα-=+-=。
层次分析法评价模型
层次分析法评价模型评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵元素之间两两对比,对比采用美国运筹学家A.L.Saaty 教授提出的1~9比率标度法(表1)对不同指标进行两两比较,构造判断矩阵。
数学建模的层次分析法
1、层次分析法的基本概念
1、层次分析法的基本概念
层次分析法(Analytic Hierarchy Process,AHP)是一种广泛应用于数学 建模中的方法。它通过将复杂问题分解为多个层次,帮助我们更好地理解和解决 实际问题。层次分析法的基本原理是将一个复杂问题分解为多个相关因素,并根 据这些因素之间的相对重要性进行排序。
3、层次分析法的实际应用
(4)权重计算:通过计算判断矩阵的特征向量,得到每个因素的权重值。 (5)一致性检验:对判断矩阵进行一致性检验,以确保得到的权重值是合理的。
3、层次分析法的实际应用
(6)结果分析:根据权重值的大小,对每个因素进行分析,从而得到问题的解 决方案。层次分析法在多目标决策、资源分配、风险评估等领域有着广泛的应用。 例如,在多目标决策中,层次分析法可以帮助我们确定各目标的权重,从而得到 最优解。
三、大学生毕业设计质量评价的 数学模型建立
三、大学生毕业设计质量评价的数学模型建立
1、确定评价指标:根据模糊层次分析法的原理,我们首先需要确定评价指标 体系。选取与毕业设计质量相关的指标,建立多级递阶结构,其中一级指标为选 题质量、设计过程、成果质量等,二级指标为选题难度、选题新颖性、设计规范 性等。
2、数学建模在各领域的应用
在科学研究领域,数学建模被广泛应用于物理学、化学、生物学等学科。例 如,牛顿第二定律、万有引力定律等都是通过数学建模得到的。在工程技术领域, 数学建模也发挥着重要的作用。例如,桥梁设计、建筑设计等领域都需要用到数 学建模来分析结构稳定性和安全性。此外,数学建模在金融、经济、社会等领域 也有着广泛的应用。
参考内容
一、引言
一、引言
随着高等教育的普及化,大学生毕业设计的质量评价已成为一个重要的研究 领域。毕业设计是大学生综合素质和教育水平的直接体现,因此,对其质量进行 科学、客观的评价至关重要。本次演示将介绍一种基于模糊层次分析法(Fuzzy Analytic Hierarchy Process,FAHP)的大学生毕业设计质量评价数学建模方 法,旨在为提高毕业设计质量和评价效率提供有效手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 便于定性到定量的转化:
尺度 aij
1 2 34
Ci
:
C
的重要性
j
相同
稍强
5 6 78 9 强 明显强 绝对强
aij = 1,1/2, ,…1/9 ~ Ci : C j 的重要性与上面相反 • 心理学家认为成对比较的因素不宜超过9个 • 用1~3,1~5,…1~17,…,1p~9p (p=2,3,4,5), d+0.1~d+0.9 (d=1,2,3,4)等27种比较尺度对若干实例构造成对比较 阵,算出权向量,与实际对比发现, 1~9尺度较优。
一致性检验 对A确定不一致的允许范围 已知:n 阶一致阵的唯一非零特征根为n
可证:n 阶正互反阵最大特征根 n, 且 =n时为一致阵
定义一致性指标: CI n CI 越大,不一致越严重
n 1
为衡量CI 的大小,引入随机一致性指标 RI——随机模 拟得到aij , 形成A,计算CI 即得RI。
准则层对目标的成对比较阵
1 1/ 2
2
1
A 1/ 4 1/ 7
1/ 3
1/ 5
1/ 3 1/ 5
4 3 3
7
5
5
1 1/ 2 1/ 3
2
1
1
3 1 1
权向量(特征向量)w =(0.263,0.475,0.055,0.090,0.110)T
一致性指标 CI 5.073 5 0.018 5 1
Saaty的结果如下
n 1 2 3 4 5 6 7 8 9 10 11 RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51
定义一致性比率 CR = CI/RI
当CR<0.1时,通过一致性检验
“选择旅游地”中 准则层对目标的权 向量及一致性检验
最大特征根=5.073
• Saaty于1970年代提出层次分析法 AHP (Analytic Hierarchy Process)
• AHP——一种定性与定量相结合的、 系统化、层次化的分析方法
一. 层次分析法的基本步骤
例. 选择旅游地 如何在3个目的地中按照景色、 费用、居住条件等因素选择.
目标层
O(选择旅游地)
准则层
k
3.005
2 0.082 0.236 0.682
3.002
3 0.429 0.429 0.142
3
4 0.633 0.193 0.175
5 0.166 0.166 0.668
3.009 3
w(2) 0.263 0.475 0.055 0.090 0.110
CI k
0.003
0.001
0
0.005 0
第八章 离散模型
层次分析模型
y
离散模型
• 离散模型:差分方程(第7章)、 整数规划(第4章)、图论、对策 论、网络流、… …
• 分析社会经济系统的有力工具
• 只用到代数、集合及图论(少许) 的知识
8.1 层次分析模型
背 • 日常工作、生活中的决策问题 景 • 涉及经济、社会等方面的因素
• 作比较判断时人的主观选择起相当 大的作用,各因素的重要性难以量化
方案层对C2(费用) 的成对比较阵
…Cn
1 2 5
B1 1/ 2 1
2
1/ 5 1/ 2 1
1 1/3 1/8
B 2
3
1
1/ 3
8 3 1
…Bn
最大特征根 1
2
… n
权向量
w1(3)
w2(3)
… wn(3)
组合权向量 第3层对第2层的计算结果
k1
0.595
w(3) k
0.277
(C1 : C2 ) 一致比较
不一致
a13 4 (C1 : C3 )
a23 8 (C2 : C3 )
允许不一致,但要确定不一致的允许范围
考察完全一致的情况
W ( 1) w1, w2 ,wn
令aij wi / wj
w1
w1
w1 w2
w2
A
w1
w2 w2
0,
a ji
1 aij
选 择
1 1/ 2 4 3 3
2
1
7
5
5
A~成对比较阵
旅 A 1/ 4 1/ 7
游 地
1/ 3
1/ 5
1/ 3 1/ 5
1 2
1/ 2 1
1/ 3
1
A是正互反阵
3 1 1
要由A确定C1,… , Cn对O的权向量
成对比较阵和权向量
1 1/ 2 4
成对比较的不一致情况
RI=0.58 (n=3), CIk 均可通过一致性检验
组合一致 性检验
方案P1对目标的组合权重为0.5950.263+ …=0.300
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
方案层
P1 桂林
P2 黄山
P3 北戴河
“选择旅游地”思维过程的归 纳• 将决策问题分为3个层次:目标层O,准则层C, 方案层P;每层有若干元素, 各层元素间的关系 用相连的直线表示。
• 通过相互比较确定各准则对目标的权重,及各方 案对每一准则的权重。
wn
wn
wn
w1
w2
wn
一致阵 • A的秩为1,A的唯一非零特征根为n 性质 • A的任一列向量是对应于n 的特征向量
• A的归一化特征向量可作为权向量
对于不一致(但在允许范围内)的成对
比较阵A,建议用对应于最大特征根
的特征向量作为权向量w ,即
Aw w
成对比较阵和权向量 Saaty等人提出1~9尺度——aij 取值 比较尺度aij 1,2,… , 9及其互反数1,1/2, … , 1/9
随机一致性指标 RI=1.12 (查表) 一致性比率CR=0.018/1.12=0.016<0.1
通过一致 性检验
组合权向量
记第2层(准则)对第1层(目标)
的权向量为w(2) (w(2) ,, w(2) )T
1
n
同样求第3层(方案)对第2层每一元素(准则)的权向量
方案层对C1(景色) 的成对比较阵
w (w1, w2 ,wn )T ~ 权向量
w n
w n
w1 w2
w1
wn
w2
wn
w n
wn
成对比较阵和权向量 成对比较完全一致的情况 满足 aij a jk aik , i, j, k 1,2,, n
w1
w1
w1
w2
w2
w2
A
w1
w2
w1
wn
w2
wn
的正互反阵A称一致阵,如
• 将上述两组权重进行综合,确定各方案对目标的 权重。
层次分析法将定性分析与定量分析结合起来完 成以上步骤,给出决策问题的定量结果。
层次分析法的基本步骤
成对比较阵 和权向量
元素之间两两对比,对比采用相对尺度
设要比较各准则C1,C2,… , Cn对目标O的重要性
Ci : C j aij
A (aij )nn , aij