金属凝固的知识
第四章纯金属的凝固

(二)临界晶核 设晶胚为半径r的球形,形核时总能量变化为: ΔG=-ΔG体积+ΔG表面 =-433GV42
ΔGV-单位体积自由能,σ-比表面能 ΔG是r的函数。
由 Gf(r) 的函数作图可知,在r=rc时△G取 得极大值。
讨论: 1.当r<rk则晶胚生长 ,将导致体系 ΔG ,晶胚重新熔化而消失。 2.若r>rk 晶胚r ,体系的ΔG,结晶 自发进行,此时的晶胚就成为晶核
2.金属熔化时的体积变化:大多数金属熔化时体积变化仅为
3%-5%,熔化前后原子间距变化不大,熔化前后原子间结 合力较为接近。
3.金属熔化熵值变化小:
金属熔化时结构变化小,只是相对“无序度”增加.
液态金属结构与固态相似存在近程有序,近程密堆, 远程无序.
二.材料凝固的过冷现象
过冷现象-实际结晶温度低于理论结 晶温度的现象。
假设:晶核是依附过冷液相现成基底B上形成晶核S;
设晶核为半径为r的球缺体;S1为球冠面积; S2为晶核与基底接触的面积; θ为晶核与基体的润湿角。
晶核形成稳定存在的瞬间(不 熔化、长大),三相交点处, 表面张力应达到平衡:
σLB=σSB+σLScosθ
非均匀形核示意图
σLB、σsB、σLs分别为L/B、S/B、L/S间的表面张力
均为自发过程.
结论:过冷是结晶的必要条件, 而 ΔT≥ΔTc是结晶的充分必要条件。
过冷度对临界晶核与 最大相起伏的影响
(五)临界晶核的形核功
ΔG=-ΔG体积+ΔG表面 =-433GV42
将
k
2 GV
代入上式可得:
3
2
G k4 3 L 2 m T T m G 4 L 2 m T T m 化简得
材料科学基础重点知识

材料科学基础重点知识第5章纯金属的凝固1、金属结晶的必要条件:过冷度-理论结晶温度与实际结晶温度的差;结构起伏-大小不一的近程有序排列的此起彼伏;能量起伏-温度不变时原子的平均能量一定,但原子的热振动能量高低起伏的现象;成分起伏-材料内微区中因原子的热运动引起瞬时偏离熔液的平均成分,出现此起彼伏的现象。
结晶过程:形核和长大过程交错重合在一起展开2、过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。
从热力学看,没有过冷度结晶就没有趋动力。
根据rk?1?t所述当四氟肼度?t=0时临界晶核半径r*为无穷大,临界形核功(?g?1?t2)也为无穷大,无法形核,所以液态金属不能结晶。
晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。
孕育期:过冷至实际结晶温度,晶核并未立即产生,结晶开始前的这段停留时间3、光滑形核和非光滑形核均匀形核:以液态金属本身具有的能够稳定存在的晶胚为结晶核心直接成核的过程。
非光滑形核:液态金属原子依附于固态杂质颗粒上灶性的方式。
临界晶核半径:δg达至最大值时的晶核半径r*=-2γ/δgv物理意义:r0,晶核不能自动形成。
r>rc时,δgv占优,故δg<0,晶核可以自动构成,并可以平衡生长。
临界形核功:δgv*=16πγ3/3δgv3形核率:在单位时间单位体积母相中形成的晶核数目。
受形核功因子和原子扩散机率因子控制。
4、正的温度梯度:靠近型壁处温度最低,凝固最早发生,越靠近熔液中心温度越高。
在凝固结晶前沿的过冷度随离界面距离的增加而减小。
纯金属结晶平面生长。
正数的温度梯度:四氟肼度随其距界面距离的减少而减少。
氢铵金属结晶树枝状生长。
5、光滑界面即小平面界面:液固两相截然分开,固相表面为基本完整的原子密排面,微观上看界面光滑,宏观上看由不同位向的小平面组成故呈折线状的界面。
坚硬界面即非小平面界面:固液两相间界面微观来看高低不平,存有很厚的过渡阶段层,故从宏观来看界面反而弯曲,不发生坎坷小平面的界面。
金属凝固原理

金属凝固原理金属凝固是指金属从液态到固态的过程,这一过程是金属加工和制造中至关重要的一环。
了解金属凝固原理对于提高金属制品的质量和性能具有重要意义。
首先,我们需要了解金属凝固的基本原理。
金属凝固是由于金属在液态和固态之间的相变所引起的。
当金属被加热至其熔点以上时,金属开始融化成液态,而当温度降低到熔点以下时,金属则开始凝固成固态。
在这一过程中,金属的分子结构和排列发生了改变,从而产生了不同的性质和特征。
其次,金属凝固的过程受到许多因素的影响。
首先是金属的成分,不同种类的金属具有不同的凝固特性,例如铝、铁、铜等金属的凝固温度和凝固速度都有所不同。
其次是金属的冷却速度,冷却速度快则会形成细小的晶粒,冷却速度慢则会形成大块的晶粒。
此外,金属的形状和结构也会对凝固过程产生影响,例如浇铸、锻造、挤压等不同的加工方式会导致不同的凝固结构。
最后,了解金属凝固的原理对于金属加工和制造具有重要意义。
通过控制金属的凝固过程,可以获得理想的金属结构和性能,从而提高金属制品的质量和性能。
例如,通过控制金属的冷却速度和形状,可以获得细小、均匀的晶粒结构,从而提高金属的强度和硬度。
此外,还可以通过添加合金元素和调整工艺参数,来改善金属的凝固特性,从而获得更优异的金属制品。
总之,金属凝固原理是金属加工和制造中至关重要的一环。
了解金属凝固的基本原理和影响因素,可以帮助我们更好地控制金属的凝固过程,从而提高金属制品的质量和性能。
希望本文能够为大家对金属凝固原理有所了解,同时也能够在实际生产中加以应用。
《金属的凝固特点》课件

连铸工艺
连铸工艺是将液态金属通过连续浇注 的方式,在连铸机内冷却凝固成所需 形状和性能的金属制品的工艺方法。
连铸工艺的应用范围广泛,可生产各 种规格的钢材,如板材、管材、型材 等。
连铸工艺具有高效、节能、环保等优 点,是现代钢铁工业中的重要生产工 艺之一。
定向凝固工艺
定向凝固工艺是一种通过控制热 流方向,使液态金属在特定方向 上凝固,从而获得具有定向组织
结构的金属制品的工艺方法。
定向凝固工艺主要用于制备高性 能的金属材料,如高温合金、单
晶叶片等。
定向凝固工艺具有组织细密、力 学性能优异、耐高温等特点,广 泛应用于航空、航天、能源等领
域。
05
金属的凝固应用
在机械制造中的应用
01
02
03
零件制造
金属凝固后具有良好的强 度和耐久性,因此在机械 制造中广泛应用于制造各 种零件和工具。
金属的凝固速率
01
影响因素
冷却速率、金属的纯度和结晶温度。
02
规律
冷却速率越快,凝固速率越高;金属纯度越高, 凝固速率越高;结晶温度越高,凝固速率越高。
金属的凝固缺陷
01 凝固过程中由于各种原因导致金属内部结构的不 完善或异常。
02 主要类型:缩孔、疏松、偏析、裂纹等。
02 对金属的性能产生不良影响,如降低机械性能、 耐腐蚀性能等。
01 结晶温度
金属开始从液态向固态转变的温度点。
02 影响因素
金属的纯度、冷却速率和金属的种类。
03 规律
纯金属的结晶温度较高,合金的结晶温度较低; 冷却速率越大,结晶温度越高。
金属的凝固结构
金属的固态晶格结构。
影响因素:金属的原子半 径、晶体结构和化学键类 型。
金属凝固

第一章1金属的熔化并不是原子间结合键的全部破坏,液态金属内原子的局域分布仍具有一定的规律性。
原因:金属熔化时典型的体积变化∆V V m /(多为增大)为3%~5%,金属熔化潜热m H ∆比其汽化潜热b H ∆小得多,为汽化潜热的1/15~1/30。
2粘度:定义:作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dy dv x /的比例系数。
dy dv x ητ= 相关数学表达式:)exp(203T k U T k B B τδη= 0τ为原子在平衡位置的振动周期(对液态金属约为s 1310-) 粘度随原子间距δ增大而降低,以3δ成反比。
3运动粘度为动力粘度除以密度,即ρην/=粘度的影响因素:①金属液的粘度η随结合能U 按指数关系增加;②粘度随原子间距δ增大而降低;③η与温度T 的关系受两方面共同制约,但总的趋势随温度T 而下降。
4粘度在材料成型中的意义:①粘度对层流的影响远比对湍流的影响大。
在层流情况下的液体流动要比湍流时消耗的能量大。
当2300>e R 时,为湍流,当2300<e R 时,为层流。
雷诺数Re=ηρνDv Dv =(D 为直接,v 为速度,v 为运动粘度)ρνη速层D R f 32e 32== 2.02.00.2092.0e 092.0)速(湍ρνηD R f == 5流动阻力越大,管道中运输相同体积的液体所消耗的能量就越大,或者所所需压力差也就越大,由此可知,在层流情况下的液体流动要比湍流时消耗的能量大。
6夹杂物和气泡的上浮速度与液体的粘度成反比ηρρ2)(92r g v B m -=(m ρ为液体合金密度,B ρ为夹杂物或气泡密度) 下沉m B ρρ-(即杂—液)。
7.压力差:对一般曲面σ)11(21r r p +=∆(σ表面张力) 对圆柱形(2r =∞)则p ∆=rσ(式中1r r =)对球形(如液滴)(21r r =)则rp σ2=∆(式中21r r r ==) 9附加压力的意义:铸造过程金属液是否侵入砂型毛细管而形成粘砂,与表面张力σ引起的p ∆有关,金属液与砂型不湿润,有利于防止金属侵入砂型毛细管而形成粘砂,但毛细管直径D 及金属液静压头H 越大,越容易产生粘砂。
第五章 纯金属的凝固

多数金属制品的生产都需要经历熔炼和铸造两 个工艺过程。熔炼是为了获得符合要求的液态 金属。铸造是将液态金属注入铸模中使之凝固 成一定形状,尺寸的固态金属件或金属锭。 结晶:液态金属转变为固态金属晶体的过程。 结晶是铸锭,铸件,金属焊接生产的主要过程。 是材料制备的最主要工艺。 广义结晶定义:聚集态,晶态,非晶态—晶体 的过程。
dn / dt B2 exp(GA / KT ) I B exp[(G * GA ) / KT ]
下式中的ΔG*和ΔGA与扩散有关,但两项变化 趋势不同:ΔT↓时,ΔG*↑,而 ΔGA↓.
原子可动性 相变驱动力 e-ΔG*/KT
e-ΔGA/KT
I
温度T→Tm 温度 温度 I-t 曲线示意图
Tm Ts
无限缓慢
时间
过冷:金属开始凝固温度Ts,低于其熔点Tm的现 象. ΔT(过冷度)=Tm-Ts,Tm为熔点。 不同金属以及不同冷却条件,其凝固的过冷度 是不同的。 金属中纯度越高,无杂质,ΔT越大。冷却速 度越大,过冷度也越大。采取特殊手段,可使 金属的最大过冷度增加。象使液态金属细化成 液滴可使过冷度增加。如下表:
一,均匀形核
由均匀母相中形成新相结晶核心的过程,是一 种无择优位置的形核。 1,均匀形核的热力学分析 晶胚出现增添了一项表面自由能,系统自由 焓总变化为ΔG=-V·ΔGV+Aγ ,设晶胚的形状 为圆球,半径为γ0,ΔG=-4πr3ΔGV/3+ 4πr2γ(σ),该式给出给定温度下,晶胚半径与ΔG 之间的关系。(下图也能说明另一些问题)
d (G ) 4 r 2 Gv 8 r 0 dr 2 16 r 3 r* G* 2 Gv 3(Gv)
金属凝固总结汇报

金属凝固总结汇报金属凝固是指金属从液态转变为固态的过程。
在金属凝固中,分为两个主要阶段:核心形成和晶体生长。
核心的形成是指在透明化温度以下,金属内部亚稳态结构的形成过程。
晶体生长是指核心逐渐长大、形成固态晶体结构的过程。
金属凝固具有高度的复杂性和迷人的特点,对于金属学研究和工程应用有重要意义。
首先,金属凝固的关键因素是温度。
金属在高温下处于液态,温度逐渐降低时,金属分子之间的运动逐渐减慢,金属开始发生结构的重组和重新排列,形成固态结构。
温度的下降或升高都会影响金属凝固的过程和结构,从而影响金属的性质和用途。
此外,温度的不均匀分布也会对凝固过程产生影响,引起金属的非均匀性和缺陷。
其次,金属凝固的速度也是影响金属结构和性能的重要因素。
凝固速度快或慢直接影响到金属晶体的尺寸和形态。
在快速凝固过程中,金属晶体的尺寸较小,晶界密度大,导致金属的强度和硬度增加;而在慢速凝固过程中,晶体尺寸较大,晶界密度小,金属的塑性和韧性增加。
在工程应用中,可以通过控制凝固速度来调节和改善金属的性能。
再次,晶核形成是金属凝固的起始点。
金属凝固前,会出现微小的凝固核,凝固核通过扩散和生长形成晶体。
晶核形成的速度和数量决定了晶体生长的速度和结构的演变。
晶核形成的方式有两种:自发形核和异质形核。
自发形核是指金属内部原子在固态结构相邻的位置形成晶核;异质形核是指金属中的杂质或异物作为起始点形成晶核。
晶核的形成方式直接影响到金属的晶体结构和缺陷。
最后,金属凝固还受到外界因素的影响,如压力和成分。
压力的增加可以促使金属凝固温度的降低,同时影响金属晶体的尺寸和形态。
成分的变化也会对金属凝固过程产生重要影响,不同的金属成分决定了不同的凝固行为和结构特点。
综上所述,金属凝固是一个复杂的过程,涉及到温度、速度、晶核形成、外界因素等多个因素。
了解金属凝固的过程和规律,对于金属学研究和工程应用有着重要意义。
通过调控金属凝固条件,可以获得不同结构和性能的金属材料,满足不同领域的需求,并推动金属学的发展。
金属凝固原理

金属凝固原理金属凝固是指金属从液态状态转变为固态状态的过程。
在金属凝固过程中,原子或离子以一定的方式排列组合,形成具有一定结构和性能的固态金属晶体。
而金属凝固原理则是指影响金属凝固过程的各种因素和规律。
了解金属凝固原理对于控制金属凝固过程、改善金属凝固组织和性能具有重要意义。
首先,金属凝固的原理主要包括凝固过程中的晶核形成和晶体生长。
在金属液体冷却过程中,当温度下降到一定程度时,金属液体中会出现微小的固态核,这些核心在金属液体中逐渐增多并长大,最终形成完整的晶体结构。
晶核形成和晶体生长是金属凝固的基本原理,也是金属凝固组织形成的基础。
其次,金属凝固的速度对凝固组织和性能有着重要影响。
一般来说,凝固速度越快,晶体的生长速度就越快,晶粒就越细小,晶界就越多,从而提高了金属的强度和韧性。
而凝固速度越慢,晶体生长速度就越慢,晶粒就越大,晶界就越少,金属的强度和韧性就会降低。
因此,控制金属凝固速度是影响金属凝固组织和性能的重要因素之一。
另外,金属凝固还受到金属成分、凝固条件、晶核形态等多种因素的影响。
金属成分的不同会导致晶体结构和性能的差异,凝固条件的改变也会影响金属凝固组织和性能的形成,而晶核形态的不同也会对晶体生长和晶粒形貌产生影响。
因此,在实际生产中,需要根据不同金属的特性和要求,合理控制金属凝固过程中的各种因素,以获得理想的凝固组织和性能。
总的来说,金属凝固原理是一个复杂而又重要的领域,它涉及到金属物理、金属化学、热力学等多个学科的知识。
只有深入理解金属凝固原理,才能更好地控制金属凝固过程,改善金属凝固组织和性能,提高金属制品的质量和性能。
因此,对于金属凝固原理的研究和应用具有重要的理论和实践意义,也是金属材料领域的一个热点和难点问题。
希望通过对金属凝固原理的深入研究,能够为金属材料的发展和应用提供更多的理论支持和技术保障。
金属凝固原理习题与答案

金属凝固原理习题与答案金属凝固原理习题与答案金属凝固是材料科学中的重要研究领域,也是金属加工和制备过程中不可或缺的一环。
在金属凝固过程中,涉及到许多基本原理和概念。
本文将通过一些习题来探讨金属凝固的原理,并给出相应的答案。
习题一:什么是金属凝固?答案:金属凝固是指金属在高温下由液态转变为固态的过程。
当金属被加热到其熔点以上时,金属原子开始逐渐失去自由度,形成有序的晶体结构,从而形成固态金属。
习题二:金属凝固的主要原理是什么?答案:金属凝固的主要原理是原子的有序排列。
在液态金属中,原子无序排列,而在固态金属中,原子有序排列成晶体结构。
这是因为在液态金属中,原子具有较高的热运动能量,可以自由移动,而在固态金属中,原子受到周围原子的束缚,只能在晶格中振动。
习题三:金属凝固的过程中有哪些因素会影响晶体的形成?答案:金属凝固的过程中,晶体的形成受到许多因素的影响,包括温度、凝固速率、合金成分等。
温度对晶体的形成有重要影响,较高的温度会使晶体生长得更快,而较低的温度会使晶体生长得更慢。
凝固速率也是影响晶体形成的重要因素,快速凝固会导致细小的晶体形成,而慢速凝固则有利于大晶体的生长。
合金成分对晶体形成也有重要影响,不同的合金成分会导致不同的晶体结构和形态。
习题四:金属凝固过程中,晶体的生长方式有哪些?答案:金属凝固过程中,晶体的生长方式主要有三种:平面生长、柱状生长和体内生长。
平面生长是指晶体在平面上逐渐生长,形成平坦的晶界;柱状生长是指晶体在某个方向上生长,形成柱状晶界;体内生长是指晶体在整个体积内均匀生长,没有明显的晶界。
不同的金属和凝固条件下,晶体的生长方式可能不同。
习题五:金属凝固过程中,晶体的缺陷有哪些?答案:金属凝固过程中,晶体的缺陷主要有晶格缺陷和晶界缺陷。
晶格缺陷是指晶体内部原子的位置偏离理想位置,包括点缺陷(如空位、间隙原子等)和线缺陷(如位错等)。
晶界缺陷是指晶体之间的界面上存在的缺陷,包括晶界错配、晶界位错等。
金属凝固原理范文

金属凝固原理范文金属凝固原理是指金属在从液态到固态转化的过程中所涉及的物理和化学现象。
金属凝固是一个复杂的过程,涉及到热力学、动力学和结构变化等方面的原理。
本文将分析金属凝固原理的基础知识,包括热力学、结构和晶体生长等方面的内容。
在金属凝固的过程中,热力学是至关重要的因素之一、根据热力学原理,金属凝固时会释放出热量,这是因为金属离子在凝固的同时释放出能量。
这种能量释放可以通过热力学公式来计算,其中包括凝固焓和凝固熵等参数。
液态金属在凝固过程中会出现结构变化,最常见的是由无序结构转变为有序的晶体结构。
晶体结构特征是金属凝固过程中的一个重要因素。
晶体结构的类型取决于金属原子的尺寸、电子构型和化学键的性质等因素。
例如,铜的晶体结构是面心立方结构,而铁的晶体结构是体心立方结构。
晶体生长是金属凝固过程中的另一个重要因素。
晶体生长是指在凝固过程中液态金属原子逐渐形成有序的晶体结构。
晶体生长可以分为两个阶段:核形成和晶格生长。
在核形成阶段,金属原子将逐渐聚集在一起,形成原子团簇。
当这些团簇达到一定大小时,它们就可以进一步生长,形成完整的晶体结构。
晶体生长的速度取决于多种因素,包括温度、压力和金属的化学成分等。
一般来说,晶体生长速度随着温度的升高而增加,因为高温有助于原子的扩散和聚集。
此外,压力对晶体生长速度也有影响,高压环境可以抑制晶体生长,而低压环境则有助于晶体生长。
除了热力学、晶体结构和晶体生长等方面的因素外,金属凝固还涉及到动力学过程。
动力学是指凝固过程中有关反应速率和能量转移的研究。
在金属凝固中,动力学过程包括原子之间的碰撞、扩散和团簇的生长等。
总之,金属凝固原理涉及到多个方面的知识,包括热力学、结构和晶体生长等。
了解这些原理可以帮助我们更好地理解金属凝固的过程,并为相关工业和科学研究提供指导。
金属凝固原理

金属凝固原理
金属凝固原理是物理学中最重要的概念之一,它是指当温度降低到一定程度时,金属内部从液态直接过渡到固态的过程。
这种过程叫做凝固或结晶。
在该过程中,金属内部具有一种特殊的结构,即“金属晶格”。
金属晶格是一种稳定的结构,由许多小空间和原子构成,并且可以承受很大的力。
金属凝固原理是一个相对复杂的概念,涉及到物理学、化学、材料学等多个领域。
它的基本原理是,温度降低时,金属内部产生秩序,原子开始排列形成一种晶格结构,从而使金属变成固态。
金属凝固原理是金属加工工艺中最重要的一环,同时也是材料性能分析的基础。
因此,金属凝固原理的研究和应用对于金属加工工艺的改进和优化具有重要意义。
首先,金属凝固原理的研究依赖于量子力学理论,也就是研究金属晶格中原子的行为。
在量子力学理论的基础上,工程师可以利用计算机模拟金属的凝固过程,进一步探究金属凝固原理。
其次,金属凝固原理的研究也受益于材料科学技术的发展。
如X射线衍射仪(XRD)可以检测金属内部晶格结构的信息,从而更好地理解金属凝固原理。
此外,金属凝固原理的研究也受益于材料工程学的发展。
例如,在实验室中,可以通过不同的温度调节和材料组成,模拟金属凝固过程,以更深入地理解金属凝固原理。
金属凝固原理是物理学、化学、材料学等多个领域的重要内容,其研究对金属加工工艺的改进和优化具有重要意义。
因此,金属凝固原理的研究将会在未来发挥重要作用。
金属凝固原理

金属凝固原理
金属凝固原理是指金属从液态到固态的过程。
在金属熔化后,通过降低温度或进行其他处理,金属开始逐渐凝固。
凝固过程中,金属内部的原子或分子逐渐重新排列并结晶,形成有序的晶体结构,从而形成固态金属。
金属凝固原理基于凝固行为的研究,涉及到熔化、相变、晶体生长等多个方面。
首先,金属在熔化过程中,吸收热量使得金属内部的原子或分子运动加速,失去了原子之间的排列有序性,形成了液态金属。
当温度进一步降低时,金属开始进入凝固阶段。
在凝固的早期,金属内部出现一些微小的核心,这些核心是由一部分原子或分子聚集形成的。
这些核心吸引周围的原子或分子,从而导致晶体生长。
晶体生长过程中,较小的核心会扩大并联系在一起,形成更大的晶体。
在金属凝固过程中,晶体生长的速度取决于多种因素,包括温度、凝固速率、金属成分等。
高温下,原子或分子的运动速度较快,晶体生长速度较快;而低温下,晶体生长速度较慢。
凝固速率越快,金属内部的原子或分子越来越无序,晶体结构越复杂。
凝固过程中,金属的凝固形式也有多种,常见的有均匀凝固和偏析凝固。
均匀凝固指金属内部晶体结构均匀、成分均匀分布的凝固方式,一般适用于成分均匀的金属。
而偏析凝固则是指金属内部存在组分不均匀的现象,即某些金属元素或杂质在凝
固过程中会向其中心或表面区域富集。
综上所述,金属凝固原理是由金属熔化到固态的过程,涉及到熔化、相变、晶体生长等多个方面。
通过研究金属凝固原理,我们可以更好地理解金属的结构与性能,并可以针对不同的凝固条件来控制金属的制备过程。
纯金属凝固知识点总结

纯金属凝固知识点总结1. 凝固的基本原理在纯金属凝固的过程中,金属离子从液态状态转变为晶态状态,这一过程主要包括两个方面的变化:(1) 原子排列的变化。
在液态金属中,金属原子是无序排列的,而在凝固过程中,金属原子开始有序排列,形成不同的晶体结构。
(2) 基本结构的变化。
不同的金属具有不同的晶体结构,如立方晶体、六方晶体等,这种基本结构的变化是凝固过程中的重要特征。
在金属凝固的过程中,除了原子排列的变化和基本结构的变化外,还会同时涉及到晶体的生长、演变和凝固温度等因素的影响。
因此,要深入了解纯金属凝固的过程,需要综合考虑上述多个因素的作用。
2. 凝固过程中的晶体生长晶体生长是在凝固过程中最基本的现象之一。
在金属凝固的过程中,晶体生长是从液态金属中形成晶体的过程,其过程主要包括以下几个方面:(1) 传质与传热。
在晶体生长的过程中,溶质从液相向固相迁移,而热量也是从熔体向冷凝物质迁移的过程。
这种传质与传热是晶体生长的基础。
(2) 晶体核的形成。
在凝固过程中,晶体核的形成是晶体生长的关键。
晶体核的形成是通过原子或离子以一定的方式排列而形成的,这是晶体生长过程中的起始点。
(3) 晶体生长的机制。
晶体的生长可以通过表面扩散、体积扩散、界面扩散等不同方式进行。
这种不同的生长机制将直接影响晶体的形态和晶体结构。
(4) 晶体生长速率的控制因素。
晶体生长速率受到诸多因素的影响,如温度、凝固速率、溶质浓度等因素都将对晶体生长速率产生显著的影响。
综上所述,要理解纯金属凝固过程中的晶体生长过程,首先需要了解晶体核的形成、晶体生长的机制以及晶体生长速率的控制因素。
这将有助于深入理解凝固过程中的晶体生长现象。
3. 影响凝固过程的因素在金属凝固的过程中,有多种因素会对凝固过程产生影响。
主要包括以下几个方面:(1) 温度。
温度是影响金属凝固的最主要因素之一。
凝固温度的高低不仅会直接影响凝固过程的速率,也会对晶体结构的形成产生重要影响。
金属材料凝固原理与技术

金属材料凝固原理与技术金属材料凝固原理与技术,这个话题一听就让人觉得高大上,但其实它跟我们日常生活息息相关。
想象一下,咱们每天用的手机、电脑,甚至厨房里的锅,都是金属制成的,对吧?这些金属是怎么变成我们现在看到的模样的呢?这就得从凝固说起。
凝固,就是液体金属在冷却后变成固体的过程。
就像冰淇淋在阳光下慢慢融化,又在冰箱里重新结成冰那样。
这可不是简单的事儿,里面可是有大学问。
金属在加热时,会变成液态,像汤一样流动。
这时候,金属的分子就开始忙活起来,像舞池里跳舞的人一样,四处乱窜。
温度一降低,分子开始慢慢安静下来,就像在派对上找到了一个角落,最终它们会抱成团,形成一个个坚固的晶体结构。
这个过程就叫“凝固”。
这时候的金属,就不再是流动的液体,而是一个个坚硬的块儿了。
想象一下,像变魔术一样,一瞬间的变化!真是让人感叹大自然的神奇。
然后,说到凝固,咱们不得不提一下“冷却速率”。
这就像烤蛋糕,温度太高,外焦里嫩;温度太低,又没法熟。
金属也是一样,如果冷却得太快,晶体就会小得像沙子,导致金属变脆,没什么韧性。
相反,冷却得慢一点,晶体大了,金属就结实多了。
这就像你选的水果,如果没熟透,吃起来酸酸的,跟那些熟透的水果根本没法比,味道差得远。
所以说,控制冷却速度,才是技术的关键啊。
凝固过程中还有个重要角色,就是“合金”。
合金就是把不同的金属混合在一起,像调配饮料一样。
就拿铝合金来说,它比单纯的铝要强得多,不容易变形,轻得像羽毛。
这就让很多航空航天技术受益匪浅,飞机都能飞得高高的,离我们更近。
咱们常说的“万事开头难”,在金属材料的世界里,合金的配比可是决定成败的关键,调得好,材料就能像超人一样,强大又耐用。
再说说“晶体结构”的重要性。
不同金属有不同的晶体结构,像有的像方块,有的像六角形。
这些形状决定了金属的性能,强度、硬度都跟它们的结构有关系。
就算是同一种金属,经过不同的处理,它的性能也会大相径庭。
像大厨做菜,调味料不一样,出来的味道也截然不同。
金属凝固原理

金属凝固原理金属凝固是指金属从熔化状态向固态转变的过程。
金属凝固是金属加工和制造中的关键工艺之一,对于金属材料的性能和结构具有重要影响。
金属凝固有两种基本模式,分别是平衡凝固和非平衡凝固。
平衡凝固是在金属熔体达到热力学平衡条件下进行的凝固过程。
在平衡凝固过程中,金属熔体的凝固速度较慢,使得晶体有足够的时间进行有序排列,形成结晶的晶格结构。
这种凝固方式下得到的晶体结构一般是均匀、致密的。
而非平衡凝固则是在金属熔体未达到热力学平衡条件下进行的凝固过程,通常是由于快速冷却或其他条件的限制。
非平衡凝固下得到的金属结构通常不具备完整的晶格结构,其中可能包含一些缺陷,如晶界、孪生晶和扩散限制。
金属凝固的主要原理包括热力学原理和动力学原理。
热力学原理研究的是金属凝固的平衡过程和热力学参数,如凝固温度、凝固速度等。
相变热是研究金属凝固的重要参数之一,它是单位质量金属从液态到固态过程中释放或吸收的热量。
相变热的大小直接影响到金属凝固过程的温度和能量交换。
动力学原理研究的是金属凝固的凝固速率和晶体生长行为。
凝固速率与温度梯度成正比,与金属的热导率和定向凝固度有关。
晶体生长通常是以晶核为起点,通过界面扩散分子在凝固过程中不断形成新的晶核,最终形成完整的晶体结构。
在金属凝固中,晶体生长过程是一个重要环节。
晶体生长可以分为表面扩散和体内扩散两种方式。
表面扩散是指晶体表面上的原子或离子通过空间的跳跃来进行扩散,而体内扩散则是指晶体内部的原子或离子通过晶面间的空隙进行扩散。
晶体生长的速度与扩散速率和扩散路径有关,因此扩散是影响金属凝固过程的重要因素之一温度梯度和凝固界面形貌也是金属凝固的关键因素。
温度梯度会导致凝固界面的变形和变动,从而影响到晶体生长和凝固速率。
凝固界面的形貌也对凝固过程有重要影响。
对于非平衡凝固,凝固界面通常是不规则的,形成了一些晶界、孪生晶和其他缺陷。
这些缺陷会影响金属的性能和结构。
除了热力学和动力学原理外,还有其他一些因素也会影响金属凝固的过程。
金属凝固的概念

金属凝固的概念金属凝固是指金属从液态转变为固态的过程。
在凝固过程中,金属的原子或离子通过相互吸引力逐渐排列有序,形成晶体结构。
金属凝固是金属冶金学中的重要过程,对于金属的性能和应用具有重要影响。
金属凝固的基本过程可以分为两个阶段:核化和晶体生长。
核化是指在过冷液体中形成初生晶核的过程,晶体生长则是指这些初生晶核逐渐增长、连接到一起并形成完整的晶体。
这两个过程是金属凝固的关键步骤,也是决定金属凝固结构和性能的重要因素。
核化过程在金属凝固中首先发生。
当金属冷却至过冷液态时,由于存在过饱和现象,晶体的核心形成了一个临界尺寸的“种子”。
这些种子成为晶体生长的基础,进一步生成整个晶体。
初生晶核在液态金属中具有高自由能,因此会通过吸收金属离子或原子来增长尺寸。
一旦形成了初生晶核,晶体生长过程就开始了。
晶体的生长受到两种力的影响:金属内部原子或离子之间的相互吸引力和外部界面力。
内部相互吸引力使得金属原子在晶体内部沿着特定的晶格方向有序排列,形成晶体结构。
外部界面力则是晶体与其周围物质的相互作用力,它们影响晶体生长速率和晶体形态。
晶体生长过程分为两种类型:平面生长和体积生长。
对于平面生长,晶体通过界面和周围液体接触,逐层增长。
这种生长方式通常发生在高温、高过冷度下。
对于体积生长,晶体通过从液态中吸收原子或离子进行增长。
这种生长方式通常发生在低温、低过冷度下。
平面生长和体积生长的比例取决于温度、过冷度和金属的性质。
金属凝固的速率和过程也与一些因素有关。
温度是影响金属凝固速率的重要因素之一。
温度越低,金属原子或离子的热运动越小,凝固速率越快。
过冷度也会影响金属凝固速率。
过冷度越大,晶体生长的驱动力越大,凝固速率越快。
此外,金属的成分和纯度、形态和尺寸等也会对金属凝固过程和结构产生影响。
金属凝固结构的形成受到物理学、热力学和晶体学的影响。
物理学原理解释了金属原子或离子的行为和相互作用力。
热力学原理通过研究凝固时的能量变化和平衡条件,揭示了凝固过程的驱动力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条 件
c 液相曲线斜率大于固相: 由一次导数大小确定。
二曲线相交于一点,即材料的熔点
Tm 。
△GB= GL - GS
12
第
三
第二节 金属结晶的基本条件
章 1 热力学条件Байду номын сангаас
(2)热力学条件
第
△GB=Lm△T/Tm
二 a △T>0, △GB > 0——过冷是结晶
节 的必要条件(之一)。
△GB= GL - GS
结
晶
规
律
5
第
三
第一节 金属结晶的基本规律
章 2 结晶过程(微观现象) (1)结晶的基本过程:形核-长大。(见示意图)
(2)描述结晶进程的两个参数 第 形核率N :单位时间、单位体积液体中形成的晶核数量。
一 长大速度G :晶核生长过程中,液固界面在垂直界面方向上
节 单位时间内迁移的距离。
结
晶
规
律
6
第
1. 冷却曲线上出现温度回升现象 在实际开始结晶温度,大量晶核形成释放的结晶潜热多
第 于金属向外界散失的热量,导致出现温度的回升。
一 2. 在纯金属的冷却曲线上出现
节 “平台”
结
液态金属在结晶过程中释放的 结晶潜热与金属向外界散失的热量
晶 达到平衡。
Tm: 理论结晶温度(熔 点)
Tn: 实际开始结晶温度
熵是表征系统中原子排列有序度的参数,恒为正值。 温度升高,熵值增加。液相的熵值比固相大。
11
第
三
第二节 金属结晶的基本条件
章 1 热力学条件
(1)G-T曲线 第 a 是下降曲线:由G-T函数的一次
导数(负)确定。 二
dG/dT=-S 节 b 是上凸曲线:由二次导数(负) 结 确定。
晶
d2G/d2T=-Cp/T
晶 核
成核的过程。
的
非均匀形核较均匀形核容易。
形
在实际金属中或多或少存在许多的杂质以及外表面,
成 实际金属的结晶主要按非均匀形核方式进行。
17
第
三
第三节 晶核的形成
章 1 均匀形核
(1)晶胚形成时的能量变化
第 晶胚的形成受到两个力的作用:
三 ➢ 结晶的驱动力:
节
在过冷条件下,固相的自由能
低于液相的自由能。当过冷液体
18
第
三
第三节 晶核的形成
章 1 均匀形核
(1)晶胚形成时的能量变化
第
三
当过冷液体中出现一晶胚时,
节 若晶胚的体积为V,表面积为S,液、
固两相单位体积自由能差为ΔGB ,
规 3.“平台”的温度与熔点的关系
律
“ 平台”的温度低于熔点(理 论结晶温度)。
冷却速度越慢, “ 平台”的
温度越接近理论结晶温度。
9
第
三
第二节 金属结晶的基本条件
章 回答两个问题:
1.金属结晶必须在过冷条件下进行,为什么?
第
二 2.金属的结晶过程是形核和长大的过程,晶核如
节 何形成?
结
晶
条 件
10
晶 中出现晶胚时,原子由液态转变
核 为固态,使系统自由能降低;
的 ➢ 结晶的阻力:
形
由于晶胚构成新的表面,形成
成 表面能,使系统的自由能升高 。
晶胚形成时总的自由能变化决定 着晶胚能否长大。
©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
第二节 金属结晶的基本条件
1 热力学条件
金属结晶为什么必须在过冷条件下进行呢?
热力学第二定律指出:在等温等压条件下,物质系统 总是自发地从自由能高的状态向自由能低的状态转变。
金属状态不同,自由能也不同。 状态的自由能可表示为
G=H-TS 式中: G 为吉布斯自由能,H为焓(热函),
T为绝对温度,S为熵。
2 结构条件
章
(1)液态结构模型
微晶无序模型 第
拓扑无序模型 二
节
结
晶
条 件
15
第
三
第二节 金属结晶的基本条件
2 结构条件
章
(2)结构起伏(相起伏):液态材料中出现的短程有序
原子集团的时隐时现现象。是产生晶核的基础。..\结构起
第 伏.swf只有尺寸比较大的结构起伏才有可能转变为晶核,
二 称为晶胚。 在一定的温度下,不同尺寸的结构起伏出现的几率
结 b △T越大, △GB越大——过冷度越 晶 大,越有利于结晶。 条 c △GB为凝固过程的驱动力。 件
13
第二节 金属结晶的基本条件
晶核从何而来? 2 结构条件
液态金属的结构 结构:长程无序而短程有序。 特点(与固态相比):原子间距较大、原子配位数 较小、原子排列较混乱。
14
第
三
第二节 金属结晶的基本条件
节 不同(左图)。
结
rmax 大小与过冷度有关(右图)。
晶
出
条
现
件
几 率
rmax rmax
结构起伏大小
16△T
第
三
第三节 晶核的形成
章 液态金属的形核方式有两种: (1)均匀形核
第
在过冷的液态金属中,依靠液态金属本身的能量变
三 化获得驱动力,由晶坯直接成核的过程。
节
(2)非均匀形核
在过冷的液态金属中,晶坯是依附在其他物质表面上
一 ➢金属结晶的基本条件(热力学条件、结构条件) 节 ➢晶核的形成(均匀形核、非均匀形核)
结
➢晶体的长大(长大的机制、长大的形态)
晶
规 ➢凝固理论的应用(如单晶制备、定向凝固等)
律
4
第
三
第一节 金属结晶的基本规律
章 1 液态材料的结构
结构:长程无序而短程有序。 第
特点(与固态相比):原子间距较大、原子配位数 一 较小、原子排列较混乱。 节
第三章 凝固
熔化 1
第三章 凝固
炼钢
浇注
炼铜
2
第三章 凝固
凝固:物质从液态到固态的转变过程。
若凝固后的物质为晶体,则称之
为结晶。
凝固过程影响后续工艺性能、使用性能 和寿命。
凝固是相变过程,可为其它固态相变的 研究提供基础。
3
第
三
本章内容
章
阐述纯金属的凝固基本规律:
第 ➢金属结晶的基本规律(微观、宏观)
晶
规
律
7
第
三
第一节 金属结晶的基本规律
章
注: 过冷是结晶的必要条件 (结晶过程总是在一定
第 的过冷度下进行)。
一
改变过冷度可以控制铸件晶粒的大小。
节
影响过冷度的因素:
结
(1)金属的纯度越高,过冷度越大。
晶
规
(2)冷却速度越快,过冷度越大。
律
8
第
三
第一节 金属结晶的基本规律
章 冷却曲线的几个特点:
三
第一节 金属结晶的基本规律
章 3 过冷现象 supercooling(宏观现象) (1)过冷:金属的实际开始结晶温度Tn总是低于理论结晶温
度Tm的现象。
第 (2)过冷度:液体材料的理论结晶温度(Tm) 与其实际温度之
一 差。
△T=Tm-Tn (见冷却曲线)
节
Tm: 理论结晶温度(熔点)
结
Tn: 实际开始结晶温度