组别+秩和检验spss方法:显效和非显效
SPSS两个独立样本秩和检验操作步骤
SPSS两个独立样本秩和检验操作步骤SPSS(Statistical Package for the Social Sciences)是一种统计分析软件,可用于执行各种统计分析操作,包括独立样本秩和检验。
独立样本秩和检验是一种非参数检验方法,用于比较两个独立样本的中位数是否存在差异。
以下是在SPSS中执行独立样本秩和检验的操作步骤:1.打开SPSS软件,并导入相关数据。
- 单击"File"选项卡,然后选择"Open"选项,以选择要导入的数据文件。
-在导入数据文件之前,确保数据文件符合SPSS格式要求。
2.在SPSS中创建秩和检验数据。
- 单击"Transform"选项卡,然后选择"Rank Cases"选项,以创建秩和检验所需的秩序变量。
- 在弹出的"Rank Cases"对话框中,选择要进行秩和检验的变量,并为新的秩序变量指定名称。
-单击"OK"按钮以创建秩序变量。
3.执行秩和检验。
- 单击"Analyze"选项卡,然后选择"Nonparametric Tests"选项,以访问非参数测试工具。
- 在"Nonparametric Tests"子菜单中,选择"Legacy Dialogs"选项,以显示传统对话框。
- 在传统对话框中,选择"2 Independent Samples"选项,以执行独立样本秩和检验。
- 在弹出的"2 Independent Samples"对话框中,选择要进行秩和检验的变量,并将其添加至"Test Variables"框中。
- 单击"Options"按钮以访问进一步的选项。
在"Options"对话框中,您可以选择计算效应大小指标等。
spss基本知识点
spss基本知识点【篇一:spss基本知识点】结论不同麻醉诱导方法存在组间差别;患者的收缩压在不同的诱导方法下不同诱导时相变化的趋势不同,其中 a 组不同诱导时相收缩压较为稳定。
第八章非参数检验(nonparametrictests 菜单)参数检验:?? 通过样本的参数来检验总体参数的方法是参数检验。
如:通过样本的均值、方差来检验总体的数学期望与总体方差提出的假设是否为真.?? 参数检验对总体的分布有一定的要求,比如正态性和方差齐性非参数检验:?? 对总体分布情况未知时,无法用参数检验方法?? 非参数检验通过样本的分布对总体的分布进行检验非参数检验所要处理的问题:?? 两个总体分布未知,它们是否相同(用两组样本来检验)?? (由一组样本)猜出总体的分布(假设),然后用另一组样本去检验它是否正确注:两种分布是否相同,一般包含了参数(均值、方差等)是否相同的问题。
如果两个总体的分布函数形式相同,而参数不同,也被视为概率分布不同nonparametrictest 菜单(1) nonparametrictest 菜单(2) 卡方检验chi‐square?? 适用于拟合优度检验,即检验单变量的分布与理论分布是否一致?? 实例 1:贫困调查.sav 中身体状况变量的数据分布是否符合以往的经验:?? 完全不能自理 5%?? 基本不能自理10%?? 能自理无劳动能力 20%?? 部分丧失劳动能力 25%?? 身体健康 40% ?? 1.weightcasesby:death??2.analyze‐nonparametrictest‐chisquare 二项分布检验binomial ?? 二项分布的变量将总体分为两类(如医学中的生与死),二项分布的检验是通过样本中这两类的频率来检验总体中这两类的概率是否为给定的值 ?? binomial 过程可检验二项分类变量是个来自概率为 p 的二项分布例 1:一般来说,新生儿染色体异常率为1%,某医院观察了 400 名新生儿,只发现一例异常,请问该地新生儿异常率是否低于一般水平?数据文件见 6.2sav 1.weight cases by:num 2.analyze-nonparametric test-binomial 例 2:某地某一时期内出生 40 名婴儿,其中女性 12 名(定 sex=0),男性28名(定 sex=1)。
spss秩和检验操作流程
spss秩和检验操作流程
SPSS是一种常用的统计分析软件,它提供了丰富的数据分析功能,其中包括了秩和检验。
秩和检验是一种非参数检验方法,适用于数据不满足正态分布的情况下进行假设检验。
在SPSS中进行秩和检验操作流程如下:
1. 打开SPSS软件并导入数据:首先打开SPSS软件,然后导入需要进行秩和检验的数据文件。
可以通过“文件”菜单中的“打开”选项来导入数据文件。
2. 进行秩和检验:在SPSS软件中,进行秩和检验的操作是通过“非参数检验”功能来实现的。
在菜单栏中选择“分析”-“非参数检验”-“两组样本”-“秩和检验”。
3. 设置变量:在弹出的对话框中,需要设置需要进行秩和检验的变量。
将需要比较的两组变量分别添加到“测试变量”和“分组变量”中。
4. 设置参数:在设置参数的选项中,可以选择检验的类型,包括单样本、独立样本和配对样本秩和检验。
根据实际情况选择适当的检验类型。
5. 进行分析:点击“确定”按钮后,SPSS会自动进行秩和检验分析,并生成相应的结果报告。
在结果报告中会包括秩和检验的统计
量、显著性水平和推断结论等信息。
6. 结果解读:根据结果报告中的显著性水平,判断两组样本之
间是否存在显著差异。
如果显著性水平小于设定的显著性水平(通
常为0.05),则可以拒绝原假设,认为两组样本之间存在显著差异。
总的来说,SPSS软件提供了方便快捷的秩和检验功能,可以帮
助研究人员进行非参数假设检验,从而更准确地分析数据并得出科
学结论。
通过以上操作流程,可以轻松地进行秩和检验分析,为研
究工作提供有力支持。
SPSS-秩和检验
秩和检验:
例7.5 某药治疗不同病情的老年性慢性支气管炎病人,疗效如下表,问该药对两种病情的疗效有无差别。
(nonpara2.sav)
病情控制显效有效无效
单纯
性65 18 30 13单纯性合并肺气
肿42 6 23 11
说明:对于这种情况,用Ridit分析和秩和检验都可以,两者的结果无明显差异,业界也都认同。
但Ridit分析在SPSS上操作比较复杂,而且小样本量时(例数小于40)用秩和检验结果更可靠,因此,此篇只介绍秩和检验的方法。
【操作过程】
1、建立数据文件
设定三个变量:X、group、F。
X表示疗效,控制、显效、有效、无效,分别用1、2、3、4代表;group,分组变量,单纯性 1 ,单纯性合并肺气肿2;F 频数。
用SPSS实现完全随机设计多组比较秩和检验的多重比较
用SPSS实现完全随机设计多组比较秩和检验的多重比较用SPSS实现完全随机设计多组比较秩和检验的多重比较一、引言在实证研究中,为了探讨不同处理或干预对某个变量的影响,常常需要进行多组比较。
多组比较的目的是确定是否存在差异以及差异的大小。
秩和检验是一种用于比较两组或多组样本之间差异的非参数方法,具有一定的优势。
二、方法以SPSS软件为例,我们可以利用其提供的功能实现完全随机设计多组比较秩和检验的多重比较。
以下是具体的步骤:1. 数据准备首先,需要准备好用于分析的数据。
假设有n个处理组,每个处理组有m个观测值。
可以将数据按照处理组进行分类整理,每个处理组的观测值放在一列中。
2. 数据输入打开SPSS软件,创建一个新的数据文件,并将之前准备好的数据输入。
确保每个处理组的观测值对应正确。
3. 非参数检验选择菜单栏中的“分析-非参数检验-维尔科克森-曼-惠特尼U 检验”或“分析-非参数检验-克鲁斯卡尔-华里斯H检验”,根据实验需要选择适当的检验方法。
4. 设置选项在弹出的对话框中,将要比较的变量选择到“因子”框中,将处理组变量选择到“因子标签”框中。
选择需要进行多重比较的处理组,点击“组间对比”按钮。
5. 多重比较在“组间对比”对话框中,选择想要进行多重比较的处理组。
可以点击“加入全部对比”按钮将所有处理组两两比较,也可以手动选择需要比较的处理组。
点击“确定”进行多重比较。
6. 结果输出SPSS将会输出多重比较的结果,包括均值、标准误差、t值、p值等统计指标。
根据p值判断处理组之间是否存在显著差异。
三、示例为了更好地理解上述方法,我们通过一个假想的实验来展示如何使用SPSS进行完全随机设计多组比较秩和检验的多重比较。
假设研究人员想要比较四种不同药物对降压效果的影响。
他们随机地将30名患有高血压的参与者分为四个处理组,分别接受A药物、B药物、C药物和D药物的治疗。
每个处理组的参与者分别测量他们的血压值。
现在,研究人员想要确定这些药物在降压效果上是否有显著差异。
非参数统计中的秩和检验方法详解(Ⅰ)
非参数统计中的秩和检验方法详解统计学是一门研究数据收集、分析、解释和展示的学科,它在各个领域都有着广泛的应用。
而在统计学中,参数统计和非参数统计是两种常见的方法。
参数统计是根据总体的参数进行推断,而非参数统计则是不对总体参数做出假设的一种统计方法。
在非参数统计中,秩和检验方法是一种常用且重要的方法。
本文将详细介绍非参数统计中的秩和检验方法。
一、秩和检验简介秩和检验是一种基于秩次的非参数检验方法,它主要用于对两个独立样本或多个相关样本的总体分布进行比较。
这种方法的优势在于对数据的分布形状没有要求,适用于各种类型的数据。
在进行秩和检验时,首先需要将样本数据进行排序,然后根据排序后的秩次进行计算。
接下来,通过比较秩和的大小来进行假设检验,从而得出结论。
二、秩和检验的应用场景秩和检验方法可以应用于诸多实际场景中。
比如,在医学研究中,可以用秩和检验方法来比较两种不同治疗方法的疗效;在工程领域,可以用秩和检验方法来比较不同生产工艺的产品质量;在市场营销中,可以用秩和检验方法来比较不同促销策略的效果等等。
总之,秩和检验方法在实际问题的解决中有着广泛的应用。
三、秩和检验的类型秩和检验包括了许多不同类型,其中最常见的包括Mann-Whitney U检验、Wilcoxon秩和检验和Kruskal-Wallis H检验。
下面将分别对这些检验进行详细介绍。
1. Mann-Whitney U检验Mann-Whitney U检验是一种用于比较两个独立样本的非参数检验方法。
它基于两组数据的秩次进行比较,通过计算秩和来判断两组数据是否来自同一总体分布。
Mann-Whitney U检验的原假设是两组样本来自同一总体分布,备择假设是两组样本来自不同总体分布。
通过计算U统计量和p值来进行假设检验,从而得出结论。
2. Wilcoxon秩和检验Wilcoxon秩和检验是一种用于比较两个相关样本的非参数检验方法。
它与Mann-Whitney U检验类似,同样是基于秩次进行比较。
非参数统计中的秩和检验方法详解(八)
非参数统计中的秩和检验方法详解统计学作为一门独立的学科,旨在通过收集、分析和解释数据来揭示事物之间的关系和规律。
在统计学中,参数统计和非参数统计是两种常见的数据分析方法。
参数统计依赖于总体的概率分布,而非参数统计则不依赖于总体的概率分布。
本文将重点介绍非参数统计中的秩和检验方法。
一、秩和检验方法概述秩和检验方法,又称为Wilcoxon秩和检验,是一种非参数统计方法,用于比较两组独立样本的中位数是否有显著差异。
这种方法不要求数据呈正态分布,因此在样本量较小或总体分布未知的情况下也能得到可靠的结果。
秩和检验方法通常应用于医学、生物学和社会科学中。
二、秩和检验方法的基本原理秩和检验方法的基本原理是将两组样本数据合并后按大小排列,然后给每个数据项标上它在所有数据中的相对位置秩次,即所谓的秩。
接下来,计算两组样本的秩和,再根据分布情况进行显著性检验。
例如,假设有两组样本数据分别为A和B,分别有n1和n2个观测值。
将这两组数据合并后按大小排列,然后给每个数据项标上它在所有数据中的相对位置秩次,即所谓的秩。
接下来,计算两组样本的秩和,再根据分布情况进行显著性检验。
三、秩和检验的应用场景秩和检验方法适用于两组独立样本,它能够有效地应对数据不满足正态分布的情况,同时也能应对小样本量的情况。
因此,秩和检验方法在实际应用中具有较广泛的适用性。
在医学领域,秩和检验方法常用于比较治疗组和对照组的治疗效果,特别是当数据不满足正态分布或者样本量较小的情况下。
在生物学和社会科学领域,秩和检验方法也经常被用于比较不同条件下的实验结果,例如药物治疗效果的比较、心理学实验结果的比较等。
四、秩和检验方法的优缺点秩和检验方法的优点是不依赖于总体分布的假设,对异常值不敏感,适用于小样本量和非正态分布数据。
因此,它在实际应用中具有较强的稳健性。
另外,秩和检验方法还能对数据进行排序,从而提供了对数据分布的直观理解。
然而,秩和检验方法也存在一些局限性。
非参数统计中的秩和检验方法详解(七)
非参数统计中的秩和检验方法详解统计学作为一门应用广泛的学科,其研究对象主要是各种数据的收集、整理、分析和解释。
在统计学中,参数统计和非参数统计是两种常用的分析方法。
在本文中,我们将重点介绍非参数统计中的一种常见方法——秩和检验。
一、秩和检验的基本原理秩和检验是一种基于秩次的非参数假设检验方法,它不需要对总体分布进行任何假设,因此在数据分布未知或不满足正态分布假设的情况下,秩和检验可以很好地进行统计推断。
秩和检验的基本原理是将样本数据进行排序,然后将排序后的数据转化为秩次,再通过对秩次进行比较来进行假设检验。
秩和检验适用于两组或多组独立样本的比较,常用于检验总体的中位数是否相等或者总体分布是否相同。
二、秩和检验的步骤秩和检验的步骤主要包括数据排序、秩次转换和秩和比较。
具体步骤如下:1. 数据排序:首先对样本数据进行排序,可以按照从小到大或者从大到小的顺序进行排序。
2. 秩次转换:将排序后的数据转化为秩次,即给每个数据赋予一个秩次,通常情况下,秩次是按照数据在样本中出现的顺序进行分配的。
如果出现相同的数据,可以采取加权秩次的方法进行处理。
3. 秩和比较:对计算得到的秩次进行比较,通过比较秩和的大小来进行假设检验,得出检验统计量并进行显著性检验。
三、秩和检验的应用秩和检验方法在实际应用中有着广泛的应用,特别是在医学、生物学、社会科学和工程领域等。
下面以两组独立样本的比较为例,介绍秩和检验的应用。
假设有两组独立样本,分别记为X和Y,我们要比较这两组样本的中位数是否相等。
首先对两组样本数据进行排序,并进行秩次转换,得到秩和值RX和RY,然后对秩和值进行比较,通过比较得到的检验统计量进行显著性检验,从而判断两组样本的中位数是否相等。
四、秩和检验的优缺点秩和检验作为一种非参数方法,具有一些优点和局限性。
优点:秩和检验不需要对数据分布进行假设,因此对于不满足正态分布假设的数据具有较好的适用性;同时,秩和检验是一种较为稳健的检验方法,对异常值和极端值的影响相对较小。
秩和检验(SPSS)分析
其他相关信息
此外,还会提供其他相关信 息,如可信区间、P值等, 帮助用户更全面地理解检验 结果。
03
秩和检验的优缺点
秩和检验的优点
无假设限制
秩和检验不需要严格的假设条件,如正态分布、方差 齐性等,因此应用范围较广。
适用于小样本
在样本量较小的情况下,秩和检验能够提供较为准确 的结果。
避免数据异常值影响
应用价值。
未来研究可以进一步探讨秩和 检验与其他统计方法的结合使 用,以更好地满足研究需求。
在实际应用中,研究者应充分 了解秩和检验的适用范围和限 制条件,根据具体情况选择合 适的统计方法。
随着大数据时代的到来,秩和 检验在处理大规模数据方面的 应用将更加广泛,有助于推动 各领域研究的深入发展。
THANKS
运行检验
点击“运行”按钮,SPSS将自动进 行秩和检验,并输出检验结果。
SPSS中秩和检验的结果解读
描述性统计结果
检验统计量
在检验结果中,首先会给出 各个组别的描述性统计结果, 包括各组的频数、百分比、 中位数等。
接着会给出检验的统计量, 包括秩次、秩次之和、平均 秩次等。
检验结论
根据统计量的大小和分布情 况,SPSS会给出检验结论, 判断各组之间是否存在显著 差异。
04
秩和检验的案例分析
案例一:配对设计资料的秩和检验
总结词
配对设计资料的秩和检验适用于对同一观察对象在不同条件下进行观察或测量的情况,例如同一批受 试者在不同时间点的观察值。
详细描述
配对设计资料的秩和检验首先需要对配对数据进行分析,确定配对数据是否具有相关性,然后采用适 当的统计方法进行检验。在SPSS中,可以使用Wilcoxon匹配对符号秩检验或Wilcoxon符号秩检验等 方法进行配对设计资料的秩和检验。
组别秩和检验spss方法-显效和非显效
秩group N秩均值秩和 频数对照组 26 18.88 491.00 治疗组 30 36.831105.00总数56检验统计量a频数 Mann-Whitney U 140.000 Wilcoxon W 491.000 Z-4.234 渐近显著性(双侧) .000a. 分组变量: group组别n痊愈 显效 有效 无效 总有效率 治疗组 316(53.3%) 8(26.7%) 6(20.0%) 0(0.0%)30(100.0%)对照组 265(19.2%)6(23.1%)8(30.7%)7(26.9%) 19(73.1%)Z值为-4.234,p<0.001,拒绝H0经检验,某治疗方法有效,治疗组效果优于对照组。
秩和检验应用条件①总体分布形式未知或分布类型不明;②偏态分布的资料:③等级资料:不能精确测定,只能以严重程度、优劣等级、次序先后等表示;④不满足参数检验条件的资料:各组方差明显不齐。
⑤数据的一端或两端是不确定数值,如“>50mg”等。
一、配对资料的Wilcoxon符号秩和检验(Wilcoxon signed-rank test)例1对10名健康人分别用离子交换法与蒸馏法,测得尿汞值,如表9.1的第(2)、(3)栏,问两种方法的结果有无差别?表1 10名健康人用离子交换法与蒸馏法测定尿汞值(μg/l)样品号(1)离子交换法(2)蒸馏法(3)差值(4)=(2) (3)秩次(5)1 0.5 0.0 0.5 22 2.2 1.1 1.1 73 0.0 0.0 0.0 —4 2.3 1.3 1.0 65 6.2 3.4 2.8 86 1.0 4.6 -3.6 -97 1.8 1.1 0.7 3.58 4.4 4.6 -0.2 -19 2.7 3.4 -0.7 -3.510 1.3 2.1 -0.8 -5T+=+26.5T-=-18.5差值先进行正态性及方差齐性检验,看是否可以做参数检验,其检验效能高于非参数检验。
SPSS教程多个相关样本的Friedman秩和检验及SPSS操作
SPSS教程多个相关样本的Friedman秩和检验及SPSS操作案例来源:中华护理杂志2016年4期⼀.案例评价⼦午流注择时五⾳疗法在慢性⼼⼒衰竭(CHF)焦虑患者中的应⽤效果。
⽅法:将70例CHF焦虑患者随机分为实验组和对照组,各35例,实验组实施⼦午流注择时五⾏⾳乐疗法,对照组实施五⾏⾳乐疗法。
两组在⼲预前、⼲预后4周、8周和12周采⽤匹兹堡睡眠质量指数量表(PSQI)评价睡眠质量。
⼆.说明在之前的介绍中,我们对该研究进⾏了两因素重复测量⽅差分析(案例分析| 两因素重复测量⽅差分析及SPSS操作),并且⽐较了相同组内不同时间的睡眠质量指数量表得分的差异。
对于两组(实验组和对照组)中的任⼀组,若数据服从正态分布,则选⽤单因素重复测量⽅差分析;若数据不服从正态分布,也可以直接进⾏重复测量⽅差分析(尤其是在各组样本量相等或近似相等的情况下,⽽且⾮正态分布实质上并不影响犯I型错误的概率),或者选⽤Friedman秩和检验。
三.SPSS操作1.正态性检验(以实验组得分为例)将所有变量均放⼊因变量列表,点击图,出现如下对话框,勾选含检验的正态图。
2.正态检验结果当样本量较⼩时,推荐使⽤夏⽪洛-威尔克⽅法的正态性检验结果。
由结果得:⼲预前及⼲预后的三次不同时间的得分均不服从正态分布,可以直接进⾏重复测量⽅差,也可以使⽤⾮参数检验,这⾥我们重点介绍Friedman秩和检验。
3.Friedman秩和检验弹出如下对话框:点击上⽅的‘字段’,出现如下对话框,将所有变量均选⼊检验字段。
点击上⽅的‘设置’,出现如下对话框,点击定制检验,在⽐较分布栏选择傅莱德曼检验,多重⽐较选择全部成对。
4.结果解读输出的结果如上图所⽰,结果分别给出了原假设、检验⽅法、显著性以及最后的决策。
由结果可得P<0.001,应该拒绝原假设,即认为实验组在⼲预前、⼲预后4周、8周、12周的得分存在显著性差异。
5.成对⽐较(1)双击上述输出的表格,则可以得到下⾯的界⾯,帮助我们更好的理解假设检验摘要的结果。
早期综合护理对妊高症患者血压控制及不良妊娠结局的影响
早期综合护理对妊高症患者血压控制及不良妊娠结局的影响摘要:目的:探究妊高症患者实施早期综合护理对血压控制及不良妊娠结局的影响效果。
方法:选择时间段为2017年6月~2018年6月在我院收治的妊高症患者患者抽取66例作为实验对象,考虑研究对照需求随机分为两个组,研究组与常规组相同均为33例,常规组给予常规护理措施,研究组实施早期综合护理,对比不同护理方式的临床效果。
结果:护理干预后两组血压水平明显改善,研究组比常规组低,P<0.05,同时两组不良妊娠结局发生率相对比,研究组18.18%比常规组60.60%低,P<0.05。
实验组产妇护理后的生活质量高于对照组,差异存在可比性(P<0.05)。
对照组护理有效率低于实验组,数据对比存在差异(P<0.05)。
结论:针对妊高症患者实施早期综合护理临床疗效显著,改善患者血压水平,减少不良妊娠结局的发生几率,临床应用价值高。
关键词:早期综合护理;血压控制;妊高症;不良妊娠结局Effect of early comprehensive nursing on preeclampsia patients' blood pressure control and adverse pregnancy outcomeLuo LiGuangyuan City Jiange County Hospital of Traditional Chinese Medicine, Sichuan Guangyuan 628300Abstract: objective: to explore the effect of preeclampsia patientswith early comprehensive nursing on blood pressure control and adverse pregnancy outcome. Methods: a total of 66 patients with preeclampsia who were admitted to our hospital from June 2017 to June 2018 were selected as subjects. Considering the needs of the study, they were randomly pided into two groups.To compare the clinical effects ofdifferent nursing methods. Results: after the nursing intervention,the blood pressure level of the two groups was significantly improved, and the study group was lower than the conventional group(P<0.05).Conclusion: the clinical effect of early comprehensivenursing for pregnant patients with preeclampsia is significant, which can improve the blood pressure level of patients and reduce the incidence of adverse pregnancy outcome.Keywords: early comprehensive nursing; Blood pressure control; Pih; Adverse pregnancy outcome妊高症是女性妊娠期常见的并发症,发病时间一般是在妊娠20周后。
组别+秩和检验spss方法:显效和非显效
组别+秩和检验spss方法:显效和非显效Z 值为-4.234,p <0.001,拒绝H 0经检验,某治疗方法有效,治疗组效果优于对照组。
秩和检验应用条件①总体分布形式未知或分布类型不明;②偏态分布的资料:③等级资料:不能精确测定,只能以严重程度、优劣等级、次序先后等表示;④不满足参数检验条件的资料:各组方差明显不齐。
⑤数据的一端或两端是不确定数值,如“>50mg ”等。
一、配对资料的Wilcoxon 符号秩和检验(Wilcoxon signed-rank test )组别 n 痊愈显效有效无效总有效率治疗组 30 16(53.3%) 8(26.7%) 6(20.0%) 0(0.0%) 30(100.0%)对照组 26 5(19.2%) 6(23.1%) 8(30.7%) 7(26.9%) 19(73.1%)例1 对10名健康人分别用离子交换法与蒸馏法,测得尿汞值,如表9.1的第(2)、(3)栏,问两种方法的结果有无差别?表1 10名健康人用离子交换法与蒸馏法测定尿汞值(μg /l ) 样品号(1)离子交换法(2)蒸馏法(3)差值 (4)=(2)-(3) 秩次(5)1 0.5 0.0 0.5 2 2 2.2 1.1 1.1 7 3 0.0 0.0 0.0 — 4 2.3 1.3 1.0 6 5 6.2 3.4 2.8 8 6 1.0 4.6 -3.6 -9 7 1.8 1.1 0.7 3.5 8 4.4 4.6 -0.2 -1 9 2.7 3.4 -0.7 -3.5 10 1.3 2.1 -0.8 -5 T +=+26.5T -=-18.5差值先进行正态性及方差齐性检验,看是否可以做参数检验,其检验效能高于非参数检验。
(下同)H0:Md (差值的总体中位数)=0 H1:Md ≠0 α=0.05 T ++T -=1+2+3+…n=n(n+1)/2 ① 小样本(n ≤50)--查T 界值表基本思想:如果无效假设H0成立,则正负秩和的绝对值从理论上说应相等,都等于n(n+1)/4,既使有抽样误差的影响正负T 值的绝对值相差也不应过大。
spss授课_秩和检验
33
a Test Statistics
等 级 Mann-Whitney U Wilcoxon W Z A symp. Sig. (2-tailed)
a.Group ing Varia ble: 组别
98.000 308.000 -4.503 .000
34
(三)成组设计多个样本比较的秩和检验 (Kruskal-Wallis法)
a. Kruskal Wallis Test b. Grou ping Variab le: 组 别
14. 981 2 .00 1
42
2. H值的校正
例5 比较小白鼠接种三种不同菌型伤寒 杆菌9D、11C、DSC1后存活日数,见表 9.5,问各接种组存活日数间有无差别?
43
表 9.5 小白鼠接种三种不同菌型伤寒杆菌存活日数 表 9.5 小白鼠接种三种不同菌型伤寒杆菌存活日数 9D 11C DSC1 11C 秩次 DSC 存活日数9D 秩次 存活日数 存活日数 1 秩次 存活日数 秩次 存活日数 秩次 存活日数 秩次 (1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6) 2 1 5 10.5 3 4.5 2 1 5 10.5 3 4.5 2 2 5 10.5 5 10.5 2 2 5 10.5 5 10.5 2 3 6 15.5 6 15.5 2 3 6 15.5 6 15.5 3 4.5 6 15.5 6 15.5 3 4.5 6 15.5 6 15.5 4 6 6 15.5 6 15.5 4 6 6 15.5 6 15.5 4 7 7 21 7 21 4 7 7 21 7 21 5 8 8 24 7 21 5 8 8 24 7 21 7 10.5 10 26.5 9 25 7 10.5 10 26.5 9 25 7 21 12 30 10 26.5 7 21 12 30 10 26.5 7 21 11 28 7 21 11 28 11 29 11 29 Ri 84 169 212 - - Ri 84 169 212 - - Ni 10 9 11 - - Ni 10 9 11 - -
SPSS-Friedman 秩和检验-非参数检验-K个相关样本检验 案例解析
SPSS-Friedman 秩和检验-非参数检验-K个相关样本检验案例解析
2011-09-20 17:38
三人行,必有我师,是不是真有我师?三种不同类型的营销手段,最终的营销效果是否一样,随即区组秩和检验带你进入分析世界
今天跟大家讨论和分享一下:spss-Friedman 秩和检验-非参数检验-K个(多个)相关样本检验,下面以“数学,物理,生物”样本数据为例,
假设:H0:数学,物理,生物三门课程的总体分布是相同的
H1:数学,物理,生物三门课程的总体分布是不相同的。
样本数据如下所示:
从上图可以看出:处理组为:3组(假设用K表示)区组为:5组(我们只取前面的5组) (假设用b表示)(上图只截取了一部分)
1:我们先将每一组进行“秩序编号”并进行排序,例如第一组秩序为:1, 2,,3.
第二组秩序为:1, 2, 3
第三组秩序为:1, 2, 3
第四组秩序为:1, 2, 3
第五组秩序为:2, 1, 3
我们相加可以得出RI, RI分别为:6, 9, 15
(先横向排序,最后再纵向相加,就可以得出RI, RI表示:第i个处理组“秩和”)
好,回归正题
打开SPSS软件后,点击“分析”——非参数检验——旧对话框—K个相关样本分析,进入如下页面:
提供三种“检验类型”一般选择“Friedman(F)(秩和检验)类型,将变量移入“检验变量”下拉框内,点击确定,得到如下结果:
从以上结果,我们可以得出以下结论:
1:卡方,检验统计量为:12.088
2:自由度为:K-1 =2
3:渐近显著性为:0.002 由于0.002<0.01 所以否定H0的假设,得出H1的假设
也说明:“数学,物理,生物”三门学科的成绩水平是不相同的。
SPSS知识5:秩和检验(有序变量)
秩和检验(适用性强,精确度<t和F检验)一、配对比较的秩和检验SPSS操作:第一步:数据录入(类似配对t检验,before和after);第二步:正态性检验(analyze→nonparametric tests →1-sample K-S→两个变量调入右框,激活normal →OK)。
第三步:判断结果,正态配对t检验,非正态秩和检验;第四步:配对比较的秩和检验(analyze→nonparametric tests→2 related sample…→两个源变量调入右框,无顺序也可→OK)。
第五步:判断结果,P<0.05,差异有显著性差异。
操作演示:第一步:数据录入第二步:正态性检验第三步:判断结果。
正态用配对t检验较好,非正态用配对秩和检验第四步:配对比较的秩和检验第五步:判断结果二、两独立样本比较的秩和检验SPSS操作:第一步:建立数据文件(group和p,类似量独立样本t检验);第二步:正态性检验及判断结果;第三步:两独立样本比较的秩和检验(analyze→nonparametric tests→2 independent sample…→变量上框,group下框,框下命名组别→continue→OK)。
判断结果(倒数第2排的P值)。
操作流程:第一步:建立数据文件第二步:正态性检验(4步,略);第三步:两独立样本的秩和检验及结果判断三、有序变量的两独立样本比较的秩和检验SPSS操作:第一步:建立数据文件(group:横标目;纵标目为有序变量——value,f频数);第二步:对频数加权(data→weight cases→激活weight cases by→把频数调入右侧框→OK);第三步:有序变量的两独立样本的秩和检验(analyze→nonparametric tests→2-independent samples→将纵标目调入右上框:test variable list,将横标木调入右下框,grouping variable→激活define groups…→给出组范围→continue→OK);判断结:例如:根据test statistics表中P<0.05?,判断组之间是否有差异?,若P<0.05,则根据组的平均值次判断哪一组的疗效好。
秩和检验考试答案材料
第十二章秩和检验【思考与练习】一、思考题1. 简述参数检验和非参数检验的区别。
2. 简述非参数检验的适用范围。
3. 同一资料,又出于同一研究目的,当参数检验和非参数检验所得结果不一致时,以何者为准,请简述理由。
二、案例辨析题某儿科医生比较甲、乙、丙三种药物治疗小儿腹泻的疗效,将379名小儿腹泻患者随机分为三组,分别采用甲、乙、丙三种药物治疗,结果见表12-1。
表12-1 三种药物治疗小儿腹泻的疗效比较疗效甲药乙药丙药合计痊愈175 5 1 181显效95 55 5 155进步64 6 30 100无效45 35 6 86合计379 101 42 522对于上述资料,该医生采用行×列表检验,得,,故认为三种药物的疗效有差别。
该结论是否正确,为什么?三、最佳选择题1.以下方法中属于参数检验方法的是A. 检验B. 检验C. 检验D. Wilcoxon符号秩和检验E. Wilcoxon秩和检验2.进行两小样本定量资料比较的假设检验时,首先应考虑A. 检验B. 检验C. 秩和检验D. 检验E. 满足参数检验还是非参数检验的条件3.两组定量资料的比较,若已知、均小于30,总体方差不齐且呈极度偏态分布,宜采用A. 检验B. 检验C. 检验D. 方差分析E. 秩和检验4. 欲比较三种药物治疗效果有无差异,如果治疗效果为有序分类变量,宜采用A. 检验B. 方差分析C. 检验D.Wilcoxon秩和检验E. 检验5. 成组设计两样本比较的秩和检验,检验统计量T通常为A. 较小的秩和B. 较大的秩和C. 样本含量较小组的秩和D. 样本含量较大组的秩和E. 任取一组的秩和均可6. 配对设计秩和检验,若检验假设成立,则A. 差值为正的秩和与差值为负的秩和相差不会很大B. 差值为正的秩和与差值为负的秩和可能相差很大C. 差值为正的秩和与差值为负的秩和肯定相等D. 正秩和的绝对值大于负秩和的绝对值E. 正秩和的绝对值小于负秩和的绝对值7. 下列资料类型中,不宜采用秩和检验的是A. 正态分布资料B. 等级资料C. 分布类型未知资料D. 极度偏态分布资料E. 数据一端不确定的资料8. 某资料经配对秩和检验得,由查双侧界值如下,则值为双侧概率0.10 0.05 0.02 0.01界值60~150 52~158 43~167 37~173A.B.C.D.E.9. 下列关于非参数检验的叙述错误的是A. 非参数检验不依赖于总体的分布类型B. 非参数检验仅用于等级资料比较C. 适合参数检验的资料采用非参数检验会降低检验效能D. 非参数检验会损失部分样本信息E. 秩和检验是一种非参数检验方法四、综合分析题1. 已知某地正常人尿氟含量的中位数为2.15mmol/L。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组别n 痊愈显效有效无效总有效率治疗组30 16(53.3%) 8(26.7%) 6(20.0%) 0(0.0%) 30(100.0%) 对照组26 5(19.2%) 6(23.1%) 8(30.7%) 7(26.9%) 19(73.1%)秩group N 秩均值秩和频数对照组26 18.88 491.00治疗组30 36.83 1105.00总数56检验统计量a频数Mann-Whitney U 140.000Wilcoxon W 491.000Z -4.234渐近显著性(双侧) .000a. 分组变量: groupZ值为-4.234,p<0.001,拒绝H0经检验,某治疗方法有效,治疗组效果优于对照组。
秩和检验应用条件①总体分布形式未知或分布类型不明;②偏态分布的资料:③等级资料:不能精确测定,只能以严重程度、优劣等级、次序先后等表示;④不满足参数检验条件的资料:各组方差明显不齐。
⑤数据的一端或两端是不确定数值,如“>50mg”等。
一、配对资料的Wilcoxon符号秩和检验(Wilcoxon signed-rank test)例1对10名健康人分别用离子交换法与蒸馏法,测得尿汞值,如表9.1的第(2)、(3)栏,问两种方法的结果有无差别?表1 10名健康人用离子交换法与蒸馏法测定尿汞值(μg/l)样品号(1)离子交换法(2)蒸馏法(3)差值(4)=(2) (3)秩次(5)1 0.5 0.0 0.5 22 2.2 1.1 1.1 73 0.0 0.0 0.0 —4 2.3 1.3 1.0 65 6.2 3.4 2.8 86 1.0 4.6 -3.6 -97 1.8 1.1 0.7 3.58 4.4 4.6 -0.2 -19 2.7 3.4 -0.7 -3.510 1.3 2.1 -0.8 -5T+=+26.5T-=-18.5差值先进行正态性及方差齐性检验,看是否可以做参数检验,其检验效能高于非参数检验。
(下同)H0:Md(差值的总体中位数)=0 H1:Md≠0 α=0.05T++T-=1+2+3+…n=n(n+1)/2①小样本(n≤50)--查T界值表基本思想:如果无效假设H0成立,则正负秩和的绝对值从理论上说应相等,都等于n(n+1)/4,既使有抽样误差的影响正负T值的绝对值相差也不应过大。
反过来说,如果实际计算出的正负T值绝对值相差很大,我们只能认为H0成立的可能性很小。
界值的判断标准若下限<T<上限,P值>表中概率值若T≤下限或T≥上限,则P值≤表中概率值②大样本时(n>50),正态近似法(u检验)基本思想:假定无效假设H0成立,则正负秩和的绝对值应相等,随着n增大T 逐渐趋近于均数等于n(n+1)/4、方差为n(n+1)(2n+1)/24的正态分布。
所以可用近似正态法计算u值。
即:*校正公式:当相同秩次个数较多时48)(24)12)(1(5.0|4/)1(|3j j t t n n n n n T u -∑-++-+-=tj :第j 个相同秩次的个数 SPSS: 建立变量名:录入数值:统计分析:分析——非参数检验——两相关样本(配对样本)结果分析:表一:第一行:b-a的负秩(Negative Ranks)有5个(右上角的a在表下方有注释),平均秩次为5.3,负秩和为26.5。
第二行:正秩,正秩的个数,平均秩次,正秩和。
表二:Z即为u值,可用正秩和18.5或负秩和26.5计算,习惯上用较小的秩和计算u值。
p=0.635大于0.05,不拒绝H0,还不能认为两种方法有差别。
二、两个独立样本比较的Wilcoxon秩和检验(Wilcoxon rank sum test)1.原始数据的两样本比较例2某实验室观察局部温热治疗小鼠移植肿瘤的疗效,以生存日数作为观察指标,试检验两组小鼠生存日数有无差别?实验组对照组生存日数秩次生存日数秩次10 9.5 2 112 12.5 3 215 15 4 315 16 5 416 17 6 517 18 7 618 19 8 720 20 9 823 21 10 9.590以上22 11 1112 12.513 14n1=10 T1=170 n2=12 T2=83 时间资料不服从正态分布H0:两总体分布位置相同H1:两总体分布位置不同a=0.05记n较小组秩和为T,样本量n1。
如果n1=n2,可取任秩和①查表法:查T界值表:n1≤10,n2-n1≤10界值的判断标准:若下限<T<上限,P值>表中概率值若T ≤下限或T ≥上限,则P 值≤表中概率值 ② 正态近似法当n1或n2-n1超出T 界值表的范围时,随n 增大,T 的分布逐渐逼近均数为n(n+1)/4、方差为n(n+1)(2n+1)/24的正态分布,所以可用近似正态法计算u 值。
即:12/)1(5.0|2/)1(|2111+-+-=N n n N n T u*校正公式(当相同秩次较多时)c u u C /=∑=)-/()-(-133N N t t C j j SPSS 建立变量名:录入数值:Z值为-3.630,p<0.001,拒绝H02. 频数表资料(或等级资料)的两样本比较例320名正常人和32名铅作业工人尿棕色素定性检查结果见下表。
问铅作业工人尿棕色素是否高于正常人?结果(1)人数秩次范围(5)平均秩次(6)秩和正常人(2)铅作业工人(3)合计(4)正常人(7)=(2)(6)铅作业工人(8)=(3)(6)- 18 8 26 1-26 13.5 243 1082 10 12 27-38 32.5 65 325++ 0 7 7 39-45 42.0 0 294 +++ 0 3 3 46-48 47.0 0 141 ++++ 0 4 4 49-52 50.5 0 202 合计n 1=20n 2=3252--T 1=308T 2=1070取n 较小组的秩和为T 值,用校正公式计算。
即:12/)1(5.0|2/)1(|2111+-+-=N n n N n T u c u u C /= ∑=)-/()-(-133N N t t C j j SPSS : 建立变量名:录入数值:统计分析:结果分析:同两个独立样本比较的Wilcoxon秩和检验P<0.001,拒绝H0三、多个样本比较的秩和检验(Kruskal-Wallis H test)1.原始数据法例4某研究者测定正常人、单纯性肥胖、皮质醇增多症者各10人的血浆总皮质醇含量见下表,问这三组人的血浆总皮质醇含量有无差别?三组人的血浆总皮质醇含量测定值(μg/L)正常人单纯性肥胖皮质醇增多症测定值秩次测定值秩次测定值秩次0.4 1 0.6 2 9.8 201.9 4 1.2 3 10.2 212.2 6 2.0 5 10.6 222.5 8 2.4 7 13.0 232.8 93.1 10.5 14.0 253.1 10.54.1 14 14.8 263.7 12 5.0 16 15.6 273.9 13 5.9 17 15.6 284.6 15 7.4 19 21.6 296.0 18 13.6 24 24.0 30R i n i 96.510117.51025110H0::三组人的血浆总皮质醇含量总体分布位置相同H1:三组人的血浆总皮质醇含量总体分布位置不全相同a=0.05)1(3)1(122+-∑+=N n R N N H i i 1-=k νSPSS 建立变量名录入数值:统计分析:结果分析:若g(组数)=3且最小样本列数大于5或g>3时,H或H C近似服从自由度为g-1的卡方分布。
H=18.130,自由度=2,P<0.001,拒绝H0,三组总体分布位置不全相同,需做两两比较。
2.频数表法:例5 四种疾病患者痰液内嗜酸性粒细胞的检查结果见表6-5。
问四种疾病患者痰液内嗜酸性粒细胞有无差别?四种疾病患者痰液内嗜酸性粒细胞比较白细胞(1)支气管扩张(2)肺水肿(3)肺癌(4)合计(6)秩次范围(7)平均秩次(8)- 0 3 5 11 1—11 6 + 2 5 7 19 12—30 21 ++ 9 5 3 20 31—50 40.5 +++ 6 2 2 10 51—60 55.5 R i 739.5 436.5 409.5—— — n i17.0 15 17 60 — — iR43.5029.1024.09———)1(3)1(122+-∑+=N n R N N H iic H H c =∑---=)()(133N N t t C j j1-=k νSPSS 建立变量名:录入数值:统计分析:结果分析:同多样本比较的秩和检验P<0.001,拒绝H0,三组总体分布位置不全相同,需做两两比较。
秩和检验方法要点和注意事项检验方法方法要点注意事项配对样本的符号秩检验1.依差值大小编秩,再冠以差值的符号,任取T+、T-作为T,查附表9,T界值表。
T>T界值,P>α。
2.n>50,用z检验。
1.编秩时若差值绝对值相同符号相反,取平均秩次。
0差值省略。
2.n<5,不能得有意义结论。
两独立样本 1.按两组数据由小到大统一编 1.编秩时若相同数据在不同组,的秩和检验(分布位置)秩,以n1较小者为T,查附表10 T界值表。
T在界值范围内,P>α。
2.n1>10或n1- n2>10时,用z检验。
取平均秩次。
2.当相同秩次较多时,使用校正公式。
成组设计多样本比较的秩和检验(K-W检验) 1.将k组数据由小到大统一编秩,求各组秩和R i。
2.计算H值,用ν=k-1查χ2界值表,确定P值。
3.拒绝H0时,应作多个样本两两比较的秩和检验。
1.编秩时若相同数据在不同组,取平均秩次。
2.当相同秩次较多时,使用校正公式。