弹塑性有限元法基本理论与模拟方法
弹塑性有限元法
当变形体同时存在大的弹性和塑性变形时,必 须采用弹塑性力学进行分析,相应的有弹塑性 有限元法,其较一般弹性有限元复杂得多。
1、塑性区中应力与应变之间为非线性关系,非线性问 题求解 — 增量法;
2、应力与应变关系不是一一对应的,加载与卸载关系 不同,必须判断是加载还是卸载状态;
3、多种材料硬化模型产生不同的有限元计算公式;
K u Q 非线性方程组
方程组
求解
与ij 有关
与ij 有关
u tt u t uu
和
三、弹塑性有限元处理的技术问题
1、加载增量步长的选定
计算精度与收敛性
加载的增量步长
tt P t P rmin P
增量步终止载荷
初始设定载荷增量
初始载荷 载荷约束因子
2、变形区弹塑性状态的判定
弹塑性变形过程中,变形体内部可能同时存在弹 性区、过渡区、塑性加载区和塑性卸载区等四种不同 状态的区域和单元,计算时必须分别进行处理。
x xy y xy z xy 2
xy
x yz y yz z yz xy yz 2
yz
x y
zx zx
z xy
zx zx
xy zx 2
zx
二、弹塑性有限元方程
由于 非线性的应力应变关系,只能按照增量法求解。
在小变形条件下,对t到t+Δt时刻的增量步进行 分析。设变形体为各向同性硬化材料、且服从Mises 屈服条件和Prandtl – Reuss方程的本构关系,并设t 时刻的变形条件为:单位体积的体积力为tpi;作用 在边界表面ST上的单位面积力为tTi;任一质点的位
移为tui,应变为tij,应力为tij。现以t时刻的变形为
第五章刚塑性有限元法基本理论与模拟方法
塑性成形过程 计算机数值模拟
第五章 刚塑性有限元法基本理论与模拟方法
❖ 从数学的角度来讲,有限元法是解微分方程的一种数值方法。它的 基本思想是:在整个求解区域内要解某一微分方程很困难(即求出 原函数)时,先用适当的单元将求解区域进行离散化,在单元内假 定一个满足微分方程的简单函数作为解,求出单元内各点的解;然 后,再考虑各单元间的相互影响,最后求出整个区域的场量。
两个或一个事先得到满足,而将其余的一个或两个,通过拉格朗日
乘子引入泛函中,组成新的泛函,真实解使泛函取驻值,这就是不
完全广义变分原理。
❖ 在选择速度场时应变速率与速度的关系(1)式和速度边界条(3)式容 易满足,而体积不可压缩条件(2)式难于满足。因此,可以把体积 不可压缩条件用拉格朗日乘子入引入到泛函中,得到新泛函:
够的工程精度的前提下,可提高计算效率。
塑性成形过程 计算机数值模拟
第五章 刚塑性有限元法基本理论与模拟方法
❖ 由于刚塑性有限元法采用率方程表示,材料变形后的构形可通 过在离散空间对速度的积分而获得,从而避开了应变与位移之 间的几何非线性问题。
❖ 由于忽略了弹性变形,刚塑性有限元法仅适合于塑性变形区的 分析,不能直接分析弹性区的变形和应力状态,也无法处理卸 载和计算残余应力与变形。
在满足: (1) 速度-应变速率关系
ij
1 2
ui, j
u j,i
(2) 体积不可压缩条件 (3) 速度边界条件
V kk 0
ui ui
(在 Su 上)
的一切动可容场
ui*j
,
第四章 弹塑性体的本构理论
第二部分弹塑性问题的有限元法第四章弹塑性体的本构理论第五章弹塑性体的有限元法第四章弹塑性体的本构理论4-1塑性力学的基本内容和地位塑性力学是有三大部分组成的:1) 塑性本构理论,研究弹塑性体的应力和应变之间的关系;2) 极限分析,研究刚塑性体的应力变形场,包括滑移线理论和上下限法;3) 安定分析,研究弹塑性体在低周交变载荷作用下结构的安定性问题。
塑性力学虽然是建立在实验和假设基础之上的,但其理论本身是优美的,甚至能够以公理化的方法来建立整个塑性力学体系。
塑性力学是最简单的材料非线性学科,有很多其它更复杂的学科,如损伤力学、粘塑性力学等,都是借用塑性本构理论体系而发展起来的。
4-2关于材料性质和变形特性的假定材料性质的假定1)材料是连续介质,即材料内部无细观缺陷;2)非粘性的,即在本构关系中,没有时间效应;3)材料具有无限韧性,即具有无限变形的可能,不会出现断裂。
常常根据材料在单向应力状态下的σ-ε曲线,将弹塑性材料作以下分类:硬化弹塑性材料理想弹塑性材料弹塑性本构理论研究的是前三种类型的材料,但要注意对于应变软化材料,经典弹塑性理论尚存在不少问题。
变形行为假定 1)应力空间中存在一初始屈服面,当应力点位于屈服面以内时,应力和应变增量的是线性的;只有当应力点达到屈服面时,材料才可能开始出现屈服,即开始产生塑性变形。
因此初始屈服面界定了首次屈服的应力组合,可表示为()00=σf(1)2) 随着塑性变形的产生和积累,屈服面可能在应力空间中发生变化而产生后继屈服面,也称作加载面。
对于硬化材料加载面随着塑性变形的积累将不断扩张,对于理想弹塑性材料加载面就是初始屈服面,它始终保持不变,对于软化材料随着塑性变形的积累加载面将不断收缩。
因此加载面实际上界定了曾经发生过屈服的物质点的弹性范围,当该点的应力位于加载面之内变化时,不会产生新的塑性变形,应力增量与应变增量的关系是线性的。
只有当应力点再次达到该加载面时,才可能产生新的塑性变形。
岩土工程中的弹塑性理论与分析技术
岩土工程中的弹塑性理论与分析技术岩土工程中的弹塑性理论与分析技术是研究岩土材料在受力作用下的弹性和塑性变形特性的理论和方法。
这些理论和技术在岩土工程设计、施工和监测中具有重要的应用价值。
本文将从弹塑性理论的基本概念、应用范围以及分析技术的具体方法等方面进行阐述。
弹塑性理论是研究岩土材料在受力作用下的弹性和塑性变形特性的理论。
弹性是指岩土材料在受力作用下能够恢复原状的能力,而塑性是指岩土材料在受力作用下会发生不可逆的变形。
弹塑性理论的基本假设是岩土材料在受力作用下是具有弹塑性的,并且可以通过一定的数学模型来描述其力学行为。
岩土工程中的弹塑性理论主要包括弹性理论、弹塑性理论和塑性理论。
弹性理论是最基本的弹塑性理论,它假设岩土材料在受力作用下只发生弹性变形,而不发生塑性变形。
弹塑性理论则是在弹性理论的基础上引入了塑性变形的概念,它假设岩土材料在受力作用下既可以发生弹性变形,也可以发生塑性变形。
塑性理论则是假设岩土材料在受力作用下只发生塑性变形,而不发生弹性变形。
在岩土工程中,弹塑性理论的应用范围非常广泛。
首先,弹塑性理论可以用于岩土工程设计中的荷载和变形计算。
通过建立合适的弹塑性模型,可以对岩土体在受力作用下的变形和破坏进行合理预测,从而指导工程设计和施工。
其次,弹塑性理论可以用于岩土体力学性质的试验研究。
通过对岩土体在不同应力状态下的弹塑性行为进行试验研究,可以获取岩土材料的力学参数,为岩土工程的设计和施工提供可靠的依据。
此外,弹塑性理论还可以用于岩土体的动力响应分析、岩土体的稳定性分析等方面。
在岩土工程中,弹塑性分析技术是基于弹塑性理论的具体计算方法。
弹塑性分析技术主要包括弹塑性有限元分析、弹塑性强度折减法、弹塑性反分析等方法。
弹塑性有限元分析是一种基于有限元法的弹塑性分析方法,通过建立合适的有限元模型和弹塑性本构关系,可以对岩土体在受力作用下的变形和破坏进行数值模拟。
弹塑性强度折减法是一种基于强度折减原理的弹塑性分析方法,通过将岩土体的强度参数按照一定的折减系数进行计算,可以对岩土体在受力作用下的变形和破坏进行估计。
弹塑性有限元法基本理论与模拟方法
用于模拟流体流动和传热问题 ,如流体机械、航空航天和化 工等领域。
电磁场
用于分析电磁场问题和电气设 备性能,如电机、变压器和天 线等。
声学
用于模拟声音传播和噪声控制 问题,如声学器件和声学环境
等。
04 弹塑性有限元法的基本原 理
弹塑性有限元法的离散化方法
有限元离散化
将连续的物理场或结构体离散为有限个小的单元体, 每个单元体之间通过节点相互连接。
结构强度分析的模拟
结构强度评估
通过弹塑性有限元法模拟,可以对结构的强度进行评估,预测结构在不同载荷下的响应, 确保结构的安全性和稳定性。
疲劳寿命预测
利用弹塑性有限元法,可以模拟结构的疲劳载荷历程,预测结构的疲劳寿命,为结构的维 护和更换提供依据。
结构优化设计
通过模拟结构的应力分布和变形,可以优化结构设计,降低结构重量,提高结构效率。
边界条件和初始条件
在平衡方程中考虑边界条件和初始条件,以确保模拟的准确性和收 敛性。
弹塑性有限元法的边界条件和初始条件
边界条件的处理
01
根据实际情况,将边界条件转化为节点约束或单元载荷的形式。
初始条件的设置
02
在非稳态问题中,需要考虑初始条件的设置,以模拟问题的初
始状态。
边界条件和初始条件的实施
03
随着计算机技术的不断发展,弹塑性 有限元法在各个工程领域中得到了广 泛应用,如机械、航空航械设计中,弹塑性有限元法可用于分析各种复杂结构 的应力分布、变形和疲劳寿命等,提高产品的可靠性和安 全性。
航空航天
在航空航天领域,弹塑性有限元法可用于分析飞行器结构 在各种载荷下的响应,优化结构设计,提高飞行器的性能 和安全性。
第四章__弹塑性有限元法基本理论与模拟方法讲解
Pi( k ) P(k 1) Pi(k )
q
(k ) 1
k) (k ) qi( k ) qi( q 1 i
q(k )
q( k 1)
第四章 弹塑性有限元法基本理论与模拟方法
(3) 所有载荷段循环,并将结果进行累加
第四章 弹塑性有限元法基本理论与模拟方法
4.2 材料非线性问题及分类
为了与初始屈服应力相区别,我们称之为后继屈服应力。 与初始屈服应力不同,它不是一个材料常数,而是依赖 于塑性变形的大小和历史。 后继屈服应力是在简单拉伸下,材料在经历一定塑性变形 后再次加载时,变形是按弹性还是塑性规律变化的界限。
第四章 弹塑性有限元法基本理论与模拟方法 第四章 弹塑性有限元法基本理论与模拟方法
第四章 弹塑性有限元法基本理论与模拟方法
F
ห้องสมุดไป่ตู้ nom
s0
F nom A0 L nom L0
L
nom
s0
nom (1 nom ) p e ln(1 nom ) E
x1 x x 2 , xn
F(x)=0
f1 (x) f ( x) F ( x) 2 , f n ( x)
0 0 0 0
第四章 弹塑性有限元法基本理论与模拟方法 第四章 弹塑性有限元法基本理论与模拟方法
和简单应力状态相似,材料在复杂应力状态下同样 存在初始屈服和后继屈服的问题。
材料在复杂应力状态下,在经历初始屈服和发生塑性 变形后,此时卸载,将再次进入弹性状态(称为后继弹 性状态)。
第四章 弹塑性有限元法基本理论与模拟方法 第四章 弹塑性有限元法基本理论与模拟方法
弹塑性材料本构模型与仿真方法
弹塑性材料本构模型与仿真方法弹塑性材料本构模型是描述材料在受力作用下的变形和应力响应的数学模型。
它是工程力学和材料科学中重要的理论基础,用于预测材料在不同应力条件下的行为,从而指导工程设计和材料选择。
弹塑性材料是一类具有弹性和塑性行为的材料,其在小应变范围内表现出弹性行为,而在大应变范围内则表现出塑性行为。
弹性行为是指材料在受力后能够恢复原状的性质,而塑性行为则是指材料在受力后会发生不可逆的形变。
常见的弹塑性材料本构模型包括线性弹性模型、塑性模型和弹塑性模型等。
线性弹性模型是最简单的弹塑性材料本构模型之一,它假设材料的应力和应变之间存在线性关系。
在小应变范围内,材料的应力和应变之间满足胡克定律,即应力等于杨氏模量乘以应变。
这种模型适用于强度较高、刚度较大的材料,如金属和陶瓷。
塑性模型是描述材料塑性行为的本构模型,它考虑了材料在大应变范围内的非线性行为。
常见的塑性模型包括屈服准则、硬化规律和流动规律等。
屈服准则描述了材料在何种应力条件下开始发生塑性变形,硬化规律描述了材料的塑性变形随应力增大而增加,流动规律描述了材料的塑性变形随时间的变化。
弹塑性模型是综合考虑了弹性和塑性行为的本构模型,它能够较好地描述材料在整个应变范围内的行为。
常见的弹塑性模型包括von Mises模型和Tresca模型等。
von Mises模型基于屈服准则,假设材料在达到一定应力条件时开始发生塑性变形,而Tresca模型基于硬化规律,假设材料的塑性变形随应力增大而增加。
仿真方法是利用计算机模拟材料行为的一种方法。
在弹塑性材料的仿真中,常用的方法包括有限元法、离散元法和网格法等。
有限元法是一种广泛应用的仿真方法,它将材料分割成有限数量的小单元,通过求解各个单元的力平衡方程和位移连续性方程,得到整个材料的应力和应变分布。
离散元法是一种基于颗粒模型的仿真方法,它将材料看作由许多离散的颗粒组成,通过模拟颗粒之间的相互作用,得到材料的变形和应力响应。
板料的弹塑性变形的有限元方法求解的一般步骤
板料的弹塑性变形的有限元方法求解的一般步骤
板料的弹塑性变形的有限元方法求解的一般步骤:首先建立冲压过程的力学模
型,其次建立相应的有限元分析模型,依据板料变形特性选定壳体单元类型并确定
有关参数,然后根据板料变形特性选定弹塑性本构关系及有关参数,依据板料和模
具的表面特性及其润滑状态选定摩擦定律及参数,最后对压料板的刚体运动和板料
的弹塑性变形进行求解。
在这些步骤之中,模型、参数的选取将影响到有限元模拟的精度。
而板料的弹
塑性本构关系作为影响有限元模拟精度的主要原因之一,对它的研究就显得尤为重
要。
在板料弹塑性本构关系的研究中,如果确定了材料的屈服准则,推导出弹塑性
矩阵,再结合一定的强化规律,就可推导出相应的本构关系的一般表达,在给出相
关屈服准则的表达式后即可方便地得到相应本构关系的显式表达,对于这些准则的
应用将起到积极的作用。
因此,对屈服准则的研究成为研究板料变形行为的关键问
题。
材料的本构关系是精确模拟材料变形的力学基础,引入正确的本构方程,是有限元模拟板材冲压成形的一个重要环节。
近年来,很多各向异性屈服准则相继提出,本文则主要对较有影响的一些各向
异性屈服准则进行介绍。
各向异性使板料在不同方向上的力学性能产生差异,对板料的屈
服行为包括初
始屈服和后继屈服均有显著影响,继而影响板料的本构关系。
如果确定了材料的初
始屈服面,即确定了屈服准则,那么结合一定的强化规律,就可以推导出相应的本
构关系式,而本构关系确定后,材料在变形过程中的应力应变行为也可以预测,因
此准确的描述板料的屈服行为对于研究板料塑性变形有着十分重的意义。
弹塑性力学基础与有限元分析-接触分析实例
06
结论与展望
结论
1
本文通过理论分析和有限元模拟,深入研究了弹 塑性力学基础与有限元分析在接触分析中的应用。
2
研究结果表明,弹塑性力学基础与有限元分析在 接触分析中具有较高的精度和可靠性,能够有效 地模拟复杂接触问题。
3
本文所采用的有限元分析方法在处理接触问题时 具有较好的通用性和扩展性,为进一步研究复杂 接触问题提供了有力支持。
弹塑性本构模型
弹塑性本构模型的定义
弹塑性本构模型是描述弹塑性材料力学行为的数学模型,它通过应力应变关系来描述材料的弹塑性行 为。
常见的弹塑性本构模型
常见的弹塑性本构模型包括Mohr-Coulomb模型、Drucker-Prager模型、Cam-Clay模型等。这些模 型在描述材料的弹塑性行为方面各有特点,适用于不同的材料和工程问题。
接触面完全贴合,无相对运动。
滑动状态
接触面部分贴合,存在相对运动。
混合状态
接触面同时存在分离、粘结和滑动。
接触检测与跟踪
初始接触检测
确定初始状态下接触面的位置和状态。
接触状态跟踪
实时监测接触面的运动状态和相互作用。
接触面更新
根据接触状态调整接触面的几何形状和参数。
接触刚度与阻尼
1 2
接触刚度
描述接触面间的相互作用力与相对位移的关系。
求解阶段主要进行有限元 方程的求解,得到各节点 的位移和应力等结果。
ABCD
前处理阶段主要完成有限元 模型的建立和网格划分,为 求解阶段提供输入数据。
后处理阶段主要对求解结果进 行可视化、分析和评估,为工 程设计和优化提供依据。
04
接触分析原理
接触状态描述
分离状态
剪力墙弹塑性有限元模型与建模方法
( eatetfCv n i en ,Clg ae Rsu e adAcic rl ni e n , Dp r n o il gn r g oeeo t e r s n r tt a gn r m iE ei l fW r o c h e u E ei g
方法 。
关 键 词 : 力 墙 ; 限元 模 型 ; 模 方 法 ;弹 塑性 ; 述 剪 有 建 综 中 图 分 类 号 : U 9 . T 3 82 文献标识 码 : A 文 章 编 号 :17 — 14 (0 1o— 03— 0 6 2 14 2 1)2 13 6
El si - l si n t e e o e fS a a l n o e i e h d a tc p a t Fi ie Elm ntM d lo he r W l a d M d l c s ng M t o
因此须针对工程具体 问题研究合适 的剪力墙 分析模型 和建摸 方法 。为准确选 用模 型来模 拟剪力 墙 ( 简
体 ) 强 震 作 用 下 的 非 线 性 行 为 , 绍 了剪 力 墙 弹 塑 性 分 析 有 限元 模 型 的 研 究 现 状 , 结 合 一 些 结 构 设 在 介 并 计 软 件介 绍 如 何 建 立 剪 力 墙 模 型 。依 据 实 际 工 程 中 剪 力 墙 的 具 体 情 况 , 选 择 不 同 有 限元 模 型 与 建 模 可
d r n e t n atq a e .tersac ttso h ls cpat nt lme tmo e o h a al i it d c d e)u d rs ger u k s h erhsau n teeat .l i f i ee n d l f e w s S nr u e o r h e i s ci e s r l o
弹塑性问题有限元分析讲述
nz nz
xz yz
0 0
nx zx
ny zy
nz ( zz
n)
0
这是关于nx , ny , nz的齐次线性方程组,其非零解的条件为行列式
等于零
展开可得:
n3
I1
2 n
I 2
n
I3
0(1)
其中
I1 xx yy zz
I2
xx
yy
xx zz
zz
yy
xy2
2 yz
2 zx
设该点有一斜面的应力矢量为p,它与 ij 保持平衡,该斜面的法线n的方
向为p余1 弦 为1nnxx、, pn2y、nz ,2n由y , 合p3 力 平3衡nz 可,以于得是到该p面在上坐的标与轴p方等向价的的三正个应投力影分n 和别剪
应力 n 的关系为:
2 n
p2
n2
2 1
nx
22ny
32nz
px nx n , py ny n , pz nz n
其中 nx , ny , nz 为斜面外法线n的方向 余弦
△ABC △S △BOC nx△S △COA ny△S △AOB nz△S
由 Fx 0
px△S xxnx△S yxny △S zxnz △S Fx△V 0
当OABC P :
弹性 极限
应 力
加 载
卸 载
塑性应变 弹性应变
断裂 应变
在实际结构中,真实的情况是材料处于复杂 的受力状态,ij 即中 的各个分量都存在,如何基 于材料的单拉应力-应变实验曲线,来描述复杂 应力状态下材料的真实弹塑性行为,就必须涉及 屈服准则、塑性流动法则、塑性强化法则这三个 方面的描述,有了这三个方面的描述就可以完全 确定出复杂应力状态下材料的真实弹塑性行为
弹塑性有限元法基本理论与模拟方法
弹塑性有限元法基本理论与模拟方法弹性本构关系:弹性本构关系是描述材料的弹性行为的数学模型。
常见的弹性本构模型包括线性弹性模型和非线性弹性模型。
线性弹性模型假设应力与应变之间的关系是线性的,而非线性弹性模型则考虑了应力与应变之间的非线性关系,如Hooke定律和多项式模型等。
塑性本构关系:塑性本构关系是描述材料的塑性行为的数学模型。
常见的塑性本构模型有单一的本构模型和多线性本构模型。
单一本构模型假设应力与应变之间的关系是单调递增的函数,而多线性本构模型则将塑性行为分段描述,适用于复杂的应力和应变关系。
一般在工程中,弹性本构关系常与塑性本构关系相结合,用于模拟材料在加载过程中的弹性和塑性变形。
有限元方法:有限元方法是一种将连续介质离散成有限个子域,并建立一个代表离散网格的有限元模型进行求解的方法。
在弹塑性有限元方法中,将结构或材料划分成无限形状的有限个单元,每个单元都有一组本征坐标。
然后根据问题的对称性和几何形状,选择适当的数学模型,建立方程组。
模拟方法:在弹塑性有限元法中,首先要确定问题的边界条件,包括力、位移或边界反应。
然后,应用合适的数值方法,如有限差分法或有限元法,对弹塑性问题进行离散求解。
通常采用迭代法进行求解,不断更新单元应力和应变,直到达到一定的收敛准则。
在实际应用中,弹塑性有限元法可以用于模拟多种材料和结构的力学行为,如金属、混凝土、岩土、复合材料等。
通过合理选择材料模型和有限元网格,可以准确地模拟材料的应力、应变分布以及变形情况。
总之,弹塑性有限元法是一种基于有限元法的理论框架,用于模拟材料和结构在加载过程中的弹性和塑性行为。
它包括弹性本构关系、塑性本构关系、有限元方法和模拟方法等几个方面,可以应用于各种材料和结构的力学分析和设计中。
梁的弹塑性弯曲课件
将环保、可持续发展理 念融入弹塑性弯曲优化 设计,推动绿色工程的 发展。
THANK YOU
感谢观看
弹性模量01Fra bibliotek材料的弹性模量越大,梁的抗弯刚度越大,弹塑性弯曲程度越
小。
屈服强度
02
材料的屈服强度越高,梁的塑性变形能力越小,弹塑性弯曲程
度越小。
应变硬化指数
03
材料的应变硬化指数越大,梁在弹塑性弯曲过程中的承载能力
越强。
截面形状对弹塑性弯曲影响
截面面积
截面面积越大,梁的抗弯截面系数越大,弹塑性弯曲程度越小。
变形与应力分布
分析模拟结果,得到梁的变形和应力分布情况, 评估梁的承载能力和安全性。
塑性铰形成与发展
观察塑性铰的形成和发展过程,研究塑性铰对梁 弹塑性弯曲性能的影响。
参数敏感性分析
针对不同参数进行敏感性分析,探讨各参数对梁 弹塑性弯曲性能的影响规律。
05
梁的弹塑性弯曲影响因素 研究
材料性能对弹塑性弯曲影响
02
梁的弹塑性弯曲理论分析
弹性力学基础
01
02
03
应力与应变
掌握应力、应变的概念及 其在张量表示下的物理意 义,理解弹性体受力与变 形之间的关系。
弹性本构关系
熟悉广义胡克定律及其在 不同材料中的应用,了解 弹性常数之间的换算关系 。
弹性力学基本方程
掌握平衡方程、几何方程 和物理方程的推导及其意 义,理解边界条件的提法 和应用。
截面惯性矩
截面惯性矩越大,梁的抗弯刚度越大,弹塑性弯曲程度越小。
截面形状系数
截面形状系数越大,梁在弹塑性弯曲过程中的应力分布越均匀, 承载能力越强。
加载条件对弹塑性弯曲影响
机械力学中的弹塑性体仿真与分析研究
机械力学中的弹塑性体仿真与分析研究1. 引言机械力学是工程领域中一个重要的学科,研究物体在外力作用下的力学性质。
在实际应用中,许多物体的行为并不能简单地用线性弹性模型描述,而需要考虑弹塑性体的复杂性。
弹塑性体仿真与分析研究是机械力学中的一个重要研究方向,本文将对该领域的研究现状进行探讨。
2. 弹性与塑性的基本概念弹性是指物体在受到外力作用后可以恢复到原来的形状的性质。
塑性则表示物体在受到外力作用后会出现形变,并且无法完全恢复到原来的形状。
弹性与塑性体的力学性质需要通过力学模型来描述,其中最常用的模型是弹塑性本构关系。
3. 弹塑性本构关系的建模与仿真弹塑性本构关系是弹塑性体仿真与分析的重要基础。
建立合适的本构关系模型可以较准确地模拟物体在外力作用下的行为。
目前常用的本构关系模型包括弹性模型、塑性模型和弹塑性模型等。
3.1 弹性模型弹性模型是弹塑性体仿真与分析中最基本的模型,用来描述物体的弹性行为。
其中最简单的弹性模型是胡克定律模型,它假设物体的应力与应变呈线性关系。
然而,许多材料在受到高应力作用时并不符合胡克定律,因此需要使用更复杂的弹性模型。
3.2 塑性模型塑性模型用于描述物体在超过弹性极限后的塑性变形行为。
常见的塑性模型有极限强度理论、应力应变曲线模型等。
这些模型考虑了材料的屈服行为和塑性流动规律,能够较好地模拟物体的塑性行为。
3.3 弹塑性模型弹塑性模型是将弹性与塑性模型结合起来的模型,用来描述物体既具有弹性行为又具有塑性行为的情况。
常用的弹塑性模型有弗鲁克材料模型、德劳厄尔材料模型等。
这些模型考虑了材料的弹性变形和塑性变形交替出现的情况,能够更加准确地模拟物体的行为。
4. 弹塑性体仿真与分析的方法弹塑性体仿真与分析的方法有许多种,常用的方法包括有限元法、计算流体力学方法等。
4.1 有限元法有限元法是一种力学问题数值解的方法,可以解决复杂的弹塑性体仿真与分析问题。
该方法将物体划分为许多小的有限元单元,通过求解单元之间的相互作用关系,得到物体在外力作用下的应变和应力分布。
三维弹塑性问题的比例边界有限元法
04
比例边界有限元法的实现 过程
网格划分与节点生成
网格划分
将三维空间离散化为有限个小的单元,每个单元由节点连接。
节点生成
根据几何形状和边界条件,在关键区域布置节点,确保计算的精确性。
比例边界条件的处理
边界条件转换
将比例边界条件转换为等效的节点力约束。
节点力平衡
确保所有节点力在平衡状态下,以实现真实比例边界条件的模拟。
材料属性
根据实际问题,设置材料属性,如弹性模量、泊松比、密度等 。
力学行为
考虑弹性和塑性行为,建立相应的本构关系和屈服条件。
边界条件与载荷施加
边界条件
根据实际问题,施加相应的边界条件,如固定边界的位移约束、滑动边界的 摩擦力约束等。
载荷施加
根据实际问题,施加相应的外部载荷,如重力、压力、扭矩等。同时考虑惯 性效应,如质量、阻尼等。
三维弹塑性问题的有限元 建模
有限元模型的建立
几何模型
根据实际物理模型,建立相应 的几何模型,包括三维实体、
表面等。
网格划分
根据模型复杂程度和计算精度要 求,选择合适的网格类型和密度 进行划分。
边界定义
根据实际问题,定义模型的边界条 件,如固定边界、滑动边界等。
单元选择与属性设置
单元类型
根据实际问题,选择合适的有限元单元类型,如四面体单元、 六面体单元等。
三维弹塑性问题的比例边界 有限元法
2023-11-06
目 录
• 引言 • 三维弹塑性理论基础 • 三维弹塑性问题的有限元建模 • 比例边界有限元法的实现过程 • 三维弹塑性问题的算例分析 • 结论与展望 • 参考文献
01
引言
研究背景与意义
剪力墙弹塑性有限元模型与建模方法
剪力墙弹塑性有限元模型与建模方法引言:剪力墙是建筑结构中常见的一种承载结构,主要用于抵抗水平荷载和提供抗震能力。
为了准确地分析剪力墙的受力性能和抗震性能,研究人员提出了各种弹塑性有限元模型和建模方法。
本文将探讨剪力墙的弹塑性有限元模型以及常用的建模方法,旨在为剪力墙的设计和分析提供参考。
一、剪力墙的弹塑性有限元模型剪力墙的弹塑性有限元模型是基于弹塑性力学原理建立的数学模型。
它能够考虑剪力墙在受力过程中的弹性变形和塑性变形,并给出相应的应力-应变关系。
常见的剪力墙弹塑性有限元模型有弯曲模型、剪切模型和拟静力模型。
1. 弯曲模型弯曲模型是基于剪力墙的弯曲性能建立的有限元模型。
它通常将剪力墙看作一根梁柱,采用弯矩-曲率关系描述其受力性能。
在建模时,可以根据剪力墙的几何形状和材料性质,确定截面的弯矩惯性矩和受拉钢筋的位置和数量。
然后,通过有限元法进行离散,得到剪力墙不同截面的弯曲性能。
最后,将各截面的弯曲性能进行整体叠加,得到整个剪力墙的受力性能。
2. 剪切模型剪切模型是基于剪力墙的剪切性能建立的有限元模型。
它一般假设剪力墙在受力过程中主要发生剪切破坏,采用剪切应力-应变关系描述其受力性能。
在建模时,可以根据剪力墙的几何形状和材料性质,确定墙体的截面形状和抗剪强度。
然后,通过有限元法进行离散,得到剪力墙不同截面的剪切性能。
最后,将各截面的剪切性能进行整体叠加,得到整个剪力墙的受力性能。
3. 拟静力模型拟静力模型是基于剪力墙的拟静力试验结果建立的有限元模型。
它通过模拟剪力墙在地震作用下的受力过程,得到了剪力墙的强度、刚度和耗能性能。
在建模时,可以根据拟静力试验的结果,确定剪力墙的材料性质和边界条件。
然后,通过有限元法进行离散,得到剪力墙的受力性能。
最后,将试验结果与有限元分析结果进行对比,验证模型的准确性。
二、剪力墙的建模方法剪力墙的建模方法是指将实际的剪力墙几何形状和材料特性转化为有限元模型所需的几何形状和材料参数的过程。
弹塑性力学及有限元法_
写成矩阵形式
R11 cos 2 θ x 1 Ry1 EA cos θ sin θ 1 = Rx 2 l1 − cos 2 θ R1 2 − cos θ sin θ y cos θ sin θ sin 2 θ − cos θ sin θ − sin 2 θ − cos 2 θ − cos θ sin θ cos 2 θ cos θ sin θ
单元刚度矩阵的子矩阵 K ij 表示:当单元 e 中节点 j 取单 位位移,且其它节点位移为零时,对应于 i 节点的节点力。
第五章 有限元法简介
单元1的节点力和节点位移的关系可写成
R1 K11 = R2 K 21
1
K12 K 22
1
δ1 δ 2
1 θFx1(u1) 3 Fx3 (u3) Fy1(v1 ) Fy3 (v3) y 2 o x
1
Fy2 (v2) Fx2(u2)
2
图5-1 简例结构图
第五章
分析步骤:
有限元法简介
2
1
1 1 Ry2(v2) 1 1 Rx2(u2)
1. 离散结构物为有限个单元 分为2个单元,第一个单元的节点编号 为1和2,第二个单元的节点编号为2和3。 对于第一单元,在第1、2节点处的节点力 为 R 11 , R 11 , R 1 2 , R 1 2 ,表示节点施加在单元1上 x y x y
1 − cos θ sin θ u1 1 2 − sin θ v1 cos θ sin θ u1 2 1 si成
R11 k x 1 11 Ry1 k21 1 = Rx 2 k31 R1 k41 y2 k12 k22 k32 k42 k13 k23 k33 k43
结构静力弹塑性分析的原理和计算实例
结构静力弹塑性分析的原理和计算实例一、本文概述结构静力弹塑性分析是一种重要的工程分析方法,用于评估结构在静力作用下的弹塑性行为。
该方法结合了弹性力学、塑性力学和有限元分析技术,能够有效地预测结构在静力加载过程中的变形、应力分布以及破坏模式。
本文将对结构静力弹塑性分析的基本原理进行详细介绍,并通过计算实例来展示其在实际工程中的应用。
通过本文的阅读,读者可以深入了解结构静力弹塑性分析的基本概念、分析流程和方法,掌握其在工程实践中的应用技巧,为解决实际工程问题提供有力支持。
二、弹塑性理论基础弹塑性分析是结构力学的一个重要分支,它主要关注材料在受力过程中同时发生弹性变形和塑性变形的情况。
在弹塑性分析中,材料的应力-应变关系不再是线性的,而是呈现出非线性特性。
当材料受到的应力超过其弹性极限时,材料将发生塑性变形,这种变形在卸载后不能完全恢复,从而导致结构的永久变形。
弹塑性分析的理论基础主要包括塑性力学、塑性理论和弹塑性本构关系。
塑性力学主要研究塑性变形的产生、发展和终止的规律,它涉及到塑性流动、塑性硬化和塑性屈服等概念。
塑性理论则通过引入屈服函数、硬化法则和流动法则等,描述了材料在塑性变形过程中的应力-应变关系。
弹塑性本构关系则综合考虑了材料的弹性和塑性变形行为,建立了应力、应变和应变率之间的关系。
在结构静力弹塑性分析中,通常需要先确定材料的弹塑性本构模型,然后结合结构的边界条件和受力情况,建立结构的弹塑性平衡方程。
通过求解这个平衡方程,可以得到结构在静力作用下的弹塑性变形和应力分布。
弹塑性分析在结构工程中有着广泛的应用,特别是在评估结构的承载能力、变形性能和抗震性能等方面。
通过弹塑性分析,可以更加准确地预测结构在极端荷载作用下的响应,为结构设计和加固提供科学依据。
以上即为弹塑性理论基础的主要内容,它为我们提供了分析结构在弹塑性阶段行为的理论框架和工具。
在接下来的计算实例中,我们将具体展示如何应用这些理论和方法进行结构静力弹塑性分析。
第四章弹塑性有限元法基本理论与模拟方法
第四章 弹塑性有限元法基本理论与模拟方法
硬化法则
• 塑性硬化法则规定了材料进入塑性变形后的后继屈 服函数(又称加载函数或加载曲面) – 各向同性硬化 – 运动硬化 – 混合硬化
第二十九页,编辑于星期五:十九点 二十二分。
第四章 弹塑性有限元法基本理论与模拟方法
各向同性硬化:材料进入塑性变形以后,屈服面在各方向均匀地向外扩张,其 形状、中心及其在应力空间的方位均保持不变。
• 非线性问题通常采用增量法求解(追踪加载过程中 应力和变形的演变历史。)
– 每个增量步采用Newton-Raphson迭代法
第六页,编辑于星期五:十九点 二十二分。
第四章 弹塑性有限元法基本理论与模拟方法
非线性方程的迭代求解方法
f (x) 0
直接迭代法 x g(x) xk1 g(xk )
Newton-Raphson迭代
• 分类:
–不依赖时间的弹、塑性问题
• 非线性弹性——橡胶 • 弹塑性——冲压成形
–依赖于时间的粘(弹、塑)性问题
• 蠕变——载荷不变,变形随时间继续变化 • 松弛——变形不变,应力随时间衰减
第十四页,编辑于星期五:十九点 二十二分。
第四章 弹塑性有限元法基本理论与模拟方法
非线性弹性材料行为
橡胶应力应变关系曲线
第八章 几种典型材料成形过程计算机模拟分析实例
第一页,编辑于星期五:十九点 二十二分。
第四章 弹塑性有限元法基本理论与模拟方法
4.1 非线性问题及分类
• 在分析线性弹性问题时,假定:
– 应力应变线性关系
– 结构位移很小(变形远小于物体的几何尺寸)
– 加载时边界条件的性质不变
Kq P
如果不满足上述条件之一,就称为非线性问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 弹塑性有限元法基本理论与模拟方法
直接迭代法 N-R迭代
x g(x)
xk 1 g(xk )
1 1
x k 1 x k F(x k ) F (x k )
f1 x 1 f 2 x F(x k ) 1 f n x1 f1 f1 x2 xn f 2 f 2 x2 xn f n f n x2 xn x xk
p
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
单调加载
s0
s s ( p )
s0
p
Байду номын сангаас
p
理想弹塑性
硬化塑性
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
反向加载
s0
2 s 0
s ( p )
各向同性硬化:
(3) 所有载荷段循环,并将结果进行累加
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
4.2 材料非线性问题及分类
• 概念:由于材料的应力应变非线性关系引起的非 线性。 • 分类:
–不依赖时间的弹、塑性问题
• 非线性弹性——橡胶 • 弹塑性——冲压成形
–依赖于时间的粘(弹、塑)性问题
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
硬化法则
• 塑性硬化法则规定了材料进入塑性变形后的后继 屈服函数(又称加载函数或加载曲面) – 各向同性硬化 – 运动硬化 – 混合硬化
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
各向同性硬化:材料进入塑性变形以后,屈服面在各方向均匀地向外 扩张,其形状、中心及其在应力空间的方位均保持不变。
• 蠕变——载荷不变,变形随时间继续变化 • 松弛——变形不变,应力随时间衰减
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
非线性弹性材料行为
橡胶应力应变关系曲线
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
• 弹塑性材料进入塑性 的特征:载荷卸去后 存在不可恢复的永久 变形。 • 应力应变之间不是单 值对应关系,与加载 历史有关。
问题:
当材料处于后继弹性状态而继续加载时,应力(或变 形)发展到什么程度材料再一次开始屈服呢?
把复杂应力状态下,确定材料后继弹性状态的界限的 准则就称为后继屈服条件,又称为加载条件。
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
一般应力状态下弹塑性材料行为
• 屈服准则(初始屈服条件) • 硬化法则 (后继屈服函数、加载函数、加载曲面) • 流动法则 • 加载、卸载准则
第四章 弹塑性有限元法基本理论与模拟方法
• 随着有限元算法理论、计算机硬件和软件技术的进步及实际工业的需 求,CAE技术的应用逐步由线性模拟为主向非线性模拟为主快速发展。 – 1969年,第一个商业非线性有限元程序——Marc诞生。 – 目前几乎所有的商业有限元软件都具备较强的非线性问题的分析 求解能力。 • 非线性求解技术的先进性与稳健性已经成为衡量一个结构分析程序优 劣的标准。
运动硬化
混合硬化:其实质就是将随动强化模型和等向强化模型结合起来,即 认为后继屈服面的形状、大小和位置一起随塑性变形的发展而变化 。 该模型能够更好的反映材料的Bauschinger效应 。
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
非线性问题的有限元求解方法 非线性问题有限元控制方程: K(q)q P •
– – –
非线性方程(组)的求解方法
直接迭代法 Newton-Raphson迭代法 修正的Newton-Raphson迭代法
•
–
非线性问题通常采用增量法求解(追踪加载过 程中应力和变形的演变历史。)
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
为了与初始屈服应力相区别,我们称之为后继屈服应力。 与初始屈服应力不同,它不是一个材料常数,而是依赖 于塑性变形的大小和历史。 后继屈服应力是在简单拉伸下,材料在经历一定塑性变形 后再次加载时,变形是按弹性还是塑性规律变化的界限。
F ij , ij f k0 0 1 ij ij ij f ij 2 1 2 k s0 0 3
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
2
2
1
1
各向同性硬化
F 0 ( ij ) 0
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
各向同性屈服准则:各个方向屈服应力相同 各向异性屈服准则:不同方向屈服应力有差异
常用的各向同性Von-Mises屈服准则: 1 1 2 0 ij s0 0 F ( ij ) ij 2 3
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
课程教学内容:
第一章
第二章 第三章 第四章 第五章 第六章 第七章
绪 论
塑性成形分析的理论基础 有限元法基本概念 弹塑性有限元法基本理论与模拟方法 刚塑性有限元法基本理论与模拟方法 几种通用有限元分析软件介绍(ANSYS、MARC、ABAQUS) 几种典型材料成形过程计算机模拟分析实例
F ( ij , k ) f k 0 1 1 2 p f ij ij k s ( ) 2 3
材料的强化只与总的塑性变形 功有关而与加载路径无关。
应力有反复变化时,等向强化 模型与实验结果不相符合。
运动硬化:该模型假设材料随塑性变形发展时,屈服面的大小和形状 不变,仅是整体在应力空间作平动。
K(q)q P
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
非线性问题可以分为三类: • 材料非线性:体系的非线性由材料的应力应变 关系的非线性引起。
– 如金属变形弹塑性行为、橡胶的超弹性行为等
• 几何非线性:结构的位移使体系的受力状态发 生了显著的变化。
– 如板壳的大挠度问题 ——平衡方程必须建立于变形后的状态
N-R迭代:
KT (qi(k ) )qi( k ) Pi( k )
Pi( k ) P(k 1) Pi(k )
q
(k ) 1
k) (k ) qi( k ) qi( q 1 i
q(k )
q( k 1)
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
和简单应力状态相似,材料在复杂应力状态下同样 存在初始屈服和后继屈服的问题。
材料在复杂应力状态下,在经历初始屈服和发生塑性 变形后,此时卸载,将再次进入弹性状态(称为后继弹 性状态)。
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
(1) 将总的外力载荷分为一系列载荷段
K(q)q P
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
(2) 在每一载荷段中进行迭代,直至收敛
K(q)q P
P1( k )
(k ) KT (q1 )
K(q)q P( k 1)
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
屈服准则(初始屈服条件)
• 在单向受力情况下,当应力达到材料的屈服强度时材料 开始产生塑性变形。 • 对于一般复杂的应力状态,应力状态由六个应力分量决 定时,显然不能根据某个单独应力分量的数值作为判断 材料是否进入塑性变形的标准。为此,引入以应力分量 为坐标的应力空间,根据代表不同应力路径的实验结果, 可以定出从弹性阶段进入塑性阶段的各个界限,即屈服 应力点。在应力空间中,这些屈服应力点形成一个区分 弹性和塑性的分界面——屈服面。描述这个屈服面的数 学表达式就是我们所要寻求的一般应力状态下的屈服准 则。
f ( xk ) xk 1 xk f ( x0 )
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
非线性方程组的迭代求解方法
f1 ( x1 , x2 , , xn ) 0 f ( x , x , , x ) 0 2 1 2 n f n ( x1 , x2 , , xn ) 0
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
三维主应力空间
F 0 ( ij )
1 1 ( 1 2 ) 2 ( 2 3 ) 2 ( 3 1 ) 2 s20 0 6 3
2 2
o
o
1
3
π平面上的屈服轨迹
1
σ3=0平面上的屈服轨迹
修正的N-R迭代 x k 1 x k F(x 0 ) F(x k )
塑性成形过程 计算机数值模拟
第四章 弹塑性有限元法基本理论与模拟方法
非线性问题的增量法求解过程 (1) 将总的外力载荷分为一系列载荷段 (2) 在每一载荷段中进行迭代,直至收敛 (3) 所有载荷段循环,并将结果进行累加
L
nom
s0
nom (1 nom ) p e ln(1 nom ) E
s0
F nom (1 nom ) A ln L ln(1 nom ) L0