大学物理实验报告
大学物理实验电子束的偏转实验报告
大学物理实验电子束的偏转实验报告一、实验目的1、研究电子束在电场和磁场中的偏转规律。
2、了解电子束偏转的控制方法和应用。
3、掌握测量电子束偏转量的实验技术。
二、实验原理1、电子在电场中的偏转当电子在平行板电容器的电场中运动时,受到电场力的作用而发生偏转。
假设电子从阴极发射出来时的初速度为$v_0$,平行板电容器的板间电压为$U$,板间距为$d$,板长为$L$,则电子在电场中的加速度为$a =\frac{eU}{md}$,其中$e$为电子电荷量,$m$为电子质量。
电子在电场中的偏转位移$y$可以通过以下公式计算:$y =\frac{1}{2}at^2$,其中$t$为电子在平行板电容器中的运动时间,$t =\frac{L}{v_0}$。
2、电子在磁场中的偏转当电子在均匀磁场中运动时,受到洛伦兹力的作用而发生偏转。
假设电子以速度$v$垂直进入磁场,磁感应强度为$B$,则电子受到的洛伦兹力为$F = evB$,电子在磁场中做匀速圆周运动,其半径$r$为$r=\frac{mv}{eB}$。
电子在磁场中的偏转位移$y$可以通过几何关系计算得出。
三、实验仪器电子束偏转实验仪、直流稳压电源、示波器、多用表等。
四、实验步骤1、电场偏转实验(1)连接实验仪器,将电子束偏转实验仪的电源接通,调节电压输出,使平行板电容器的板间电压达到设定值。
(2)打开示波器,调整示波器的参数,使其能够清晰地显示电子束的偏转轨迹。
(3)观察电子束在电场中的偏转情况,记录不同电压下电子束的偏转位移。
2、磁场偏转实验(1)将磁场装置接入实验电路,调节磁场强度,使其达到设定值。
(2)观察电子束在磁场中的偏转情况,记录不同磁场强度下电子束的偏转位移。
五、实验数据及处理1、电场偏转实验数据|板间电压(V)|偏转位移(mm)||||| 50 | 25 || 100 | 50 || 150 | 75 || 200 | 100 |以板间电压为横坐标,偏转位移为纵坐标,绘制出电场偏转的特性曲线。
五邑大学物理实验报告最终版
实验安全
在实验过程中需要注意安全,避免触 碰光学元件和钠光灯,以免烫伤或损 坏仪器。
03 实验数据与结果
实验数据记录
01
02
03
原始数据
详细记录了实验过程中直 接观测或测量得到的数据, 包括电压、电流、时间、 温度等。
牛顿第二定律公式
$F = ma$,其中$F$为力,$m$为质量, $a$为加速度
THANKS FOR WATCHING
感谢您的观看
结果比较
结果解释
将本次实验结果与理论值、前人研究或同 类实验进行比较,分析差异及可能原因。
对实验结果进行解释和说明,阐述其物理意 义和实际应用价值。
实验误差讨论
01
02
03
04
误差来源
分析了实验中可能存在的误差 来源,如仪器误差、操作误差
、环境误差等。
误差估算
对各项误差进行了估算和量化 ,给出了误差范围或置信区间
相关物理公式及推导
光的干涉公式
$Delta L = mlambda$,其中$Delta L$ 为光程差,$m$为干涉级数,$lambda$
为光的波长
欧姆定律公式
$I = frac{U}{R}$,其中$I$为电流,$U$ 为电压,$R$为电阻
光的衍射公式
$asintheta = mlambda$,其中$a$为衍 射孔径,$theta$为衍射角,$m$为衍射 级数,$lambda$为光的波长
实验步骤与操作
制定详细的实验步骤和操作方法,指导学生 进行实验操作。
实验仪器与材料
准备实验所需的仪器、设备和材料,确保实 验的顺利进行。
大学物理实验报告(通用10篇)
大学物理实验报告(通用10篇)大学物理实验报告(通用10篇)在当下这个社会中,我们使用报告的情况越来越多,报告具有语言陈述性的特点。
你所见过的报告是什么样的呢?以下是小编精心整理的大学物理实验报告,仅供参考,希望能够帮助到大家。
大学物理实验报告1一、演示目的气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。
二、原理首先让尖端电极和球型电极与平板电极的距离相等。
尖端电极放电,而球型电极未放电。
这是由于电荷在导体上的分布与导体的曲率半径有关。
导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。
反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。
当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。
而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。
三、装置一个尖端电极和一个球型电极及平板电极。
四、现象演示让尖端电极和球型电极与平板电极的距离相等。
尖端电极放电,而球型电极未放电。
接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生五、讨论与思考雷电暴风雨时,最好不要在空旷平坦的田野上行走。
为什么?大学物理实验报告2实验报告一.预习报告1.简要原理2.注意事项二.实验目的三.实验器材四.实验原理五.实验内容、步骤六.实验数据记录与处理七.实验结果分析以及实验心得八.原始数据记录栏(最后一页)把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报,就叫实验报告。
实验报告的种类因科学实验的对象而异。
如化学实验的报告叫化学实验报告,物理实验的报告就叫物理实验报告。
随着科学事业的日益发展,实验的种类、项目等日见繁多,但其格式大同小异,比较固定。
实验报告必须在科学实验的基础上进行。
它主要的用途在于帮助实验者不断地积累研究资料,总结研究成果。
大学普通物理实验报告模板
大学普通物理实验报告模板实验名称:实验目的:本次实验的目的是验证牛顿第二定律,即物体的加速度与作用力成正比,与质量成反比。
通过实验,我们能够更好地理解牛顿第二定律的基本原理,并掌握实验操作技能。
实验器材:实验器材包括:电子秤、砝码、滑块、滑轨、支架、砝码等。
实验步骤:1. 安装好实验装置,确保滑块紧贴滑轨。
2. 将电子秤调零,并记录电子秤读数。
3. 将砝码挂在支架上,作为阻力。
4. 将滑块置于支架上,并调节阻力大小,使滑块做匀速运动。
5. 记录滑块的质量、阻力、速度等数据。
6. 在滑块上添加砝码,改变滑块的质量,重复实验步骤4-5。
7. 记录每次实验的数据,并进行分析。
实验结果:通过实验数据的分析,我们发现滑块的加速度与作用力成正比,与质量成反比。
具体数据如下表所示(单位:g):| 质量(kg)| 阻力(N)| 加速度(m/s²)| 加速度与质量的比值(m/s²/kg)| 加速度与阻力的比值(m/s²/N)|| --- | --- | --- | --- | --- || 0.1 | 0.5 | 5.0 | 50.0 | 1.0 || 0.2 | 1.0 | 2.5 | 50.0 | 0.5 || 0.3 | 1.5 | 2.5 | 57.1 | 0.433 || ... | ... | ... | ... | ... |实验结论:通过本次实验,我们验证了牛顿第二定律的基本原理,即物体的加速度与作用力成正比,与质量成反比。
实验数据与理论值相符,说明我们的实验方法正确,实验结果可靠。
此外,我们还学会了如何使用电子秤等实验器材,掌握了基本的实验操作技能。
讨论与建议:本次实验虽然取得了一定的成果,但仍存在一些不足之处。
首先,实验过程中可能存在误差,需要进一步优化实验方法,提高实验精度。
其次,实验数据可能受到环境因素的影响,需要进一步研究环境因素对实验结果的影响。
最后,我们可以考虑增加一些有趣的实验内容,如不同阻力的实验等,以提高学生对物理知识的兴趣和掌握程度。
大学物理实验密度测量实验报告
实验名称:密度测量实验日期:2023年11月实验地点:物理实验室实验者:[姓名]指导教师:[指导教师姓名]一、实验目的1. 掌握使用物理天平、量筒、密度瓶等仪器测量物体密度的方法。
2. 了解流体静力称衡法和比重瓶法测量固体密度的原理。
3. 培养实验操作技能和数据处理能力。
二、实验原理密度是物质的一种特性,表示单位体积内物质的质量。
其计算公式为:ρ = m/V,其中ρ为密度,m为质量,V为体积。
本实验采用以下两种方法测量固体密度:1. 流体静力称衡法:将被测物体放入已知密度的液体中,通过测量物体在空气中和液体中的质量,利用阿基米德原理计算出物体的体积,从而求出密度。
2. 比重瓶法:将已知体积的液体倒入比重瓶中,将待测物体放入比重瓶中,通过测量液体体积的变化,计算物体的体积,进而求出密度。
三、实验仪器与材料1. 物理天平(感量0.1g)2. 量筒(100ml)3. 密度瓶(100ml)4. 烧杯(450ml)5. 待测固体(如金属块、石蜡块等)6. 水和酒精7. 细线四、实验步骤1. 流体静力称衡法(1)将待测物体放在天平上,记录其质量m1。
(2)将待测物体放入盛有水的量筒中,记录物体在空气中的质量m2。
(3)将待测物体取出,将量筒中的水倒入烧杯中,用天平称量烧杯和水的总质量m3。
(4)根据阿基米德原理,计算物体体积V = (m1 - m2) / ρ水,其中ρ水为水的密度。
(5)根据公式ρ = m1 / V,计算物体密度。
2. 比重瓶法(1)将已知体积的液体倒入比重瓶中,记录液体体积V0。
(2)将待测物体放入比重瓶中,用滴管调整液体体积,使比重瓶中的液体体积恢复到V0。
(3)将比重瓶中的液体倒入量筒中,记录液体体积V1。
(4)根据公式ρ = (V0 - V1) / V0 ρ液体,计算物体密度,其中ρ液体为液体密度。
五、实验结果与分析1. 流体静力称衡法实验数据如下:m1 = 50.0gm2 = 45.0gρ水= 1.0g/cm³计算得:V = (50.0g - 45.0g) / 1.0g/cm³ = 5.0cm³ρ = 50.0g / 5.0cm³ = 10.0g/cm³2. 比重瓶法实验数据如下:V0 = 100.0mlV1 = 95.0mlρ酒精= 0.8g/cm³计算得:ρ = (100.0ml - 95.0ml) / 100.0ml 0.8g/cm³ = 0.16g/cm³六、实验总结本次实验成功测量了待测物体的密度,掌握了流体静力称衡法和比重瓶法测量固体密度的原理和方法。
关于大学物理实验报告参考精选5篇
关于大学物理实验报告参考精选5篇通过实验,我们得出结果,很明显的可以发现热敏电阻的阻值对温度的变化是非常敏感的。
下面就是小编给大家带来的大学物理实验报告,希望能帮助到大家!大学物理实验报告1摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。
本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。
关键词:热敏电阻、非平衡直流电桥、电阻温度特性1、引言热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。
因此,热敏电阻一般可以分为:Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。
国产的主要是指MF91~MF96型半导体热敏电阻。
由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。
大多应用于测温控温技术,还可以制成流量计、功率计等。
Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。
这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。
载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。
应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。
2、实验装置及原理【实验装置】FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。
大学物理实验报告长度,质量,密度的测量
大学物理实验报告长度,质量,密度的测量大学物理实验报告:长度、质量、密度的测量一、实验目的1、掌握游标卡尺、螺旋测微器和电子天平的使用方法。
2、学会测量规则物体和不规则物体的长度、质量和密度。
3、理解误差的概念和数据处理方法,提高实验数据的准确性和可靠性。
二、实验原理1、长度测量游标卡尺:利用主尺和游标尺的分度差来提高测量精度。
主尺刻度间距为 1mm,游标尺上通常有 n 个等分刻度,总长度为(n 1)mm,游标卡尺的精度为(n 1)mm / n 。
螺旋测微器:通过旋转微分筒,使测微螺杆前进或后退,从而测量物体的长度。
螺旋测微器的精度通常为 001mm 。
2、质量测量电子天平:基于电磁力平衡原理,通过测量物体所受的电磁力来确定其质量。
3、密度测量对于规则物体,如长方体,其密度ρ = m / V ,其中 m 为质量,V 为体积。
体积 V = l × w × h ,l 、w 、h 分别为长方体的长、宽、高。
对于不规则物体,采用排水法测量体积。
先测量量筒中一定量水的体积 V1 ,然后将物体放入量筒中,再次测量水和物体的总体积 V2 ,物体的体积 V = V2 V1 。
三、实验仪器1、游标卡尺(精度 002mm )2、螺旋测微器(精度 001mm )3、电子天平(精度 001g )4、长方体金属块5、圆柱体金属块6、小石块7、量筒(50ml )8、烧杯四、实验步骤1、长度测量用游标卡尺测量长方体金属块的长、宽、高,各测量 5 次,记录测量数据。
用螺旋测微器测量圆柱体金属块的直径和高度,各测量 5 次,记录测量数据。
2、质量测量用电子天平分别测量长方体金属块、圆柱体金属块和小石块的质量,各测量 3 次,记录测量数据。
3、密度测量计算长方体金属块的体积,根据测量的质量和体积计算其密度。
计算圆柱体金属块的体积,根据测量的质量和体积计算其密度。
采用排水法测量小石块的体积,根据测量的质量和体积计算其密度。
大学物理实验报告书(共6篇)
篇一:大学物理实验报告1图片已关闭显示,点此查看学生实验报告学院:软件与通信工程学院课程名称:大学物理实验专业班级:通信工程111班姓名:陈益迪学号:0113489学生实验报告图片已关闭显示,点此查看一、实验综述1、实验目的及要求1.了解游标卡尺、螺旋测微器的构造,掌握它们的原理,正确读数和使用方法。
2.学会直接测量、间接测量的不确定度的计算与数据处理。
3.学会物理天平的使用。
4.掌握测定固体密度的方法。
2 、实验仪器、设备或软件1 50分度游标卡尺准确度=0.02mm 最大误差限△仪=±0.02mm2 螺旋测微器准确度=0.01mm 最大误差△仪=±0.005mm 修正值=0.018mm3 物理天平 tw-0.5 t天平感度0.02g 最大称量 500g △仪=±0.02g 估读到 0.01g二、实验过程(实验步骤、记录、数据、分析)1、实验内容与步骤1、用游标卡尺测量圆环体的内外径直径和高各6次;2、用螺旋测微器测钢线的直径7次;3、用液体静力称衡法测石蜡的密度;2、实验数据记录表(1)测圆环体体积图片已关闭显示,点此查看(2)测钢丝直径仪器名称:螺旋测微器(千分尺)准确度=0.01mm估读到0.001mm图片已关闭显示,点此查看图片已关闭显示,点此查看测石蜡的密度仪器名称:物理天平tw—0.5天平感量: 0.02 g 最大称量500 g3、数据处理、分析(1)、计算圆环体的体积1直接量外径d的a类不确定度sd ,sd=○sd=0.0161mm=0.02mm2直接量外径d的b类不确定度u○d.ud,=ud=0.0155mm=0.02mm3直接量外径d的合成不确定度σσ○σd=0.0223mm=0.2mm4直接量外径d科学测量结果○d=(21.19±0.02)mmd=5直接量内径d的a类不确定度s○sd=0.0045mm=0.005mmd。
ds=6直接量内径d的b类不确定度u○dud=ud=0.0155mm=0.02mm7直接量内径d的合成不确定度σi σ○σd=0.0160mm=0.02mm8直接量内径d的科学测量结果○d=(16.09±0.02)mm9直接量高h的a类不确定度s○sh=0.0086mm=0.009mmd=h hs=10直接量高h的b类不确定度u○h duh=0.0155mm=0.02mm11直接量高h的合成不确定度σ○σh=0.0177mm=0.02mm 12直接量高h的科学测量结果○h=(7.27±0.02)mmhσh=13间接量体积v的平均值:v=πh(d-d)/4 ○22v =1277.8mm14 间接量体积v的全微分:dv=○3? (d2-d2)4dh+dh?dh?dd- dd 22再用“方和根”的形式推导间接量v的不确定度传递公式(参考公式1-2-16) 222?v?(0.25?(d2?d2)?h)?(0.5dh??d)?(0.5dh??d)计算间接量体积v的不确定度σ3σv=0.7mmv15写出圆环体体积v的科学测量结果○v=(1277.8±0.7) mm2、计算钢丝直径(1)7次测量钢丝直径d的a类不确定度sd ,sd=sdsd =0.0079mm=0.008mm3(2)钢丝直径d的b类不确定度ud ,ud=udud=0.0029mm=0.003mm(3)钢丝直径d的合成不确定度σ。
大学物理实验报告(共7篇)
篇一:大学物理实验报告示例(含数据处理)【实验题目】长度和质量的测量【实验目的】1. 掌握米尺、游标卡尺、螺旋测微计等几种常用测长仪器的读数原理和使用方法。
2. 学会物理天平的调节使用方法,掌握测质量的方法。
3. 学会直接测量和间接测量数据的处理,会对实验结果的不确定度进行估算和分析,能正确地表示测量结果。
【实验仪器】(应记录具体型号规格等,进实验室后按实填写)直尺(50cm)、游标卡尺(0.02mm)、螺旋测微计(0~25mm,0.01mm),物理天平(tw-1b型,分度值0.1g,灵敏度1div/100mg),被测物体【实验原理】(在理解基础上,简明扼要表述原理,主要公式、重要原理图等)一、游标卡尺主尺分度值:x=1mm,游标卡尺分度数:n(游标的n个小格宽度与主尺的n-1小格长度相等),游标尺分度值:n?1nx(50分度卡尺为0.98mm,20分度的为:0.95mm),主尺分度值与游标尺n?1nx?xn分度值的差值为:x?,即为游标卡尺的分度值。
如50分度卡尺的分度值为:1/50=0.02mm,20分度的为:1/20=0.05mm。
读数原理:如图,整毫米数l0由主尺读取,不足1格的小数部分?l需根据游标尺与主尺对齐的刻线数?l?kx?kk和卡尺的分度值x/n读取:n?1nx?kxn读数方法(分两步):(1)从游标零线位置读出主尺的读数.(2)根据游标尺上与主尺对齐的刻线k读出不足一分格的小数,二者相加即为测量值.即: l?l0??l?l0?kxn,对于50分度卡尺:l?l0?k?0.02;对20分度:l?l0?k?0.05。
实际读数时采取直读法读数。
二、螺旋测微器原理:测微螺杆的螺距为0.5mm,微分筒上的刻度通常为50分度。
当微分筒转一周时,测微螺杆前进或后退0.5mm,而微分筒每转一格时,测微螺杆前进或后退0.5/50=0.01mm。
可见该螺旋测微器的分度值为0.01mm,即千分之一厘米,故亦称千分尺。
大学物理实验报告大全
大学物理实验报告大全大学物理实验在学习物理知识和理论的同时,也是培养学生动手能力和科学思维的重要途径之一。
以下是一些常见的大学物理实验报告,涵盖了不同领域的实验内容。
1. 实验名称:牛顿第二定律实验实验目的:通过实验验证牛顿第二定律,探究质量、力和加速度之间的关系。
实验步骤:通过测力计测量不同质量的物体在受力作用下的加速度,并记录数据。
根据牛顿第二定律公式F = ma,计算加速度并绘制实验数据图表。
实验结束后,对实验结果进行分析和讨论。
实验结论:实验结果表明质量与受力之间存在线性关系,验证了牛顿第二定律。
2. 实验名称:杨氏模量实验实验目的:通过实验测量材料的杨氏模量,探究材料的弹性性质。
实验步骤:通过悬挂一根细长的金属丝或弹簧,施加不同大小的力并测量丝或弹簧的伸长量。
根据胡克定律和杨氏模量的定义,计算材料的杨氏模量。
实验结束后,对实验结果进行分析和讨论。
实验结论:实验结果表明杨氏模量与材料的弹性常数和截面积有关,验证了材料的弹性性质。
3. 实验名称:迈克耳孙干涉仪实验实验目的:通过实验观察光的干涉现象,验证光的波动性。
实验步骤:搭建迈克耳孙干涉仪,将光波通过半反射薄膜分为两束光,让两束光相交并观察干涉条纹的形成。
通过调节反射镜的位置,可以改变干涉条纹的间距和颜色。
实验结束后,对实验结果进行分析和讨论。
实验结论:实验结果表明光的波动性可以通过干涉现象得到证明,验证了光的波动性理论。
4. 实验名称:电容器实验实验目的:通过实验研究电容器的充电过程和放电过程,探究电荷的存储和释放。
实验步骤:搭建电容器电路,通过连接电源和电容器,观察电容器的充电和放电过程,并记录电容器的电压随时间的变化。
实验结束后,对实验结果进行分析和讨论。
实验结论:实验结果表明电容器的充放电过程符合指数衰减规律,验证了电荷的存储和释放过程。
5. 实验名称:热传导实验实验目的:通过实验研究热传导现象,探究物体的热量传递方式。
实验步骤:在实验装置中放置两个或多个物体,通过观察物体的温度变化,测量传热时间和温度差来研究物体的热传导过程。
大学物理实验牛顿环实验报告含数据
大学物理实验牛顿环实验报告含数据一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习用干涉法测量透镜的曲率半径。
3、掌握读数显微镜的使用方法。
二、实验原理牛顿环是一种等厚干涉现象。
将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面与平面玻璃之间就会形成一个上表面是球面,下表面是平面的空气薄层,其厚度从中心接触点到边缘逐渐增加。
当一束单色平行光垂直照射到牛顿环装置上时,在空气薄层的上、下表面反射的两束光将产生干涉。
在反射光中观察会看到以接触点为中心的一系列明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为 R,形成的第 m 级暗环的半径为 rm,对应的空气薄层厚度为 em。
由于光程差等于半波长的奇数倍时产生暗纹,所以有:\\begin{align}2e_m +\frac{\lambda}{2} &=(2m + 1)\frac{\lambda}{2}\\2e_m &= m\lambda\\e_m &=\frac{m\lambda}{2}\end{align}\又因为在直角三角形中,有\(r_m^2 = R^2 (R e_m)^2 \approx 2Re_m\)(因为 em 远小于 R)所以可得\(r_m^2 = mR\lambda\),则\(R =\frac{r_m^2}{m\lambda}\)通过测量暗环的半径,就可以计算出透镜的曲率半径 R。
三、实验仪器读数显微镜、钠光灯、牛顿环装置。
四、实验步骤1、调节读数显微镜调节目镜,使十字叉丝清晰。
转动调焦手轮,使镜筒自下而上缓慢移动,直至从目镜中看到清晰的牛顿环图像。
移动牛顿环装置,使十字叉丝交点与牛顿环中心大致重合。
2、测量牛顿环直径转动测微鼓轮,使十字叉丝从牛顿环中心向左移动,依次对准第30 到第 15 暗环,记录读数。
继续转动鼓轮,使叉丝越过中心向右移动,依次对准第 15 到第 30 暗环,记录读数。
3、重复测量重复上述步骤,共测量 5 组数据。
大学物理(二)实验报告(二)
大学物理(二)实验报告(二)引言概述:本实验旨在通过实际操作和数据分析,加深对大学物理(二)相关知识的理解和掌握。
通过实验,将重点探讨以下五个大点:实验目的、实验原理、实验装置与操作、实验数据处理与结果分析以及实验结论。
1. 实验目的:1.1 确定XXX物理现象的基本规律1.2 探究XXX现象的影响因素1.3 验证XXX理论模型的准确性1.4 掌握XXX实验方法和技巧1.5 提高实验数据处理和分析的能力1. 实验原理:1.1 介绍相关的物理理论和基本概念1.2 探讨引起该物理现象的基本机制1.3 解析实验中所使用的公式和模型1.4 阐述实验所依据的理论假设1. 实验装置与操作:1.1 详细描述实验所用的仪器设备和辅助工具1.2 介绍实验的具体步骤和操作要点1.3 强调实验中需注意的安全事项1.4 分析实验中可能出现的误差来源和解决方法1.5 提供实验数据记录表格和实验结果图表示例1. 实验数据处理与结果分析:1.1 清晰列出实验所得的原始数据1.2 对数据进行初步处理,包括单位换算和数据整理1.3 展示数据处理的详细过程,如拟合曲线或计算公式1.4 分析实验结果,与理论值进行对比1.5 讨论实验结果的合理性和实验过程中的问题1. 实验结论:通过以上实验的分析和讨论,得出如下结论:1.1 给出实验目的所要验证的假设或论点1.2 总结实验的主要结果和发现1.3 讨论实验的局限性和改进方向1.4 探讨实验对物理学理论研究的意义总结:通过本次实验,我们对大学物理(二)中的相关知识进行了实际操作和数据分析,进一步加深了对物理概念和实验方法的理解和掌握。
本实验的结果为进一步的研究提供了重要参考,也为将来的实验和理论研究提供了基础。
通过本次实验的学习,我们不仅提高了实验技能,还培养了实验数据处理和结果分析的能力,为进一步的科学研究奠定了坚实基础。
大学物理实验报告范文3篇(完整版)
大学物理实验报告范文3篇大学物理实验报告范文3篇大学物理实验报告范文篇一:一、实验综述1、实验目的及要求1.了解游标卡尺、螺旋测微器的构造,掌握它们的原理,正确读数和使用方法。
学会直接测量、间接测量的不确定度的计算与数据处理。
3.学会物理天平的使用。
4.掌握测定固体密度的方法。
2 、实验仪器、设备或软件1 50分度游标卡尺准确度=0.02mm 最大误差限△仪= 0.02mm2 螺旋测微器准确度=0.01mm 最大误差△仪= 0.005mm 修正值=0.018mm3 物理天平 TW-0.5 t天平感度0.02g 最大称量500g △仪=0.02g 估读到 0.01g二、实验过程准确度=0.01mm 估读到0.001mm测石蜡的密度仪器名称:物理天平TW 0.5 天平感量:0.02 g 最大称量500 g3、数据处理、分析h) mm2、计算钢丝直径t以25C为标准查表取值,计算石蜡密度平均值:M1tM2 M3=0.9584kgm3三、结论1、实验结果实验结果即上面给出的数据。
2、分析讨论心得体会:1、天平的正确使用:测量前应先将天平调水平,再调平衡,放取被称量物和加减砝码时○一定要先将天平降下后再操作,天平的游码作最小刻度的12估读。
2、螺旋测微器正确使用:记下初始读数,旋动时只旋棘轮旋柄,当听到两声咯咯响○时便停止旋动,千分尺作最小刻度的110估读。
思考:1、试述螺旋测微器的零点修正值如何确定?测定值如何表示? ○答:把螺旋测微器调到0点位置,读出此时的数值,测定值是读数+零点修正值2、游标卡尺读数需要估读吗? ○答:不需要。
3、实验中所用的水是事先放置在容器里,还是从水龙头里当时放出来的好,为什么? ○答:事先放在容器里面的,这样温度比较接近设定温度。
建议学校的仪器存放时间过长,精确度方面有损,建议购买一些新的。
四、指导教师评语及成绩:评语:成绩:指导教师签名:批阅日期:大学物理实验报告范文篇二:一、实验目的。
大学物理实验报告长度,质量,密度的测量
大学物理实验报告长度,质量,密度的测量大学物理实验报告:长度、质量、密度的测量一、实验目的1、学习并掌握长度、质量和密度的测量方法及相关仪器的使用。
2、加深对长度、质量和密度概念的理解,以及它们之间关系的认识。
3、培养严谨的科学态度、细致的实验操作和数据处理能力。
二、实验原理1、长度的测量长度测量是物理实验中最基本的测量之一。
常用的测量工具包括游标卡尺和螺旋测微器。
游标卡尺是利用游标原理提高测量精度的一种长度测量工具。
主尺上的刻度每格为 1mm,游标上的刻度则根据精度不同而有所差异。
通过读取主尺和游标上的刻度值,可以得到更精确的长度测量结果。
螺旋测微器则是通过旋转螺杆来推动测杆移动,从而测量物体的长度。
其精度通常为 001mm,读数时需要注意估读一位。
2、质量的测量质量的测量通常使用天平。
天平分为托盘天平和平行梁电子天平。
托盘天平通过调整砝码和游码来使横梁平衡,从而测量物体的质量。
电子天平则直接显示物体的质量值,具有更高的精度和便捷性。
3、密度的测量密度的定义是物质的质量与体积的比值。
对于规则形状的物体,可以通过测量其尺寸计算体积;对于不规则形状的物体,可以使用排水法测量体积。
然后,通过测量物体的质量,根据密度公式ρ = m / V 计算出物体的密度。
三、实验仪器1、游标卡尺(精度 002mm)2、螺旋测微器(精度 001mm)3、托盘天平(量程 500g,精度 01g)4、平行梁电子天平(量程 200g,精度 0001g)5、量筒(量程 100ml,精度 1ml)6、待测金属圆柱体、长方体、不规则金属块四、实验步骤1、长度的测量(1)用游标卡尺测量金属圆柱体的直径和高度,在不同位置测量多次,取平均值。
测量时,注意游标卡尺的零刻度线与主尺的零刻度线对齐,读数时视线要垂直于刻度线。
(2)用螺旋测微器测量金属圆柱体的直径,同样在不同位置测量多次,取平均值。
测量时,先旋转微分筒使测杆与物体接触,然后再旋转棘轮,直到听到“咔咔”声为止。
大学物理实验声速的测量实验报告
大学物理实验声速的测量实验报告一、实验目的1、学会用驻波法和相位法测量声速。
2、了解声速测量的基本原理和方法。
3、加深对波动理论的理解,提高实验操作能力和数据处理能力。
二、实验原理1、驻波法声波在介质中传播时,入射波与反射波叠加形成驻波。
在驻波中,相邻两波节之间的距离为半波长的整数倍。
通过测量相邻两波节之间的距离,就可以计算出声波的波长,进而求得声速。
设声源的振动频率为 f,波长为λ,声速为 v,则有 v =fλ。
在驻波法中,我们使用超声换能器作为声源和接收器。
当两个换能器之间的距离等于半波长的整数倍时,接收端的信号幅度达到最大,此时两个换能器之间的距离 L 与波长λ之间的关系为:L =nλ/2(n =1,2,3,)。
2、相位法声源和接收器作相对运动时,接收器接收到的声波频率会发生变化,这种现象称为多普勒效应。
在相位法中,我们利用多普勒效应来测量声速。
设声源的频率为 f,声源和接收器的相对运动速度为 v',接收器接收到的声波频率为 f',则有:f' = f (1 + v'/v) 。
当声源和接收器相向运动时,v'为正;当声源和接收器相背运动时,v'为负。
通过测量声源和接收器的相对运动速度 v'以及声源的频率 f,就可以计算出声速 v。
三、实验仪器1、声速测量仪2、示波器3、信号发生器四、实验步骤1、驻波法测量声速(1)按照实验装置图连接好仪器,将超声换能器 S1 和 S2 分别连接到声速测量仪的发射端和接收端。
(2)打开信号发生器和示波器,调整信号发生器的输出频率,使示波器上显示出稳定的正弦波。
(3)缓慢移动 S2,观察示波器上的信号幅度变化。
当信号幅度达到最大时,记录此时 S2 的位置 L1。
(4)继续移动 S2,当信号幅度再次达到最大时,记录此时 S2 的位置 L2。
(5)重复步骤(3)和(4)多次,测量多组数据。
(6)根据测量数据计算出声波的波长λ,进而求得声速 v。
大学物理一实验报告(共5篇)
篇一:大学物理实验报告模板.**学院物理系大学物理学生实验报告实验项目:实验地点:班级:姓名:座号:实验时间:月物理系编制一、实验目的:二、实验仪器设备:三、实验原理:四、实验步骤:教师签名:五、实验数据记录六、实验数据处理七、实验结论与分析及思考题解答1、对实验进行总结,写出结论:2、思考题解答:篇二:大学物理实验报告**学院物理系大学物理学生实验报告实验项目:空气比热容比测定实验实验地点:班级:姓名:座号:实验时间:月日物理系编制一、实验目的:①用绝热膨胀法测定空气的比热容比?。
②观察热力学过程中状态变化及基本物理规律。
③学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、实验仪器设备:贮气瓶,温度计,空气比热容比测定仪。
数字电压表1-进气活塞;2-放气活塞;3-ad590; 4-气体压力传感器;5-704胶粘剂图4-4-1 实验装置简图三、实验原理:气体由于受热过程不同,有不同的比热容。
对应于气体受热的等容及等压过程,气体的比热容有定容比热容c和定压比热容c。
定vp容比热容是将1kg气体在保持体积不变的情况下加热,当其温度升高1?c时所需的热量;而定压比热容则是将1kg气体在保持压强不变的情?cv况下加热,当其温度升高1?c时所需的热量。
显然,后者由于要对外作功而大于前者,即c定容比热容c之比vp。
气体的比热容比?定义为定压比热容c和p??ccpv是一个重要的物理量,经常出现在热力学方程中。
2四、实验步骤:5(1)用气压计测量大气压强p0 设为(1.0248?10pa);(2)开启电源,将电子仪器部分预热10分钟,然后用调零电位器调节零点;(3)关闭放气活塞2,打开进气活塞1,用充气球向瓶内打气,使瓶内压强升高(即数字电压表显示值升高120~140mv左右,关闭进气活塞1。
待瓶中气压强稳定时,瓶内气体状态为ⅰ。
记下p1; (4) 迅速打开放气活塞2,使瓶内气体与大气相通,由于瓶内气压高于大气压,瓶内部分气体将突然喷出,发出“嗤”的声音。
大学物理实验报告通用10篇
大学物理试验报告1
重力加速度的测定
一、试验任务
精确测定银川地区的重力加速度
二、试验要求
测量结果的对不确定度不超过5%
三、物理模型的建立及比较
初步确定有以下六种模型方案:
方法一、用打点计时器测量
所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.
利用自由落体原理使重物做自由落体运动.选择抱负纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.
摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得:
g=4π2n2h/t2.
将所测的n、t、h代入即可求得g值.
方法六、单摆法测量重力加速度
在摆角很小时,摇摆周期为:
则
通过对以上六种方法的比较,本想尝试利用光电掌握计时法来测量,但因为试验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简洁且最熟悉,仪器在试验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。
重力加速度的计算公式推导如下:
取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知:
ncosα-mg=0(1)
nsinα=mω2x(2)
两式相比得tgα=ω2x/g,又tgα=dy/dx,∴dy=ω2xdx/g,
∴y/x=ω2x/2g.∴g=ω2x2/2y.
.将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g.
方法二、用滴水法测重力加速度
大学物理实验仿真实验实验报告
大学物理实验仿真实验实验报告I. 引言大学物理课程中的实验教学是培养学生科学思维和实践能力的重要环节。
然而,由于实验设备和资源的限制,学生往往难以亲自进行所有的物理实验。
为了解决这一问题,许多高校开始采用物理实验仿真实验,即利用计算机模拟技术进行物理实验的虚拟仿真。
本实验报告将详细介绍一次大学物理实验仿真实验的进行过程和结果。
II. 实验目的本次实验的目的是通过物理仿真软件,模拟测量并分析简谐振动的周期时间与质量、弹性系数的关系。
通过实验,掌握简谐振动的基本原理和实验方法,并通过仿真实验,加深对实验数据的分析和处理能力。
III. 实验原理简谐振动是指物体在一个恢复力作用下沿同一直线往复运动的物理现象。
其周期T与质量m以及弹性系数k之间的关系可以通过以下公式表示:T = 2π√(m/k)根据该公式,我们可以推导出质量对周期的影响,以及弹性系数对周期的影响。
通过仿真实验,我们可以得到不同质量和弹性系数下的周期时间数据,进而分析它们之间的关系。
IV. 实验装置与方法本次实验采用XXX物理仿真实验软件进行,该软件能够通过计算机模拟出各种物理实验的过程和结果。
具体的实验步骤如下:1. 打开XXX物理仿真实验软件,进入简谐振动实验模块。
2. 设置初始条件,包括质量、弹性系数等参数。
3. 点击开始按钮,开始模拟实验过程。
4. 观察模拟实验的过程,记录下每次振动的周期时间。
5. 根据记录的周期时间数据,计算出不同质量和弹性系数下的平均周期时间。
6. 绘制周期时间与质量、弹性系数之间的关系曲线。
V. 实验结果与分析根据模拟实验过程中记录的数据,我们计算出了不同质量和弹性系数下的平均周期时间,并绘制了周期时间与质量、弹性系数之间的关系曲线。
通过曲线的趋势,我们可以得出以下结论:1. 质量对周期时间的影响:质量越大,周期时间越长。
这是因为质量越大,惯性力也就越大,所需的恢复力也越大,导致周期时间增加。
2. 弹性系数对周期时间的影响:弹性系数越大,周期时间越短。
2022年大学物理实验报告1000字(6篇)
大学物理实验报告1000字(6篇)导读:关于大学物理实验报告,精选6篇范文,字数为1000字。
实训是理论知识及实践技能的基础,是理论与实践相结合的最佳手段。
实习是我们大学生在课堂教育中不可缺少的一部分,是检验我们大学生实践能力得重要指标。
实习是我们大学生在课堂上所学的理论知识的最好检验,只有在实际操作中去把知识转化为技术才能使理论更加扎实。
关于大学物理实验报告,精选6篇范文,字数为1000字。
实训是理论知识及实践技能的基础,是理论与实践相结合的最佳手段。
实习是我们大学生在课堂教育中不可缺少的一部分,是检验我们大学生实践能力得重要指标。
实习是我们大学生在课堂上所学的理论知识的最好检验,只有在实际操作中去把知识转化为技术才能使理论更加扎实。
大学物理实验报告(范文):1实训是理论知识及实践技能的基础,是理论与实践相结合的最佳手段。
实习是我们大学生在课堂教育中不可缺少的一部分,是检验我们大学生实践能力得重要指标。
实习是我们大学生在课堂上所学的理论知识的最好检验,只有在实际操作中去把知识转化为技术才能使理论更加扎实。
我们在实习中所做的一些努力和不足之处:1、专业方面的问题:实训是我们大学生活的重要组成部分,是我们大学生接触社会的平台,是我们增长知识和才干的重要途径。
通过实训,可以将我们所学的专业知识与实际相接合,进一步提高我们的专业知识能力。
2、社会环境的问题:通过实际生产实践,我们可以获得一些书本上没有的知识,这是实训的一种延续和扩展。
实训是大学生学习的一个很好的平台,我们不可能在实践中学习很多知识,但通过实习使我们对这一方面的内容有更进一步的了解。
我认为实训是大学生从学校向社会、从人才转变的过渡,并对实际生活有所帮助。
这次实习,对我来说收获不少,感触颇多。
实训让我明白了我需要学习的还有很多。
首先,通过实习,通过实践可以提高自己的能力,也可以锻炼自己的口才和沟通能力。
通过实习可以发现自己的不足,可以及时弥补。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理实验报告
物理学习想必少不了实验证明吧,那么,下面是小编给大家整理收集的大学物理实验报告,供大家阅读参考。
大学物理实验报告1
实验目的:通过演示来了解弧光放电的原理
实验原理:给存在一定距离的两电极之间加上高压,若两电极间的电场达到空气的击穿电场时,两电极间的空气将被击穿,并产生大规模的放电,形成气体的弧光放电。
雅格布天梯的两极构成一梯形,下端间距小,因而场强大(因)。
其下端的空气最先被击穿而放电。
由于电弧加热(空气的温度升高,空气就越易被电离, 击穿场强就下降),使其上部的空气也被击穿,形成不断放电。
结果弧光区逐渐上移,犹如爬梯子一般的壮观。
当升至一定的高度时,由于两电极间距过大,使极间场强太小不足以击穿空气,弧光因而熄灭。
简单操作:打开电源,观察弧光产生。
并观察现象。
(注意弧光的产生、移动、消失)。
实验现象:
两根电极之间的高电压使极间最狭窄处的电场极度强。
巨大的电场力使空气电离而形成气体离子导电,同时产生光和热。
热空气带着电弧一起上升,就象圣经中的雅各布(yacob以色列人的祖先)梦中见到的天梯。
注意事项:演示器工作一段时间后,进入保护状态,自动断电,稍等一段时间,仪器恢复后可继续演示,
实验拓展:举例说明电弧放电的应用
大学物理实验报告2
一、演示目的
气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。
二、原理
首先让尖端电极和球型电极与平板电极的距离相等。
尖端电极放电,而球型电极未放电。
这是由于电荷在导体上的分布与导体的曲率半径有关。
导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。
反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。
当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。
而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。
三、装置
一个尖端电极和一个球型电极及平板电极。
四、现象演示
让尖端电极和球型电极与平板电极的距离相等。
尖端电极放电,而球型电极未放电。
接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生
五、讨论与思考
雷电暴风雨时,最好不要在空旷平坦的田野上行走。
为什么? 大学物理实验报告3
1、引言
热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为
(-0.003~+0.6)℃-1。
因此,热敏电阻一般可以分为:
Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件
常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。
国产的主要是指
MF91~MF96型半导体热敏电阻。
由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。
大多应用于测温控温技术,还可以制成流量计、功率计等。
Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件
常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。
这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。
载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。
应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。
2、实验装置及原理
【实验装置】
FQJ-Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7k)以及控温用的温度传感器),连接线若干。
【实验原理】
根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为
(1-1)
式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。
因而热敏电阻的电阻值可以根据电阻定律写为(1-2)
式中为两电极间距离,为热敏电阻的横截面,。
对某一特定电阻而言,与b均为常数,用实验方法可以测定。
为了便于数据处理,将上式两边取对数,则有
(1-3)
上式表明与呈线性关系,在实验中只要测得各个温度以及对应的电阻的值,
以为横坐标,为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数a、b的值。
热敏电阻的电阻温度系数下式给出
(1-4)
从上述方法求得的b值和室温代入式(1-4),就可以算出室温时的电阻温度系数。
热敏电阻在不同温度时的电阻值,可由非平衡直流电桥测得。
非平衡直流电桥原理图如右图所示,B、D之间为一负载电阻,只要测出,就可以得到值。
当负载电阻,即电桥输出处于开
路状态时,=0,仅有电压输出,用表示,当时,电桥输出=0,即电桥处于平衡状态。
为了测量的准确性,在测量之前,电桥必须预调平衡,这样可使输出电压只与某一臂的电阻变化有关。
若R1、R2、R3固定,R4为待测电阻,R4 = RX,则当R4R4+△R 时,因电桥不平衡而产生的电压输出为:
(1-5)
在测量MF51型热敏电阻时,非平衡直流电桥所采用的是立式电桥,,且,则
(1-6)
式中R和均为预调平衡后的电阻值,测得电压输出后,通过式(1-6)运算可得△R,从而求的=R4+△R。
3、热敏电阻的电阻温度特性研究
根据表一中MF51型半导体热敏电阻(2.7k)之电阻~温度特性研究桥式电路,并设计各臂电阻R和的值,以确保电压输出不会溢出(本实验=1000.0,=4323.0)。
根据桥式,预调平衡,将“功能转换”开关旋至“电压“位置,按下G、B开关,打开实验加热装置升温,每隔2℃测1个值,并将测量数据列表(表二)。
表一MF51型半导体热敏电阻(2.7k)之电阻~温度特性
温度℃ 25 30 35 40 45 50 55 60 65
电阻2700 2225 1870 1573 1341 1160 1000 868 748
表二非平衡电桥电压输出形式(立式)测量MF51型热敏电阻的数据
i 1 2 3 4 5 6 7 8 9 10
温度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4
热力学T K 283.4 285.4 287.4 289.4 291.4 293.4 295.4 297.4 299.4 301.4
0.0 -12.5 -27.0 -42.5 -58.4 -74.8 -91.6 -107.8 -126.4 -144.4
0.0 -259.2 -529.9 -789 -1027.2 -124.8 -1451.9 -1630.1 -1815.4 -1977.9
4323.0 4063.8 3793.1 3534.0 3295.8 3074.9 2871.1 2692.9 2507.6 2345.1
根据表二所得的数据作出~图,如右图所示。
运用最小二乘法计算所得的线性方程为,即MF51型半导体热敏电阻(2.7k)的电阻~温度特性的数学表达式为。
4、实验结果误差
通过实验所得的MF51型半导体热敏电阻的电阻—温度特性的数学表达式为。
根据所得表达式计算出热敏电阻的电阻~温度特性的测量值,与表一所给出的参考值有较好的一致性,如下表所示:
表三实验结果比较
温度℃ 25 30 35 40 45 50 55 60 65
参考值RT 2700 2225 1870 1573 1341 1160 1000 868 748
测量值RT 2720 2238 1900 1587 1408 1232 1074 939 823
相对误差% 0.74 0.58 1.60 0.89 4.99 6.20 7.40 8.18 10.00
从上述结果来看,基本在实验误差范围之内。
但我们可以清楚的发现,随着温度的升高,电阻值变小,但是相对误差却在变大,这主要是由内热效应而引起的。
5、内热效应的影响
在实验过程中,由于利用非平衡电桥测量热敏电阻时总有一定的工作电流通过,热敏电阻的电阻值大,体积小,热容量小,因此焦耳热将迅速使热敏电阻产生稳定的高于外界温度的附加内热温升,这就是所谓的内热效应。
在准确测量热敏电阻的温度特性时,必须考虑内热效应的影响。
本实验不作进一步的研究和探讨。
6、实验小结
通过实验,我们很明显的可以发现热敏电阻的阻值对温度的变化是非常敏感的,而且随着温度上升,其电阻值呈指数关系下降。
因而可以利用电阻—温度特性制成各类传感器,可使微小的温度变化转变为电阻的变化形成大的信号输出,特别适于高精度测量。
又由于元件的体积小,形状和封装材料选择性广,特别适于高温、高湿、振动及热冲击等环境下作温湿度传感器,可应用与各种生产作业,开发潜力非常大。
参考文献:
xxxx。