换热器热计算基础
1 热交换器的热基本计算
Q-热负荷,W; M1,M2- 分别为热流体与冷流体的质量流量,kg/s; h1,h2-分别为冷热流体的焓,J/kg; 1代表热流体,2代表冷流体;
代表流体的进口状态, 代表流体的出口状态。
热计算基本方程式
热平衡方程式
Q M1 h1 h1 M 2 h2 h2
当流体无相变时,热负荷也可用下式表示:
为修正系数
其它流动方式时的平均温差
tm tlm,c
若令
t2 t2 冷流体的加热度 P t2 两流体的进口温差 t1 t1 热流体的冷却度 t1 R t2 冷流体的加热度 t2
P的数值代表了冷流体的实际吸热量与最大可能的 吸热量的比率,称为温度效率,恒小于1。 R是冷流体的热容量与热流体的热容量之比, 可以大于1、等于1或小于1。
t t e
μkA
t x t e
-μ kAx
t ln μ kA t
t t t t tm ( 1) t t t ln ln t t
由于式中出现了对数,故常把tm称为对数平均温差。
d dt1 qm1c1 d dt2 qm 2c2
由于qm1c1和qm2c2 不变,则d↓ , dt1、dt2↓
故沿着流体流动方向,冷热流体温度变化渐趋平缓,温 度分布曲线形状的凹向不可能反向。
逆流情况下的平均温差
逆流换热器中冷、热流体温度的沿程变化如下图。
d k[t1 ( x) t2 ( x)]dA kt ( x)dA
d[t ( x)] k t ( x)dAx
顺流情况下的平均温差
1 1 d[t ( x)] dt1 ( x) dt2 ( x) qm1c1 qm2c2 d d
传热过程和换热器热计算基础
(m2·℃) / W
多层平壁的传热:
q=
n δi 1 1 +∑ + h1 i =1 λi h2
tf1- tf2
二、圆筒壁的传热 每米长圆筒壁的总传热热阻热阻:
只有管道外径 d 2 超过某一值后包上热绝缘层才能 起到减少单位管长热损失的作用,把此直径称为临界 热绝缘直径,用 d c 表示。
d c 可由求 q1 对热绝缘层外径的一阶导数并令之 等于零而得到,即 d = 2λins c h2 ( d 2 > d c 加绝热层才能减少热损)
式中: 2 ——管道热绝缘层外表面对环境的表面传 h 热系数[W/(m2·K)]; λins ——保温材料的导热系数[W/(m·K)]。
' 肋面平均温度 t w2 (< tw2 )
肋片实际散热量:
h A (t
2
2
'
w2
− tf2
)
2
肋处于肋基温度下的理想散热量: h 肋片效率:
A2 (t w 2 − tf2 )
t w 2 − tf2 实际散热量 h2 A2 t w 2 − tf2 = = η= 理想散热量 h2 A2 (t w 2 − tf2 ) t w 2 − tf2
Φ = Ah2 (t w2 − tf2 )
λ Φ = A (t w1 − t W2 ) δ
Φ tf1 − t W1 = Ah Φ t w1 − t W2 = Aλ / δ Φ t w2 − t f2 = Ah2
传热方程:
A(t f1 − t f2 ) Φ= = KA ∆ t 1 / h1 + λ / δ + 1 / h2
换热器加热时间计算公式
换热器加热时间计算公式
换热器是工业生产中常用的设备,用于加热流体或将热量从一种流体传递到另一种流体。
在设计换热器时,需要计算加热时间,以确保设备能够达到所需的加热效果。
换热器加热时间的计算公式是基于换热器的热传导原理。
我们可以利用以下公式来计算加热时间:
加热时间 = (质量 * 比热容 * 温度差) / 换热率
其中,质量是指待加热流体的质量,比热容是指待加热流体的比热容量,温度差是指待加热流体的起始温度与目标温度之差,换热率是指换热器的换热效率。
通过这个公式,我们可以计算出换热器加热时间的具体数值。
首先,我们需要确定待加热流体的质量。
质量可以通过流量和流体密度的乘积来计算。
比热容是指单位质量的流体升高1摄氏度所需要的热量。
比热容可以通过查表或者其他实验手段来获取。
温度差是指待加热流体的起始温度与目标温度之间的差值。
最后,换热率是指换热器的换热效率,也可以通过实验或者设计参数来获取。
通过以上公式,我们可以计算出换热器加热时间的数值。
这个公式可以帮助工程师们在设计换热器时,合理安排加热时间,以确保设备的正常运行和所需的加热效果。
换热器加热时间的计算公式是一种基于热传导原理的计算方法。
通过确定质量、比热容、温度差和换热率等参数,我们可以计算出换热器加热时间的具体数值。
这个公式在工程设计中具有重要的应用价值,可以帮助工程师们合理安排加热时间,从而提高生产效率和节约能源。
换热器换热量计算公式
换热器换热量计算公式换热器是一种用于将热量从一种介质传递到另一种介质的装置。
根据换热器的类型和工作原理的不同,换热量的计算公式也会有所不同。
下面将介绍几种常见的换热器及其换热量计算公式。
1.单相流体传热换热器单相流体传热换热器是将一个单相流体中的热量传递到另一个单相流体中的换热器。
换热量的计算公式基于热平衡原理,即热量在两个流体之间的传递是相等的。
Q=m·c·(T2-T1)其中,Q为换热量,单位为焦耳/秒(J/s)或瓦特(W);m为流经换热器的质量流率,单位为千克/秒(kg/s);c为流体的比热容,单位为焦耳/千克·摄氏度(J/(kg·°C));T1和T2分别为流体的入口温度和出口温度,单位为摄氏度(°C)。
在实际应用中,为了计算方便,可以将换热率(U)引入公式。
换热率是描述换热器传热性能的参数,通常通过实验或理论计算确定。
Q=U·A·(T2-T1)其中,U为换热率,单位为焦耳/秒·平方米·摄氏度(J/(s·m^2·°C))或瓦特/平方米·摄氏度(W/(m^2·°C));A为换热面积,单位为平方米(m^2)。
2.蒸发冷凝换热器蒸发冷凝换热器用于将一种流体从液态转化为气态或从气态转化为液态的过程中传递热量。
换热量的计算公式基于摩尔焓的变化。
Q=G·(h2-h1)其中,Q为换热量,单位为焦耳/秒(J/s)或瓦特(W);G为质量流率,单位为摩尔/秒(mol/s);h1和h2分别为流体的入口摩尔焓和出口摩尔焓,单位为焦耳/摩尔(J/mol)。
在实际应用中,为了计算方便,可以将换热系数(U)引入公式,并结合换热面积(A)进行计算。
Q=U·A·(h2-h1)其中,U为换热系数,单位为焦耳/秒·平方米·摄氏度(J/(s·m^2·°C))或瓦特/平方米·摄氏度(W/(m^2·°C))。
传热过程和换热器热计算基础
传热过程和换热器热计算基础前言:在工业生产和日常生活中,传热是一个非常重要的过程。
无论是热运输、能源利用、工业生产还是家庭暖气系统,我们都需要了解传热过程和换热器的热计算基础。
在本文中,我们将详细介绍传热过程的基本概念和传热计算的方法。
一、传热过程的基本概念1、传热的基本概念传热是指能量由高温区域传递到低温区域的过程。
传热过程可以通过三种方式进行传递,分别是传导、对流和辐射。
传导是指热量通过物质的直接接触传递,对流是指热量通过流体(液体或气体)的运动传递,辐射是指热量通过电磁辐射传递。
在实际应用中,这三种传热方式常常同时存在。
例如,热水锅炉中的传热过程包括水的对流传热、锅炉壁的传导传热和辐射传热。
2、传热的基本定律传热过程基于以下两个基本定律,它们是传热计算的基础。
(1)热传导定律热传导定律描述了热量沿着温度梯度的方向从一个物体传递到另一个物体的过程。
热传导定律可以用以下公式表示:q = -kA(dT/dx)其中,q是单位时间内通过单位面积的热流量,k是材料的热传导系数,A是传热的横截面积,dT/dx是温度梯度。
(2)牛顿冷却定律牛顿冷却定律描述了通过对流传热的过程。
它指出,对流换热速率正比于温差和表面积,反比于流体和固体的热阻。
牛顿冷却定律可以用以下公式表示:q=hA(Ts−T∞)其中,q是单位时间内通过单位面积的热流量,h是对流传热系数,A 是传热表面积,Ts是固体表面温度,T∞是流体的温度。
二、换热器的计算基础换热器是用于传递热量的设备,广泛应用于各个行业中。
换热器的设计需要进行热计算,主要包括换热面积的计算和换热系数的计算。
1、换热面积的计算换热面积的计算取决于需要传递的热量流率和温度差。
换热面积可以使用以下公式计算:A=Q/(UΔT)其中,A是换热面积,Q是需要传递的热量流率,U是换热系数,ΔT 是温度差。
2、换热系数的计算换热系数是衡量换热器性能的重要指标之一、换热系数可以通过经验公式、理论公式或实验方法进行计算。
热交换器传热计算的基本方法
i1 i2
C1 C2
分别为热流体与冷流体的焓,J/Kg 分别为两种流体的定压质量比热,J/(Kg·℃)
Q M1c1 t1 t1t1 M1c1 t1 t2t1 M1c1t1 W1t1
Q
Q
M 2c2
M
t2
1
t
t21
C1dt1 M 2 C2dt2
M 2c2t2t2 W2t2
热交换器传热计算的基本方法
热交换器热计算的基本原理
1.1 热计算基本方程 1.2平均温差法 1.3 效率—传热单元数法(传热有效度) 1.4热交换器热计算方法的比较 1.5流体流动方式的选择
1.1 热计算基本方程式
进口温度t1
热流体1
流量 M1 比热容 c1
冷流体2
热交换器的换热面积F
进口温度 t 2 流量 M 2
(2)传热系数是常数;
t1
(3)换热器无散热损失;
(4)换热面沿流动方向的导热量可
以忽略不计。
要想计算沿整个换热面的平均温差,
t2
首先需要知道当地温差随换热面积的
变化,然后再沿整个换热面积进行平均。
t1 dt1 t1 t2 dt2 t2
在假设的基础上,并已知冷热流体的 进出口温度,现在来看图中微元换热 面dA一段的传热。温差为:
讨论:
1 考虑热损失的情况下:Q1 Q2 QL 或 Q1L Q2
L 以放热热量为准的对外热损失系数,通常为0.97-0.98
2
由式③可以知道 W1 W2
t 2 t1
冷流体的加热度 热流体的冷却度
可见 :两种流体在热交换器内的温度变化与他们的热容量成反比
3 由 W1t1= W2t2 =Q,还可以知道,在热交换器内,热容量
换热器热量及面积计算公式
换热器热量及面积计算公式换热器是工业生产中常用的设备之一,用于将热量从一个介质传递到另一个介质。
其核心功能是通过增大热交换面积,使热量能够更加有效地传递。
在换热器的设计中,热量及面积的计算是至关重要的。
换热器的热量计算是根据热传导的基本原理来进行的。
热传导是指热量从高温区域传递到低温区域的过程。
热传导的速率与温度差、介质的导热系数和热传导距离有关。
换热器的热量传递公式可以表示为:Q=U×A×ΔT其中,Q表示热量传递量,U表示换热系数,A表示换热面积,ΔT表示温度差。
换热系数U是一个关键的参数,它表示单位面积上,单位时间内热量的传递量。
换热系数的大小受多种因素影响,包括换热器的结构、介质的性质和流体运动方式等。
为了计算得到准确的热量传递量,我们需要确定换热系数U的数值。
换热系数U的计算可以根据实际情况采取不同的方法,常见的有经验法、理论法和试验法等。
换热器面积计算公式:换热器的设计中,换热面积的计算是为了满足所需的热量传递量。
基本原则是通过增大换热面积,提高热量的传递效率。
换热器的面积计算公式可以表示为:A=Q/U/ΔT其中,Q表示所需的热量传递量,U表示换热系数,ΔT表示温度差。
根据这个公式,我们可以根据所需的热量传递量来计算换热器的面积。
需要注意的是,在实际应用中,热量及面积的计算往往需要考虑许多复杂的因素,比如介质的流动性质、传热表面的布局和形式、管路的阻力损失等。
因此,在设计换热器时,需要综合考虑这些因素,以确保换热器能够满足所需的热量传递要求。
此外,还有一些常见的换热器类型,如壳管式换热器、板式换热器、螺旋板换热器等,它们的热量及面积的计算公式可能会有所不同。
因此,在实际应用中,需要根据具体的换热器类型和设计要求来选择相应的计算公式。
总结起来,换热器的热量及面积计算是一个复杂的过程,需要综合考虑多种因素。
上述的热量及面积计算公式只是基本的参考,实际设计中还需要根据具体情况进行调整和优化。
换热器热计算基础
换热器热计算基础换热器是工程中常见的设备,用于在流体之间传递热量。
换热器热计算是指对换热器进行热力学分析和计算,以确定热负荷、传热面积、传热系数等参数的过程。
传热理论是换热器热计算的基础之一、传热过程主要有传导、对流和辐射三种形式。
对于大部分换热器来说,对流传热是主要形式。
传热理论通过数学模型描述了传热过程中的温度场、热流场等参数,这些参数对于换热器设计和性能评估具有重要意义。
传热方法是换热器热计算的基础之一、传热方法包括传导传热、对流传热和辐射传热。
传导传热是指热量通过物质内部的传导方式进行传递。
对流传热是指热量通过流体的对流方式进行传递。
辐射传热是指热量通过辐射方式进行传递。
不同的换热器根据其工作条件和结构,可能会采用不同的传热方法。
传热模型是换热器热计算的基础之一、传热模型是指用数学和物理方法描述换热器内部传热过程的模型。
常见的传热模型包括热平衡模型、LMTD法、NTU法等。
热平衡模型是最简单的传热模型,假设换热器中的热量平衡。
LMTD法(Logarithmic Mean Temperature Difference法)是一种常用的传热模型,它通过计算换热器的LMTD值来估算换热器的传热能力。
NTU法(Number of Transfer Units法)是另一种常用的传热模型,它通过计算传热器的NTU值估算传热器的传热能力。
传热模型的选择取决于具体的换热器设计要求和计算精度的要求。
换热器的结构和运行参数是换热器热计算的基础之一、换热器的结构参数包括传热面积、传热管管径、管道长度等。
传热面积是换热器设计的重要参数,它决定了换热器的传热能力。
传热管管径和管道长度是影响换热器内部流体流动的重要参数,它们决定了流体之间的传热能力和传热阻力。
换热器的运行参数包括进口温度、出口温度、流体流量等。
进口温度和出口温度决定了换热器内部的温度差,它们是计算传热能力的重要参数。
换热器的热计算是工程设计中非常重要的一环。
换热器的传热及阻力计算
(4)已知kA和 ,按传热方程计算在假设出口温度下的传热
量 ;
tm
(5)根据4个进出口温度,用热平衡式计算另一个,这个值
和上面的 ,都是在假设出口温度下得到的,因此,都不是
真实的换热量;
(6)比较两个值,满足精度要求则结束,否则,重新假定出 口温度,重复(1)-(6),直至满足精度要求。
三、效能-传热单元数(-NTU)法
对于这种复杂情况,我们当然也可以采用微元方法进 行分析,但数学推导将非常复杂。
实际上,逆流的平均温差最大,因此,人们想到对纯
逆流的对数平均温差进行修正以获得其他情况下的平均温
差。
tm (tlm )
tlm :按逆流布置的对数平均温差。
:小于1的温度修正系数。
对于复杂的叉流式换热器,其传热公式中的平均温度的 计算关系式较为复杂,工程上常常采用修正图表来完成 其对数平均温差的计算。具体的做法是:
待定的温度。 (3)由冷热流体的4个进出口温度确定平均温差tm (4)由传热方程式计算所需的换热面积A,并核算换热面流
体的流动阻力。 (5)如果流动阻力过大,则需要改变方案重新设计。
2、校核计算
(1)先假设一个流体的出口温度,按热平衡式计算另一个出 口温度;
(2)根据4个进出口温度求得平均温差 tm; (3)根据换热器的结构,算出相应工作条件下的总传热系数k;
(1)顺流和逆流是两种极端情况,在相同的进出口温度下,
逆流的 tm 最大,顺流则最小;
(2)顺流时 t1 t2 ,而逆流时,t2 则可能大于 t1 ,可见,
逆流布置时的换热最强。
Ti
dq
T
In
dT1
Ti
To
T dq
dT2
第一章换热器热计算的基本原理
可将P、R归纳为:
P
=
无混合流体的温度变化值 两流体进口温度差值
;R= 无混混合合流流体体的的温温度度变变化化值值
工程上为计算方便,将ψ值绘成线图,如图1.8 ~ 1.14所示 ψ ≤ 1,从其值可以看出某种流动形式在给定工况下接近逆流的 程度,ψ一般应 > 0.9
1-2、1-4等多流程管壳式换热器的修正系数
其中Mc称为热容量,它代表流体每升高1度所需 热量用W表示,可得
Q = W1Δt1
= W2Δt2
⇒ W2 W1
=
t1′ − t1′′ t2′′ − t2′
=
Δt1 Δt2
以上为不考虑散热损失的情况,若考虑散热损失QL
热平衡方程式为:
Q1 = Q2 + QL或Q1ηL=Q2 ηL − −以放热热量为准的对外热损失系数,0.97~0.98
若假定各段的K值相等 ⇒ 积分平均温差
( ) Δtm int = n Q
∑ ΔQi / Δti
i =1
也可按每段传热量相同的方法分段;
设有n段,则每段传热量为ΔQi
=
Q n
=
KΔFΔt i
⇒ F = ∑ ΔF,
∑ F
=
Q Kn
n i =1
1 Δti
;
此时积分平均温差(Δtm
)
int
=
n n1
∑i=1 Δti
dΦ
=
qm2c2dt 2
⇒
dt2
=
1 qm2c2
dΦ
不论顺流还是逆流,对数平均温差可
统一用以下计算式表示:
Δt m
=
Δtmax − Δtmin ln Δtmax
换热器热量及面积计算公式
换热器热量及面积计算
一、热量计算
1、一般式
Q=W h(H h,1- H h,2)= W c(H c,2- H c,1)
式中:
Q为换热器的热负荷,kj/h或kw;
W为流体的质量流量,kg/h;
H为单位质量流体的焓,kj/kg;
下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。
2、无相变化
Q=W h c p,h(T1-T2)=W c c p,c(t2-t1)
式中:
c p为流体平均定压比热容,kj/(kg.℃);
T为热流体的温度,℃;
T为冷流体的温度,℃。
二、面积计算
1、总传热系数K
管壳式换热器中的K值如下表:
注:
1w=1J/s=3.6kj/h=0.86kcal/h
1kcal=4.18kj
2、温差
(1)逆流
热流体温度T:T1→T2
冷流体温度t:t2←t1
温差△t:△t1→△t2
△t m=(△t2-△t1)/㏑(△t2/△t1)(2)并流
热流体温度T:T1→T2
冷流体温度t:t1→t2
温差△t:△t2→△t1
△t m=(△t2-△t1)/㏑(△t2/△t1)
3、面积计算
S=Q/(K.△t m)
三、管壳式换热器面积计算
S=3.14ndL
其中,S为传热面积m2、n为管束的管数、d为管径,m;L为管长,m。
四、注意事项
冷凝段:潜热(根据汽化热计算)
冷却段:显热(根据比热容计算)。
1 换热器热计算基本原理解析
M C t t
' 2
式中,C—平均比热,KJ/kg℃;
M—质量流量,kg/s;
t—流体温度, ℃; 上标’代表进口;上标’’代表出口; 下标1代表热流体;下标2代表冷流体。
2.热平衡方程式
Q1 Q2
式中,η—以放热量为准的保温系数,通常为0.97-0.98。
1.2 平均温差
合所有温差可得积分平均温差。
2.适用条件
几乎所有情形。
3.计算步骤
按照
Q MCdt
t' t ''
作Q-t图;
将Q-t图按需要分段,得到各 段的ΔQi; 计算各段的对数平均温差 Δti; 计算积分平均温差:
Qi K i Fi ti Q tm int Qi Q KF tm int K K i ti
'' ' 热平衡方程 W1 t1' t1'' W2 t2 t2
联立以上两方程:
t1' W2 '' ' '' t2 t2 t2 W1 KF e ' t1' t2
如果冷流体的热容小,则上式转化为:
' t1' t 2
W2 '' ' ' '' t2 t2 t2 t2 W1 KF e ' t1' t2
t x
Fx
0
KdFx
t x t ' eKFx
整个传热面的平均温差为:
1 tm F
F
0
热风换热器计算
热风换热器计算
热风换热器的计算涉及到多个参数,如热风流量、温度、换热效率等。
以下是一个简单的计算示例:
假设我们需要一个热风换热器,其任务是将入口的热风从80℃降低到50℃,同时保持流量为1000m³/h。
1. 首先,我们需要计算所需的换热量。
这可以通过以下公式得出:
Q = m ×c ×Δt
其中,Q是换热量(kJ/h),m是流量(kg/h),c是比热容(kJ/kg·℃),Δt是温度差(℃)。
在本例中,c取为1.0 kJ/kg·℃,Δt为30℃(80℃-50℃)。
将这些值代入公式,得到:Q = 1000 ×1.0 ×30 = 30000 kJ/h
2. 接下来,我们需要选择一个合适的换热器。
这需要考虑多个因素,如传热效率、材料、成本等。
假设我们选择了一种传热效率为95%的换热器,那么实际的换热量为:
Q_actual = Q / 0.95
3. 最后,我们还需要考虑换热器的设计参数,如翅片间距、翅片高度等。
这些参数会影响换热器的性能和成本。
根据实际需要和设计经验,我们可以选择合适的参数。
需要注意的是,以上计算仅为示例,实际应用中还需要考虑更多的因素和细节。
具体的计算过程和参数选择需要根据实际情况进行调整和优化。
换热器的热负荷计算公式
换热器的热负荷计算公式
换热器的热负荷计算公式通常是根据热传导的原理推导得出的。
其一般形式可表示为:
Q = U x A x ΔT
其中,Q表示热负荷(单位为热量/时间,如千瓦或BTU/h);U表示换热器的传热系数(单位为热传导率,如W/m²·K或BTU/(ft²·h·°F));
A表示换热器的传热面积(单位为平方米或平方英尺);
ΔT表示热源与热媒之间的温度差(单位为摄氏度或华氏度)。
根据具体应用场景,不同的换热器可能会有一些修正因子或附加项,例如,修正因子可以考虑管壁和流体之间的传热阻力,还可以考虑传热过程中的辐射损失等。
需注意的是,换热器的热负荷计算还可能涉及其他因素,如流体的热容量等。
因此,在实际应用中,可能需要根据具体情况对计算公式进行调整或使用更为复杂的模型进行计算。
换热器的传热计算
换热器的传热计算换热器的传热计算包括两类:一类是设计型计算,即根据工艺提出的条件,确定换热面积;另一类是校核型计算,即对已知换热面积的换热器,核算其传热量、流体的流量或温度.这两种计算均以热量衡算和总传热速率方程为基础。
换热器热负荷Q 值一般由工艺包提供,也可以由所需工艺要求求得。
Q=W c p Δt,若流体有相变,Q=c p r 。
热负荷确定后,可由总传热速率方程(Q=K S Δt)求得换热面积,最后根据《化工设备标准系列》确定换热器的选型。
其中总传热系数K=0011h Rs kd bd d d Rs d h d o m i i i i ++++ (1)在实际计算中,总传热系数通常采用推荐值,这些推荐值是从实践中积累或通过实验测定获得的,可以从有关手册中查得。
在选用这些推荐值时,应注意以下几点:1. 设计中管程和壳程的流体应与所选的管程和壳程的流体相一致。
2. 设计中流体的性质(粘度等)和状态(流速等)应与所选的流体性质和状态相一致。
3. 设计中换热器的类型应与所选的换热器的类型相一致。
4. 总传热系数的推荐值一般范围很大,设计时可根据实际情况选取中间的某一数值。
若需降低设备费可选取较大的K 值;若需降低操作费用可取较小的K 值。
5. 为保证较好的换热效果,设计中一般流体采用逆流换热,若采用错流或折流换热时,可通过安德伍德(Underwood )和鲍曼(Bowman)图算法对Δt 进行修正。
虽然这些推荐值给设计带来了很大便利,但是某些情况下,所选K 值与实际值出入很大,为避免盲目烦琐的试差计算,可根据式(1)对K 值估算。
式(1)可分为三部分,对流传热热阻、污垢热阻和管壁导热热阻,其中污垢热阻和管壁导热热阻可查相关手册求得。
由此,K 值估算最关键的部分就是对流传热系数h 的估算.影响对流传热系数的因素主要有:1.流体的种类和相变化的情况液体、气体和蒸气的对流传热系数都不相同。
牛顿型和非牛顿型流体的也有区别,这里只讨论牛顿型对流传热系数。
换热器热量及面积计算公式
换热器热量及面积计算、热量计算1、般式Q=Q c=Q hQ=W h( H h,1 - H h,2)= W c(H c,2 - H c,1)式中:Q为换热器的热负荷,kj/h或kw;W为流体的质量流量,kg/h ;H为单位质量流体的焓,kj/kg ;下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。
2、无相变化Q=W h c p,h (T 1 -T2)=W c c p,c (t2-t 1 )式中:C P为流体平均定压比热容,kj/(kg. C);T为热流体的温度,C;t为冷流体的温度,C。
3、有相变化a. 冷凝液在饱和温度下离开换热器,Q=W h r = W c c p,c (t 2-t 1)式中:W为饱和蒸汽(即热流体)冷凝速率(即质量流量)(kg/s )r 为饱和蒸汽的冷凝潜热(J/kg )b.冷凝液的温度低于饱和温度,则热流体释放热量为潜热加显热Q=VWr+ C p,h ( T S-T w) ] = W c C p,c(t 2-t 1) 式中:C p,h为冷凝液的比热容(J/ (kg/C)); T s为饱和液体的温度(C)二、面积计算1、总传热系数K管壳式换热器中的K值如下表:注:1 w =1 J/s = kj/h = kcal/h1 kcal = kj2、温差1)逆流热流体温度T: T17T2冷流体温度t : t2 J t1温差△ t :△ t1 -△ t2△ tn= (△ t2- △ t1 ) / [□(△ t2/ △ t1 )2 )并流热流体温度T:T17 T2冷流体温度t :t1 T t2温差△ t : △ t2 t1△ tn= (△ t2- △ t1 ) / [□(△ t2/ △ t1 )对数平均温差,两种流体在热交换器中传热过程温差的积分的平均值。
(恒温传热时△ t=T-t,例如:饱和蒸汽和沸腾液体间的传热。
)对数平均温差因为在冷凝器板换一系列的换热器中温度是变化的为了我们更好的选型计算所以出来一个相对准确的数值当△ T1/△ 丁2>时用公式:△ Tm=(AT1-△ T2) /〔□(△ T1/△ T2).如果△ T1/△ T2<时,△ Tm=(A□+△ T2) /2二种流体在热交换器中传热过程温差的积分的平均值。
《换热器热工计算》课件
热工计算软件
本节将介绍常见的换热器热工计算软件,包括简介、使用方法以及注意事项。熟练掌握热工计算软件可 提高工程效率和准确性。
结束语
在本节中,我们将探讨热工计算的发展趋势和未来的应用前景。热工计算在工程领域持续发展,为实现 更高效、可持续的能源利用提供了重要支持。
换热器热工计算
本PPT课件将介绍换热器热工计算的概念、基础知识、案例分析,以及热工 计算原理、软件应用等内容。
热工计算概述
换热器热工计算是指通过计算各种换热器的热力学参数和传热特性,以确定换热器设计和运行参数的过 程。基础包括温度、压力、热量等基本概念的介绍,以及热力学的第一、 二定律。我们还将探讨热工计算中常用的公式及其推导。
热工计算案例分析
通过具体的换热器设计案例,我们将讲解换热器设计的要点,并进行热工计算的实例演示。同时,我们 还会讨论热工计算中常见问题及解决方法。
换热器热工计算原理
在本节中,我们将深入探讨热传导及传热系数、管束及换热面积、单元传热阻力等换热器热工计算的重 要原理。我们还将介绍换热器热工计算的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其表达式为
k1
1
1
1
h1 h2
式中 A2 A1 , 称为肋化系数。从上式可
1
见,加肋后,肋侧的对流换热热阻是 h 2 ,
1
而未加肋时为 有关。
h2
,加肋后热阻减小的程度与
14
从肋化系数的定义可知, 1 ,其大小取决 于肋高与肋间距。增加肋高可以 加大 ,但
增加肋高会使肋片效率 降低,从而 f使肋面总
1
Rh1
d1lh 1
tw1 tw2
1 ln d 2
2 l d1
tw1 tw2 R
d2lh2tw2tf2
tw2tf2tw2tf2
1
Rh2
d2lh2
Rh1 ,R,Rh2 分别为圆管内侧的对流换热热阻、管壁的 导热热阻和圆管外侧的对流换热热阻。9
三、翅化壁(肋化壁)
在表面传热系数较小的一侧采用肋壁是强 化传热的一种行之有效的方法。下面以 平壁的一侧为肋壁的较简单的情况,作 为分析肋壁传热的对象。
7
• 这是一个由圆管内侧的对流换热、圆管 壁的导热及圆管外侧的对流换热三个热 量传递环节组成的传热过程,在稳态情 况下,运用热阻的概念,很容易求出通 过圆管的热流量。根据牛顿冷却公式以 及圆管壁的稳态导热计算公式,通过圆 管的热流量可以分别表示为
8
d1lh 1tf1tw1
tf1tw1tf1tw1
''
t ''
对数平均温差
26
对逆流换热过程
d Q q m 1 c 1 d1 t q m 2 c 2 d2t
t
t 1 t 2
dt 1
dQ q m1c1
dQ W1
t 1
dt 2
dQ qm2c2
dQ W2
t 2 A
t
=
m
t
'
t t '
''
11 d(t1t2)(W1W2)dQ
ln
t ''
对数平均温差
效率 降低。减小肋间距,即使肋片加密也
可以加大 ,但肋间距过小会增大流体的流
动阻力,使肋间流体的温度升高,降低传热温 差,不利于传热。一般肋间距应大于两倍边界 层最大厚度。应该合理地选择肋高和肋间距, 使
1 及h 传2 热系数 具有k 最1 佳值。
15
在工程上,当 h1 h23~5时,一般选择
较小的低肋;当 h1 h2 10 时,一般选择
A tf1 k tf2 Atk
k 1
1
1
h1 h2
6
二、管壁的传热系数
• 光滑管的传热系数 一单层圆管,内、外半径分 别为 r1、r2,长度为l,热导 率为常数,无内热源,圆管 内、外两侧的流体温度分别 为tf1 、tf2, 且tf1 > tf2,两侧的 表面传热系数分别为h1、h2。
3
2-2传热系数
•
4
一、平壁的传热系数
对于一个无内热源、热导率为常数、厚度
为的单层无限大平壁、两侧流体温度分
h1
别为tf1 与tf2、 表面传热系数分别为与的
稳态的传热过程,通过平壁的热流量可
由下式计算:
5
或写成
A11h tf1A tf 2 A12hRh1tf1R t f2Rh2
tf1 tf2 Rk
21
逆流平均温压
22
逆流平均温压
23
对数平均温差
d Q q m 1 c 1 d 1 tq m 2 c 2 d 2t
dt 1
dQ q m1c1
dQ W1
dt 2
dQ qm2c2
dQ W2
d(t1t2)(W 11W 12)dQ
令t
t1
t2,mW11
1 W2
则得
d(t)mdQ
24
对微元面积dA,传热方程为 dQ k(t1t2)dA
也发生变化,如图所示。因此,对于换热器
的传热计算,上式中的 传热温t 差 应该
是整个换热器传热面的平均温差(或称为平
热交换器热计算基础
1
传热计算解决的问题
解决3个问题:①热量衡算,传热速率。②温度 沿传热面变化。③tw Tw不好测。
2
2-1间壁式换热器的传热分析
• 1、传热系数K • 2、对流换热系数a1、a2 • 3、导热系数λ • 4、平均温压 • 热平衡方程
– 无相变时的热平衡方程 – 有相变的热平衡方程
流量的计算公式:
11
对于左侧对流换热 对于壁的导热
A1h1 tf1tw1
tf1tw1 1
t w 1 t w2
A1h1
A1
对于肋侧对流换热 A 2 h 2 t w 2 t f 2 A 2 h 2 t w 2 t f 2
根据肋片效率的定义式
f
A 2 h2tw 2tf2 A 2 h2tw 2tf2
10
三、翅化壁(肋化壁)
• 翅化平壁
• 翅片管
A2A2 A2
如图所示, 未加肋的左侧面积为, 加肋侧肋基面积为,肋基温度
为,肋片面积为,肋片平均温 thAAw22122'
度为,肋侧总面积。假设肋壁
材料的热导率为常数,肋侧表
面传热系数也为常数。在稳态
情况下,可以分别对于传热过
程的三个环节写出下面三个热
tw 2tf2 tw 2tf2
12
联立三式,可得通过肋壁的传热热流量计算公式为
1
tf1 tf2
1
A1h1 A1 A2h2
上式还可以改写成
A 1h 11 tf1 A A tf1 2 21 h2 A 1h 11 tf 1 tf21h 2
A 1 k 1tf1 tf2 A 1 k 1t
13
式中 k 1 称为以光壁表面积为基准的传热系数,
t
t1
t2
dQ kdA
d(t)mdQ
d(t)mkdA t
t'' d (t) A
mkdA
t' t
0
t '' ln mkA
t ' 25
d(t)mdQ t'' t' mQ
t ' t '' Q t ' kA
ln t ''
由tm
Q得 kA
t '' ln mkA
t '
t
=
m
t ' ln
t t '
较大的高肋。为了有效的强化传热,肋片应
该加在表面传热系数较小的一侧。
16
肋片管
•
17
2-3 平均温压
• 换热器中流体的常见流型:
– 逆流、顺流、折流、交叉流、各式混合流, 见图
– 推导平均温压的条件设定P10
18
流动型式示意图
19
流体平行流动时的温度分布
20
一、逆流平均温压
• 对逆流平均温压的分析 • 所得逆流平均温压的公式 • 注意问题
27
tm
tmax tmin ln tmax
t”
t
t 1 t 2
tmin
当 tmax 2时 t m in
t
=
m
1 2
(t m a x
t m in
)
t 1
t’ t 2 A
28
平壁、圆管壁及肋壁的传热过程时都假设
为定值。换热器内的传热过程就不同了,冷、
热流体沿换热面不断换热,它们的温度沿流
Байду номын сангаас
向不断变化,冷、热流体间的传热温差沿程