绵阳市高2016届第一次诊断考试数学(文科)答案

合集下载

2023—2024学年四川省绵阳市高三上学期第一次诊断性考试数学(文科)模拟试题(含答案)

2023—2024学年四川省绵阳市高三上学期第一次诊断性考试数学(文科)模拟试题(含答案)

D.若 c 0 ,则 ac bc
5.已知 5a
10b
,则
b a


A.
1 2
B.2
C. log510
D.1 lg2
6.已知 tan 2 ,则 sin2 ( )
A.- 3 5
B. 4 5
C. 3 10
D. 7 10
7.若等比数列an首项 a1 2, a4 8 2 ,则数列an的前 n 项和为( )
件的 的积属于区间( )
A. 1, 4
B.4, 7
C. 7,13
D.13,
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
13.程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框
图,若输入的 a,b 分别为 21,14,则输出的 a=
.
14.已知点
M
1,1, N
2,
m
,若向量
MN

a
m, 2 的方向相反,则
r a

15.已知函数
f
x
ex ex 2, x
x2 2x, x
0
0 ,则
f
x
的值域为

16.已知函数 f x, g x 的定义域为 R ,且 f x f x 6, f 2 x g x 4 ,若 g x 1 为奇
3.已知平面向量
a

b
的夹角为
45
,
a
b
2
,且
a
2 ,则
a
b
·
a
b


A. 2 2
B.-2
C.2
D. 2 2

2019年四川省绵阳市南山中学高2019届高2016级文科数学一诊试题及详细解析

2019年四川省绵阳市南山中学高2019届高2016级文科数学一诊试题及详细解析

2019年四川省绵阳市南山中学高2016级文科数学试题一诊试卷文科数学试题及详细解析一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知全集是R ,集合2{|230}A x x x =-->,则(R A =ð ) A.{|1x x <-,或3}x > B.{|1x x -…,或3}x …C.{|13}x x -剟D.{|13}x x -<<2.(5分)已知命题:0p x ∀…,sin x x …,则p ⌝为( ) A.0x ∀<,sin x x < B.0x ∀…,sin x x <C.00x ∃<,00sin x x <D.00x ∃…,00sin x x <3.(5分)设a ,b R ∈,则“2()0a b a ->”是“a b >”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件4.(5分)设2log 3a =, 1.22b =, 3.20.5c =,则( ) A.b a c <<B.c a b <<C.c b a <<D.a c b <<5.(5分)等比数列{}n a 的前n 项和为n S ,已知31S =,69S =,则9S 等于( ) A.81B.17C.24D.736.(5分)函数243(0)()26(0)x x x f x x lnx x ⎧++=⎨-+>⎩…的零点个数是( )A.0B.1C.2D.37.(5分)已知函数()sin()(0f x x ωϕω=->,||)2πϕ<的部分图象如图所示,则ϕ的值为( )A.4π-B.4π C.8π-D.8π 8.(5分)已知x ,y 满足(22)(1)00x y x y y ---+⎧⎨⎩……,若32z x y =+,则( )A.z 的最小值为18-B.z 的最大值为18-C.z 的最大值为6D.z 的最小值为3-9.(5分)下列函数中,其图象与函数2x y =的图象关于点(1,0)对称的是( ) A.22x y -=-B.22x y -=C.22x y -=-D.22x y -=10.(5分)等差数列{}n a 的前n 项和为n S ,其中*n N ∈,则下列命题错误的是( ) A.若0n a >,则0n S > B.若0n S >,则0n a >C.若0n a >,则{}n S 是单调递增数列D.若{}n S 是单调递增数列,则0n a >11.(5分)如图,直线AB 和单位圆C 相切于点O ,点P 在圆上,当点P 从O 出发按逆时针方向匀速运动时,它扫过的圆内阴影部分的面积()f x 是x (其中)2xPOA =∠的函数,则函数()f x 的导函数图象大致是( )A. B.C. D.12.(5分)若函数()2sin cos f x x x =+在[0,]α上是增函数,当α取最大值时,sin α的值等于( )C. D. 二.填空题(本大题4小题每小题5分,共20分.请将答案填写在答题卷中的横线上) 13.(5分)已知93a =,lgx a = 则x = . 14.(5分)若244x y +=,则2x y +的最大值是 .15.(5分)平面向量a ,b ,c 两两所成角相等,且||1a =,||2b =,||3c =,则||a b c ++为 .16.(5分)已知定义在R 上的奇函数()f x 满足f (1)0=,当0x >时,()()0f x xf x -'>,则不等式()0f x >的解集是 .三.解答题(共5小题,满分60分解答应写出必要的文字说明、证明过程或演算步骤) 17.(12分)将函数()2sin()3f x x π=+的图象沿x 轴向左平移ϕ(其中,0)ϕπ<<个单位,再将所得图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到偶函数()g x 的图象. (Ⅰ)求()g x 的解析式; (Ⅱ)若2()265g απ+=,(0,)απ∈,求sin α的值. 18.(12分)已知等比数列{}n a 的前n 项和是n S ,且12n n S b +=-. (Ⅰ)求b 的值及数列{}n a 的通项公式; (Ⅱ)令1(1)(1)n n n n a b a a +=--,数列{}n b 的前n 项和n T ,证明:23n T ….19.(12分)已知322()3(,)f x x ax bx a a b R =+++∈. (Ⅰ)若()f x 在1x =-时有极值0,求a ,b 的值; (Ⅱ)若()[()6]x g x f x b a e ='-+,求()g x 的单调区间.20.(12分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,向量(2,1)m b =,(2,cos )n a c C =-,且//m n .(Ⅰ)求角B 的大小;(Ⅱ)若点M 为BC 中点,且AM AC =,求sin BAC ∠. 21.(12分)已知函数21()2f x lnx x ax =+-,a R ∈. (Ⅰ)当1a =时,求曲线()f x 在1x =处的切线方程;(Ⅱ)若1x ,212()x x x <是函数()f x 的导函数()f x '的两个零点,当52a >时,求证:1215()()228f x f x ln ->-. [选修4-4:坐标系与参数方程]22.(10分)如图,OB 是机器的曲柄,长是2,绕点O 转动,AB 是连杆,长为2,点A 在x 轴上往返运动,点P 是AB 的中点,当点B 绕O 作圆周运动时,点P 的轨迹是曲线C . (Ⅰ)求曲线C 的参数方程; (Ⅱ)当OP 的倾斜角为4π时,求直线OP 被曲线C 所截得的弦长.[选修4-5:不等式选讲]23.函数()|1|||x=对称.=-+-的图象关于直线2f x x x a(Ⅰ)求a的值;(Ⅱ)若2…的解集非空,求实数m的取值范围.+f x x m()2019年四川省绵阳市南山中学高2016级文科数学试题一诊试卷(文科)参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)【解答】解:全集是R ,集合2{|230}{|1A x x x x x =-->=<-或3}x >, 则{|13}R A x x =-ð剟. 故选:C .【解答】解:命题:0p x ∀…,sin x x …,则p ⌝为00x ∃…,00sin x x <,故选:D .【解答】解:2()0a b a a b ->⇔>且0a ≠, a b >且0a a b ≠⇒>, a b >推不出a b >且0a ≠,∴ “2()0a b a ->”是“a b >”的充分而不必要条件.故选:A .【解答】解:2221log 2log 3log 42=<<=, 1.2122>, 3.200.50.51<=; c a b ∴<<.故选:B .【解答】解:等比数列{}n a 的前n 项和为n S ,已知31S =,69S =,296363()()S S S S S -=-. 即:9(9)164S -⨯=, 则973S =. 故选:D .【解答】解:当0x …时,由2()430f x x x =++=,解得3x =-或1x =-,有2个零点; 当0x >,函数()26f x x lnx =-+,单调递增, 则f (1)0<,f (3)0>,此时函数()f x 只有一个零点, 所以共有3个零点. 故选:D .【解答】解:由图知,1153288T ππ=-,可得23T ππω==, 又0ω>, 23ω∴=. 232382k ππϕπ⨯-=+,k Z ∈, 24k πϕπ∴=--,k Z ∈.又||2πϕ<,0k ∴=时,可得4πϕ=-.故选:A .【解答】解:作出x ,y 满足(22)(1)00x y x y y ---+⎧⎨⎩……的平面区域如图:由32z x y =+,则322zy x =-+,平移直线322z y x =-+,由图象可知当直线322zy x =-+,经过点A 时,直线322zy x =-+的截距最大,此时z 最大,由0220y x y =⎧⎨--=⎩,解得(2,0)A ,此时32206max z =⨯+⨯=,z 没有最小值. 故选:C .【解答】解:令点(,)P x y 是与2x y =的图象关于点(1,0)对称的曲线上任意一点, 则点P 关于点(1,0)的对称点(2,)Q x y --在2x y =的图象上, 于是22x y --=,22x y -∴=-为所求.故选:A .【解答】解:由等差数列的性质可得:*n N ∀∈,0n a >,则0n S >,反之也成立.0n a >,0d >,则{}n S 是单调递增数列. 因此A ,B ,C 正确.对于:{}n D S 是单调递增数列,则0d >,而0n a >不一定成立. 故选:D .【解答】解:连接CP ,2xPOA =∠,OCP x ∴∠=, ∴阴影部分的面积1()sin 22x f x x =-,[0x ∈,2]π, 11()cos 22f x x '=-,[0x ∈,2]π, 故选:D .【解答】解:函数()2sin cos cos )5sin()55f x x x x xx θ=+=+=+,其中sinθ=cos )2πθθ=<<,由于())f x x θ+的单调递增区间为[2,2]22k k πππθπθ--+-,含有0的增区间是[0,]2πθ-,由于在[0,]α上是增函数, 故:[0,][0,]2παθ⊆-,所以:2παθ-…,当α取最大值时2παθ=-,即:sin sin()cos2παθθ=-===,故选:B .二.填空题(本大题4小题每小题5分,共20分.请将答案填写在答题卷中的横线上) 【解答】解:93a =, 233a ∴=,12a ∴=, 12lgx a ===x ∴【解答】解:244x y +=,∴2422x y +…, 化为22242x y +=…,22x y ∴+…,当且仅当21x y ==时取等号.则2x y +的最大值是2. 故答案为:2.【解答】解:平面向量a ,b ,c 两两所成角相等, ∴两两所成角为0︒或120︒.||1a =,||2b =,||3c =,当所成角为120︒时, ∴12cos1201a b =⨯⨯︒=-,32a c =-,3b c =-,则22222||2()12a b c a b c a b a c b c ++=+++++=++. 同理可得:当所成角为0︒时, 则||1236a b c ++=++=.6. 【解答】解:设()()f x g x x =,则()g x 的导数为2()()()xf x f x g x x '-'=, 当0x >时总有()()0xf x f x '-<成立, 即当0x >时,()g x '恒小于0, ∴当0x >时,函数()()f x g x x=为减函数, 又定义在R 上的奇函数()f x ,()()g x g x ∴-=∴函数()g x 为定义域上的偶函数.又g (1)0=,∴函数()g x 的图象性质类似如图:数形结合可得不等式()0()0f x x g x <⇔<,可得不等式()0f x <的解集是(1-,0)(1⋃,)+∞, 故答案为(1-,0)(1⋃,)+∞.三.解答题(共5小题,满分60分解答应写出必要的文字说明、证明过程或演算步骤) 【解答】解:(Ⅰ)将函数()2sin()3f x x π=+的图象沿x 轴向左平移ϕ个单位,得()2sin()3y f x x πϕϕ=+=++的图象;再将所得的图象上所有点的横坐标缩短到原来的12倍,纵坐标不变, 得到2sin(2)3y x πϕ=++的图象, 即()2sin(2)3g x x πϕ=++; 又()g x 为偶函数,则32ππϕ+=,解得6πϕ=,所以()2cos 2g x x =; (Ⅱ)由(Ⅰ)知,()2cos 2g x x =, 则2()2cos()2635g αππα+=+=, 所以1cos()35πα+=;又(0,)απ∈,所以sin()3πα+=所以sin sin[()]33ππαα=+-sin()cos cos()sin 3333ππππαα=+-+1125=-⨯=【解答】解:(Ⅰ)等比数列{}n a 的前n 项和是n S ,且12n n S b +=-, 1n =时,114a S b ==-;2n …时,11222n n n n n n a S S b b +-=-=--+=,由于数列为等比数列,可得42b -=,即2b =; 则2n n a =,*n N ∈;(Ⅱ)证明:112(1)(1)(21)(21)nn n n n n n a b a a ++==---- 1112121n n +=---, 前n 项和11111114141812121n n n T +=-+-+⋯+------ 11121n +=--,由于1213n +-…,可得1110213n +<-…,则23n T ….【解答】解:(Ⅰ)由题意得2()36f x x ax b '=++, 则2310630a a b b a ⎧+--=⎨-+=⎩,解得:13a b =⎧⎨=⎩或29a b =⎧⎨=⎩,经检验当1a =,3b =时, 函数()f x 在1x =-处无极值, 而2a =,9b =满足题意, 故2a =,9b =;(Ⅱ)2()[()6]3(22)x x g x f x b a e x ax a e ='-+=++,故()3(2)(2)x g x x x a e '=++,故1a =时,()0g x '…,函数()g x 在R 上递增, 当1a >时,函数()g x 在(,2)a -∞-递增,在(2,2)a --递减,在(2,)-+∞递增, 当1a <时,函数()g x 在(,2)-∞-递增,在(2,2)a --递减,在(2,)a -+∞递增.【解答】解:(Ⅰ)向量(2,1)m b =,(2,cos )n a c C =-,且//m n , 2cos 2b C a c ∴=-,由正弦定理,得2sin cos 2sin sin B C A C =-,又sin 0C ≠,1cos 2B ∴=, 0B π<<,3B π∴=.(Ⅱ)取CM 中点D ,连结AD ,则AD CM ⊥,令CD x =,则3BD x =,由(Ⅰ)知3B π=,AD ∴=,AC ∴=,由正弦定理知4sin x BAC =∠sin BAC ∴∠=. 【解答】解:(Ⅰ)1a =时,1()1f x x x'=+-, f '(1)1=,f (1)12=-, 故切线方程是:112y x +=-,即2230x y --=; (Ⅱ)由题意得21()(0)x ax f x x x-+'=>, 若1x ,212()x x x <是函数()f x 的导函数()f x '的两个零点, 则1x ,2x 是方程210x ax -+=的两根,故120x x a +=>,121x x =,令2()1g x x ax =-+, 52a >,∴△240a =->, 故151()0242g a =-<,g (2)520a =-<,故11(0,)2x ∈,2(2,)x ∈+∞, 故12()()f x f x -221212121()()2lnx lnx x x a x x =-+--- 2212121()2lnx lnx x x =---, 又121x x =,12()()f x f x ∴-2211211122lnx x x =-+,11(0,)2x ∈, 令211(0,)4t x =∈ 则121()()()22t h t f x f x lnt t =-=-+,1(0,)4t ∈, 22(1)()02t h t t -'=-<, ()h t ∴在1(0,)4递增, 1()()4h t h ∴>, 即121115()()222488f x f x ln ln ->-+=-. [选修4-4:坐标系与参数方程]【解答】解:(Ⅰ)令圆O 的参数方程为2cos 2sin x y θθ=⎧⎨=⎩,(θ为参数), 则BOx θ∠=,过点B 作x 的垂线,垂足是C ,如图所示,2cos OC CA θ==,2sin CB θ=,∴点A 的坐标是(4cos ,0)θ,∴点P 的坐标(,)x y 满足2cos 4cos 22sin 02x y θθθ+⎧=⎪⎪⎨+⎪=⎪⎩, ∴曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩,(θ为参数). (Ⅱ)将曲线C 的方程转化为普通方程2219x y +=, 以O 为极点,Ox 为极轴,建立极坐标系,得到曲线C 的极坐标方程是2222cos 9sin 9ρθρθ+=, ∴22299cos sin ρθθ=+, 当4πθ=时,295ρ=, OP ∴被曲线截得的弦长为2ρ=[选修4-5:不等式选讲]【解答】解:(Ⅰ)由函数()|1|||f x x x a =-+-的图象关于直线2x =对称,则()(4)f x f x =-恒成立,令0x =得(0)f f =(4),即||2|4|a a =+-,等价于024a a a ⎧⎨-=+-⎩…,或0424a a a <<⎧⎨=+-⎩,或424a a a ⎧⎨=+-⎩…; 解得3a =,此时()|1||3|f x x x =-+-,满足()(4)f x f x =-,即3a =;(Ⅱ)不等式2()f x x m +…的解集非空,等价于存在x R ∈使得2()f x x m -…成立, 即2[()]max m f x x -…,设2()()g x f x x =-,由(Ⅰ)知,22224,1()2,1324,3x x x g x x x x x x ⎧--+⎪=-+<<⎨⎪-+-⎩……,当1x …时,2()24g x x x =--+,其开口向下,对称轴方程为1x =-, ()(1)1245g x g ∴-=-++=…;当13x <<时,2()2g x x =-+,其开口向下,对称轴方程为0(1,3)x =∈-, ()(0)2g x g ∴=…;当3x …时,2()24g x x x =-+-,其开口向下,对称轴方程为13x =<, ()g x g ∴…(3)9647=-+-=-;综上,()5max g x =,∴实数m 的取值范围是(-∞,5].。

四川省绵阳2016届零诊考试数学试题(文)及答案

四川省绵阳2016届零诊考试数学试题(文)及答案

四川省绵阳2016届零诊考试数学试题(⽂)及答案2016届零诊考试数学试题(⽂科)⼀、选择题:每⼩题5分,共12⼩题,共60分. 1. 已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的真⼦集共有 ( ).A.1个B.3个C.5个D.7个2. 已知函数≤>=0,20,log )(3x x x x f x ,则(9)(0)f f +=( ).0A .1B .2C .3D3. 公⽐为2的等⽐数列{}n a 的各项都是正数,且41016a a =,则6a 等于( ) A.1 B.2 C.4 D.84.曲线233x x y +-=在点)2,1(处的切线⽅程为( )A .53+=x yB .53+-=x yC .13-=x yD .x y 2= 5. 已知函数)2sin()(π+=x x f ,)2cos()(π-=x x g ,则下列结论中正确的是( ) A .函数)()(x g x f y ?=的最⼩正周期为2π B .函数)()(x g x f y ?=的最⼤值为1 C .将函数)(x f y =的图象向右平移2π单位后得)(x g 的图象D .将函数)(x f y =的图象向左平移2π单位后得)(x g 的图象 6.如下左图,在平⾯直⾓坐标系中,AC 平⾏于x 轴,四边形ABCD 是边长为1的正⽅形,记四边形位于直线x =t (t >0)左侧图形的⾯积为f (t ),则f (t )的⼤致图象是( ).7. 下列判断正确的是( )A . 若命题p 为真命题,命题q 为假命题,则命题“p q ∧”为真命题B . 命题“若0xy =,则0x =”的否命题为“若0xy =,则0x ≠”C . “1sin 2α=”是“6πα=”的充分不必要条件D . 命题“,20x x ?∈>R ”的否定是“ 00,20x x ?∈≤R ”8. 设的导函数是)()(x f x f ',且2()34,f x x x '=+-则()1y f x =++ln2的单调减区间为( )A .()4,1-B .()5,0-C .3,2??-+∞D .5,2??-+∞9. 定义⼀种运算bc ad d c b a -=*),(),(,若函数))51(,413(tan)log 1()(3xx x f π*=,,0x 是⽅程0)(=x f 的解,且100x x <<,则)(1x f 的值( )A .恒为负值B .等于0C .恒为正值D .不⼤于010. 设实数x ,y 满⾜??≤≥-++≤22x y x x y ,则13++y x 的取值范围是( )A. 575,B.1,75C. ??5751, D.∞+? ??∞-,,5751 11. 已知M 是ABC ?内⼀点,且23AB AC ?=30BAC ∠=,若M B C ?、MAB ?、MAC ?的⾯积分别为12、x 、y ,则14x y +的最⼩值是( )A.18B.16C.9D.412. 已知正实数是⾃然对数的底数其中满⾜、、e c c a b c ace c b a ,ln ln ,21+=≤≤,则abln 的取值范围是( )A.[)∞+,1 B.??+2ln 21,1 C.(]1,-∞-e D.[]11-e ,⼆、填空题:共4⼩题,每⼩题5分,共20分.13.设)(x f 是定义在R 上的奇函数,当0,且1()02f -=,则不等式0)(≤x f 的解集为.14.已知x ax x x f 4)(23+-=有两个极值点1x 、2x ,且()f x 在区间(0,1)上有极⼤值,⽆极⼩值,则a 的取值范围是. 15.已知ABC ?中,内⾓C B A 、、的对边的边长为c b a 、、,且()B c a C b cos 2cos -=,则=yB 2cos 21+的值为.16. 已知定义在R 上的奇函数()f x 满⾜()()4f x f x -=-,且[]0,2x ∈时,()()2log 1f x x =+. 现有以下甲,⼄,丙,丁四个结论:甲:()31f =;⼄:函数()f x 在[]6,2--上是增函数;丙:函数()f x 关于直线4x =对称;三、解答题:共6⼩题,共70分.解答应写出⽂字说明、证明过程或演算步骤. 17.(10分)已知△ABC 的⾓A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2). (1)若m ∥n ,请判定△ABC 的形状;(2)若m ⊥p ,边长c =2,⾓C =π3,求△ABC 的⾯积.18.(10分)已知等⽐数列{a n }中,a 1+a 3=10,前4项和为40.(1)求数列{a n }的通项公式;(2)若等差数列{b n }的各项为正,其前n 项和为T n ,且T 3=15,⼜a 1+b 1,a 2+b 2,a 3+b 3成等⽐数列,求T n .19.(12分)已知⼆次函数()()1,2-+=x f bx ax x f 若为偶函数,且集合A={}x x f x =)(为单元素集合.(1)求()x f 的解析式;(2)设函数x e m x f x g ])([)(-=,若函数)(x g 在]2,3[-∈x 上单调,求实数m 的取值范围. 20.(12分)南⼭中学近⼏年规模不断壮⼤,学⽣住宿异常紧张,学校拟⽤1000万元购⼀块空地,计划在该空地上建造⼀栋⾄少8层,每层2000平⽅⽶的学⽣电梯公寓.经测算,如果将公寓建为x (x ≥8)层,则每平⽅⽶的平均建筑费⽤为560+48x (单位:元).(1)写出拟修公寓每平⽶的平均综合费⽤y 关于建造层数x 的函数关系式; (2)该公寓应建造多少层时,可使公寓每平⽅⽶的平均综合费⽤最少?最少值是多少?(结果精确到1元)(注:平均综合费⽤=平均建筑费⽤+平均购地费⽤,平均购地费⽤=购地总费⽤建筑总⾯积)21. (12分)已知函数f (x )=6cos 4x +5sin 2x -4cos2x.(1)判断f (x )的奇偶性;(2)求f (x )的周期和单调区间;(3)若关于x 的不等式f (x )≥m 2-m 有解,求实数m 的取值范围.22. (14分)已知函数.ln )(x x x f = (1)求函数)(x f 的单调区间和最⼩值;(2)若函数()()x a x f x F -=在[]e ,1上是最⼩值为23,求a 的值;(3)当e beb b 1)1(:,0≥>求证时(其中e =2.718 28…是⾃然对数的底数).⼀、选择题: BDBCC CDB A A AD⼆、填空题:13.??∞21021--,,; 14. 27>a ; 15. 0; 16. 甲,丁三、解答题17.解:(1)∵m ∥n ,∴a sin A =b sin B ,即a ·a 2R =b ·b2R,其中R 是△ABC 外接圆半径,∴a =b .∴△ABC 为等腰三⾓形. (2)由题意可知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab ,即(ab )2-3ab -4=0. ∴ab =4(舍去ab =-1),∴S =12ab sin C =12×4×sin π3= 318.解:(1)设等⽐数列{a n }的公⽐为q ,则?a 1+a 1q 2=10,a 1+a 1q +a 1q 2+a 1q 3=40,∴?a 1=1,q =3.∴a n =a 1qn -1=3n -1.∴等⽐数列{a n }的通项公式为a n =3n -1.(2)设等差数列{b n }的公差为d ,则T 3=b 1+b 2+b 3=3b 2=15,∴b 2=5. ⼜∵a 1+b 1,a 2+b 2,a 3+b 3成等⽐数列,∴(a 2+b 2)2=(a 1+b 1)(a 3+b 3),即(3+5)2=(1+b 1)(9+b 3),64=(6-d )(14+d ).∴d =-10或d =2. ∴(舍去)或b 1=3,d =2.∴T n =nb 1+n n -12d =3n +n n -12×2=n 2+2n .19.(1)()x x x f +=221(2)若()x g 在[]2,3-上单调递增,则()0≥'x g 在[]2,3-∈x 上恒成⽴,即012212≥??-++xe m x x 在[]2,3-∈x 上恒成⽴,即11221min2-=++≤x x m若()x g 在[]2,3-上单调递减,则()0≤'x g 在[]2,3-∈x 上恒成⽴,即012212≤??-++x e m x x 在[]2,3-∈x 上恒成⽴,即71221max2=++≥x x m (][)+∞?-∞-∈∴,71,m 20. 解(1)依题意得y =(560+48x )+x 2000100001000?=560+48x +x5000 ( x ≥8,x ∈N *);(2)提⽰:均值不等式失效,求导或由x=10时,y=1540;x=11时,y=1543.故该公寓应建造10层时,可使公寓每平⽅⽶的平均综合费⽤最少,最⼩值为1540元.21. 解:(1)由cos2x ≠0得2x ≠k π+π2,k ∈Z ,解得x ≠k π2+π4,k ∈Z ,∴f (x )的定义域为{x |x ≠4,k ∈Z }.∴f (x )的定义域关于原点对称.当x ≠k π2+π4,k ∈Z 时,f (x )=6cos 4x +5sin 2x -4cos2x =6cos 4x -5cos 2x +1cos2x =(2cos 2x -1)(3cos 2x -1)cos2x=3cos 2x -1,∴f (x )是偶函数.(2)∵f (x )=3cos 2x -1=3×1+cos2x 2-1=12+32cos2x .∴T =2πω=π,∴f (x )的最⼩正周期为π.增区间为、??? ??-4-,2ππππk k )(,4Z k k k ∈??? ??-πππ,减区间为、??? ?+4,πππk k )(2,4Z k k k ∈??++ππππ (3)当x ≠k π2+π4(k ∈Z )时,0≤cos 2x ≤1且cos 2x ≠12,∴-1≤3cos 2x -1≤2且3cos 2 x -1≠12,∴f (x )的值域为{y |-1≤y <12或12<y ≤2}.由关于x 的不等式f (x )≥m 2-m 有解得2≥m 2-m解得-1≤m ≤2 22.解:(1).ln 1ln ,0)(),0(1ln )(1-=-≥≥'>+='e x x f x x x f 即令).,11+∞∈∴=≥∴-ex ee x同理,令].1,0(0)(ex x f 可得≤'∴f (x )单调递增区间为),1[+∞e,单调递减区间为]1,0(e.由此可知.1)1()(min ee f x f y -===(2)()2xax x F +=' 当1-≥a 时,F (x )在[]e ,1上单调递增,()23min =-=a x F ,[)∞?-=∴,1-23a ,舍去;当e a -≤时,()x F 在[]e ,1单调递减,()23)(min ==e F x F ,(]e e a -,2∞-?-=∴舍去;若()1,--∈e a ,()x F 在()a -,1单调递减,在()e a ,-单调递增,()()()231ln min =+-=-=∴a a F x F ,()1,--∈-=e e a . 综上所述:e a -=(3)由(I )可知当0>b 时,有eb b e x f b f 1ln ,1)()(min -≥∴-=≥,即111ln()ln()b e b e e ≥-=. 11()be b e∴≥.。

2016级高三一诊数学(文)答案

2016级高三一诊数学(文)答案

在 (0, 在 (1, ʑ 函数 f( x) 1) 上单调递增 , + ¥ ) 上单调递减������
易知 , 当bɤ0 时 , 不合题意������ h( x) >0, ʑ b>0 ������ 1 x , ) 又h ᶄ( x) = - b x e h ᶄ( 1 =1- b e ������ x ① 当bȡ
������������������8 分 ������������������1 0分
x x x ( ) (x-1) a x e -e a x-e ( 解: 由题意 , 知f 2 1. Ⅰ) ᶄ( x) =- - + a= ������ 2 x x x2 x 有a ȵ 当 a<0, x>0 时 , x-e <0 ������
3 a b c. 3
ʑ2 b c c o s A= ȵA =
( Ⅱ) ȵ a= 3,
π , ʑ a=2 3 c o s A = 3. 3
3 a b c. 3
������������������2 分 ������������������4 分 ������������������6 分 ������������������8 分 ������������������9 分 ������������������1 0分 ������������������1 2分
1 x ( , 由题意, 当a= 不等式f( 时恒成立������ Ⅱ) 1时, x) +( b x- b+ ) e- xȡ 0在xɪ( 1 +¥ ) x
x ) 整理 , 得l 上恒成立������ n x- b( x-1 e ɤ0 在 ( 1, + ¥) x ) 令 h( x) = l n x- b( x-1 e ������
- - ^ ^= a b x=2 1 ������ 5-0 ������ 2ˑ6 3=8 ������ 9 ������ y- ^=0 故所求线性回归方程为 y ������ 2 x+8 ������ 9 ������

2016年普通高等学校招生全国统一考试(四川卷)数学试题(文科)解析版

2016年普通高等学校招生全国统一考试(四川卷)数学试题(文科)解析版

2016年普通高等学校招生全国统一考试(四川卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的•1. 设i为虚数单位,则复数(1 i)2=( )(A) 0 (B)2 (C) 2 i (D)2+2 i【答案】C【解析】试题分析:由题意,(1 i)2 =1 2i • i2 = 2i,故选C.考点:复数的运算.【名师点睛】本题考查复数的运算•数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.2. 设集合A={x|1 辽5},Z为整数集,则集合A n Z 中元素的个数是( )(A)6 (B) 5 (C)4 (D)3【答案】B【解析】试题分析:由题意= 故其中的元素个数为》选B考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.3. 抛物线y2 =4x的焦点坐标是( )(A)(0,2) (B) (0,1) (C) (2,0) (D) ( 1,0)【答案】D【解析】试题分析:由题意,y2 =4x的焦点坐标为(1,0),故选D.考点:抛物线的定义.【名师点睛】本题考查抛物线的定义•解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.4. 为了得到函数y =sin(x,§)的图象,只需把函数y=sinx的图象上所有的点( )(A)向左平行移动个单位长度(B) 向右平行移动二个单位长度3 3TT TT(C)向上平行移动一个单位长度(D) 向下平行移动一个单位长度3 3【答案】A【解析】TT 7T 试题分析:由題意,为得到函数潭=站(尤+彳儿只需数y = sinx的區僚上所有点向左移彳个单位,3 J故选A.考点:三角函数图像的平移•【名师点睛】本题考查三角函数的图象平移,函数y二f(x)的图象向右平移a个单位得y=f(x-a) 的图象,而函数y二f (x)的图象向上平移a个单位得y二f (x) • a的图象.左右平移涉及的是x的变化,上下平移涉及的是函数值f (x)加减平移的单位.5. 设p:实数x, y满足x 1且y . 1 , q:实数x, y满足x y 2,则p是q的( )(A)充分不必要条件(B) 必要不充分条件(C)充要条件(D) 既不充分也不必要条件【答案】A【解析】试题分析:由题意,x 1且y . 1,则x y 2,而当x y 2时不能得出,x 1且y • 1.故p是q的充分不必要条件,选 A.考点:充分必要条件•【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立•这类问题往往与函数、三角、不等式等数学知识结合起来考•有许多情况下可利用充分性、必要性和集合的包含关系得出结论.6. 已知a函数f(x) =x3 -12x的极小值点,贝U a=( )(A)-4 (B) -2 (C)4 (D) 2【答案】D【解析】试题分析:「X =3x -1^3 x 2 X-2,令f x =0得x = -2或x=2,易得f x在-2,2上单调递减,在 2, •::上单调递增,故 f x 极小值为f 2,由已知得a =2,故选D.考点:函数导数与极值.【名师点睛】本题考查函数的极值•在可导函数中函数的极值点x 0是方程f '(x) =0的解,但x 0是极 大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 X D 附近,如果x :::x 0时, f '(x) ::: 0 , x X O 时 f '(x) ■ 0 ,则 X D 是极小值点,如果 x X D 时,f '(x) ■ 0 , x X 。

绵阳市高中 级第一次诊断性考试 文数 试题与答案

绵阳市高中 级第一次诊断性考试 文数 试题与答案

数学(文史类)参考答案及评分意见第1页(共6页)绵阳市高中2016级第一次诊断性考试数学(文史类)参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分.BABCD CBBDA AC二、填空题:本大题共4小题,每小题5分,共20分.13.7 14.-2 15.-716.32-16三、解答题:本大题共6小题,共70分.17.解:(Ⅰ)设等差数列{a n }的公差为d (d >0),由a 4=7,得a 1+3d =7,① ……………………………………………………2分 又∵ a 2,a 6-2a 1,a 14是等比数列{b n }的前三项,∴( a 6-2a 1)2=a 2a 14,即(5d -a 1)2=(a 1+d )(a 1+13d ),化简得d =2a 1,②……………………………4分 联立①②解得a 1=1,d =2.∴ a n =1+2(n -1)=2n -1. ………………………………………………………6分 (Ⅱ)∵ b 1=a 2=3,b 2=a 6-2a 1=9,b 3=a 14=27是等比数列{b n }的前三项, ……………………………………………………8分 ∴等比数列{b n }的公比为3,首项为3.∴等比数列{b n }的前n 项和S n =3(13)13n −−=3(31)2n −. ………………………10分 由S n >39,得3(31)2n −>39,化简得3n >27. 解得n >3,n ∈N *. ……………………………………………………………12分18.解:(Ⅰ)2())4cos 3f x x x π=−+=2coscos2sin )33x x ππ−+2(1+cos2x )…………………2分=32cos22x x −+2cos2x +2=12+cos22x x +2数学(文史类)参考答案及评分意见第2页(共6页) =sin(2)26x π++, ……………………………………………4分 由题意得()sin[2()]2266g x x ππ=−++−, 化简得g (x )=sin(2)6x π−. ……………………………………………………6分 (Ⅱ)由6π≤x ≤23π,可得6π≤2x -6π≤76π. 当2π≤2x -6π≤76π即3π≤x ≤23π时,函数()g x 单调递减. ∴ ()g x 在2[]63ππ,上的单调递减区间为2[]33ππ,. ………………………9分 ∵ ()g x 在[]63ππ,上单调递增,在2[]33ππ,上单调递减, ∴ g (x )ma x =()3g π=sin 12π=. 又2()3g π=7sin 6π=sin (+6ππ)=-1sin 62π=−<()6g π=1sin 62π=, ∴ 12−≤()g x ≤1. 即()g x 在2[]63ππ,上的值域为1[1]2−,. ………………………………12分 19. 解 :(Ⅰ)∵ 2c sin B =3a tan A ,∴ 2c sin B cos A =3a sin A .由正弦定理得2cb cos A =3a 2, ………………………………………………2分由余弦定理得2cb •222+2b c a bc−=3a 2,化简得b 2+c 2=4a 2, ∴ 2224b c a +=. ………………………………………………………………5分 (Ⅱ)∵ a =2,由(Ⅰ)知b 2+c 2=4a 2=16,且由余弦定理得cos A =222+2b c a bc −=6bc, 即bc =6cos A ,且A ∈(0)2π,.…………………………………………………7分数学(文史类)参考答案及评分意见第3页(共6页)根据重要不等式有b 2+c 2≥2bc ,即8≥bc ,当且仅当b =c 时“=”成立,∴ cos A ≥68=34.………………………………………………………………9分 ∴ 当角A 取最大值时,cos A =34,bc =8. ∴ △ABC 的面积S =12bc sin A =12⨯=. …………………12分 20.解:(Ⅰ)2()32f x x ax b '=++.∵ 曲线()y f x =在点x =0处的切线为4x +y -5=0,∴ 切点为(0,5),(0)4f '=−即b =-4.①由f (0)=5,得c =5. …………………………………………………………3分 ∵ x =23是函数()f x 的一个极值点, ∴ 24244()32=+039333a f ab b '=⨯+⨯++=.② ………………………………5分 联立①②得a =2,b =-4.∴ a =2,b =-4,c =5. …………………………………………………………6分 (Ⅱ)由(Ⅰ)得f (x )=x 3+2x 2-4x +5,则2()344f x x x '=+−=(3x -2)(x +2).当()0f x '> 时,x <-2或x >23; 当()0f x '<时,-2<x <23.………………………………………………………9分 ∴ f (x )在x =-2处取得极大值即f (-2)=13.由3224513x x x +−+=得322480x x x +−−=,∴(x +2)2(x -2)=0即x =-2或x =2. ……………………………………………10分 要使函数()f x 在区间(m -6,m )上存在最大值,则m -6<-2<m ≤2,即-2<m ≤2. …………………………………………………………………12分21.解:(Ⅰ)()x f x e a '=−.当a ≤0时,()0f x '>,()f x 在R 上单调递增; …………………………2分 当a >0时,由()0f x '>解得x >ln a ;由()0f x '<解得x <ln a , ……………4分数学(文史类)参考答案及评分意见第4页(共6页)综上所述:当a ≤0时,函数()f x 在R 上单调递增;当a >0时,函数()f x 在(ln )a +∞,上单调递增,函数()f x 在(ln )a −∞,上单调递减. ………………5分(Ⅱ)由已知可得方程ln 0x x e ax a −+−=有唯一解x 0,且*0(1)N x n n n ∈+∈,,. 设()ln x h x x e ax a =−+−(x >0),即h (x )=0有唯一解x 0,*0(1)N x n n n ∈+∈,,.由()h x '=1x -e x +a ,令g (x )=()h x '=1x-e x +a , 则21()x g x e x '=−−<0, 所以g (x )在(0+)∞,上单调递减,即()h x '在(0+)∞,上单调递减.又0x →时,()h x '→+∞;x →+∞时,()h x '→−∞,故存在0x ∈(0+)∞,使得0()h x '=01x 0x e −+a =0. ……………………………6分 当x ∈(0,x 0)时,()h x '>0,h (x )在(0,x 0)上单调递增,x ∈(x 0,+∞)时,()h x '<0,h (x )在(x 0,+∞)上单调递减.又h (x )=0有唯一解, 则必有0000()ln 0x h x x e ax a =−+−=. 由0000010ln 0x x e a x x e ax a ⎧−+=⎪⎨⎪−+−=⎩,, 消去a 得000001ln (1)()0x x x e x e x −+−−=. 令1()ln (1)()x x x x e x e x ϕ=−+−−=1ln 2+1x x x e xe x−+−,……………………8分 则211()2x x x x e e xe x xϕ'=−++− 21=(1)x x x e x −+− =21(1)()x x e x −+. 故当x ∈(0,1)时,()x ϕ'<0,h (x )在(0,1)上单调递减,当x ∈(1,+∞)时,()x ϕ'>0,h (x )在(1,+∞)上单调递增.……………10分 由1(1)0(2)ln 202e ϕϕ=−<=−+>,,数学(文史类)参考答案及评分意见第5页(共6页)即存在x 0∈(1,2),使得0()0x ϕ=即0()0h x =.又关于x 的方程()f x =ln x 有唯一解x 0,且*0(1)x n n n ∈+∈N ,,,∴ 0(12)x ∈,.故n =1. ……………………………………………………………………12分22.解:(Ⅰ)将t =2y 代入x=3+,整理得30x −= , 所以直线l的普通方程为30x −=. …………………………………2分 由4cos ρθ=得24cos ρρθ=,将222x y ρ=+,cos x ρθ=代入24cos ρρθ=,得2240x y x +−=,即曲线C 的直角坐标方程为22(2)4x y −+=. ……………………………5分 (Ⅱ)设A ,B 的参数分别为t 1,t 2.将直线l 的参数方程代入曲线C 的直角坐标方程得221(32)()42t −+=,化简得230t −=,由韦达定理得12t t +=于是1222P t t t +==−. ………………………………………………………6分 设P (x 0,y 0),则0093(41(2x y ⎧=+=⎪⎪⎨⎪=⨯=⎪⎩,即P (94,. ……………………………………………………………8分 所以点P 到原点O的距离为2=. ……………………10分 23.解:(Ⅰ)当x ≤12−时,)(x f =-2x -1+(x -1)=-x -2, 由)(x f ≥2解得x ≤-4,综合得x ≤-4; ……………………………………2分数学(文史类)参考答案及评分意见第6页(共6页) 当112x −<<时,)(x f =(2x +1)+(x -1)=3x , 由)(x f ≥2解得x ≥23,综合得23≤x <1; …………………………………3分 当x ≥1时,)(x f =(2x +1)-(x -1)=x +2,由)(x f ≥2解得x ≥0,综合得x ≥1. ………………………………………4分所以)(x f ≥2的解集是2(4][+)3−∞−∞,,. ………………………………5分 (Ⅱ)∵ )(x f =|2x+1|-|x -m |≥|x -3|的解集包含[3,4],∴ 当x ∈[3,4]时,|2x+1|-|x -m |≥|x -3|恒成立. …………………………7分 原式可变为2x+1-|x -m |≥x -3即|x -m |≤x +4, ……………………………8分 ∴ -x -4≤x -m ≤x +4即-4≤m ≤2x +4在x ∈[3,4]上恒成立,显然当x =3时,2x +4取得最小值10,即m 的取值范围是[-4,10]. ………………………………………………10分。

2016年普通高等学校招生全国统一考试(四川卷文科) 数学试题及答案(教师版)

2016年普通高等学校招生全国统一考试(四川卷文科) 数学试题及答案(教师版)

2016年普通高等学校招生全国统一考试(四川卷文科)数学试题一、单选题(本大题共10小题,每小题____分,共____分。

)1.设i为虚数单位,则复数(1+i)2=(C)A. 0B. 2C. 2iD. 2+2i2.设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是(B)A. 6B. 5C. 4D. 33.抛物线y2=4x的焦点坐标是(D)A. (0,2)B. (0,1)C. (2,0)D. (1,0)4.为了得到函数y=sin的图象,只需把函数y=sin x的图象上所有的点(A)A. 向左平行移动个单位长度B. 向右平行移动个单位长度C. 向上平行移动个单位长度D. 向下平行移动个单位长度5.设p:实数x.y满足x>1且y>1,q: 实数x,y满足x+y>2,则p是q的(A)A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.已知a函数f(x)=x3-12x的极小值点,则a=(D)A. -4B. -2C. 4D. 27.某公司为激励创新,计划逐年加大研发奖金投入。

若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) (B)A. 2018年B. 2019年C. 2020年D. 2021年8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。

如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为(C)A. 35B. 20C. 18D. 99.已知正三角形ABC的边长为,平面ABC内的动点P,M满足,则的最大值是(B)A. B. C. D.10.设直线l1,l2分别是函数f(x)= 图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B则则△PAB的面积的取值范围是(A)A. (0,1)B. (0,2)C. (0,+∞)D. (1,+ ∞)二、填空题(本大题共5小题,每小题____分,共____分。

2018年11月1日绵阳市高中2016级第一次诊断性考试文科综合试卷参考答案及评分标准

2018年11月1日绵阳市高中2016级第一次诊断性考试文科综合试卷参考答案及评分标准

绵阳市高中2016级第一次诊断性考试文科综合(政治)参考答案及评分标准一、选择题(每小题4分,共48分)12.A 13.C 14.B 15.B 16.A 17.C 18.D 19.D 20.A 21.C 22.B 23. D二、非选择题(52分)38.居民收入增加,消费结构升级,自我意识觉醒,推动新消费的需求上升;(5分)技术的升级,产品和服务供给质量的提升、供给方式的多元,刺激新消费的供给增加;(5分)社会结构、人口结构和消费场景的变化,带动以用户需求为导向的新产品、新业态、新商业模式的发展又进一步促进新消费的发展。

(4分)39.政府履行经济建设、社会建设职能,建设服务型政府,激发乡村经济的活力,为乡村提供更多的公共服务;(3分)群众性自治组织创新乡村治理的方式,提升乡村治理水平,维护村民合法权益;(3分)村民切实行使民主管理的权利,履行相应责任,不断提高参与民主管理的意识和能力;(3分)政协委员参政议政,为乡村治理建言献策。

(3分)40.(1)紧抓实体不放,深化供给侧结构性改革,提升供给质量,满足人民有效需求。

(3分)实施创新驱动,打造发展新动能,扩大就业创业,以增加人民的收入。

(3 分)加强生态建设,推进城市可持续发展,实现人居环境质量的跃升。

(2分)统筹城乡一体化,补齐民生短板,让发展成果惠及全体市民。

(2分)(2)坚持党领导一切,发挥党的领导核心作用;(4分)加强队伍建设,强化基层党组织的政治功能和服务功能,发挥党组织的战斗堡垒作用;(3分)充分调动党员的积极性、主动性、创造性,凝聚发展力量,发挥党员的先锋模范作用;(3分)(3)答案示例:实施积极财政政策,优化财政支出结构,完善对实体经济的奖补政策;通过税收政策,减税降费,减轻企业负担;通过货币金融政策,提高直接融资比例,降低企业融资成本。

(任答两点,每点3分)绵阳市高中2016级第一次诊断性考试文科综合(地理)参考答案及评分标准一、选择题(44分)1——5:BDCCB 6——11:DDABAC二、非选择题(56分)36.(24分)(1)深居内陆,海洋水汽难以到达,年降水量少(2分);上游集水区海拔高,冬半年降雪为主,积雪常年或季节性累积,春、夏季融化(3分)(2)水位年际变化小(2分);有明显的季节变化,春、夏汛期水位高(2分);夏季水位日变化明显(1分)。

2016届绵阳一诊文科数学试题内含答案

2016届绵阳一诊文科数学试题内含答案

绵阳市高2013级第一次诊断性考试数学(文史类)参考解答及评分标准一、选择题:本大题共10小题,每小题5分,共50分.CBCBD BACCC二、填空题:本大题共5小题,每小题5分,共25分.1012.313.a≥2 14.7 15.②③11.[)∞+,三、解答题:本大题共6小题,共75分.16.解:(1)∵m⊥n,∴m·n=(cosα,1-sinα)·(-cosα,sinα)=0,即-cos 2α+sin α-sin 2α=0. ……………………………………………………3分 由sin 2α+cos 2α=1,解得sin α=1, ∴ 22ππα+=k ,k ∈Z .…………………………………………………………6分(2) ∵ m -n =(2cos α,1-2sin α), ∴ |m -n |=22)sin 21()cos 2(αα-+αααsin 41)sin (cos 422-++=αsin 45-=, ………………………………………………………9分∴ 5-4sin α=3,即得21sin =α, ∴ 21sin 212cos 2=-=αα. ……………………………………………………12分 17.解:(1)由已知a n +1=2a n +1,可得a n +1+1=2(a n +1).∴2111=+++n n a a (常数).………………………………………………………3分 此时,数列}1{+n a 是以211=+a 为首项,2为公比的等比数列,∴ n n n a 22211=⋅=+-,于是a n =2n -1. ………………………………………6分(2)∵n n nb 2=.…………………………………………………………………7分 ∴ n n nS 2232221321++++= ,两边同乘以21,得,2232221211432+++++=n n n S两式相减得 12221212121+-+++=n n n nS12211)211(21+---=n n n 12211+--=n n n, ∴nn n nS 22121--=-.…………………………………………………………12分 18.解:(1)设第n 年的受捐贫困生的人数为a n ,捐资总额为b n .则a n =80+(n -1)a ,b n =50+(n -1)×10=40+10n . ……………………………2分 ∴ 当a =10时,a n =10n +70, ∴8.070101040>++=n na b n n , 解得:n >8. ……………………………………………………………………5分 即从第9年起每年的受捐大学生人均获得的奖学金才能超过0.8万元. …6分(2)由题意:nnn n a b a b >++11(n >1), 即an nna n )1(80104080)1(1040-++>+++,………………………………………………8分 整理得 (5+n )[80+(n -1)a ]-(4+n )(80+na )>0, 即400+5na -5a +80n +n 2a -na -320-4na -80n -n 2a >0, 化简得80-5a >0,解得a <16,……………………………………………………………………11分 ∴ 要使人均奖学金年年有增加,资助的大学生每年净增人数不超过15人.……………………………………………12分19.解:(1)在Rt △ABC 中,AC =AB cos60º=3216=⨯,231==AB AD . ∵ +=,∴ ⋅+=⋅+=⋅2)(><⋅⋅+=CA AD CA AD CA ,cos ||||||2=9+2×3×cos120º=6. …………………………………………………………………4分(2)在△ACD 中,∠ADC =180º-∠A -∠DCA=120º-θ,由正弦定理可得ADCAC A CD ∠=sin sin ,即)120sin(233)120sin(233θθ-︒=-︒⨯=CD . ………………………………………5分在△AEC 中,∠ACE =θ+30º,∠AEC =180º-60º-(θ+30º)=90º-θ,由正弦定理可得:AECAC A CE ∠=sin sin ,即θθcos 233)90sin(233=-︒⨯=CE , ……6分 ∴θθcos 233)120sin(2334130sin 21⋅-︒⋅=︒⋅⋅=∆CE CD S DCEθθc o s)120sin(11627⋅-︒⋅=,………………………7分 令f (θ)=sin(120º-θ)cos θ,0º≤θ≤60º, ∵ f (θ)=(sin120ºcos θ-cos120ºsin θ)cos θθθθcos sin 21cos 232+= θθ2sin 212122cos 123+++⨯= )2sin 212cos 23(2143θθ++=)602sin(2143︒++=θ,………………………………………………10分 由0º≤θ≤60º,知60º≤2θ+60º≤180º,∴ 0≤sin(2θ+60º)≤1, ∴43≤f (θ)≤2143+, ∴ )32(4-≤)(1θf ≤334, ∴ DCE S ∆≥)32(427-, 即DCE S ∆的最小值为)32(427-.……………………………………………12分 20.解:(1)c bx ax x f ++='23)(,由题意得3ax 2+bx +c ≥0的解集为{x |-2≤x ≤1}, ∴ a <0,且方程3ax 2+bx +c =0的两根为-2,1.于是13-=-a b ,23-=ac, 得b =3a ,c =-6a .………………………………………………………………2分∵ 3ax 2+bx +c <0的解集为{x |x <-2或x >1},∴ f (x )在(-∞,-2)上是减函数,在[-2,1]上是增函数,在(1,+∞)上是减函数. ∴ 当x =-2时f (x )取极小值,即-8a +2b -2c -1=-11, 把b =3a ,c =-6a ,代入得-8a +6a +12a -1=-11,解得a =-1. ……………………………………………………………………5分 (2)由方程f (x )-ma +1=0,可整理得0112123=+--++ma cx bx ax , 即ma ax ax ax =-+62323. ∴ x x x m 62323-+=.…………………………………………………………7分 令x x x x g 623)(23-+=, ∴ )1)(2(3633)(2-+=-+='x x x x x g . 列表如下:又∵29)3(=-g ,g (-2)=10,g (0)=0, 由题意知直线y =m 与曲线x x x x g 623)(23-+=有两个交点,于是29<m <10.…………………………………………………………………13分 21.解:(1)∵ a xx f -='1)(,x >0, ∴ 当a <0时,0)(>'x f ,即f (x )在(0,+∞)上是增函数.当a >0时, x ∈(0,a 1)时0)(>'x f ,f (x )在(0,a 1)上是增函数;x ∈(a1,+∞) 时0)(<'x f ,f (x )在(a1,+∞)上是减函数. ∴ 综上所述,当a <0时f (x )的单调递增区间为(0,+∞);当a >0时,f (x )的单调递增区间为(0,a 1),f (x )的单调递减区间为(a1,+∞).…………5分 (2)当a=1时,()ln 1f x x x =-+,∴ 1ln ln ln ln 12121211221212---=-+--=--=x x x x x x x x x x x x y y k ,∴ 1212ln ln 1x x x x k --=+.要证2111x k x <+<,即证212211ln ln 11x x x x x x -<<-, 因210x x ->,即证21221211ln x x x x x x x x --<<, 令21x t x =(1t >),即证11ln 1t t t-<<-(1t >). 令()ln 1k t t t =-+(1t >),由(1)知,()k t 在(1,+∞)上单调递减, ∴ ()()10k t k <=即ln 10t t -+<,∴ ln 1t t <-.①令1()ln 1h t t t =+-(1t >),则22111()t h t t t t-'=-=>0,∴()h t 在(1,+∞)上单调递增,∴()(1)h t h >=0,即1ln 1t t>-(1t >).②综①②得11ln 1t t t -<<-(1t >),即2111x k x <+<.……………………9分(3)由已知)21(2)(xk ax x f ->-+即为)2()1(ln ->-x k x x ,x >1, 即02)1(ln >+--k kx x x ,x >1.令k kx x x x g 2)1(ln )(+--=,x >1,则k x x g -='ln )(. 当k ≤0时,0)(>'x g ,故)(x g 在(1,+∞)上是增函数, 由 g (1)=-1-k +2k =k -1>0,则k >1,矛盾,舍去.当k >0时,由k x -ln >0解得x >e k ,由k x -ln <0解得1<x <e k , 故)(x g 在(1,e k )上是减函数,在(e k ,+∞)上是增函数,∴ )(x g min =g (e k )=2k -e k .即讨论)(x g min =2k -e k >0(k >0)恒成立,求k 的最小值. 令h (t )=2t -e t ,则t e x h -='2)(, 当t e -2>0,即t <ln2时,h (t )单调递增, 当t e -2<0,即t >ln2时,h (t )单调递减, ∴ t =ln2时,h (t )max =h (ln2)=2ln2-2. ∵ 1<ln2<2, ∴ 0<2ln2-2<2.又∵ h (1)=2-e <0,h (2)=4-e 2<0, ∴ 不存在整数k 使2k -e k >0成立.综上所述,不存在满足条件的整数k .………………………………………14分。

四川省绵阳市高三第一次诊断性考试数学文试题 扫描版

四川省绵阳市高三第一次诊断性考试数学文试题 扫描版

绵阳市高2012级第一次诊断性考试数学(文史类)参考解答及评分标准一、选择题:本大题共10小题,每小题5分,共50分.BBDDC BACCA二、填空题:本大题共5小题,每小题5分,共25分.11.53-12.-1 13.-2 14.15 15.(0,2)三、解答题:本大题共6小题,共75分.16.解:(Ⅰ)=)(x f 2m·n -11cos 2cos sin 22-+⋅=x x x ωωω=)42sin(22cos 2sin πωωω+=+x x x . ……………………………6分由题意知:π=T ,即πωπ=22,解得1=ω.…………………………………7分 (Ⅱ) 由(Ⅰ)知)42sin(2)(π+=x x f ,∵6π≤x ≤4π,得127π≤42π+x ≤43π,又函数y =sin x 在[127π,43π]上是减函数,∴ )34sin(2127sin2)(max πππ+==x f ……………………………………10分 3sin 4cos 23cos4sin 2ππππ+==213+.…………………………………………………………12分17.解:(Ⅰ) 由题知⎩⎨⎧≥->-,,0102t t 解得21<≤t ,即)21[,=D .……………………3分(Ⅱ) g (x )=x 2+2mx -m 2=222)(m m x -+,此二次函数对称轴为m x -=.……4分 ① 若m -≥2,即m ≤-2时, g (x )在)21[,上单调递减,不存在最小值;②若21<-<m ,即12-<<-m 时, g (x )在)1[m -,上单调递减,]2(,m -上递增,此时22)()(2min ≠-=-=m m g x g ,此时m 值不存在;③m -≤1即m ≥-1时, g (x )在)21[,上单调递增,此时221)1()(2min =-+==m m g x g ,解得m =1. …………………………11分 综上:1=m . …………………………………………………………………12分 18.解:(Ⅰ) 51cos 5=∠=ABC AB ,,4BC =, 又(0,)ABC π∠∈,所以562cos 1sin 2=∠-=∠ABC ABC , ∴645624521sin 21=⨯⨯⨯=∠⋅⋅=∆ABC BC BA S ABC . ………………6分 (Ⅱ) 以BC BA ,为邻边作如图所示的平行四边形ABCE ,如图, 则51cos cos -=∠-=∠ABC BCE ,BE =2BD =7,CE =AB =5,BCDA E在△BCE 中,由余弦定理:BCE CE CB CE CB BE ∠⋅⋅-+=cos 2222.即)51(5225492-⨯⨯⨯-+=CB CB ,解得:4=CB . ………………………………………………………………10分19.解:(Ⅰ) 由832539a a a S ⋅==,,得:⎪⎩⎪⎨⎧+⋅+=+=⨯+,,)7()2()4(9223311211d a d a d a d a 解得:121==d a ,.∴ 1+=n a n ,n n n n S n 2322)12(2+=++=. …………………………………5分(Ⅱ) 由题知=n c )1(2++n n λ. ………………………………………………6分 若使}{n c 为单调递增数列,则=-+n n c c 1-+++)2()1(2n n λ)]1([2++n n λ=012>++λn 对一切n ∈N *恒成立,即: 12-->n λ对一切n ∈N *恒成立, ………………………………… 10分 又12)(--=n n ϕ是单调递减的, ∴ 当1=n 时,max )(n ϕ=-3,∴ 3->λ. …………………………………………………………………12分 20.(Ⅰ)证明: 由1)(--=ax e x f x ,得a e x f x -=')(.…………………………1分由)(x f '>0,即a e x ->0,解得x >ln a ,同理由)(x f '<0解得x <ln a , ∴ )(x f 在(-∞,ln a )上是减函数,在(ln a ,+∞)上是增函数, 于是)(x f 在a x ln =取得最小值.又∵ 函数)(x f 恰有一个零点,则0)(ln )(min ==a f x f , ………………… 4分 即01ln ln =--a a e a .………………………………………………………… 5分化简得:1ln 1ln 01ln -=-==--a a a a a a a a a 于是,即,, ∴ 1-=a a e a . ………………………………………………………………… 6分 (Ⅱ)解:由(Ⅰ)知,)(x f 在a x ln =取得最小值)(ln a f ,由题意得)(ln a f ≥0,即1ln --a a a ≥0,……………………………………8分 令1ln )(--=a a a a h ,则a a h ln )(-=', 由0)(>'a h 可得0<a <1,由0)(<'a h 可得a >1.∴ )(a h 在(0,1)上单调递增,在(1,+∞)上单调递减,即0)1()(max ==h a h , ∴ 当0<a <1或a >1时,h (a )<0,∴ 要使得)(x f ≥0对任意x ∈R 恒成立,.1=a ∴a 的取值集合为{1}……………………………13分 21.解:(Ⅰ) 1==b a 时,x x x x f ln 21)(2+-=,xx x f 11)(+-=', ∴21)1(-=f ,1)1(='=f k ,…………………………………………………2分故)(x f 点()1(1f ,)处的切线方程是2230x y --=.……………………3分(Ⅱ)由()()∞+∈+-=,,0ln 22x x bx x a x f ,得x bx ax x f 1)(2+-='. (1)当0=a 时,xbxx f -='1)(.①若b ≤0,由0>x 知0)(>'x f 恒成立,即函数)(x f 的单调递增区间是)0(∞+,.………………………………………………5分②若0>b ,当b x 10<<时,0)(>'x f ;当bx 1>时,0)(<'x f . 即函数)(x f 的单调递增区间是(0,b 1),单调递减区间是(b1,+∞).……………………………………………7分(2) 当0<a 时,0)(='x f ,得012=+-bx ax ,由042>-=∆a b 得aab b x a a b b x 24242221--=-+=,.显然,0021><x x ,,当20x x <<时,0)(>'x f ,函数)(x f 的单调递增, 当2x x >时,0)(<'x f ,函数)(x f 的单调递减,所以函数)(x f 的单调递增区间是(0,a a b b 242--),单调递减区间是(aab b 242--,+∞).………………………………………………………………9分综上所述:当a =0,b ≤0时,函数)(x f 的单调递增区间是)0(∞+,;当a =0,b >0时,函数)(x f 的单调递增区间是(0,b 1),单调递减区间是(b1,+∞); 当0<a 时,函数)(x f 的单调递增区间是(0,a ab b 242--),单调递减区间是(aa b b 242--,+∞). ……………………………………………………………10分(Ⅲ)由题意知函数)(x f 在2=x 处取得最大值.由(II)知,a ab b 242--是)(x f 的唯一的极大值点,故aa b b 242--=2,整理得a b 412--=-.于是ln()(2)ln()(14)ln()14a b a a a a ---=----=-++令()ln 14(0)g x x x x =+->,则1()4g x x'=-. 令0)(='x g ,得14x =,当1(0)4x ∈,时,0)(>'x g ,)(x g 单调递增;当1()4x ∈+∞,时,0)(<'x g ,)(x g 单调递减.因此对任意0x >,)(x g ≤11()ln044g =<,又0a ->,故()0g a -<,即041)ln(<++-a a ,即ln()142a a b -<--=-,∴ ln()2a b -<-.……………………………………………………………14分。

四川省绵阳市高三数学上学期第一次诊断性测试试题理

四川省绵阳市高三数学上学期第一次诊断性测试试题理

绵阳市高中2016届高三第一次(11月)诊断性考试数学理试题本试卷分第I 卷(选择题)和第II 卷(非选择题).第I 卷.1至2页,第II 卷2至4 页.共4页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上,在 本试题卷、草稿纸上答题无效.考试结束后,将答题卡交回. 第I 卷(选择题,共50分) 注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 第I 卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一个是符合题目要求的.1.集合S={x ||x-4|<2,x ∈N *},T ={4,7,8},则S U T =(A){4} (B){3,5,7,8} (C) {3, 4, 5,7,8} (D) {3,4, 4, 5, 7, 8} 2.命题“2000,23x N x x ∃∈+≥”的否定为(A) 2000,23x N x x ∃∈+≤ (B) 2,23x N x x ∀∈+≤ (C) 2000,23x N x x ∃∈+< (D) 2,23x N x x ∀∈+<3.己知幂函数过点(2,则当x=8时的函数值是(A )(B )±(C )2 (D )644.若,,a b c ∈R,己知P :,,a b c 成等比数列;P 是Q 的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件5.下列四个函数中,最小正周期为π,且关于直线x =一512π对称的函数是 (A )sin()23x y π=+(B )sin()23x y π=- (C )sin(2)3y x π=-(D )sin(2)3y x π=+6.在等差数列{n a }中,若a 4+a 9+a l4=36,则101112a a -=(A )3 (B )6 (C )12 (D )247.在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,若22,sin c b A B ==, 则cosC =(A (B (C (D8.若实数x ,y 满足不等式组024010x y x y x my +≥⎧⎪+-≤⎨⎪--≤⎩,且x y +的最大值为3,则实数m=(A )一1 (B )12(C )l (D )2 9.设函数y =f (x ),x ∈R 满足f (x +l )=f (x 一l ),且当x ∈(-1,1]时,f (x )=1一x 2,函数g (x )=lg ||,01,0x x x ≠⎧⎨=⎩,则h (x )=f (x )一g (x )在区间[-6,9]内的零点个数是(A )15 (B )14 (C )13.(D )1210.直角△ABC 的三个顶点都在单位圆221x y +=上,点M (12,12),则|MA MB MC ++|的最大值是(Al (B2 (C+1 (D2第II 卷(非选择题共100分) 注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指的答题区域内作答.作图题可 先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效. 第II 卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分, 11、·函数()f x 的定义域为12,式子0000tan 20tan 4020tan 40+的值是 .13·已知函数266,2(),2x x x x f x a a x ⎧-+-≤⎪=⎨->⎪⎩其中a >0,1a ≠,若对任意的1212,,x x R x x ∈≠,恒有1212[()()]()f x f x x x -->0,则实数a 的取值范围 .14.二次函数2()f x ax =+2bx+c 的导函数为'()f x ,已知'(0)0f >,且对任意实数x ,有()0f x ≥,则(1)'(0)f f 的最小值为 . 1 5.设集合M 是实数集R 的一个子集,如果点0x ∈R 满足:对任意ε>0,都存在x ∈M , 使得0<0||x x ε-<;,称x 0为集合M 的一个“聚点”.若有集合:①有理数集; ②cos|*1n N n π⎧⎫∈⎨⎬+⎩⎭③sin|*1n N n π⎧⎫∈⎨⎬+⎩⎭ ④|*1n N n π⎧⎫∈⎨⎬+⎩⎭其中以0为“聚点”的集合是 .(写出所有符合题意的结论序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明.证明过程或演算步骤. 16.(本小题满分12分)已知向量(cos ,1sin ),(cos ,sin )()m n R ααααα=-=-∈ (1)若m n ⊥,求角α的值; (2)若||3m n -=,求cos2α的值.17、(本小题满分12分)已知数列{n a }的首项a 1=1,且a n+1=2a n +(*,)n N R λλ∈∈(1)试问数列{n a +λ}是否为等比数列?若是,请求出数列{n a }的通项公式;若不是, 请说,明理由; (2)当λ=1时,记1n n nb a =+,求数列{n b }的前n 项和Sn18.(本小题满分12分)某民营企业家去年为西部山区80名贫困大学生捐资奖学金共50万元妥该企业家计划 从今年起(今年为第一年)10年内每年捐资总金额都比上一年增加10万元,资助的 贫困大学生每年净增a 人。

2016届绵阳一诊数学试题与答案

2016届绵阳一诊数学试题与答案

.下载可编辑保密★启用前【考试时间匕20】5年11月1日15:00—17:00)绵阳市高中2013级第一次诊断性考试数学(文史类)本试卷分第I卷〔选择题)和第II卷(非选择題).第f卷1至2页*第II卷2至4 页・共4页・满分乃0分”考试时间120分钟.考生作答时*须将答案答在答题卡上,在本试题卷、草稿纸上答题无效-考试结束后,将答题卡交回.第I卷(选择题,共50分)注董事项:必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑. 第I卷共闭小题.一、选择题:本大题共10小趣尸每小题5分,共50分*在每小题给出的四个选项中,只有一个是符合题目要求的.1. 集合s={3t 4, 5}r r={4r 7r 8}, JM5UT=⑷{4} 8}(C)⑶ 4, 5, 7, 8} (D){3, 4f 4, 5, 7, 8}2. 命题“兀E N,球+ 2珀鼻站的否定为(A)肌E N,^2+2J^<3(B) VxeN, ^ + 2x0{C)3^eN f + (D)V XE N, X3+2X^33. 已知轟函数过点(2, Ji),则当尸R时的函数值是(A) ±2y/2 (B)2 (C) 2^2 (D)644. 若偽b、c£R,且ofccHO,已知用a t b r c成等比数列;Q t b = y[ac .则尸是Q的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必耍条件5・下列四个函数中,最小正周期为托,且关于直线x--~对称的函数是12数学〔文史类)试题第1页(共斗页)(C) }r = sin(2j-y) (D) y=sm(2x + ^)数学(文史类)试题第2页(共4页)6. 在等差数列{乙}中.若q+6+% =36 ■则2a l0 -a H =(A) 6(B)12(024(D)367. 在 3BC 中,角 4, B, C 的对边分别是 a, b, c,若 cJfJab, sin/ = 2 运 sinB, 则 cosC =(A)返(B)返(C)-返(D)-返24 24x + y^O,8. 若实数x, y 满足不等式组・x + 2y-4W0,则巧的最大值为[x - y -1W 0,(A) 1 (B)2(C) 3(D)49. 设函数 y =xwR 满足/(x + l) = /(x-l),且当 xw(—1,1]时,/(x) = l-x 2,函数g(x) = P g|X|r 丁则心)*(x)-g(x)在区间[“,9]内的零点个数是 L x = Qf»(A) 12(B)13 (014 • (Dx 2+/ =1±,点M(|, |),则网 + 面+疋| 第II 卷(非选择题共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指的答题区域内作答.作图题可 先用铅笔绘出,确认后再用0.5毫米黑色屋迹签字笔描清楚.答在试题卷、草稿纸上无效.第II 卷共11小题.二、填空题:本大题共5小题,每小题5分.共25分・ 11・函数/(X )= Vlgx-1的定义域为 ______________ ・12.式子tan20o + tan40° + V3tan20o tan40°的值是 _______________10.直角△MBC 的三个顶点都在单位圆的最大值是(A )(B) V2+2 (D 呼+ 2 2.下载可编辑1M 已知函数= X +6x 2其中a>o f o*l,若对任意的Xj, x2 s R F JC]-a* x>2>鼻乃恒有[f(x^-f(x7y\(x l-x2)>Q,则实数口的取值范围__________________ ■14・已知m b满足log^a-logj 6 = 1 t则(1+2啾1+时的最小值为一. 一215*设集音M是实数集R的一个子集*如果点却WR满足:对任意e>0f都存在xeM t 便得0<|x-x o j<£r,称旺为集合M的一个血聚点若有集合:①有理数集;②无理数集;sin-^ rae N* J;④N*}.R+l|其中以。

2016 届绵阳市高三第一次诊断考试针对性练习一文科数学及解析

2016 届绵阳市高三第一次诊断考试针对性练习一文科数学及解析

cos⺂
sin sin .
(2)若 ǡ 䇆 䇆,求 20.已知 䇆
周长的取值范围.
(1)试讨论函数 (2)若


ln . t

的单调性; 恒成立,求 的值.
21.已知函数 (1)当 䇆
时,求



ln
处的切线方程;

⺂.
试卷第 3页,总 4页
(2)设函数 (ⅰ)若函数
有且仅有一个零点时,求


⺂,
是等腰直角三角形( 为直角顶点) , , 分别为线段

的范围为__________.
三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考生都必须 作答.第 22、23 题为选考题,考生根据要求作答. 17.已知数列 (1)求数列 (2) 设数列

的前 n 项和为 , 的通项公式; 的前 n 项和为
命题人:李弦裴工作室
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合 A. 2.已知向量 A.⺂ 䇆 䇆 䇆 ⺂䇆 , 䇆 䇆 | t B. ǡ䇆 ,则 ⺂䇆

) C. D. 䇆( ) D. 2

⺂䇆

B.2
䇆 ,若
D. ( 5,1) ) D.6
8.已知 a>0、b>0,a、b 的等比中项是 1,且 m= A.3 9.将函数 y B. 4
3sin 4
x 的图象向左平移 3 个单位,得函数 y 3sin x ( ) 的图象(如图) , 4

绵阳市高中 第一次诊断性考试数学文

绵阳市高中 第一次诊断性考试数学文

绵阳市高中第一次诊断性考试数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

共4页。

满分150分。

考试时间120分钟。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

考试结束后,将答题卡交回。

第Ⅰ卷(选择题,共60分)注意事项:必须使用2B 铅笔在答题卡上经所选答案对应的标号涂黑。

第Ⅰ卷共12小题。

1.设集合(){}01x 4-x x <)(+∈=Z A ,集合B={}4,3,2,则B A I = A.(2,4) B.{2.4} C.{3} D.{2,3} 2.若x >y ,且x+y=2,则下列不等式成立的是 A.22y x < B.y1x 1< C.x >1 D.y <0 3.已知向量a=(x-1,2),b=(x ,1),且a ∥b ,则x 的值是 A.-1 B.0 C.1 D.2 4.若=∂=⎪⎭⎫⎝⎛∂2tan 24-tan ,则π A.-3 B.3 C.43-D.43 5.某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费。

某职工某月缴水费55元,则该职工这个月实际用水为()立方米。

A.13B.14C.15D.16 6. 已知命题2-b 1-a ,b a q 0e x p 0x 0=∈≤∈∃若,::命题,使得:R R ,则a-b=-1,下列命题为真命题的是 A.p B.q ⌝ C.q p ∨ D.q p ∧7. 函数f (x )满足f (x+2)=f (x ),且当-1≤x ≤1时,f (x )=|x|。

若函数y=f (x )的图象与函数g (x )=x log a (a >0,且a ≠1)的图象有且仅有4个交点,则a 的取值集合为A. (4,5)B.(4,6)C.{5}D.{6}8. 已知函数最低点)图象的最高点与相邻>()(0x cos 3x sin x f ϖϖϖ+=的距离是17,若将y=f (x )的图象向右平移61个单位得到y=g (x )的图象,则函数y=g (x )图象的一条对称轴方程是 A.65x =B.31x =C.21x = D.x=0 10. 已知0 <a <b <1,给出以下结论:①;>ba 3121⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛b log a log b a 31213121>;③>②.则其中正确的结论个数是 A.3个 B.2个 C.1个 D.0个11. 已知1x 是函数f (x )=x+1-ln (x+2)的零点,2x 是函数g (x )=4a 4ax 2-x 2++的零点,且满足|21x -x |≤1,则实数a 的最小值是 A.-1 B.-2 C.22-2 D.22-112. 已知a ,b ,c ∈R ,且满足1c b 22=+,如果存在两条相互垂直的直线与函数f (x )=ax+bcosx+csinx 的图象都相切,则c 3b 2a ++的取值范围是A. [-2,2]B.[-55,]C.[66-,]D.[22,22-] 第Ⅱ卷(非选择题 共90分) 注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指的答题区域内作答。

绵阳市高中2013级(2016届)高三第一次诊断性考试数学理

绵阳市高中2013级(2016届)高三第一次诊断性考试数学理

绵阳市高2013级第一次诊断性考试数学(理工类)参考解答及评分标准一、选择题:本大题共10小题,每小题5分,共50分.CDADD BACBC二、填空题:本大题共5小题,每小题5分,共25分.11.(]100,12.3 13.a ≥2 14.2 15.①③三、解答题:本大题共6小题,共75分.16.解 :(1)∵ m ⊥n ,∴ m ·n =(cos α,1-sin α)·(-cos α,sin α)=0,即-cos 2α+sin α-sin 2α=0. ……………………………………………………3分 由sin 2α+cos 2α=1,解得sin α=1, ∴ 22ππα+=k ,k ∈Z .…………………………………………………………6分(2) ∵ m -n =(2cos α,1-2sin α), ∴ |m -n |=22)sin 21()cos 2(αα-+αααsin 41)sin (cos 422-++=αsin 45-=, ………………………………………………………9分∴ 5-4sin α=3,即得21sin =α, ∴ 21sin 212cos 2=-=αα.……………………………………………………12分 17.解:(1)由已知a n +1=2a n +λ,可得a n +1+λ=2(a n +λ).∵ a 1=1,当a 1+λ=0,即λ=-1时,a n +λ=0,此时{a n +λ}不是等比等列. …………3分 当a 1+λ≠0,即λ≠-1时,21=+++λλn n a a (常数).此时,数列}{λ+n a 是以λλ+=+11a 为首项,2为公比的等比数列,∴ 12)1(-⋅+=+n n a λλ,于是12)1(-⋅+=+n n a λλ. ………………………6分 (2)当λ=1时,a n =2n -1,∴ n n nb 2=. ……………………………………………………………………7分 ∴ n n nS 2232221321++++= ,两边同乘以21,得,2232221211432+++++=n n n S两式相减得 12221212121+-+++=n n n nS12211)211(21+---=n n n 12211+--=n n n, ∴nn n nS 22121--=-.…………………………………………………………12分 18.解:(1)设第n 年的受捐贫困生的人数为a n ,捐资总额为b n .则a n =80+(n -1)a ,b n =50+(n -1)×10=40+10n . ……………………………2分 ∴ 当a =10时,a n =10n +70, ∴8.070101040>++=n na b n n , 解得:n >8. ……………………………………………………………………5分 即从第9年起受捐大学生人均获得的奖学金才能超过0.8万元. …………6分 (2)由题意:nnn n a b a b >++11, 即an nna n )1(80104080)1(1040-++>+++,………………………………………………8分整理得 (5+n )[80+(n -1)a ]-(4+n )(80+na )>0, 即400+5na -5a +80n +n 2a -na -320-4na -80n -n 2a >0, 化简得80-5a >0,解得a <16,……………………………………………………………………11分 ∴ 要使人均奖学金年年有增加,资助的大学生每年净增人数不超过15人.……………………………………………12分19.解:(1)在Rt △ABC 中,AC =AB cos60º=3216=⨯,231==AB AD . ∵ AD CA CD +=,∴ CA AD CA CA AD CA CA CD ⋅+=⋅+=⋅2)(><⋅⋅+=CA AD CA AD CA ,cos ||||||2=9+2×3×cos120º=6.…………………………………………………………………4分(2)在△ACD 中,∠ADC =180º-∠A -∠DCA=120º-θ,由正弦定理可得ADCAC A CD ∠=sin sin ,即)120sin(233)120sin(233θθ-︒=-︒⨯=CD . ………………………………………5分在△AEC 中,∠ACE =θ+30º,∠AEC =180º-60º-(θ+30º)=90º-θ,由正弦定理可得:AECAC A CE ∠=sin sin ,即θθcos 233)90sin(233=-︒⨯=CE , …6分 ∴θθcos 233)120sin(2334130sin 21⋅-︒⋅=︒⋅⋅=∆CE CD S DCEθθc o s)120sin(11627⋅-︒⋅=, …………………7分 令f (θ)=sin(120º-θ)cos θ,0º≤θ≤60º, ∵ f (θ)=(sin120ºcos θ-cos120ºsin θ)cos θθθθcos sin 21cos 232+= θθ2sin 212122cos 123+++⨯= )2sin 212cos 23(2143θθ++=)602sin(2143︒++=θ,………………………………………………10分 由0º≤θ≤60º,知60º≤2θ+60º≤180º, ∴ 0≤sin(2θ+60º)≤1, ∴43≤f (θ)≤2143+, ∴ )32(4-≤)(1θf ≤334, ∴)32(427-≤DCE S ∆≤12327.……………………………………………12分 20.解:(1)c bx ax x f ++='23)(,由题意得3ax 2+bx +c ≥0的解集为{x |-2≤x ≤1}, ∴ a <0,且方程3ax 2+bx +c =0的两根为-2,1. 于是13-=-a b ,23-=ac, 得b =3a ,c =-6a . ………………………………………………………………2分 ∵ 3ax 2+bx +c <0的解集为{x |x <-2或x >1},∴ f (x )在(-∞,-2)上是减函数,在[-2,1]上是增函数,在(1,+∞)上是减函数. ∴ 当x =-2时f (x )取极小值,即-8a +2b -2c -1=-11, 把b =3a ,c =-6a 代入得-8a +6a +12a -1=-11,解得a =-1.………………………………………………………………………5分 (2)由方程f (x )-ma +1=0,可整理得0112123=+--++ma cx bx ax , 即ma ax ax ax =-+62323.∴ x x x m 62323-+=.…………………………………………………………7分 令x x x x g 623)(23-+=,∴ )1)(2(333)(2-+=-+='x x b x x x g . 列表如下:x(-∞,-2)-2 (-2,1) 1 (1,+∞))(x g '+ 0 - 0 + g (x )↗极大值↘极小值↗∴ g (x )在[-3,-2]是增函数,在[-2,0]上是减函数.……………………11分 又∵29)3(=-g ,g (-2)=10,g (0)=0, 由题意,知直线y =m 与曲线x x x x g 623)(23-+=仅有一个交点, 于是m =10或0<m <29. ………………………………………………………13分 21.解:(1)1111)(+=-+='x xx x f , ∴当x ∈(-1,0)时,0)(>'x f ,即f (x )在(-1,0)上是增函数,当x ∈(0,+∞)时,0)(<'x f ,即f (x )在(0,+∞)上是减函数.∴ f (x )的单调递增区间为(-1,0),单调递减函数区间为(0,+∞).………3分(2)由f (x -1)+x >k )31(x -变形得)31()1(ln xk x x x ->+--,整理得x ln x +x -kx +3k >0,令g (x )=x ln x +x -kx +3k ,则.2ln )(k x x g -+=' ∵ x >1, ∴ ln x >0若k ≤2时,0)(>'x g 恒成立,即g (x )在(1,+∞)上递增, ∴ 由g (1)>0即1+2k >0解得21->k , ∴ .221≤<-k 又∵ k ∈Z , ∴ k 的最大值为2.若k >2时,由ln x +2-k >0解得x >2-k e ,由ln x +2-k <0,解得1<x <2-k e . 即g (x )在(1,2-k e )上单调递减,在(2-k e ,+∞)上单调递增. ∴ g (x )在(1,+∞)上有最小值g (2-k e )=3k -2-k e , 于是转化为3k -2-k e >0(k >2)恒成立,求k 的最大值. 令h (x )=3x -2-x e ,于是23)(--='x e x h .∵ 当x >2+ln3时,0)(<'x h ,h (x )单调递减,当x <2+ln3时0)(>'x h ,h (x )单调递增.∴ h (x )在x =2+ln3处取得最大值. ∵ 1<ln3<2, ∴ 3<2+ln3<4, ∵ 013)1(>-=eh ,h (2+ln3)=3+3ln3>0,h (4)=12-e 2>0,h (5)=15-e 3<0, ∴ k ≤4.∴ k 的最大取值为4.∴ 综上所述,k 的最大值为4.…………………………………………………9分 (3)假设存在这样的x 0满足题意,则 由20)(210x a e x f -<等价于01120020<-++x e x x a (*). 要找一个x 0>0,使(*)式成立,只需找到当x >0时,函数h (x )=1122-++x ex x a 的最小值h (x )min 满足h (x )min <0即可. ∵ )1()(xe a x x h -=', 令)(x h '=0,得e x =a1,则x =-ln a ,取x 0=-ln a , 在0<x <x 0时,)(x h '<0,在x >x 0时,)(x h '>0,∴ h (x )min =h (x 0)=h (-ln a )=1ln )(ln 22-++a a a a a, 下面只需证明:在0<a <1时,1ln )(ln 22-++a a a a a<0成立即可.又令p (a )=1ln )(ln 22-++a a a a a,a ∈(0,1),则2)(ln 21)(a a p ='≥0,从而p (a )在a ∈(0,1)时为增函数.∴ p (a )<p (1)=0,因此x 0=-ln a 符合条件,即存在正数x 0满足条件.…………………………………………………14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

市高2013级第一次诊断性考试数学(文史类)参考解答及评分标准一、选择题:本大题共10小题,每小题5分,共50分.CBCBD BACCC二、填空题:本大题共5小题,每小题5分,共25分.11.[)∞+,1012.313.a ≥214.7 15.②③三、解答题:本大题共6小题,共75分. 16.解 :(1)∵ m ⊥n ,∴ m ·n =(cos α,1-sin α)·(-cos α,sin α)=0,即-cos 2α+sin α-sin 2α=0. ……………………………………………………3分由sin 2α+cos 2α=1,解得sin α=1, ∴ 22ππα+=k ,k ∈Z .…………………………………………………………6分(2) ∵ m -n =(2cos α,1-2sin α), ∴ |m -n |=22)sin 21()cos 2(αα-+αααsin 41)sin (cos 422-++=αsin 45-=, (9)分∴ 5-4sin α=3,即得21sin =α, ∴ 21sin 212cos 2=-=αα. ……………………………………………………12分17.解:(1)由已知a n +1=2a n +1,可得a n +1+1=2(a n +1).∴2111=+++n n a a (常数).………………………………………………………3分 此时,数列}1{+n a 是以211=+a 为首项,2为公比的等比数列,∴ n n n a 22211=⋅=+-,于是a n =2n-1. ………………………………………6分(2)∵n n nb 2=.…………………………………………………………………7分∴ nn nS 2232221321++++=,两边同乘以21,得,2232221211432+++++=n n n S 两式相减得 12221212121+-+++=n n n nS12211)211(21+---=n n n 12211+--=n n n, ∴nn n nS 22121--=-.…………………………………………………………12分 18.解:(1)设第n 年的受捐贫困生的人数为a n ,捐资总额为b n .则a n =80+(n -1)a ,b n =50+(n -1)×10=40+10n . ……………………………2分∴ 当a =10时,a n =10n +70, ∴8.070101040>++=n n a b n n , 解得:n >8. ……………………………………………………………………5分 即从第9年起每年的受捐大学生人均获得的奖学金才能超过0.8万元. …6分(2)由题意:nnn n a b a b >++11(n >1), 即an nna n )1(80104080)1(1040-++>+++,………………………………………………8分整理得 (5+n )[80+(n -1)a ]-(4+n )(80+na )>0, 即400+5na -5a +80n +n 2a -na -320-4na -80n -n 2a >0, 化简得80-5a >0,解得a <16,……………………………………………………………………11分 ∴ 要使人均奖学金年年有增加,资助的大学生每年净增人数不超过15人.……………………………………………12分19.解:(1)在Rt △ABC 中,AC =AB cos60º=3216=⨯,231==AB AD . ∵ +=,∴ CA AD CA CA AD CA CA CD ⋅+=⋅+=⋅2)(><⋅⋅+=CA AD CA AD CA ,cos ||||||2=9+2×3×cos120º=6. (4)分(2)在△ACD 中,∠ADC =180º-∠A -∠DCA=120º-θ,由正弦定理可得ADCAC A CD ∠=sin sin ,即)120sin(233)120sin(233θθ-︒=-︒⨯=CD . ………………………………………5分在△AEC 中,∠ACE =θ+30º,∠AEC =180º-60º-(θ+30º)=90º-θ,由正弦定理可得:AECAC A CE ∠=sin sin ,即θθcos 233)90sin(233=-︒⨯=CE , ……6分∴ θθcos 233)120sin(2334130sin 21⋅-︒⋅=︒⋅⋅=∆CE CD S DCE θθcos )120sin(11627⋅-︒⋅=,………………………7分 令f (θ)=sin(120º-θ)cos θ,0º≤θ≤60º, ∵ f (θ)=(sin120ºcos θ-cos120ºsin θ)cos θθθθcos sin 21cos 232+= θθ2sin 212122cos 123+++⨯= )2sin 212cos 23(2143θθ++=)602sin(2143︒++=θ,………………………………………………10分 由0º≤θ≤60º,知60º≤2θ+60º≤180º,∴ 0≤sin(2θ+60º)≤1, ∴43≤f (θ)≤2143+, ∴ )32(4-≤)(1θf ≤334,∴ DCE S ∆≥)32(427-, 即DCE S ∆的最小值为)32(427-.……………………………………………12分 20.解:(1)c bx ax x f ++='23)(,由题意得3ax 2+bx +c ≥0的解集为{x |-2≤x ≤1}, ∴ a <0,且方程3ax 2+bx +c =0的两根为-2,1.于是13-=-ab ,23-=ac ,得b =3a ,c =-6a .………………………………………………………………2分∵ 3ax 2+bx +c <0的解集为{x |x <-2或x >1},∴ f (x )在(-∞,-2)上是减函数,在[-2,1]上是增函数,在(1,+∞)上是减函数.∴ 当x =-2时f (x )取极小值,即-8a +2b -2c -1=-11, 把b =3a ,c =-6a ,代入得-8a +6a +12a -1=-11,解得a =-1. ……………………………………………………………………5分(2)由方程f (x )-ma +1=0,可整理得0112123=+--++ma cx bx ax , 即ma ax ax ax =-+62323. ∴ x x x m 62323-+=.…………………………………………………………7分 令x x x x g 623)(23-+=, ∴ )1)(2(3633)(2-+=-+='x x x x x g . 列表如下:11分又∵29)3(=-g ,g (-2)=10,g (0)=0,由题意知直线y =m 与曲线x x x x g 623)(23-+=有两个交点, 于是29<m <10.…………………………………………………………………13分 21.解:(1)∵ a xx f -='1)(,x >0, ∴ 当a <0时,0)(>'x f ,即f (x )在(0,+∞)上是增函数.当a >0时, x ∈(0,a 1)时0)(>'x f ,f (x )在(0,a 1)上是增函数;x ∈(a1,+∞) 时0)(<'x f ,f (x )在(a1,+∞)上是减函数. ∴ 综上所述,当a <0时f (x )的单调递增区间为(0,+∞);当a >0时,f (x )的单调递增区间为(0,a 1),f (x )的单调递减区间为(a1,+∞).…………5分(2)当a=1时,()ln 1f x x x =-+, ∴ 1ln ln ln ln 12121211221212---=-+--=--=x x x x x x x x x x x x y y k ,∴ 1212ln ln 1x x x x k --=+.要证2111x k x <+<,即证212211ln ln 11x x x x x x -<<-, 因210x x ->,即证21221211ln x x x x xx x x --<<, 令21x t x =(1t >),即证11ln 1t t t -<<-(1t >).令()ln 1k t t t =-+(1t >),由(1)知,()k t 在(1,+∞)上单调递减, ∴ ()()10k t k <=即ln 10t t -+<, ∴ ln 1t t <-.①令1()ln 1h t t t =+-(1t >),则22111()t h t t t t-'=-=>0,∴()h t 在(1,+∞)上单调递增,∴()(1)h t h >=0,即1ln 1t t>-(1t >).②综①②得11ln 1t t t -<<-(1t >),即2111x k x <+<.……………………9分(3)由已知)21(2)(xk ax x f ->-+即为)2()1(ln ->-x k x x ,x >1,即02)1(ln >+--k kx x x ,x >1.令k kx x x x g 2)1(ln )(+--=,x >1,则k x x g -='ln )(. 当k ≤0时,0)(>'x g ,故)(x g 在(1,+∞)上是增函数, 由 g (1)=-1-k +2k =k -1>0,则k >1,矛盾,舍去.当k >0时,由k x -ln >0解得x >e k,由k x -ln <0解得1<x <e k, 故)(x g 在(1,e k)上是减函数,在(e k ,+∞)上是增函数, ∴ )(x g m i n =g (e k)=2k -e k.即讨论)(x g m i n =2k -e k>0(k >0)恒成立,求k 的最小值.令h (t )=2t -e t,则t e x h -='2)(,当t e -2>0,即t <ln2时,h (t )单调递增, 当t e -2<0,即t >ln2时,h (t )单调递减, ∴ t =ln2时,h (t )m a x =h (ln2)=2ln2-2. ∵ 1<ln2<2, ∴ 0<2ln2-2<2.又∵ h (1)=2-e <0,h (2)=4-e 2<0, ∴ 不存在整数k 使2k -e k>0成立.综上所述,不存在满足条件的整数k .………………………………………14分。

相关文档
最新文档