二次函数和根与系数的关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数和根与系数的关
系
This model paper was revised by the Standardization Office on December 10, 2020
例1:已知关于x的二次函数y=x2﹣2mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A(x1,y1)、B (x2,y2);(x1<x2)
(1)当k=1,m=0,1时,求AB的长;(2)当k=1,m为任何值时,猜想AB的长是否不变并证明你的猜想.(3)当m=0,无论k为何值时,猜想△AOB的形状.证明你的猜想.
(平面内两点间的距离公式).
解:(1)当k=1,m=0时,如图.
由得x2﹣x﹣1=0,∴x
1+x
2
=1,x
1
x
2
=﹣1,
过点A、B分别作x轴、y轴的平行线,两线交于点C.∵直线AB的解析式为y=x+1,
∴∠BAC=45°,△ABC是等腰直角三角形,∴AB=AC=|x
2﹣x
1
|==;同理,
当k=1,m=1时,AB=;
(2)猜想:当k=1,m为任何值时,AB的长不变,即AB=.理由如下:由,得x2﹣(2m+1)x+m2+m﹣1=0,
∴x
1+x
2
=2m+1,x
1
x
2
=m2+m﹣1,∴AB=AC=|x
2
﹣x
1
|==;
(3)当m=0,k为任意常数时,△AOB为直角三角形,理由如下:①当k=0时,则函数的图象为直线y=1,
由,得A (﹣1,1),B (1,1),显然△AOB 为直角三角形;
②当k=1时,则一次函数为直线y=x+1,
由,得x 2﹣x ﹣1=0,∴x 1+x 2=1,x 1x 2=﹣1,
∴AB=AC=|x 2﹣x 1|==,∴AB 2=10,
∵OA 2+OB 2=x 12+y 12+x 22+y 22=x 12+x 22+y 12+y 22=x 12+x 22+(x 1+1)2+(x 2+1)2=x 12+x 22+(x 12+2x 1+1)+(x 22+2x 2+1)=2(x 12+x 22)+2(x 1+x 2)+2=2(1+2)+2×1+2=10,∴AB 2=OA 2+OB 2,∴△AOB 是直角三角形;
③当k 为任意实数,△AOB 仍为直角三角形.
由,得x 2﹣kx ﹣1=0,∴x 1+x 2=k ,x 1x 2=﹣1,∴AB 2=(x 1﹣x 2)2+(y 1﹣y 2)2=(x 1﹣x 2)2+(kx 1﹣kx 2)2=
(1+k 2)(x 1﹣x 2)2=(1+k 2)[(x 1+x 2)2﹣4x 1x 2]=(1+k 2)(4+k 2)=k 4+5k 2+4,
∵OA 2+OB 2=x 12+y 12+x 22+y 22=x 12+x 22+y 12+y 22=x 12+x 22+(kx 1+1)2+(kx 2+1)2=x 12+x 22+(k 2x 12+2kx 1+1)+(k 2x 22+2kx 2+1)=(1+k 2)(x 12+x 22)+2k (x 1+x 2)+2=(1+k 2)(k 2+2)+2kk+2=k 4+5k 2+4,
∴AB 2=OA 2+OB 2
,
∴△AOB 为直角三角形.
如图,已知抛物线y=x2-4x+3,过点D(0,-
2
5
)的直线与抛物线交于点M 、N ,与x 轴交于点E ,且点M 、N 与X 轴交于E 点,且M 、N 关于点E 对称,求直线MN 的解析式。
解:∵D(0,-
2
5) ∴设直线MN 的解析式为y=kx-
2
5 ∴252
43
y kx y x x ⎧
=-⎪⎨⎪=-+⎩ ∴kx-
2
5
= x2-4x+3 ∴x2-(4+k)x+
112
=0 1x +2x =-
b
a
=4+k ∵m y +
n y =0=k(4+k)
∴k=1或-5(舍)
∴直线MN 的解析式为y=x-
2
5 1、 如图,抛物线y=x 2﹣2x ﹣3与坐标轴交于A 、B 、三点,直线y=kx-1与抛物线交于P 、Q 两点,且
y 轴平分△PCQ 的面积,求k 的值。 (答案:k=-2)
已知:二次函数m x m x y ++-=)1(2的图象交x 轴于)0,(1x A 、)0,(2x B 两点,
交y 轴正半轴于点C ,且102
2
21=+x x 。 (1)求此二次函数的解析式;
(2)是否存在过点D (0,
2
5
)的直线与抛物线交于点M 、N ,与x 轴交于点E ,使得点M 、N 关于点E 对称若存在,求直线MN 的解析式;若不存在,请说明理由。
4
2
2
5
E
M
N
D
O
例2、已知抛物线y=﹣2x﹣5与x轴交A、B两点,与y轴交于点C,将直线m:y=向上平移,交抛物线于M、N。MN交y轴正半轴于点 T,S△MCT-S△CNT=44,求直线m的解析式。
如图,抛物线y=x2,过Q(0,3)作直线l交抛物线于E、F,点Q关于原点的对称点为P,当S△PEF=12时,求E、F点的坐标。
如图,抛物线y=—x2+4x﹣3与x轴交A、B两点(A点在B点的左侧),与y轴交于点C,抛物线的顶点为M,将抛物线沿射线OM的方向平移,平移后的抛物线交x轴于点A1,B1,若2≦A1B1≦4,求M移动的最大距离.如图,抛物线y=—x2+3x+6交 y轴于点A,点C(4,k) 在抛物线上,将抛物线向右平移n个单位长度后与直线AC 交于M、 N两点,且M、N关于点C成中心对称,求n的值。
解:∵点A、C在抛物线y=-x2+3x+6上∴A(0,6) C(4,2) ∴AC:y=-x+6
∵抛物线y=-x2+3x+6的顶点G,
抛物线向右平移n个单位后,G点对应点G’坐标为+n,,设新抛物线解析式为y=-[x-+n)]2+
联立:
2
( 1.5)8.25
6
y x n
y x
⎧=---+
⎨
=-+
⎩
∴x2-(4+2n)x+n2+3n=0 ∴
M N
X X
+=4+2n
∵点M、N关于C点中心对称∴42
2
n
+
=
C
x=2 ∴n=2
、如图,已知抛物线y=-x2+2x+3与坐标轴交于A、B、C三点,点D、C关于原点对称,点M、N是抛物线上两点,且四边形CMDN为平行四边形,求点M、N的坐标。
解:∵点A、B、C在抛物线y=-x2+2x+3上