小信号分析法重点笔记讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源的反馈环路设计是开关电源设计的一个非常重要的部分,它关系到一个电源性能的好坏。要设计一个好的环路,必须要知道主回路的数学模型,然后根据主回路的数学模型,设计反馈补偿环路。开关电源是一个非线性系统,但可以对其静态工作点附近进行局部线性化,这种方法称为小信号分析法。
以一个CCM模式的BOOST电路为例
其增益为:
其增益曲线为:
其中M和D之间的关系是非线性的。但在其静态工作点M附近很小的一个
区域范围内,占空比的很小的扰动和增益变化量之间的关系是线性的。因此在这个很小的区域范围内,我们可以用线性分析的方法来对系统进行分析。这就是小信号分析的基本思路。
因此要对一个电源进行小信号建模,其步骤也很简单,第一步就是求出其静态工作点,第二步就是叠加扰动,第三步就是分离扰动,进行线性化,第四步就是拉氏变换,得到其频域特性方程,也就是我们说的传递函数。
要对一个变换器进行小信号建模,必须满足三个条件,首先要保证得到的工作点是“静”态的。因此有两个假设条件:
1,一个开关周期内,不含有低频扰动。因此叠加的交流扰动小信号的频率应该
远远小于开关频率。这个假设称为低频假设
2,电路中的状态变量不含有高频开关纹波分量。也就是系统的转折频率要远远小于开关频率。这个假设称为小纹波假设。
其次为了保证这个扰动是在静态工作点附近,因此有第三个假设条件:3,交流小信号的幅值必须远远小于直流分量的幅值。这个称为小信号假设。
对于PWM模式下的开关电源,通常都能满足以上三个假设条件,因此可以使用小信号分析法进行建模。
对于谐振变换器来说,由于谐振变换器含有一个谐振槽路。在一个开关时区或多个开关时区内,谐振槽路中各电量为正弦量,或者其有效成分是正弦量。正弦量的幅值是在大范围变化的,因此在研究PWM型变换器所使用的“小纹波假设”在谐振槽路的小信号建模中不再适用。
对于谐振变换器,通常采用数据采样法或者扩展描述函数法进行建模。
以一个CCM模式下的BUCK电路为例,应用上面的四个步骤,来建立一个小信号模型。对于一个BUCK电路
当开关管开通时,也就是在(0-DTs)区间。其状态方程为
当开关管S断开时,二极管D导通,忽略二极管D的压降,可得到等效电路
其状态方程为:
将状态变量在一个开关周期内求平均,
简化后得到:
这便是一个开关周期内的状态方程,基于上面的低频和小纹波假设,变换器在一个开关周期内是稳定的,因此这也是其静态工作点的方程。
对上面的稳态方程叠加扰动,可以得到以下方程:
进行分解后为:
将稳态方程代入分解后的扰动方程,便可将扰动方程进行分离:
基于上面的第三个假设,即小信号假设,因此可以忽略掉 ,因此可以得到CCM模式下BUCK的小信号方程:
对于一个开关电源,我们的控制目标是输出电压,控制变量是占空比D。因此,我们可以忽略掉输入电压扰动,得到占空比扰动所对应的输出电压的扰动方程。
对上面的方程进行拉氏变换,得到其频域方程:
将两个方程进行整合,可以得到占空比的扰动与输出电压扰动之间的关系:
化简后就可以得到:
从上面的方程已经很清晰的看到输出电压扰动与占空比扰动之间的关系,将其移项便可以得到CCM BUCK的传递函数:
小信号分析法
主要是状态空间平均法,由美国加里福尼亚理工学院的R.D.Middlebrook于1976年提出,可以说这是电力电子学领域建模分析的第一个真正意义的重大突破。后来出现的如电流注入等效电路法、等效受控源法(该法由我国学者张兴柱于1986年提出)、三端开关器件法等,这些均属于电路平均法的范畴。平均法的缺点是明显的,对信号进行了平均处理而不能有效地进行纹波分析;不能准确地进行稳定性分析;对谐振类变换器可能不大适合;关键的一点是,平均法所得出的模型与开关频率无关,且适用开关电源条件是电路中的电感电容等产生的自然
频率必须要远低于开关频率,准确性才会较高。
大信号分析法
有解析法、相平面法、大信号等效电路模型法、开关信号流法、n次谐波三端口模型法、KBM法及通用平均法。还有一个是我国华南理工大学教授丘水生先生于1994年提出的等效小参量信号分析法,不仅适用于PWM变换器也适用于谐振类变换器,并且能够进行输出的纹波分析。
建模的目的是为了仿真,继而进行稳定性分析。1978年,R.Keller首次运用R.D.Middlebrook的状态空间平均理论进行开关电源的SPICE仿真。近30年来,在开关电源的平均SPICE模型的建模方面,许多学者都建立了开关电源各种各样的模型理论,从而形成了各种SPICE模型。这些模型各有所长,比较有代表性的有:Dr.SamBenYaakov的开关电感模型;Dr.RayRidley的模型;基于Dr.VatcheV orperian的Orcad9.1的开关电源平均Pspice模型;基于Steven Sandler 的ICAP4的开关电源平均Isspice模型;基于Dr. VincentG.Bello的Cadence的开关电源平均模型等等。在使用这些模型的基础上,结合变换器的主要参数进行宏模型的构建,并利用所建模型构成的DC-DC变换器在专业的开关电源仿真软件(如Matlab、Pspice等)平台上进行直流分析、小信号分析以及闭环大信号瞬态分析。
设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式。
Buck电路电感电流连续时的小信号模型