导数的概念及运算

合集下载

导数的定义与计算

导数的定义与计算

导数的定义与计算导数是微积分中的重要概念,它用于描述函数在某一点处的变化率。

本文将介绍导数的定义和计算方法。

一、导数的定义在数学中,导数可以通过极限的方法来定义。

设函数y=f(x),若函数在点x处的导数存在且有限,则导数表示为f'(x),它表示函数f(x)在点x处的变化率。

导数可以理解为函数在某一点的瞬时变化率。

通过导数,我们可以研究函数的变化趋势、拐点、极值等重要性质。

二、导数的计算方法导数的计算方法有多种,下面将介绍一些常见的计算方法。

1. 函数可导情况下的基本运算法则(1)常数法则:若c为常数,则导数(常数)=0。

(2)幂函数法则:若f(x)=x^n,其中n为常数,则导数f'(x)=nx^(n-1)。

(3)指数函数法则:若f(x)=a^x,其中a为常数,则导数f'(x)=a^x*ln(a)。

(4)对数函数法则:若f(x)=log_a(x),其中a为常数,则导数f'(x)=1/(x*ln(a))。

(5)三角函数法则:若f(x)=sin(x),则导数f'(x)=cos(x)。

2. 导数的基本运算法则(1)和差法则:若f(x)=u(x)+v(x),则导数f'(x)=u'(x)+v'(x)。

(2)积法则:若f(x)=u(x)v(x),则导数f'(x)=u'(x)v(x)+u(x)v'(x)。

(3)商法则:若f(x)=u(x)/v(x),则导数f'(x)=(u'(x)v(x)-u(x)v'(x))/[v(x)]^2。

(4)复合函数法则:若f(x)=g(h(x)),则导数f'(x)=g'(h(x))*h'(x)。

3. 使用导数计算函数的极值为了找到函数的极值点,我们可以先求得函数的导数,然后解方程f'(x)=0。

解得的x值即为函数的极值点。

三、导数的应用导数是微积分的基本工具,它在许多实际问题中具有广泛的应用。

导数的概念及计算

导数的概念及计算

导数的概念及计算一.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→ f (x 0+Δx )-f (x 0)Δx=0lim x ∆→ Δy Δx 为函数y =f (x )在x =x 0处的导数,记作y ′|x =x 0 =f ′(x 0) =0lim x ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)值就是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).二.基本初等函数的导数公式三.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 四.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.考向一 利用公式及运算法则求导【例2】求下列函数的导数2311(1)()y x x x x =++ (2) (3) ()234(21)x y x =+ (5)sin2xy e x -= 【举一反三】1.下列求导运算正确的是( )A .(3x )′=x •3x−1B .(2e x )′=2e x (其中e 为自然对数的底数)C .(x 2+1x )′=2x +1x 2 D .(x cosx)′=cosx−xsinx cos 2x2.求下列函数的导数: (1)y =√x 5+√x 7+√x 9√x ; (2)y =x ⋅tanx (3)y =x n ⋅lg x ;(4)y =1x +2x 2+1x 3;考向二 复合函数求导【例3】求下列函数导数(1)y =sin(2x +1) ()(2)cos2f x x x =⋅ (3)()cos ln y x =【举一反三】求下列函数的导数: (1)y =; (2)2()5log 21y x =+.(3)sin()eax b y +=;(提示:设e uy =,sin u v =,v ax b =+,x u v xy y u v ''''=⋅⋅)(4)2(πsin 2)3y x =+; 考向三 利用导数求值【例4】(1)f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0= . 2.若f (x )=x 2+2x ·f ′(1),则f ′(0)= .3. 已知函数()f x 的导函数为()f x ',且满足()()2e ln f x xf x +'=,则()e f '= 。

原创2:3.1 导数的概念及运算

原创2:3.1 导数的概念及运算

一、导数及有关概念
1.函数y=f(x)在x=x0处的导数 函数y=f(x)的导数f ′(x)=Δlxi→m0ΔΔyx
= lim Δx→0
fx+Δx-fx
Δx
.
如果f(x)在开区间(a,b)内每一点x都是可导的,则称f(x)在
区间(a,b)内可导.在区间(a,b)内,f ′(x)构成一个新的函
数,这个函数称为函数f(x)的导数.
1 f ′(x)=_x_l_n_a____(a>0,且a≠1)
1 f ′(x)=__x______
2.导数的运算法则 [f(x)±g(x)]′=__f _′(_x_)±__g_′_(x_)________; [f(x)g(x)]′=___f _′(_x_)g_(_x_)_+__f(_x_)g_′_(_x)____. 特别[cf(x)]′=_c_f_′(_x_)_____________(c 为常数);
f3(x)=f ′2(x)…,fn+1(x)=(-1)nf ′n(x),n∈N*,则f2016(x)=
()
• A.sinx B.-sinx
C.cosx D .-cosx
• [答案] C
• [解析] f1(x)=-sinx,f2(x)=cosx,f3(x)=-sinx,f4(x)=cosx, f5(x)=-sinx,…,
导数与线性规划的交汇

(2013·江苏卷)抛物线y=x2在x=1处的切线与
两坐标轴围成的三角形区域为D(包含三角形内部与边
界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范
围是________.
[答案] [-2,12]
[解析] 由于y′=2x,所以抛物线在x =1处的切线方程为y-1=2(x-1),即y= 2x-1.

常用导数公式及运算法则

常用导数公式及运算法则

常用导数公式及运算法则导数的概念导数是微积分中的重要概念,用来描述函数在某一点处的变化率。

在数学中,导数表示函数在无限小的变化量情况下的变化率,通常表示为函数的斜率或切线的倾斜程度。

导数在许多领域中都有着广泛的应用,例如在物理学、工程学、经济学等领域都扮演着重要的角色。

常用导数公式下面列出了一些常用的导数公式:1.常数函数的导数–若f(f)=f,其中f为常数,则f′(f)=0。

2.幂函数的导数–若f(f)=f f,其中f为常数,则f′(f)= ff f−1。

3.指数函数的导数–若f(f)=f f,其中f为常数且f>0,则$f'(x)=a^x\\ln(a)$。

4.对数函数的导数–若$f(x) = \\log_a(x)$,其中f为常数且f>0且f ff1,则$f'(x)=\\frac{1}{x\\ln(a)}$。

5.三角函数的导数–若$f(x) = \\sin(x)$,则$f'(x)=\\cos(x)$。

–若$f(x) = \\cos(x)$,则$f'(x)=-\\sin(x)$。

–若$f(x) = \\tan(x)$,则$f'(x)=\\sec^2(x)$。

导数运算法则在求导数时,有一些常用的导数运算法则可以帮助简化计算:1.和差法则–$(f(x) \\pm g(x))' = f'(x) \\pm g'(x)$2.常数倍法则–(ff(f))′=ff′(f),其中f为常数。

3.乘法法则–$(f(x) \\cdot g(x))' = f'(x) \\cdot g(x) + f(x) \\cdot g'(x)$4.商法则–$\\left(\\frac{f(x)}{g(x)}\\right)' = \\frac{f'(x) \\cdot g(x) - f(x) \\cdot g'(x)}{(g(x))^2}$5.复合函数求导–若有函数f(f)=f(f(f)),则$F'(x) = f'(g(x)) \\cdot g'(x)$总结通过对常用导数公式和运算法则的了解,可以帮助我们更快更准确地计算函数的导数。

导数概念与运算

导数概念与运算

导数概念与运算知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即xy ∆∆=xx f x x f ∆-∆+)()(00。

如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim →∆x xy ∆∆=0lim→∆x xx f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,xy ∆∆有极限。

如果xy ∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率xy ∆∆=xx f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xy x ∆∆→∆0lim。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。

3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x'=; ⑧()1l g log a a o x ex'=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''vuv v u -(v ≠0)。

导数的概念及其意义、导数的运算课件-2023届高三数学(文)一轮复习

导数的概念及其意义、导数的运算课件-2023届高三数学(文)一轮复习
n2+1=a+1-aln m,
所以4am22=a-aln m, 由于 a>0,所以4ma 2=1-ln m, 即a4=m2(1-ln m)有解即可. 令h(x)=x2(1-ln x)(x>0), h′(x)=x(1-2ln x),
所以 h(x)在(0, e)上单调递增,在( e,+∞)上单调递减,最大值为 h( e)=2e,
解得 a=1 或 a=-34(舍去), 又由g(1)=-1,即公共点的坐标为(1,-1), 将点(1,-1)代入f(x)=-2x2+m, 可得m=1.
64 (2)不与x轴重合的直线l与曲线f(x)=x3和y=x2均相切,则l的斜率为__2_7_.
设直线 l 与曲线 f(x)=x3 相切的切点坐标为(x0,x30), f′(x)=3x2,则 f′(x0)=3x20, 则切线方程为 y=3x20x-2x30, 因为不与x轴重合的直线l与曲线y=x3和y=x2均相切,
题型一 导数的运算 例 1 函数 f(x)的导函数为 f′(x),若 f(x)=x2+f′π3sin x,则 f π6= 3π62+23π .
f′(x)=2x+f′π3cos x, ∴f′π3=23π+12f′π3, ∴f′π3=43π, ∴f π6=3π62+23π.
教师备选
例 2 ( 1 ) 在 等 比 数 列 {an} 中 , a1 = 2 , a8 = 4 , 函 数 f(x) = x(x - a1)(x -
例6 (1)(2022·驻马店模拟)已知函数f(x)=xln x,g(x)=x2+ax(a∈R),
直线l与f(x)的图象相切于点A(1,0),若直线l与g(x)的图象也相切,则a
等于 A.0B.-1Fra bibliotekC.3
√D.-1或3

导数的基本公式及四则运算法则

导数的基本公式及四则运算法则

导数的减法法则
总结词
导数的减法法则是导数的基本运算法则 之一,它指出两个函数的导数的差等于 它们各自导数的差的负值。
VS
详细描述
如果函数$f(x)$和$g(x)$在某一点$x$处 可导,那么$(f(x) - g(x))' = f'(x) - g'(x)$ 。
导数的乘法法则
总结词
导数的乘法法则是说,如果一个函数乘以一 个常数,那么它的导数就是这个常数乘以该 函数的导数。
详细描述
对于对数函数f(x)=ln(x),其导数为f'(x)=1/x。这个公式告诉我们,对数函数的斜率与x 的倒数有关。
03
导数的四则运算法则
导数的加法法则
总结词
导数的加法法则是指两个函数的导数的和等于它们各自导数的和。
详细描述
如果函数$f(x)$和$g(x)$在某一点$x$处可导,那么$(f(x) + g(x))' = f'(x) + g'(x)$。
04
导数在实际问题中的应用
最大值和最小值问题
总结词
导数在求解最大值和最小值问题中具有广泛 应用。
详细描述
通过求导找到函数的极值点,进而确定函数 的最大值或最小值。在经济学、工程技术和 科学研究等领域中,求解最大值和最小值问 题是一个常见的问题,导数的应用为这些问
题提供了有效的解决方案。
速度和加速度问题
导数在实际问题中的应用案例分析
总结:导数在实际问题中有着广泛的应用,通过分析导数 ,我们可以解决许多实际问题,如最优化问题、经济问题 等。
例如,在物理学中,导数可以用来描述速度和加速度的变 化;在经济学中,导数可以用来分析边际成本和边际收益 ;在工程学中,导数可以用来设计最优化的方案。

学案6:§3.1 导数的概念及运算

学案6:§3.1   导数的概念及运算

§3.1 导数的概念及运算考点自主回扣[知识梳理]1.导数的概念(1)函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx =lim Δx →0Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或0|x x y '=,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0f (x 0+Δx )-f (x 0)Δx . (2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的 (瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为 .(3)函数f (x )的导函数称函数f ′(x )= 为f (x )的导函数.2.基本初等函数的导数公式(1)[f (x )±g (x )]′= ;(2)[f (x )·g (x )]′= ;(3)⎣⎡⎦⎤f (x )g (x )′= (g (x )≠0).[知识感悟]1.辨明三个易误点(1)利用公式求导时要特别注意不要将幂函数的求导公式(x n )′=nx n-1与指数函数的求导公式(a x )′=a x ln a 混淆.(2)求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.(3)曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.2.导数运算的技巧(1)要准确地把函数分割为基本函数的和、差、积、商(及其复合运算)的形式,再利用运算法则求导数;(2)对于不具备求导法则结构形式的,要适当恒等变形,转化为较易求导的结构形式,再求导数.但必须注意变形的等价性,避免不必要的运算失误.对数函数的真数是根式或者分式时,可用对数的运算性质将真数转化为有理式或整式,然后再求解比较方便;当函数表达式含有三角函数时,可优先考虑利用三角公式进行化简后再求导.[知识自测]1.某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( ) A .14 m/s 2 B .4 m/s 2 C .10 m/s 2 D .-4 m/s 22.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=( )A .2B .1 C.12 D .03.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为 .考向互动探究题型一 导数的计算(基础保分题,自主练透)例1 (1)求下列函数的导数:(1)y =(1-x )⎝⎛⎭⎫1+1x ;(2)y =ln x x ;(3)y =tan x ;(4)y =3x e x -2x +e ;方法感悟导数计算的方法1.连乘积形式:先展开化为多项式的形式,再求导;2.分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导;3.对数形式:先化为和、差的形式,再求导;4.根式形式:先化为分数指数幂的形式,再求导;5.三角形式:先利用三角函数公式转化为和或差的形式,再求导.提醒:求导前应利用代数、三角恒等变形将函数先化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.【针对补偿】求下列函数的导数:(1)y =x 2sin x ;(2)y =ln x +1x ;(3)y =cos x e x ;题型二 导数运算的应用(重点保分题,共同探讨)例2 (1)已知函数f (x )的导数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94 D.94(2)在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)的值为________.方法感悟在求导过程中,要仔细分析函数解析式的特点,紧扣法则,记准公式,预防运算错误.【针对补偿】1.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .02.已知f (x )=12x 2+2xf ′(2 018)+2 018ln x ,则f ′(2 018)=________. 题型三 导数的几何意义(高频考点题,多角突破)考向一 求切线方程1.已知f (x )=2e x sin x ,则曲线f (x )在点(0,f (0))处的切线方程为( )A .y =0B .y =2xC .y =xD .y =-2x 考向二 求切点坐标2.若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________. 考向三 求参数值3.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2 【针对补偿】已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.考向四 切线方程的应用4.已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 017x 1+log 2 017x 2+…+log 2 017x 2 016的值为________.方法感悟导数几何意义的应用的2个注意点(1)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0;(2)注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.【针对补偿】1.已知函数f (x )=-13x 3+2x 2+2x ,若存在满足0≤x 0≤3的实数x 0,使得曲线y =f (x )在点(x 0,f (x 0))处的切线与直线x +my -10=0垂直,则实数m 的取值范围是( )A .[6,+∞)B .(-∞,2]C .[2,6]D .[5,6] 2.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A.⎣⎡⎭⎫3π4,π B.⎣⎡⎭⎫π4,π2 C.⎝⎛⎦⎤π2,3π4 D.⎣⎡⎭⎫0,π4 3.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为( )A.278B .-2C .2D .-278【参考答案】考点自主回扣[知识梳理]1.导数的概念(2)导数的几何意义切线的斜率 y -y 0=f ′(x 0)(x -x 0)(3)函数f (x )的导函数lim Δx →0f (x +Δx )-f (x )Δx2.基本初等函数的导数公式0 nx n -1 -sin x e x 1x ln a 1x3.导数的运算法则(1) f ′(x )±g ′(x )(2) f ′(x )g (x )+f (x )g ′(x ) (3) f ′(x )g (x )-f (x )g ′(x )[g (x )]2 [知识自测]1.A【解析】由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,当t =2时,a (2)=v ′(2)=12×2-10=14.2.A【解析】根据图象知,函数y =f (x )的图象与在点P 处的切线交于点P ,f (5)=-5+8=3, f ′(5)为函数y =f (x )的图象在点P 处的切线的斜率,∴f ′(5)=-1;∴f (5)+ f ′(5)=2.故选A.3.3【解析】 f ′(x )=a (1+ln x ),∴f ′(1)=a =3.考向互动探究题型一 导数的计算(基础保分题,自主练透)例1 解:(1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x -x =12x --12x , ∴y ′=(12x -)-(12x )′=-1232x --1212x -. (2)y ′=⎝⎛⎭⎫ln x x ′=(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. (3)y ′=⎝⎛⎭⎫sin x cos x ′=(sin x )′cos x -sin x (cos x )′cos 2x =cos x cos x -sin x (-sin x )cos 2x =1cos 2x.(4)y ′=(3x e x )′-(2x )′+e′=(3x )′e x +3x (e x )′-(2x )′=3x (ln 3)·e x +3x e x -2x ln 2 =(ln 3+1)·(3e)x -2x ln 2.【针对补偿】解:(1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x 2. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x)′(e x )2=-sin x +cos x e x. 题型二 导数运算的应用(重点保分题,共同探讨)例2 (1)C (2)4 096【解析】(1)因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x, 所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94. (2)因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)·(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.又数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=4 096.【针对补偿】1.B【解析】∵f (x )=ax 4+bx 2+c ,∴f ′(x )=4ax 3+2bx .又f ′(1)=2,∴4a +2b =2,∴f ′(-1)=-4a -2b =-2.2.-2 019【解析】由题意得f ′(x )=x +2f ′(2 018)+2 018x, 所以f ′(2 018)=2 018+2f ′(2 018)+2 0182 018, 即f ′(2 018)=-(2 018+1)=-2 019.题型三 导数的几何意义(高频考点题,多角突破)考向一 求切线方程1.B【解析】因为f (x )=2e x sin x ,所以f (0)=0,f ′(x )=2e x ·(sin x +cos x ),所以f ′(0)=2,所以曲线f (x )在点(0,f (0))处的切线方程为y =2x .考向二 求切点坐标2.(-ln 2,2)【解析】设P (x 0,y 0),因为y =e -x ,所以y ′=-e -x ,所以点P 处的切线斜率为k =-e -x 0=-2,所以-x 0=ln 2,所以x 0=-ln 2,所以y 0=e ln 2=2,所以点P 的坐标为(-ln 2,2).考向三 求参数值3.D【解析】∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, 于是解得m =-2,故选D.【针对补偿】8【解析】因为y ′=1+1x,所以y ′|x =1=2, 故切线的方程为y -1=2(x -1),即2x -y -1=0.联立⎩⎪⎨⎪⎧2x -y -1=0y =ax 2+(a +2)x +1,由Δ=0,得a =8. 考向四 切线方程的应用4.-1【解析】f ′(x )=(n +1)x n ,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =n n +1, ∴x 1·x 2·…·x 2 016=12×23×34×…×2 0152 016×2 0162 017=12 017, 则log 2 017x 1+log 2 017x 2+…+log 2 017x 2 016=log 2 017(x 1x 2…x 2 016)=-1.【针对补偿】1.C【解析】f ′(x )=-x 2+4x +2=-(x -2)2+6,因为x 0∈[0,3],所以f ′(x 0)∈[2,6],又因为切线与直线x +my -10=0垂直,所以切线的斜率为m ,所以m 的取值范围是[2,6].2.A【解析】求导可得y ′=-4e x +e -x +2,∵e x +e -x +2≥2e x ×e -x +2=4 ∴y ′∈[-1,0),即tan α∈[-1,0),∵0<α<π,∴3π4≤α<π. 3.A【解析】设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率为k =f ′(t )=3t 2-a ,① 所以切线方程为y -(t 3-at +a )=(3t 2-a )·(x -t ).②将点(1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解之得t =0或t =32. 分别将t =0和t =32代入①式,得k =-a 和k =274-a , 由题意得它们互为相反数得a =278.故选A.。

导数定义运算知识点总结

导数定义运算知识点总结

导数定义运算知识点总结一、导数的定义在微积分中,导数是描述函数变化率的一个重要概念。

具体来说,如果一个函数在某一点处的导数存在,那么这个导数就描述了函数在该点处的变化速率。

导数的定义可以通过极限的概念来给出,具体来说,对于函数y=f(x),如果在某一点x处函数f(x)的变化率为:f'(x) = lim(h->0) (f(x+h) - f(x)) / h其中f'(x)表示函数f(x)在x处的导数,lim表示极限运算,h表示自变量x的增加量。

上面的定义是导数的一般形式,通过这个定义可以得到一些常用的导数计算方法。

比如对于幂函数、指数函数、对数函数、三角函数等一些基本函数,我们可以通过导数的定义来计算它们在某一点处的导数。

另外,还可以通过导数的定义来证明某一函数在某一点处的导数的存在性和计算导数的值。

二、导数的基本运算法则导数的基本运算法则是微积分中的一个重要内容,它包括导数的四则运算法则、复合函数的导数、反函数的导数、隐函数的导数等方面的内容。

1. 导数的四则运算法则对于两个函数y=f(x)和y=g(x),它们的导数满足一些基本运算法则。

具体来说,如果函数f(x)和函数g(x)分别在某一点x处的导数存在,那么它们的和、差、积、商的导数可以通过以下公式求得:- (f(x) ± g(x))' = f'(x) ± g'(x)- (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x)) / [g(x)]^2这些公式可以帮助我们在实际计算中求解复合函数的导数、隐函数的导数等问题。

2. 复合函数的导数复合函数是指一个函数中包含了另一个函数。

如果函数y=f(g(x))是一个复合函数,那么它的导数可以通过链式法则来求解。

导数的概念及运算-高考数学复习

导数的概念及运算-高考数学复习
=2f'( x 0),C错
Δ

Δ→0
Δ→0
(0 )−(0 −Δ)
(0 )−(0 −Δ)
误;对于D, lim
=- lim
=-
−Δ
Δ
Δ→0
Δ→0
f'( x 0),D错误.故选B.
目录
高中总复习·数学
解题技法
求函数 f ( x )在 x = x 0处的导数的步骤
Δ
(1)求导之前,应利用代数、三角恒等变换等对函数进行化简,然
后求导,这样可以减少运算量,提高运算速度,减少差错;
(2)进行导数运算时,要牢记导数公式和导数的四则运算法则,切
忌记错记混;
(3)复合函数的求导,要正确分析函数的复合层次,通过设中间变
量,确定复合过程,然后求导.
提醒 当函数解析式中含有待定系数(如f'( x 0), a , b
“陡峭”.
目录
高中总复习·数学
1. 某旅游者爬山的高度 h (单位:m)是时间 t (单位:h)的函数,
关系式是 h ( t )=-100 t 2+800 t ,则他在2 h这一时刻的高度变化
的速度是(

A. 500 m/h
B. 1 000 m/h
C. 400 m/h
D. 1 200 m/h
解析: h'( t )=-200 t +800,∴h'(2)=-200×2+800=
2
π
(2 x + )
2
1
+π)=- x sin
2
1
∴y'=- sin
2
cos
cos−sin

.
2
cos
π

导数的概念及其运算

导数的概念及其运算
第10页 共 45 页
5.(2010·新课标全国)曲线y=x3-2x+1在点(1,0)处的切线方程为
()
A.y=x-1
B.y=-x+1
C.y=2x-2
D.y=-2x+2
解析:由题可知,点(1,0)在曲线y=x3-2x+1上,求导可得y′=3x2-2, 因此在点(1,0)处的切线的斜率k=1,切线过点(1,0),根据直线 的点斜式可得切线方程为y=x-1,故选A.
第16页 共 45 页
3
y
(lnx)( x 2
1) (x2
lnxo(x2 1)2
1)
1 (x2 1) lnx 2x x (x2 1)2
x2 1 2x2 lnx x(x2 1)2 ;
4 y 3sin2x 2 ?sin2x 6sin2 2xcos2x.
第17页 共 45 页
类型三
导数的几何意义及应用
式求导. (2)以根式或分式形式出现的函数求导问题,先化成指数的形
式再运用公式求导. (3)比较复杂的函数,往往需要先化简再求导. (4)对于某些没有给出求导公式的函数,能够先化为有求导公
式的函数表达再求导.
第30页 共 45 页
补充作业:
1.求下列函数的导数 :
(1) y 1 1 ;(2) y sin x (1 2 cos2 x );(3) y e x 1.
解题准备:求曲线切线方程的环节是:
①求导数f′(x);
②求斜率k=f′(x0);
③写出切线方程y-y0=f′(x0)(x-x0).但是要注意,当函数 f(x)在x=x0处不可导时,曲线在该点处并不一定没有切 线,同时还必须明确P(x0,y0)为切点.
第18页 共 45 页

导数的概念及运算

导数的概念及运算

x0 x x0
x
存在,则称f(x)在点x0处可导,并称此极限为函数
y=f(x)在点x0处的导数,记为f (x)或y |x=x0.
说明:
1.导数是一个特殊的极限;
2. f (x)为函数所表示的曲线在相应点M(x0, f(x0))处的切线
斜率, 其切线方程为:y- f(x0)= f (x0)(x-x0);
v2
3.复合函数的导数:
设函数 u=(x) 在点 x 处有导数 ux=(x),函数 y=f(u) 在点 x 的对应点 u 处有导数 yu=f (u),则复合函数y=f((x)) 在点 x 处有导数, 且 yx=yu·ux 或写作 fx((x))=f(u)(x)。
即复合函数对自变量的导数, 等于已知函数对中间变 量的导数, 乘以中间变量对自变量的导数.
导数的概念及运算
麻城一中 彭稳章
一、基本内容
(一)导数的概念:
y
y=f(x)
Q
y 就是割线PQ的斜率
△y
x
P △x
0
M x
lim y 就是过P点切线的斜率 x0 x
概念:
如果函数y=f(x)在x0处增量△y与自变量的增
量△x的比值 y ,当△x→0时的极限 x
lim y lim f (x0 x) f (x0)
切线的方程为y 11x 18或y 17 (x 3) 15 4
即为:11x y 18 0或17x 4 y 8 0.
说明:
求切线方程应注意: ①判断点A是否在函数图象上; ②审题:在A(x0,f(x0))处切线
y-f(x0)=f(x0)(x-x0)过A(x0,f(x0)),先设切 点,再按上述方法求解。

导数的概念及运算

导数的概念及运算

探究二
例2 求下列函数的导数 (1)y=(3x3-4x)(2x+1); (2)y=x2sinx; (3)y=3xex-2x+e; lnx (4)y= 2 x +1 (5)y=e2xcos3x; (6)y=ln x2+1
导数运算
【解析】 (1)方法一 y=(3x3-4x)(2x+1) =6x4+3x3-8x2-4x,∴y′=24x3+9x2-16x-4. 方法二 y′=(3x3-4x)′· (2x+1)+(3x3-4x)(2x+ 1)′=(9x2-4)(2x+1)+(3x3-4x)· 2 =24x3+9x2-16x-4. (2)y′=(x2)′sinx+x2(sinx)′=2xsinx+x2cosx.
1 3 4 ∴切线方程为y-( x0+ )=x2(x-x0), 0 3 3 2 3 4 2 即y=x0· x0+ . x- 3 3 2 3 4 2 ∵点P(2,4)在切线上,∴4=2x0- x0+ , 3 3
3 即x0-3x2+4=0,解得x0=-1或x0=2. 0
故所求切线方程为4x-y-4=0或x-y+2=0;
题型三
导数的几何意义
1 3 4 例3 已知曲线y=3x +3. (1)求曲线在点P(2,4)处的切线方程; (2)求曲线过点P(2,4)的切线方程; (3)求满足斜率为1的曲线的切线方程.
【解析】 (1)∵y′=x2, ∴在点P(2,4)处的切线的斜率k=y′|x=2=22=4, ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2), 即4x-y-4=0; 1 3 4 (2)设曲线y= x + 与过点P(2,4)的切线相切于点 3 3 1 3 4 2 A(x0,3x0+3),则切线的斜率k=y′| x=x0=x0.
s′(t0)

【2021新高考数学】导数的概念及计算导数的概念及计算(含答案)

【2021新高考数学】导数的概念及计算导数的概念及计算(含答案)

等函数的导数公式
基本初等函数
导函数
f(x)=c(c 为常数) f(x)=xα(α∈Q*)
f(x)=sin x f(x)=cos x
f(x)=ex f(x)=ax(a>0)
f(x)=ln x
f(x)=logax (a>0,a≠1)
三.导数的运算法则 若 f′(x),g′(x)存在,则有: (1)[f(x)±g(x)]′=f′(x)±g′(x); (2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);
f′(x)=ex f′(x)=axlna
f′(x)=1 x
f′(x)= 1 xln a
(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);
f(x) (3) g(x) ′=f′(x)g(x)-f(x)g′(x)(g(x)≠0).
[g(x)]2
四.复合函数的导数
复合函数 y=f(g(x))的导数和函数 y=f(u),u=g(x)的导数间的关系为 yx′=yu′·ux′.
【举一反三】
1.下列求导运算正确的是( )
A.㺀 ʒ산 ᙰ ʒ ʒ
B.㺀 ʒ산 ᙰ ʒ(其中 e 为自然对数的底数)
C.㺀ʒ ͳ ʒ 산 ᙰ ʒ ͳ ʒ 【答案】B
D.㺀
ʒ cosʒ


cosʒ ʒsinʒ cos ʒ
【解析】分析:运算导数的加减乘除的运算法则进行计算.
详解:㺀 ʒ산 ᙰ ʒln ,㺀 ʒ산 ᙰ 㺀 ʒ산 ᙰ

;②若
ʒ

ʒ,则

⚪㺀ʒ산 ᙰ ʒ,则 ⚪ 㺀 산 ᙰ ,其中正确的个数是________________.
ʒ;③若 ᙰ ʒ ,则 ᙰ

导数的概念及运算-2025高考数学复习

导数的概念及运算-2025高考数学复习

第三章 导数及其应用
高考一轮总复习 • 数学
返回导航
2.(2022·新高考Ⅱ卷)曲线y=ln|x|过坐标原点的两条切线的方程为 ___y_=__1e_x___y_=__-__1e_x________.
[解析] 先求当 x>0 时,曲线 y=ln x 过原点的切线方程,设切点坐 标为(x0,y0),则由 y′=1x,得切线斜率为x10,又切线的斜率为yx00,
xx′=-sin
x·sin x-cos sin2x
x·cos
x=-sin12x,C
错误;
(x23x)′=(x2)′·3x+x2×(3x)′=2x3x+x23xln 3,D 正确.
第三章 导数及其应用
高考一轮总复习 • 数学
2.求下列函数的导数. (1)y=x2sin x; (2)y=ln x+1x; (3)y=xsin2x+π2cos2x+π2; (4)f(x)= 2x+1.
导数的概念及运算
知识梳理·双基自测 考点突破·互动探究 名师讲坛·素养提升 提能训练 练案[15]
返回导航
知识梳理 · 双基自测
高考一轮总复习 • 数学
返回导航
知识梳理 知识点一 导数的概念与导数的运算 1.函数的平均变化率 一般地,已知函数 y=f(x),把式子fxx22--fx1x1称为函数 y=f(x)从 x1 到 x2 的平均变化率,还可以表示为ΔΔyx=fxx22--fx1x1.
高考一轮总复习 • 数学
(4)sin
π3′=cos
π 3.(×)来自(5)(2x)′=x·2x-1.( × )
(6)[ln(-x)]′=(ln x)′.( × )
返回导航
第三章 导数及其应用
高考一轮总复习 • 数学

高中数学导数公式及导数的运算法则

高中数学导数公式及导数的运算法则

高中数学导数公式及导数的运算法则一、导数的定义导数是函数变化速率的一种描述方式,用函数f(x)在点x处的变化率来近似表示。

导数的定义如下:设函数y=f(x)在点x处有定义,如果当自变量x自小于且无限接近于x时,函数值的变化量Δy始终与自变量的变化量Δx之比近似为一个定值,即lim(Δx→0) Δy/Δx = lim(Δx→0) [f(x + Δx) - f(x)]/Δx这个极限值称为函数f(x)在点x处的导数,记作f'(x),也可以写成dy/dx。

二、常见函数的导数公式1.幂函数的导数若y = xⁿ,n为常数,则y' = nxⁿ⁻¹。

2.反函数的导数若y=f⁻¹(x),则y'=1/f'(f⁻¹(x))。

3.指数函数的导数若y = aˣ,a > 0,a ≠ 1,则y' = (lna) * aˣ。

4.对数函数的导数(a) 若y = logₐ(x),a > 0,且a ≠ 1,则y' = 1/(xlna)。

(b) 若y = ln(x),则y' = 1/x。

5.指数对数函数的导数(a) 若y = aˣ(x > 0),则y' = aˣ(lna)。

(b) 若y = logₐx(a > 0,且a ≠ 1),则y' = 1/(xlna)。

(c) 若y = ln,x,则y' = 1/x。

6.三角函数的导数(1) 若y = sinx,则y' = cosx。

(2) 若y = cosx,则y' = -sinx。

(3) 若y = tanx,则y' = sec²x。

1.基本运算法则(a)常数乘积法则:k*f(x)的导数是k*f'(x)。

(b)和差法则:[f(x)±g(x)]的导数是f'(x)±g'(x)。

(c)常数倍数法则:k*f(x)的导数是k*f'(x)。

导数的概念与基本运算

导数的概念与基本运算

导数的概念与基本运算导数是微积分学中的重要概念,用以描述函数在某一点的变化率。

导数的概念和基本运算是学习微积分的基础,本文将介绍导数的定义、求导法则以及一些常见函数的导数,帮助读者掌握导数的概念与基本运算。

一、导数的定义函数的导数描述了函数在某一点附近的变化率,可以用数学符号表示为f'(x)。

在微积分中,导数的定义是:f'(x) = lim[∆x→0] (f(x+∆x) - f(x))/∆x其中,∆x表示自变量x的一个增量。

这个定义意味着当∆x无限趋近于0时,函数f(x)在点x处的变化率就可用导数f'(x)来表示。

二、求导法则对于常见的函数形式,可以利用求导法则来求导。

以下是一些常见的求导法则:1. 常数法则:如果f(x)是一个常数,那么它的导数f'(x)等于0。

2. 幂函数法则:如果f(x) = x^n (n为实数),那么它的导数f'(x) =nx^(n-1)。

3. 指数函数法则:如果f(x) = a^x (a>0, a≠1),那么它的导数f'(x) =a^x ln(a)。

4. 对数函数法则:如果f(x) = ln(x),那么它的导数f'(x) = 1/x。

5. 三角函数法则:如果f(x) = sin(x),那么它的导数f'(x) = cos(x),同样适用于cos(x)和tan(x)等三角函数。

6. 反函数法则:如果g(x)是函数f(x)的反函数,那么g'(x) =1/f'(g(x))。

以上是一些常见的求导法则,通过应用这些法则,可以求得更复杂函数的导数。

三、常见函数的导数除了常见的求导法则,还有一些特殊函数的导数需要记住。

以下列举了一些常见函数及其导数:1. 多项式函数:- f(x) = a0 + a1x + a2x^2 + ... + anx^n,其中a0, a1, ..., an为常数。

- f'(x) = a1 + 2a2x + 3a3x^2 + ... + nanx^(n-1)2. 指数函数:- f(x) = e^x- f'(x) = e^x3. 对数函数:- f(x) = ln(x)- f'(x) = 1/x4. 三角函数:- f(x) = sin(x)- f'(x) = cos(x)- f(x) = cos(x)- f'(x) = -sin(x)- f(x) = tan(x)- f'(x) = sec^2(x)通过记住这些函数的导数公式,可以简化函数的求导过程。

第三章 第1讲 导数的概念及运算

第三章  第1讲 导数的概念及运算

第1讲导数的概念及运算基础知识整合1.导数的概念(1)f(x)在x=x0处的导数就是f(x)在x=x0处的□01瞬时变化率,记作:y′|x=x0或f′(x0),即f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx.(2)当把上式中的x0看作变量x时,f′(x)即为f(x)的导函数,简称导数,即y′=f′(x)=□02limΔx→0f(x+Δx)-f(x)Δx.2.导数的几何意义函数f(x)在x=x0处的导数就是曲线y=f(x)在点□03P(x0,f(x0))处的切线的斜率,即曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k=f′(x0),切线方程为□04y -y0=f′(x0)(x-x0).3.基本初等函数的导数公式(1)C′=□050(C为常数);(2)(x n)′=□06nx-(n∈Q*);(3)(sin x)′=□07cos x;(4)(cos x)′=□08-sin x;(5)(a x)′=□09a ln_a;(6)(e x)′=□10e;(7)(log a x)′=1x ln a;(8)(ln x)′=□111x.4.导数的运算法则(1)[f(x)±g(x)]′=□12f′(x)±g′(x).(2)[f (x )·g (x )]′=□13f ′(x )g (x )+f (x )g ′(x ). 特别地:[C ·f (x )]′=□14Cf ′(x )(C 为常数). (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=□15f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数设函数u =φ(x )在点x 处有导数u ′=φ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′=f ′(u ),则复合函数y =f [φ(x )]在点x 处也有导数y ′x =f ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.f ′(x 0)与x 0的值有关,不同的x 0,其导数值一般也不同. 2.f ′(x 0)不一定为0,但[f (x 0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.1.(2019·海南模拟)曲线y =x2x -1在点(1,1)处的切线方程为( )A .x -y -2=0B .x +y -2=0C .x +4y -5=0D .x -4y -5=0答案 B 解析 y ′=2x -1-2x (2x -1)2=-1(2x -1)2,当x =1时,y ′=-1,所以切线方程是y -1=-(x -1),整理得x +y -2=0.故选B.2.函数f (x )=x (2017+ln x ),若f ′(x 0)=2018,则x 0的值为( ) A .e 2 B .1 C .ln 2 D .e 答案 B解析 f ′(x )=2017+ln x +x ·1x =2018+ln x ,故由f ′(x 0)=2018,得2018+ln x 0=2018,则ln x 0=0,解得x 0=1.故选B.3.若曲线y =e x +ax +b 在点(0,2)处的切线l 与直线x +3y +1=0垂直,则a +b =( )A .3B .-1C .1D .-3 答案 A解析 因为直线x +3y +1=0的斜率为-13,所以切线l 的斜率为3,即y ′|x=0=e 0+a =1+a =3,所以a =2;又曲线过点(0,2),所以e 0+b =2,解得b =1.故选A.4.(2019·河北质检)已知直线y =kx 是曲线y =ln x 的切线,则k 的值是( ) A .e B .-e C.1e D .-1e 答案 C解析 依题意,设直线y =kx 与曲线y =ln x 切于点(x 0,kx 0),则有⎩⎨⎧kx 0=ln x 0,k =1x 0,由此得ln x 0=1,x 0=e ,k =1e .故选C.5.f (x )=2x +3x 的图象在点(1,f (1))处的切线方程为________. 答案 x -y +4=0解析 f ′(x )=-2x 2+3,f ′(1)=1,即切线的斜率为1,又f (1)=5,即切点坐标为(1,5),故切线方程为y -5=x -1,即x -y +4=0.6.(2019·郑州模拟)直线x -2y +m =0与曲线y =x 相切,则切点的坐标为________.答案 (1,1)解析 ∵y =x =x12 ,∴y ′=12x -12 ,令y ′=12x -12 =12,则x =1,则y =1=1,即切点坐标为(1,1).核心考向突破考向一 导数的基本运算 例1 求下列函数的导数:(1)y =cos x e x ;(2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(3)y =sin 3x +sin3x ;(4)y =1(2x -1)3.解 (1)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x.(2)因为y =x 3+1x 2+1,所以y ′=3x 2-2x 3. (3)y ′=(sin 3x )′+(sin3x )′=3sin 2x cos x +3cos3x . (4)y ′=⎣⎢⎡⎦⎥⎤1(2x -1)3′=[(2x -1)-3]′=-3(2x -1)-4×2=-6(2x -1)-4. 触类旁通导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.即时训练 1.求下列函数的导数: (1)y =(3x 2-4x )(2x +1);(2)y =x 2sin x ; (3)y =11-2x;(4)y =ln xx 2+1.解 (1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x ,所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(3)y ′=[(1-2x ) -12]′=-12(1-2x )-32 ×(-2)=(1-2x ) -32 .(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x(x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2.考向二 导数的几何意义角度1 求切线的方程例2 (1)(2019·四川成都模拟)曲线y =x sin x 在点P (π,0)处的切线方程是( )A .y =-πx +π2B .y =πx +π2C .y =-πx -π2D .y =πx -π2答案 A解析 因为y =x sin x ,所以y ′=sin x +x cos x ,在点P (π,0)处的切线斜率为k =sinπ+πcosπ=-π,所以曲线y =x sin x 在点P (π,0)处的切线方程是y =-π(x -π)=-πx +π2.故选A.(2)曲线y =f (x )=e 2x +1在点⎝ ⎛⎭⎪⎫-12,1处的切线方程为________.答案 2x -y +2=0解析 ∵f ′(x )=e 2x +1·(2x +1)′=2e 2x +1, ∴f ′⎝ ⎛⎭⎪⎫-12=2e 0=2,∴曲线y =e 2x +1在点⎝ ⎛⎭⎪⎫-12,1处的切线方程为y -1=2⎝ ⎛⎭⎪⎫x +12,即2x -y +2=0.角度2 求切点的坐标例3 (1)(2019·陕西模拟)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为( )A .(1,1)B .(-1,-1)C .(1,-1)D .(-1,1)答案 A解析 对y =e x 求导得y ′=e x ,令x =0,得曲线y =e x 在点(0,1)处的切线斜率为1,故曲线y =1x (x >0)上点P 处的切线斜率为-1,由y ′=-1x 2=-1,得x =1,则y =1,所以点P 的坐标为(1,1).故选A.(2)(2018·江西模拟)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.答案 (e ,e)解析 设点P (x 0,y 0),∵y =x ln x ,∴y ′=ln x +x ·1x =1+ln x .∴曲线y =x ln x 在点P 处的切线斜率k =1+ln x 0.又k =2,∴1+ln x 0=2,∴x 0=e ,y 0=eln e =e.∴点P 的坐标是(e ,e). 角度3 求公切线的方程例4 (1)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2 答案 D解析 ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2.故选D.(2)若直线l 与曲线y =e x及y =-14x 2都相切,则直线l 的方程为________.答案 y =x +1解析 设直线l 与曲线y =e x 的切点为(x 0,e x 0),直线l 与曲线y =-14x 2的切点为⎝ ⎛⎭⎪⎫x 1,-x 214,因为y =e x 在点(x 0,e x 0)处的切线的斜率为y ′|x =x 0=e x0,y =-x 24在点⎝ ⎛⎭⎪⎫x 1,-x 214处的切线的斜率为y ′|x =x 1=⎝ ⎛⎭⎪⎫-x 2| x =x 1=-x 12,则直线l 的方程可表示为y =e x 0x -x 0e x 0+e x0或y =-12x 1x +14x 21,所以⎩⎪⎨⎪⎧e x0=-x 12,-x 0e x 0+e x0=x 214,所以e x 0=1-x 0,解得x 0=0,所以直线l 的方程为y =x +1.触类旁通(1)求曲线切线方程的步骤①求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;②由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).(2)求曲线f (x ),g (x )的公切线l 的方程的步骤,①设点求切线,即分别设出两曲线的切点的坐标(x 0,f (x 0)),(x 1,g (x 1)),并分别求出两曲线的切线方程;,②建立方程组,即利用两曲线的切线重合,则两切线的斜率及在y 轴上的截距都分别相等,得到关于参数x 0,x 1的方程组,解方程组,求出参数x 0,x 1的值;,③求切线方程,把所求参数的值代入曲线的切线方程中即可.即时训练 2.(2019·衡水调研)已知曲线y =x 22-3ln x 的一条切线的斜率为2,则切点的横坐标为( )A .3B .2C .1 D.12 答案 A解析 设切点坐标为(x 0,y 0),且x 0>0,由y ′=x -3x ,得k =x 0-3x 0=2,∴x 0=3.故选A.3.曲线y =1-2x +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2答案 A 解析 ∵y =1-2x +2=x x +2,∴y ′=x +2-x(x +2)2=2(x +2)2,y ′|x =-1=2, ∴曲线在点(-1,-1)处的切线斜率为2, ∴所求切线方程为y +1=2(x +1),即y =2x +1.4.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =________.答案 1-ln 2解析 直线y =kx +b 与曲线y =ln x +2,y =ln (x +1)均相切,设切点分别为A (x 1,y 1),B (x 2,y 2),由y =ln x +2得y ′=1x ,由y =ln (x +1)得y ′=1x +1,∴k =1x 1=1x 2+1,∴x 1=1k ,x 2=1k -1,∴y 1=-ln k +2,y 2=-ln k .即A ⎝ ⎛⎭⎪⎫1k ,-ln k +2,B ⎝ ⎛⎭⎪⎫1k -1,-ln k ,∵A ,B 在直线y =kx +b 上, ∴⎩⎪⎨⎪⎧2-ln k =k ·1k +b ,-ln k =k ·⎝ ⎛⎭⎪⎫1k -1+b ⇒⎩⎪⎨⎪⎧b =1-ln 2,k =2.考向三 求参数的范围例5 (1)(2019·沈阳模拟)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .1B .2C .5D .-1 答案 A解析 由题意可得3=k +1,3=1+a +b ,则k =2.又曲线的导函数y ′=3x 2+a ,所以3+a =2,解得a =-1,b =3,所以2a +b =1.故选A.(2)已知函数f (x )=e x -mx +1的图象为曲线C ,若曲线C 存在与直线y =e x 垂直的切线,则实数m 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫1e ,+∞解析 由题意知,方程f ′(x )=-1e 有解,即e x -m =-1e 有解,即e x=m -1e 有解,故只要m -1e >0,即m >1e 即可.故填⎝ ⎛⎭⎪⎫1e ,+∞.触类旁通处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.即时训练 5.已知函数f (x )=ax 2+2b ln x ,若曲线y =f (x )在点(2,f (2))处的切线方程为y =x +2-6ln 2,则a +b =( )A .-2B .-1C .2D .1 答案 A解析 由切线方程,得f (2)=4-6ln 2,f ′(2)=1. ∵f (x )=ax 2+2b ln x ,∴f ′(x )=2ax +2bx ,∴⎩⎪⎨⎪⎧4a +2b ln 2=4-6ln 2,4a +b =1,解得a =1,b =-3, ∴a +b =-2.故选A.6.若曲线y =13x 3+ax 2+x 存在垂直于y 轴的切线,则实数a 的取值范围为( )A.⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞) B .(-∞,-1]∪[1,+∞) C .(-∞,-1]∪[0,+∞) D.⎣⎢⎡⎭⎪⎫-12,+∞ 答案 B解析 令y =f (x )=13x 3+ax 2+x ,则f ′(x )=x 2+2ax +1,∵曲线y =f (x )存在垂直于y 轴的切线,∴f ′(x )=0有解,即x 2+2ax +1=0有解,∴Δ=(2a )2-4≥0,∴a ≥1或a ≤-1,即实数a 的取值范围为(-∞,-1]∪[1,+∞),故选B.。

导数的基本公式及运算法则

导数的基本公式及运算法则

导数的基本公式及运算法则在数学的广袤天地中,导数无疑是一个极为重要的概念,它就像是一把神奇的钥匙,能够帮助我们解锁许多复杂问题的谜底。

而要熟练运用导数这一工具,就必须对其基本公式及运算法则了如指掌。

首先,咱们来聊聊导数的定义。

导数其实就是函数在某一点的变化率。

简单来说,如果我们把一个函数想象成一辆汽车行驶的路程与时间的关系,那么导数就是汽车在某一时刻的速度。

那导数的基本公式都有哪些呢?常见的有常数函数的导数,比如常数 C 的导数为 0。

这就好比一辆车一直停在原地不动,速度当然就是 0 啦。

幂函数的导数公式也很重要。

对于函数\(y = x^n\),其导数为\(y' = nx^{n 1}\)。

比如说,\(y = x^2\)的导数就是\(y' = 2x\),\(y = x^3\)的导数就是\(y' = 3x^2\)。

指数函数的导数公式,像\(y = e^x\)的导数就是它本身\(e^x\)。

而对于\(y = a^x\),其导数为\(y' = a^x \ln a\)。

对数函数的导数也有特定的公式。

比如\(y =\ln x\)的导数是\(y' =\frac{1}{x}\),\(y =\log_a x\)的导数是\(y' =\frac{1}{x \ln a}\)。

接下来,咱们再看看导数的运算法则。

加法法则,如果有两个函数\(u(x)\)和\(v(x)\),那么它们的和\(u(x) + v(x)\)的导数等于\(u'(x) + v'(x)\)。

这就好比两辆车同时在行驶,它们速度的总和就是两辆车各自速度相加。

减法法则同理,\(u(x) v(x)\)的导数等于\(u'(x) v'(x)\)。

乘法法则稍微复杂一点,\((u(x)v(x))'= u'(x)v(x) + u(x)v'(x)\)。

可以想象成两个相互关联的因素共同影响一个结果,它们对结果变化率的贡献要分别考虑并相加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年新高考数学总复习第三章《导数及其应用》
导数的概念及运算
1.导数与导函数的概念
(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0
Δy
Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx
,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|0x x =,即f ′(x 0)=lim Δx →0 Δy
Δx =lim Δx →0
f (x 0+Δx )-f (x 0)
Δx
.
(2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间(a ,b )内的导函数.记作f ′(x )或y ′. 2.导数的几何意义
函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).
3.基本初等函数的导数公式
基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q *) f ′(x )=αx α-
1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=e x f ′(x )=e x f (x )=a x (a >0,a ≠1)
f ′(x )=a x ln a f (x )=ln x f ′(x )=1
x
f (x )=lo
g a x (a >0,a ≠1)
f ′(x )=1
x ln a
4.导数的运算法则
若f ′(x ),g ′(x )存在,则有 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );
(3)⎣⎡
⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )
[g (x )]2
(g (x )≠0). 概念方法微思考
1.根据f ′(x )的几何意义思考一下,|f ′(x )|增大,曲线f (x )的形状有何变化? 提示 |f ′(x )|越大,曲线f (x )的形状越来越陡峭.
2.直线与曲线相切,是不是直线与曲线只有一个公共点? 提示 不一定.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)f ′(x 0)=[f (x 0)]′.( × ) (3)(2x )′=x ·2x -
1.( × ) 题组二 教材改编
2.若f (x )=x ·e x ,则f ′(1)= . 答案 2e
解析 ∵f ′(x )=e x +x e x ,∴f ′(1)=2e. 3.曲线y =1-
2
x +2
在点(-1,-1)处的切线方程为 . 答案 2x -y +1=0
解析 ∵y ′=2
(x +2)2,∴y ′|x =-1=2.
∴所求切线方程为2x -y +1=0. 题组三 易错自纠
4.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )。

相关文档
最新文档