高中数学(新课标人教A版)必修三 第1章归纳整合
新教材高中数学人教A版(2019)必修第一册第三章第一节函数的概念课件
对于任一时刻t,都有唯一确定的路程S和它对应.
A1 {t 0 t 0.5}
自变量的集合
S=350t 对应关系
B1 {S 0 S 175}
函数值的集合
对于 数集A1中 任一时刻t, 按照对应关系S 3,50t 在数集B1中都有唯一确定的路程S和它对应
问题2 某电器维修公司要求工人每周工作至 少1天,至多不超过6天,公司确定工资标准 是每人每天350元,而且每周付一次工资
3
⑶当a 0时,求 f (a), f (a 1)的值。
例2下列哪个函数与 y = x 是同一函数?
⑴ y ( x)2;
⑵ y 3 x3;
⑶ y x2;
x2 ⑷ y .
x
当定义域、对应法则和值域完全一
致时,两个函数才相同.
牛刀小试:下列各组中的两个函数是否为 相同的函数?
⑴
y1
(
x
3)( x
(4)问题1和问题2中函数的对应关系相同,你 认为它们是同一个函数吗?你认为影响函数的要 素有哪些?
对于 数集A2中 任一个工作天数d, 按照对应关系W 3,50d 在数集B2中都有唯一确定的工资w和它对应
自变量 的集合
对应关系
函数值的 集合
问题3 图3.1-1是北京市2016年11月23日空 气质量指数变化图,如何根据改图确定这一 天内任一时刻t h的空气指数的值I
年份y
2006 2007 2008 2009 2010 2011 2012 2013
恩格尔系数r 36.69 36.81 38.17 35.69 32.15 33.53 33.87 29.89
2014
29.35
2015
28.57
表3.1-1某城镇居民恩格尔系数变化情况
2019_2020学年新教材高中数学第三章函数的概念与性质3.2.1.1函数的单调性讲义新人教A版必修第一册
3.2.1 单调性与最大(小)值最新课程标准:借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义.第1课时 函数的单调性知识点一 定义域为I 的函数f (x )的单调性状元随笔 定义中的x 1,x 2有以下3个特征(1)任意性,即“任意取x 1,x 2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x 1<x 2; (3)属于同一个单调区间. 知识点二 单调性与单调区间如果函数y =f (x )在区间D 上是单调递增或单调递减,那么就说函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.状元随笔 一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“和”连接. 如函数y =1x 在(-∞,0)和(0,+∞)上单调递减,却不能表述为:函数y=1x在(-∞,0)∪(0,+∞)上单调递减. [教材解难]1.教材P 77思考f (x )=|x |在(-∞,0]上单调递减,在[0,+∞)上单调递增; f (x )=-x 2在(-∞,0]上单调递增,在[0,+∞)上单调递减.2.教材P 77思考(1)不能 例如反比例函数f (x )=-1x,在(-∞,0),(0,+∞)上是单调递增的,在整个定义域上不是单调递增的.(2)函数f (x )=x 在(-∞,+∞)上是单调递增的.f (x )=x 2在(-∞,0]上是单调递减,在[0,+∞)上是单调递增的.[基础自测]1.下列说法中正确的有( )①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ②函数y =x 2在R 上是增函数; ③函数y =-1x在定义域上是增函数;④y =1x的单调递减区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个解析:由于①中的x 1,x 2不是任意的,因此①不正确;②③④显然不正确. 答案:A2.函数y =(2m -1)x +b 在R 上是减函数,则( ) A .m >12 B .m <12C .m >-12D .m <-12解析:使y =(2m -1)x +b 在R 上是减函数,则2m -1<0,即m <12.答案:B3.函数y =-2x 2+3x 的单调减区间是( ) A .[0,+∞) B.(-∞,0) C.⎝ ⎛⎦⎥⎤-∞,34 D.⎣⎢⎡⎭⎪⎫34,+∞ 解析:借助图象得y =-2x 2+3x 的单调减区间是⎣⎢⎡⎭⎪⎫34,+∞,故选D.答案:D4.若f(x)在R上是增函数,且f(x1)>f(x2),则x1,x2的大小关系为________.解析:∵f(x)在R上是增函数,且f(x1)>f(x2),∴x1>x2.答案:x1>x2题型一利用函数图象求单调区间[经典例题]例1 已知函数y=f(x)的图象如图所示,则该函数的减区间为( )A.(-3,1)∪(1,4) B.(-5,-3)∪(-1,1)C.(-3,-1),(1,4) D.(-5,-3),(-1,1)【解析】在某个区间上,若函数y=f(x)的图象是上升的,则该区间为增区间,若是下降的,则该区间为减区间,故该函数的减区间为(-3,-1),(1,4).【答案】 C观察图象,若图象呈上升(下降)趋势时为增(减)函数,对应的区间是增(减)区间.跟踪训练1 函数f(x)的图象如图所示,则( )A.函数f(x)在[-1,2]上是增函数B.函数f(x)在[-1,2]上是减函数C.函数f(x)在[-1,4]上是减函数D.函数f(x)在[2,4]上是增函数解析:函数单调性反映在函数图象上就是图象上升对应增函数,图象下降对应减函数,故选A.答案:A根据图象上升或下降趋势判断.题型二函数的单调性判断与证明[教材P79例3]例2 根据定义证明函数y =x +1x在区间(1,+∞)上单调递增.【证明】 ∀x 1,x 2∈(1,+∞), 且x 1<x 2,有y 1-y 2=⎝ ⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭⎪⎫x 2+1x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=x 1-x 2x 1x 2(x 1x 2-1). 由x 1,x 2∈(1,+∞),得x 1>1,x 2>1. 所以x 1x 2>1,x 1x 2-1>0. 又由x 1<x 2,得x 1-x 2<0. 于是x 1-x 2x 1x 2(x 1x 2-1)<0, 即y 1<y 2.所以,函数y =x +1x在区间(1,+∞)上单调递增.先根据单调性的定义任取x 1,x 2∈(1,+∞),且x 1<x 2,再判断f(x 1)-f(x 2)的符号. 教材反思利用定义证明函数单调性的步骤注:作差变形是解题关键.跟踪训练2 利用单调性的定义,证明函数y =x +2x +1在(-1,+∞)上是减函数. 证明:设x 1,x 2是区间(-1,+∞)上任意两个实数且x 1<x 2,则f (x 1)-f (x 2)=x 1+2x 1+1-x 2+2x 2+1=x 2-x 1(x 1+1)(x 2+1), ∵-1<x 1<x 2,∴x 2-x 1>0,x 1+1>0,x 2+1>0. ∴x 2-x 1(x 1+1)(x 2+1)>0.即f (x 1)-f (x 2)>0,f (x 1)>f (x 2).∴y =x +2x +1在(-1,+∞)上是减函数. 利用四步证明函数的单调性.题型三 由函数的单调性求参数的取值范围[经典例题]例3 已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,求实数a 的取值范围.【解析】 ∵f (x )=x 2-2(1-a )x +2=[x -(1-a )]2+2-(1-a )2, ∴f (x )的减区间是(-∞,1-a ]. ∵f (x )在(-∞,4]上是减函数,∴对称轴x =1-a 必须在直线x =4的右侧或与其重合. ∴1-a ≥4,解得a ≤-3. 故a 的取值范围为(-∞,-3].状元随笔 首先求出f(x)的单调减区间,求出f(x)的对称轴为x =1-a ,利用对称轴应在直线x =4的右侧或与其重合求解.方法归纳“函数的单调区间为I ”与“函数在区间I 上单调”的区别单调区间是一个整体概念,说函数的单调递减区间是I ,指的是函数递减的最大范围为区间I ,而函数在某一区间上单调,则指此区间是相应单调区间的子区间.所以我们在解决函数的单调性问题时,一定要仔细读题,明确条件含义.跟踪训练3 例3中,若将“函数在区间(-∞,4]上是减函数”改为“函数的单调递减区间为(-∞,4]”,则a 为何值?解析:由例3知函数f (x )的单调递减区间为(-∞,1-a ], ∴1-a =4,a =-3.求出函数的减区间,用端点值相等求出a.一、选择题1.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f (a )-f (b )a -b>0,则必有( )A .函数f (x )先增后减B .f (x )是R 上的增函数C .函数f (x )先减后增D .函数f (x )是R 上的减函数 解析:由f (a )-f (b )a -b>0知,当a >b 时,f (a )>f (b );当a <b 时,f (a )<f (b ),所以函数f (x )是R 上的增函数.答案:B2.下列函数中,在(0,2)上为增函数的是( ) A .y =-3x +2 B .y =3xC .y =x 2-4x +5D .y =3x 2+8x -10解析:显然A 、B 两项在(0,2)上为减函数,排除;对C 项,函数在(-∞,2)上为减函数,也不符合题意;对D 项,函数在⎝ ⎛⎭⎪⎫-43,+∞上为增函数,所以在(0,2)上也为增函数,故选D.答案:D3.函数f (x )=x |x -2|的增区间是( ) A .(-∞,1] B .[2,+∞) C .(-∞,1],[2,+∞) D.(-∞,+∞)解析:f (x )=x |x -2|=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,2x -x 2,x <2,作出f (x )简图如下:由图象可知f (x )的增区间是(-∞,1],[2,+∞). 答案:C4.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ) A .(-∞,-3) B .(0,+∞)C .(3,+∞)D .(-∞,-3)∪(3,+∞)解析:因为函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),所以2m >-m +9,即m >3.答案:C 二、填空题5.如图所示为函数y =f (x ),x ∈[-4,7]的图象,则函数f (x )的单调递增区间是____________.解析:由图象知单调递增区间为[-1.5,3]和[5,6]. 答案:[-1.5,3]和[5,6]6.若f (x )在R 上是单调递减的,且f (x -2)<f (3),则x 的取值范围是________. 解析:函数的定义域为R .由条件可知,x -2>3,解得x >5. 答案:(5,+∞)7.函数y =|x 2-4x |的单调减区间为________.解析:画出函数y =|x 2-4x |的图象,由图象得单调减区间为:(-∞,0],[2,4].答案:(-∞,0],[2,4] 三、解答题8.判断并证明函数f (x )=-1x+1在(0,+∞)上的单调性.解析:函数f (x )=-1x+1在(0,+∞)上是增函数.证明如下:设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫-1x 1+1-⎝ ⎛⎭⎪⎫-1x 2+1=x 1-x 2x 1x 2,由x 1,x 2∈(0,+∞),得x 1x 2>0, 又由x 1<x 2,得x 1-x 2<0, 于是f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),∴f (x )=-1x+1在(0,+∞)上是增函数.9.作出函数f (x )=⎩⎪⎨⎪⎧-x -3,x ≤1,(x -2)2+3,x >1的图象,并指出函数的单调区间.解析:f (x )=⎩⎪⎨⎪⎧-x -3,x ≤1,(x -2)2+3,x >1的图象如图所示.由图象可知:函数的单调减区间为(-∞,1]和(1,2];单调递增区间为(2,+∞).[尖子生题库]10.已知f (x )是定义在[-1,1]上的增函数,且f (x -2)<f (1-x ),求x 的取值范围. 解析:∵f (x )是定义在[-1,1]上的增函数, 且f (x -2)<f (1-x ), ∴⎩⎪⎨⎪⎧-1≤x -2≤1,-1≤1-x ≤1,x -2<1-x ,解得1≤x <32,所以x 的取值范围为1≤x <32.。
【精编】人教A版高中数学必修三课件第1部分第二章2.22.2.2用样本的数字特征估计总体的数字特征课件-精心整
6.从高三抽出50名学生参加数学竞赛,由成绩得到如 下的频率分布直方图.
由于一些数据丢失,试利用频率分布直方图求: (1)这50名学生成绩的众数与中位数. (2)这50名学生的平均成绩.
解:(1)由众数的概念可知,众数是出现次数最多的 数.在直方图中最高的矩形底边中点的横坐标即为所求, 所以众数应为75. 将频率分布直方图中所有小矩形的面积一分为二的直线 所对应的成绩即为所求. ∵0.004×10+0.006×10+0.02×10 =0.04+0.06+0.2=0.3, ∴前三个小矩形面积的和为0.3.
(2)中位数: 把一组数据按从小到大的顺序排列,把处于最位中置间的 那个数称为这组数据的中位数.在频率分布直方图中,中 位数左边和右边的直方图的面积. 相等 ①当数据个数为奇数时,中位数是按从小到大顺序排 列的那中个间数. ②当数据个数为偶数时,中位数为排列的最中间的两 个数的.平均数
(3)平均数:
管理 高级
人员 经理
工人 学徒 合计
人员 技工
周工资 2 200 250 220 200 100 2 970
(元)
人数 1
6 5 10 1 23
合计 2 200 1 500 1 100 2 000 100 6 900
(1)指出这个问题中的众数、中位数、平均数. (2)这个问题中,平均数能客观地反映该公司的工资水平 吗?为什么? [思路点拨] 由平均数的定义 → 计算平均数 → 已知数据从小到大排列 → 得中位数、平均数 → 结论
如果有 n 个数 x1、x2、…、xn,
那么 x =
1 n
(x1+x2+…+xn) ,叫做这
n
个数的平均
数.平均数的估计值等于频率分布直方图中每个小矩形的 面积 乘以小矩形底边中点横坐标之和.
人教A版高二数学必修三1.1.2-程序框图及顺序结构-教学课件
• 由①②,得a=1,b=1,∴f(x)=x+1,
• ∴当x=5时,f(5)=5×1+1=6.
• (3)令f(x)=x+1=0,得x=-1.故当输入的x值为-1 时,输出的函数值为0.
第2课时 程序框图及顺序结构
作业:见固学案
• (1)该程序框图解决的是 一个什么样的问题?
• (2)若最终输出的结果为 y1=3,y2=-2,则当x=5时输 出的结果又是多少?
• (3)在(2)的前提下,输入x 的值为多大时,输出的结 果为0?
• 【解析】 (1)该程序框图解决的是求函数 f(x)=ax+b的函数值的问题.
• 其中输入的是自变量x的值,输出的是x对应 的函数值.
15 、梦想是一个天真的词,实现梦想是个残酷的词。 4 、苦难是化了装的幸福。 8 、对待生活中的每一天若都像生命中的最后一天去对待,人生定会更精彩。 7 、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2 、我们把在黑暗中跳舞的心脏叫做月亮。 2 、忌妒别人,不会给自己增加任何的好处,忌妒别人,也不可能减少别人的成就。 16 、错过的人与事,不必频频回首;结痂的疤痕,无须反复触摸。 8 、树没有眼睛,落叶却是飘落的眼泪。 6 、大部分人往往对已经失去的机遇捶胸顿足,却对眼前的机遇熟视无睹。 7 、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。 19 、生活中的许多事,并不是我们不能做到,而是我们不相信能够做到。 3 、决不放弃。你还年轻。年轻就是本钱。
• 预学4:顺序结构
• 顺序结构是由若干个依次执行的步骤组成 的,是任何一个算法都离不开的基本结构.顺 序结构可以用程序框图表示为:
2019-2020学年人教A版高中数学必修三湖北新课改专用课件:第1章 统计1.2.2
课后限时作业
-x 是_______样_本_数_据_的_平_均_数_____________.
思考: (1)若在一组数据中,x1 出现的频率是 p1, x2 出现的频率是 p2,……,xn 出现的频率是 pn,应怎样 计时,若各样本数据加上或减去一个 常数,标准差的值会变化吗?
(2)平均数是-x =313×(30 000+20 000+3 500×2+3 000+2 500×5+2 000×3+1 500×20)≈3 288(元),中位 数是 1 500 元,众数是 1 500 元.
(3)在这个问题中,中位数或众数均能反映该公司员 工的工资水平.因为公司中少数人的工资额与大多数人 的工资额差别较大,这样导致平均数与中位数偏差较大, 所以平均数不能反映这个公司员工的工资水平.
解析 (1)利用平均数计算公式得-x =418×(82×27+ 80×21)≈81.13(分).
(2)因为男同学的中位数是 75 分, 所以至少有 14 人得分不超过 75 分. 又因为女同学的中位数是 80 分, 所以至少有 11 人得分不超过 80 分. 所以全班至少有 25 人得分在 80 分以下(含 80 分).
• 【例题1】 据报道,某公司的33名职工的月工资(单位:元) 如表所示.
职务 董事长 副董事长 董事 总经理 经理 管理员 职员
人数 1
1
2 1 5 3 20
工• (资1)求5该5公00司职工5 月00工0 资的3 平50均0 数3、0中00位数2 5、0众0 数2;000 1 500
• (2)假设副董事长的工资从5 000元提升到20 000元,董事长 的工资从5 500元提升到30 000元,那么新的平均数、中位 数、众数又是什么?(精确到元)
高中数学人教A版必修三习题第一章-算法的概念含答案
答案:C
2.求过 P(a1,b1),Q(a ,b2)两点的直线斜率有如下的算法,请将算法补充完整: 2
S1 取 x1=a1,y1=b1,x2=a ,y2=b2. 2
S2 若 x1=x ,则输出斜率不存在;否则,________. 2
S 输出计算结果 k 或者无法求解信息.
3
解析:根据直线斜率公式可得此步骤.
第三步,依次从 2 到(n-1)检验能不能整除 n,若不能整除 n,则执行第四步;若能整
除 n,则执行第一步.
第四步,输出 n.
满足条件的 n 是( )
A.质数
B.奇数
C.偶数
D.约数
解析:此题首先要理解质数,只能被 1 和自身整除的大于 1 的整数叫质数.2是最小的
质数,这个算法通过对 2 到(n-1)一一验证,看是否有其他约数,来判断其是否为质数.
B 级 能力提升 1.结合下面的算法: 第一步,输入 x.
3
第二步,判断 x 是否小于 0,若是,则输出 x+2;否则,执行第三步.
第三步,输出 x-1.
当输入的 x 的值为-1,0,1 时,输出的结果分别为( )
A.-1,0,1
B.-1,1,0
C.1,-1,0
D.0,-1,1
解析:根据 x 值与 0 的关系选择执行不同的步骤.
第四步,得到方程组的解{x=10,)
y=20. 第五步,输出结果,鸡 10只,兔 20只.
4
答案:A
二、填空题
6.给出下列算法:
第一步,输入 x 的值.
第二步,当 x>4时,计算 y=x+2;否则执行下一步.
第三步,计算 y= 4-x.
第四步,输出 y.
当输入 x=0 时,输出 y=________.
高中新课程数学(新课标人教A版)选修1-1《第三章 导数及其应用》归纳整合
网 络 构 建
专 题 归 纳
解 读 高 考
2.曲线的切线方程 利用导数求曲线过点 P 的切线方程时应注意: (1)判断 P 点是否在曲线上; (2)如果曲线 y=f(x)在 P(x0, f(x0))处的切线平行于 y 轴(此时导数 不存在),可得方程为 x=x0;P 点坐标适合切线方程,P 点处的 切线斜率为 f′(x0). 3. 利用基本初等函数的求导公式和四则运算法则求导数, 熟记 基本求导公式,熟练运用法则是关键,有时先化简再求导,会 给解题带来方便.因此观察式子的特点,对式子进行适当的变 形是优化解题过程的关键.
网 络 构 建
专 题 归 纳
解 读 高 考
(2)由 f(x)=x3-3x2+2 得,f′(x)=3x2-6x. 由 f′(x)=0 得,x=0 或 x=2. ①当 0<t≤2 时, 在区间(0, t)上 f′(x)<0, f(x)在[0, t]上是减函数, 所以 f(x)max=f(0)=2, f(x)min=f(t)=t3-3t2+2. ②当 2<t<3 时,当 x 变化时,f′(x)、f(x)的变化情况如下表:
(x1,x2) -
x2 0 极小值
(x2,+∞) +
网 络 构 建
专 题 归 纳
解 读 高 考
此时
a- f(x)在0,
a2-8 上单调递增, 2
a- 在 a+ 在
a2-8 a+ a2-8 , 上单调递减, 2 2
a2-8 ,+∞ 上单调递增. 2
网 络 构 建 专 题 归 纳 解 读 高 考
4.判断函数的单调性 (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义 域,解决问题的过程只能在函数的定义域内进行,通过讨论导 数的符号,来判断函数的单调区间; (2)注意在某一区间内 f′(x)>0(或 f′(x)<0)是函数 f(x)在该区间上 为增(或减)函数的充分条件.
人教A版高中数学必修3第一章 算法初步1.1 算法与程序框图课件(7)
练习:
1、下列关于程序框图的说法正确的是 A、程序框图是描述算法的语言
A ( )
B、程序框图可以没有输出框,但必须要有输入框给变量赋值
C、程序框图可以描述算法,但不如自然语言描述算法直观
D、程序框图和流程图不是一个概念
精品PPT
例1.写出求任意两个数的平均数的算法,并
画出程序框图
程序框图
如何计算选手最后得分?
第一步:100+20=120 第二步: 120+30=150 第三步:150-15=135 第四步:135+50=185
如果引入变量S S=100; S=S+20; S=S+30; S=S-15; S=S+50 输出S
可使算法的表示非常简洁。
精品PPT
算法的概念
问题1:结合实际过程,应当如何理解“x=x+20”这样的式子? 问题2:左右两边的x的意义或取值是否一样?能不能消去?
求n除以i的余数r
i的值增加1,仍用i表示
i>n-1或r=0?
否
是
顺序结构
是
r=0?
循环结构 否
N不是质数
N是质数
条件结构
你能说出这三种基本逻辑结构的特点吗? 条件结构与循环结构有什么区别和联系?
精品PPT
1、顺序结构
顺序结构是最简单的算法结构,语句与语句之间,框与 框之间是按从上到下的顺序进行的,它是由若干个依次执行 的处理步骤组成的,它是任何一个算法都离不开的一种基本 算法结构。 顺序结构在程序框图中的体现就是用流程线将程 序框自上而下地连接起来,按顺序执行算法步骤。
精品PPT
探究
如图是求解一元二次方程 的 算法
高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案
描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。
高中数学人教A版必修三第一章1.3.1辗转相除法、更相减损术-算法案例精品课件
所以,98和63的最大公约数等于7
练习
用更相减损术求两个正数84与72的最大公约数.
先约简,再求21与18的最大公约数,然后乘以两次约简的因数4
21-18=3
6105=2146×2+1813
18-3=15 思考:当两个数较大时,除了用这种方法外还有没有其它方法?
利用更相减损术求下列两数的最大公约数.
15-3=12 所以,25和35的最大公约数为5
6105=2146×2+1813
12-3=9 先用两个公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.
1、回顾算法的三种表述: 318=265×1+53;
9-3=6 用“更相减损术”求225与135的最大公约数为( ) 6-3=3
试求8251和6105的最大公约数
(1)5 25 35 57
所以,25和35的最大 公约数为5
(2)7 49 63 79
思考:当两个数较大时,除了用这 种方法外还有没有其它方法?
所以,49和63的最大 公约数为7
一、辗转相除法(欧几里得算法)
所谓辗转相除法,就是对于给定的两个数,用较大的数除 以较小的数。若余数不为零,则将余数和较小的数构成新的一 对数,继续上面的除法,直到大数被小数除尽,则这时较小的 数就是原来两个数的最大公约数。
第一步:任意给定两个正整数;判断他们是 否都是偶数。若是,则用2约简;若不是则 执行第二步。
第二步:以较大的数减较小的数,接着把所 得的差与较小的数比较,并以大数减小数。 继续这个操作,直到所得的减数和差相等为 止,则这个等数就是所求的最大公约数。
高一数学人教a版必修三练习:第一章_算法初步1_章末高效整合_word版含解析
(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面对算法描述正确的一项是()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同解析:算法的特点:有穷性、确定性、顺序性、正确性、不唯一性与普遍性.答案: C2.如图是某算法流程图的一部分,其算法的逻辑结构为()A.顺序结构B.判断结构C.条件结构D.循环结构解析:条件结构是处理逻辑判断并根据判断结果进行不同处理的结构,由算法流程图知,该算法的逻辑结构为条件结构,故选C.答案: C3.下面的程序:a=1WHILE a<100a=a+1WEND执行完毕后a的值为()A.99B.100C.101D.102解析:a=99+1=100.答案: B4.下列语句中:①m=x3-x2②T=T×I③32=A④A=A+2⑤a=b=4,其中是赋值语句的个数为()A.5B.4C.3D.2解析:①m=x3-x2为赋值语句;②T=T×I为赋值语句;③32=A,因为左侧为数字,故不是赋值语句;④A=A+2为赋值语句;⑤a=b=4,因为是连等,故不是赋值语句.故赋值语句个数为3,故选C.答案: C5.阅读下列程序:A的值为()A.5B.6C.15D.120解析:执行赋值语句后A的值依次为2,6,24,120,故最后A的值为120.答案: D6.执行如图的程序框图,如果输入的n是4,则输出的p是()A.8B.5C.3D.2解析:运行过程如下:n=4,s=0,t=1,k=1,p=1,k=1<n,p=0+1=1,s=1,t=1,k=1+1=2<n,p=1+1=2,s=1,t=2,k=2+1=3<n,p=1+2=3,s=2,t=4,k=3+1=4<n不成立,所以输出p=3.答案: C7.4 830与3 289的最大公约数是()A.13B.35C.12D.23解析:用辗转相除法,4 830=3 289×1+1 541,3 289=1 541×2+207,1 541=207×7+92,207=92×2+23,92=23×4,所以23是4 830与3 289的最大公约数.答案: D8.下面进位制之间转化错误的是()A.101(2)=5(10)B.27(8)=212(3)C.119(10)=315(6)D.31(4)=62(2)解析:101(2)=1×22+0×2+1=5,故A对;27(8)=2×8+7=23,212(3)=2×32+1×3+2=23,故B对;315(6)=3×62+1×6+5=119,故C对;31(4)=3×4+1=13,62(2)=6×2+2=14,故D错.答案: D9.某程序框图如图所示,若输出结果是126,则判断框中可以是()A.i>6?B.i>7?C.i≥6?D.i≥5?解析:根据程序框图可知,该程序执行的是2+22+23+24+25+26,所以判断框中应该填i>6?.答案: A10.给出30个数:1,2,4,7,11,…,其规律是第一个数是1,第二个数比第一个数大1,第三个数比第二个数大2,第四个数比第三个数大3,……以此类推,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入()A.i≤30;p=p+i-1B.i≤29;p=p+i+1C.i≤31;p=p+iD.i≤30;p=p+i解析:将p=p+i-1,p=p+i+1,p=p+i依次代入执行框②处验证可知只有p=p+i符合给定的前五项,判断框①处代入i≤30验证正好符合30个数求和.答案: D二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.204与85的最大公因数是W.解析:∵204÷85=2……34,85÷34=2……17,34÷17=2,204与85的最大公因数是17,故答案为17.答案:1712.已知多项式p(x)=3x5+9x4+x3+kx2+4x+11,当x=3时值为1 616,则k=W.解析:由秦九韶算法,得p(x)=((((3x+9)x+1)x+k)x+4)x+11.则当x=3时,p(3)=(((54+1)×3+k)×3+4)×3+11.=(495+3k+4)×3+11=9k+1 508=1 616,所以k=12.答案:1213.用秦九韶算法求多项式f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8当x=5时的值的过程中v3=W.解析:∵f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8=((((5x+2)x+3.5)x-2.6)x+1.7)x-0.8,∴v3=((5x+2)x+3.5)x-2.6将x=5代入得v3=((5×5+2)×5+3.5)×5-2.6=689.9.答案:689.914.对任意非零实数a ,b ,若a ⊗b 的运算原理如下图所示,则log 28⊗⎝⎛⎭⎫12-2= W.解析: log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1. 答案: 1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么? (2)根据框图用当型循环语句编写程序. 解析: (1)①k <101?(k ≤100?) ②s =s +1k(2)16.(本小题满分12分)已知函数y =⎩⎪⎨⎪⎧x 2-1,x <-1,|x |+1,-1≤x ≤1,3x +3,x >1,编写一个程序求函数值.解析: 程序如下:f (x )=2x 4+3x 3+5x -4在x =2时的值. 解析: f (x )改写为f (x )=(((2x +3)x +0)x +5)x -4, ∴v 0=2, v 1=2×2+3=7, v 2=7×2+0=14, v 3=14×2+5=33, v 4=33×2-4=62, ∴f (2)=62.18.(本小题满分14分)有一堆桃子不知数目,猴子第一天吃掉一半,觉得不过瘾,又多吃了一个.第二天照此办法,吃掉剩下桃子的一半另加一个.天天如此,到第十天早上,猴子发现只剩一个桃子了.问这堆桃子原来有多少个?请写出算法步骤、程序框图和程序.解析: 算法如下:第一步,a 1=1. 第二步,i =9.第三步,a 0=2×(a 1+1). 第四步,a 1=a 0. 第五步,i =i -1.第六步,若i =0,执行第七步,否则执行第三步. 第七步,输出a 0的值. 流程图和程序如下:。
人教A版高中数学必修三知识点总结全册
高中数学必修 3 知识点一:算法初步1:算法的概念(1)算法概念:通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.(2)算法的特点:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果。
③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.④不唯一性:求解某一个问题的解法不一定是唯一的,但是答案是唯一的。
⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。
2:程序框图(1)程序框图基本概念:①程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
②构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
6:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
71 )顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,A按顺序执行算法步骤。
如在示意图中,A 框和 B 框是依次执行的,只有在执行完 A 框指定的操作后,才能接着执行 B 框所指定的操作。
B8 2 )条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。
高中数学人教A版必修三第一章.3进位制-算法案例ppt课件
进位制
十进制数3721中的3表示3个千,7表示7个百,2表示2个 十,1表示1个一,从而它可以写成下面的形式:
3721=3×103+7×102+2×101+1×100.
同理: 3421(5)= 3×53+4×52+2×51+1×50.
每一位上的数都是整数.
按照十进制数的运算规则计算出结果, 结果就是十进制下该数的大小了.
89 余数
=81+18+6+1=106.
44
1
0
3
11
0
解:第一步:先把三进制数化为十进制数:
按照十进制数的运算规则计算出结果,
1
0
22
0
结果就是十进制下该数的大小了.
∴ 89=324(5)
2
1
=81+18+6+1=106. 第二步:再把十进制数化为二进制数:
106=1101010(2). ∴10221(3)=106=1101010(2).
课堂小结
1.几进制的基数就是几,基数都是大于1的数.
89=1011001(2)
11
0
17
4
∴ 89=324(5)
十进制数3721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一,从而它可以写成下面的形式:
把89化为五进制的数.
5 89 5 17 53
0
余数
4 2 3
∴ 89=324(5)
练习:把3282化为16进制的数.
10
11
12
13
14
15
ABຫໍສະໝຸດ CDEF
思考 你会把三进制数10221(3)化为二进制数吗?
新课标高中数学人教A版选择性必修第一二三册教材解读〖第一章空间向量与立体几何章整体解读〗
第一章空间向量与立体几何在必修课程学习平面向量的基础上,本章将平面向量推广到空间,学习空间向量及其运算、空间向量基本定理及空间向量运算的坐标表示,并运用空间向量研究立体几何中图形的位置关系和度量关系,包括用空间向量描述空间直线、平面间的平行、垂直关系,用空间向量解决空间距离、夹角问题等,本章的研究对象是几何图形,所用的研究方法是向量方法.通过本章学习,侧重提升学生的直观想象、数学运算、逻辑推理和数学抽象等数学学科核心素养.一、本章内容安排本章属于《课程标准(2021年版)》中“几何与代数”主线的内容.学生将在必修(第二册)“平面向量”和“立体几何初步”的基础上学习空间向量及其运算、空间向量基本定理,并利用空间向量解决立体几何问题,对于用空间向量解决立体几何问题,教科书“先分散、后集中”,即在学习空间向量及其运算、空间向量基本定理时“随学随用、学以致用”,同时在解决立体几何问题中巩固空间向量的知识.最后再利用空间向量描述空间直线,平面间的平行,垂直关系,用空间向量解决空间距离、夹角问题,让学生进一步体会用空间向量解决立体几何问题的思想和方法.本章共分为四部分:空间向量及其运算、空间向量基本定理、空间向量及其运算的坐标表示、空间向量的应用.“空间向量及其运算”是本章的基础,主要包括空间向量的基本概念和基本运算.由于空间向量的概念和运算与平面向量的概念和运算具有一致性,因此,教科书注意引导学生与平面向量及其运算作类比.让学生经历向量由平面向空间推广的过程.在展开空间向量及其运算内容时,教科书同步安排了利用空间向量解决相关的简单立体几何问题的实例“空间向量基本定理”揭示出空间任何一个向量都可以用三个不共面的向量唯一表示,因此空间中三个不共面的向量就构成了三维空间的一个“基底”.这为几何问题代数化奠定了基础.为了突出空间向量基本定理的基础地位,教科书将这一内容单设一节,不仅学习空间向量基本定现,还应用向量方法解决立体几何中的一些问题.这种安排不仅可以突出空间向量基本定理在本章内容中承上启下的作用,而且可以使学生更好地掌握用空间向量解决立体几何问题的基本方法—“基底法”,为后续学习空间向量及其运算的坐标表示奠定坚实基础.“空间向量及其运算的坐标表示”主要包括空间直角坐标系和空间向量运算的坐标表示.其中,空间直角坐标系是空间向量运算坐标表示的基础,对于空间直角坐标系的编排,基于使本章内容逻辑主线更加清晰的考虑,教科书选择了利用空间任意给定的一点和一个单位正交基底建立空间直角坐标系的方法,这与原教科书从立体几何知识出发建立空间直角坐标系相比有较大不同.由于空间向量运算的坐标表示与平面向量运算的坐标表示类似,因此,对于空间向量运算的坐标表示的编排,教科书采用类比方法,引导学生经历由平面推广到空间的过程.“空间向量的应用”主要是利用向量方法解决简单的立体几何问题,包括用空间向量描述空间直线、平面间的平行、垂直关系,证明直线、平面位置关系的判定定理,用空间向量解决空间距离、夹角问题等,向量方法是这部分的重点.为了使学生掌握向量方法,教科书注意以典型的立体几何问题为例,让学生体会向量方法在解决立体几何问题中的作用,并引导学生自己归纳用向量方法解决立体几何问题的“三步曲”,同时,教科书还注意引导学生归纳向量法、综合法与坐标法的特点,根据具体问题的特点选择合适的方法.为了拓展学生的知识面,本章还安排了“阅读与思考向量概念的推广与应用”,把二维、三维向量推广为高维向量,并通过例子说明高维向量的应用.学有余力的学生可以学习这个阅读材料,将空间向量的有关性质推广到,维向量空间,并解决一些简单的实际问题.根据以上分析,本章知识结构如下:空间向量及其运算、空间向量基本定理、空间向量及其运算的坐标表示和立体几何中的向量方法是本章的重点.用向量方法解决立体几何中的问题,需要综合运用向量知识和其他数学知识,通过建立立体图形与空间向量之间的联系,把立体几何问题转化为向量问题,这对学生的直观想象、数学运算、逻辑推理等数学学科核心素养要求较高,是教学的难点.对于立体几何中的向量方法,要让学生在解决具体问题的基础上,归纳概括出用空间向量解决立体几何中的问题的一三步曲”,并在解决立体几何中的问题时不断体会、理解进而掌握向量方法,从而突破难点.二、本章编写思考1.关注内容的联系性和整体性,构建本章的研究框架与必修“平面向量及其应用”一样,本章也是《课程标准(2021年版)》中几何与代数主线的内容.空间向量既是代数研究的对象,也是几何研究的对象,是沟通几何与代数的桥梁.本章的内容安排充分考虑空间向量的这种联系性、突出几何直观与代数运算之间的融合,通过形与数的结合.感情数学知识之间的关联,加强对数学整体性的理解,与平面向量一样,空间向量研究的“暗线”也是向量空间理论.空间向量的概念、速度等为背景,抽象空间向量的概念,定义空间向量的加法、数乘等线性运算,并给出线性运算满足的运算性质,这时空间中的向量所组成的集合就构成了一个实数域上的向量空间,进一步地,如果在这个向量空间里定义“数量积”运算并给出其性质,那么这个向量空间就是一个有度量概念的欧氏向量空间,欧氏空间中空间向量的加法、数乘、数量积等运算建立了空间向量与立体几何中的位置关系与度量问题之间的联系.一般地,在构建一个向量空间后,通常会研究这个向量空间的一般规律.具体到空间向量,就是研究空间向量基本定理、根据空间向量基本定理,这个向量空间可以由三个线性无关的向量生成.这为空间向量的运算化归为数的运算奠定了基础.这样,空间任意一个向量都可以表示成三个不共面向量的线性运算,在用空间向量解决立体几何问题的过程中,这种表示发挥了“基本”作用.从空间向量基本定理出发,选定空间中的任意一个定点O,并给定一个单位正交基底{i..},分别过点O作平行于向量i..的数轴,就可以建立由{O:i,,}确定的空间直角坐标系.在解决立体几何问题时,通过建立空间直角坐标系,可以把空间向量及其运算转化为数及其运算,从而可以将几何问题完全“代数化”,得到用空间向量解决立体几何问题的“坐标法”.立体几何中的向量方法表现为如下的“三步曲”:为了用空间向量解决立体几何问题,首先要把点、直线、平面等组成立体图形的要素用向量表示,使其成为可以运算的对象,将几何问题转化为向量问题;进而利用空间向量的运算,研究空间直线,平面间的平行,垂直等位置关系以及距离、夹角等度量问题;最后再利用向量运算的几何意义,将运算结果“翻译”成相应的几何结论,从而得到几何问题的解决.基于以上分析,教科书构建了“空间向量与立体几何”的如下研究框架:背景一空间向量的概念一空间向量的运算及其性质空间向量基本定理、空间直角坐标系一空间向量及其运算的坐标表示一应用2.类比平面向量研究空间向量的概念及其运算,关注其中维数带来的变化平面向量与空间向量都属于向量,平面向量是二维向量,空间向量是三维向量,两者有密切的联系.空间向量是平面向量的推广,两者除维数不同外,在概念,运算及其几何意义,坐标表示等方面具有一致性;平面向量基本定理与空间向量基本定理在形式上也具有一致性;利用空间向量解决立体几何问题,是利用平面向量解决平面几何问题的发展,主要变化是维数的增加,讨论对象由二维图形变为三维图形,基本方法都是将几何问题用向量形式表示,通过向量的运算,得出相应几何结论.由于平面向量和空间向量具有相同的线性运算性质.在构建空间向量及其线性运算的结构体系时,我们把空间向量及其线性运算的内容进行了集中处理,相关概念和线性运算性质通过类比平面向量的方式呈现.这样.即使教科书在局部范围内整体性更强,也使知识的纵向联系更加紧密.同样,空间向量的坐标运算与平面向量的坐标运算具有类似的运算法则.因此,教科书通过问题“有了空间向量的坐标表示,你能类比平面向量的坐标运算,得出空间向量运算的坐标表示并给出证明吗?”引出空间向量运算的坐标表示,空间向量与平面向量的差异主要由其维数引起,对此教科书也给予了充分关注.例如,在证明空间向量线性运算的结合律时,通过问题“证明结合律时,与证明平面向量的结合律有什么不同?”引导学生思考向量从平面推广到空间时,研究对象维数的变化对运算律的证明带来的影响,这样处理,也使学生在平面向量的基础上进一步深入理解空间向量.3.关注空间向量与立体几何知识间的联系空间向量体系的建立需要立体几何的基本知识,反过来,立体几何中的问题可以用向量方法解决.因此,我们说空间向量与立体几何间有着天然的联系.“空间向量与立体几何”属于“几何与代数”内容主线,课程标准设计这条主线的一个基点是:让学生知道如何用代数运算解决几何问题,这是现代数学的重要研究手法.例如,教科书在定义共面向量时,通过画出向量与平面平行的立体图形帮助学生建立概念;在研究如何确定点的坐标和向量的坐标时,注意引导学生借助几何直观进行研究,并根据直线和平面垂直的判定定理解释其中的道理,等等这些安排都凸显教科书在构建向量体系时对立体几何的基本知识的重视.又如,在空间向量的数量积运算后,教科书安排了证明直线与平面垂直的判定定理以及其他一些简单的立体几何问题;在空间向量基本定理后,安排了证明直线与直线垂直或平行以及求两条直线所成角的余弦值等简单立体几何问题;在完成空间向量体系的构建后,安排了运用空间向量研究空间直线、平面的位置关系和距离、夹角等度量的问题,这些安排都体现了“让学生知道如何用代数运算解决几何问题”的设计意图,为学生后续学习打下了基础.4.突出用向量方法解决立体几何问题向量方法是解决几何问题的常用方法.平面几何讨论的是平面上的点、直线等元素,它们可以与平面向量建立联系.由于平面向量可以表示平面上直线之间的平行,垂直关系以及两条直线夹角的大小,因此许多平面几何问题可以转化为平面向量问题,通过平面向量的运算得出几何结论.类似地,立体几何所讨论的是三维空间中的点、直线、平面等元素,由于它们可以与空间向量建立联系,许多立体几何问题可以转化为空间向量问题,通过空间向量的运算得出几何结论,解决这些问题,主要运用向量方法.。
高中数学第三章函数的应用3.1.1方程的根与函数的零点课件新人教A版必修1
【警示】零点存在性定理成立的条件有两个:一是函数 y = f(x) 在 区 间 [a , b] 上 的 图 象 是 连 续 不 断 的 一 条 曲 线 ; 二 是 f(a)·f(b)<0.这两个条件缺一不可,如果其中一个条件不成立,那 么就不能使用该定理.如本例 f(x)=x+1x在[-1,1]上不连续,故 不能在区间[-1,1]上直接使用零点存在性定理.
1.判一判(正确的打“√”,错误的打“×”) (1)函数的零点就是函数的图象与x轴的交点坐标.( ) (2)函数y=f(x)的零点即为对应方程f(x)=0的根.( ) (3)若函数y=f(x)在区间(a,b)内满足f(a)·f(b)>0,则该函 数在区间(a,b)内可能没有零点.( ) 【答案】(1)× (2)√ (3)√
【方法规律】求函数零点的两种方法:(1)代数法:求方程 f(x)=0的实数根;(2)几何法:对于不能用求根公式的方程,可 以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出 零点.
1.判断下列说法是否正确. (1)函数f(x)=x2-2x的零点为(0,0),(2,0); (2)函数f(x)=x-1(2≤x≤5)的零点为x=1. 【解析】(1)函数的零点是使函数值为0的自变量的值,所 以函数f(x)=x2-2x的零点为0和2,故(1)错. (2)虽然f(1)=0,但1∉[2,5],即1不在函数f(x)=x-1的定义 域内,所以函数在定义域[2,5]内无零点,故(2)错.
两个函数的图象有两个不同的交点,
所以函数f(x)=log2x-x+2有两个零点.
高中数学人教A版必修三全优课堂同步课件第一章章末归纳整合
解:程序框图如图所示.
ห้องสมุดไป่ตู้
方法点评:第 20 层砌前有砖: S20=1(块); 第十九层砌前有砖:S19=(1+1)×2=4(块); 第十八层砌前有砖:S18=(1+4)×2=10(块); „„ 第一层砌前有砖:S1=(S2+1)×2(块); 所以递推关系式是 S20=1,Sn=(Sn+1+1)×2, n=1,2,„,19. 故可用循环结构设计算法.
【例 1】 已知平面直角坐标系中的两点 A(-1,0),B(3,2), 写出求线段 AB 的垂直平分线方程的一个算法.
-1+3 0+2 解:第一步,计算 x0= 2 =1,y0= 2 =1,得 AB 的 中点 N(1,1). 2-0 1 第二步,计算 k1= = ,得 AB 的斜率. 3--1 2 1 第三步,计算 k=-k =-2,得 AB 垂直平分线的斜率. 1 第四步,得直线 AB 垂直平分线的方程 y-y0=k(x-x0), 即 y-1=-2(x-1).
解:编写程序如下:
方法点评:本题是函数、算法和生物之间的跨学科应用问 题,关键是将问题数学化,进而算法化,最后写出其程序语句.
方法点评: 线段 AB 的垂直平分线是指经过线段 AB 的中点 且与直线 AB 垂直的直线,故可先由中点坐标公式求出线段 AB 2-0 1 的中点 N(1,1),然后计算直线 AB 的斜率 k1= = ,由 3--1 2 垂直关系可知 AB 垂直平分线的斜率 k=-2,最后由点斜式写 出直线方程.
2.程序框图 程序框图又称流程图,是一种用规定的图形、流程线及文 字说明来准确、直观地表示算法的图形. 通常,程序框图由程序框和流程线组成.一个或几个程序 框的组合表示算法中的一个步骤:流程线是带方向箭头的指向 线,按照算法进行的顺序将程序框连接起来.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
程序设计 3. 自然语言表述的算法和程序框图是程序设计的基础,程序框 图侧重于直观性,而程序则倾向于计算机执行的实用性. 编写程序的基本方法是“自上而下,逐步求精”,即首先把一 个复杂的大问题分解成若干个相对独立的小问题,如果小问 题仍较复杂,则可以把这些小问题再继续分解成若干个子问 题,这样不断分解,便可使得小问题或子问题简单到能够直 接用程序的三种基本结构表达为止,然后,对应每一个小问 题或子问题编写出一个功能上相对独立的程序模块来.每个 模块各个击破,最后再统一组装,问题便可得到解决.
-1+3 0+ 2 解 第一步,计算 x0= =1,y0= = 1,得 AB 的中 2 2 点 N(1,1). 2- 0 1 第二步,计算 k1= = ,得 AB 的斜率. 3--1 2 1 第三步,计算 k=- =- 2,得 AB 垂直平分线的斜率. k1 第四步,得直线 AB 垂直平分线的方程 y-y0= k(x-x0),即 y - 1=-2(x- 1).
程序如下: 1 x= 6 i= 1 WHILE i<= 6 i= i+ 1 x= 1/(6+ x) WEND PRINT x END
命题趋势
从课改区近三年高考信息统计可以看出,本部分命题呈现 以下特点: (1)考题以选择题、填空题为主,分值为5分,属中低档题. (2)考查内容都是程序框图,或者要求补充完整框图,或者 要求出按程序框图执行后的结果.程序框图中主要以条件 结构和循环结构为主.其中循环结构稍难. (3)对于基本算法语句和算法案例没有考查.
(1)
(2)
1 1 1 【例3】画出计算 1+ + +…+ 的值的一个程序框图. 2 3 999 解 法一 当型循环结构 法二 直到型循环结构
专序框图和完善程序框图是高考的重点和热点.解决 这类问题:首先,要明确程序框图中的顺序结构、条件结 构和循环结构;第二,要识别程序框图的运行,理解框图 解决的实际问题;第三,按照题目的要求完成解答.另外 框图的考查常与函数和数列等结合.
专题二
程序框图的画法
程序框图是用规定的程序框、流程线及文字说明来准确、 直观形象地表示算法的图形,画程序框图前,应先对问题 设计出合理的算法,然后分析算法的逻辑结构,画出相应 的程序框图.在画循环结构的程序框图时应注意选择合理 的循环变量及判断框内的条件.
【例2】 画出一个计算1×3×5×…×99的程序框图. 解 法一 当型循环结构程序框图如图(1)所示. 法二 直到型循环结构程序框图如图(2)所示.
【例6】请写出如图所示的程序框图描述的算法的程序.
解
这是一个求分段函数
x- 1, x> 1 y=2x+ 1,- 1≤ x≤ 1的函数值的算法,输入、输出框分 x+ 1, x<- 1 别对应输入、输出语句,判断框对应条件语句. 所求算法程序为:
INPUT x IF x>1 THEN y=x-1 ELSE IF x<-1 THEN y=x+1 ELSE y=2*x+1 END IF END IF PRINT y END
本章归纳整合
知识网络
要点归纳
算法 1. 算法可以理解为由基本运算及规定的运算顺序所构成的完 整的解题步骤,或看成按要求设计好的有限的、确切的计 算序列,并且这样的步骤或序列能够解决一类问题. 程序框图 2. 程序框图又称流程图,是一种用规定的图形、流程线及文 字说明来准确、直观地表示算法的图形. 通常,程序框图由程序框和流程线组成.一个或几个程序 框的组合表示算法中的一个步骤:流程线是带方向箭头的 指向线,按照算法进行的顺序将程序框连接起来.
1+2+4+8 15 解析 输出的是四个数的平均数,即输出的是 = . 4 4 15 答案 4
专题四
用基本算法语句编写程序
基本算法语句有输入、输出语句、赋值语句、条件语句、 循环语句五种,它们对应于算法的三种逻辑结构:顺序结 构、条件结构、循环结构.用基本语句编写程序时要注意 各种语句的格式要求,特别是条件语句和循环语句,应注 意这两类语句中条件的表达以及循环语句中有关变量的范 围.
【例4】如图是求x1,x2,…,x10的乘积S的 程序框图,图中空白框中应填入的内 容为 ( ). A.S=S×(n+1) B.S=S×xn+1 C.S=S×n D.S=S×xn 解析 赋值框内应为累乘积,累乘积 =前面项累乘积×第n项,即S= S×xn,故选D. 答案 D
【例5】若执行如图所示的框图,输入x1=1,x2=2,x3=4,x4 =8,则输出的数等于________.
【例7】写出用循环语句描述求值的算法程序,并画出相应的 程序框图.
解
利用循环结构实现算法必须搞清初始值是谁,在本问题里初 1 始值可设定为 a1= , 6 1 1 第一次循环得到 a2= = , 1 6+ a1 6+ 6 1 1 第二次循环得到 a3= ,…, a7= ,共循环了 6 次. 6+ a2 6+ a6 依上面分析得程序框图如图所示.
专题一
算法设计
算法设计与一般意义上的解决问题不同,它是对一类问题 的一般解法的抽象和概括,算法设计应注意: (1)与解决问题的一般方法相联系,从中提炼出算法; (2)将解决问题的过程分为若干个可执行步骤; (3)引入有关的参数或变量对算法步骤加以表达; (4)用最简练的语言将各个步骤表达出来.
【例1】已知平面直角坐标系中的两点A(-1,0),B(3,2),写出 求线段AB的垂直平分线方程的一个算法.
算法在实际生活中的应用 4. 算法的基本思想在我们的日常生活中是很有用的,随着计 算机技术的发展,计算机技术在实际生活中的应用越来越 广泛,特别是尖端科学技术更离不开它,算法在计算机科 学和数学领域都有非常重要的地位.为此,我们在理解算 法的基础上,要有意识地将算法思想应用到日常生活中, 这样有利于提高解决具体问题的能力.
高考真题
单击此处进入
高考真题