材料力学实验指导书分析

合集下载

材料力学实验指导书-

材料力学实验指导书-

实验1 拉伸实验一、实验目的1、观察拉伸过程中的各种现象(包括屈服、强化、颈缩及断裂)。

2、测定低碳钢在拉伸时的屈服极限σs、强度极限σb、延伸率δ和断面收缩率Ψ。

3、测定铸铁的强度极限σb。

4、比较低碳钢(塑性材料)和铸铁(脆性材料)机械性质的特点。

二、实验设备1、万能材料试验机2、游标卡尺三、试件为了避免试件尺寸和形状对实验结果的影响,且便于各种材料的机械性质间的互相比较,应采用国家标准GB 6228一76所规定的试件,通常采用的是低碳钢和铸铁圆棒试件,其直径d和试验段长度(标距)l满足l/d=10或5,例如:可采用d=10mm的圆棒试件。

四、实验原理材料的力学性能指标屈服极限、强度极限、延伸率、断面收缩率是由拉伸破坏实验来确定的。

实验时,利用试验机的自动绘图器可绘出低碳钢和铸铁的拉伸图。

由自动绘图器绘出的拉伸图中、拉伸变形是整个试件的伸长(不只是标距部分的伸长),并且包括机器本身的弹性变形和试件头部在夹板中的滑动等。

试件开始受力时,头部在夹头内的滑动很大,故绘出的拉伸图最初—般是曲线。

对于低碳钢材料,屈服阶段(B-C)常成锯齿形,上屈服点B受到变形和试件形状等的影响较大,下屈服点B则比较稳定,故工程上均以B点对应的载荷作为材料屈服时的载荷P。

确定屈服载荷Ps时,必须注意观察指针的转动情况,一般规定测力指示首次回转后所指示的最小载荷即为屈服载荷。

试件拉伸达到最大载荷Pb以前,在标距范围内的变形是均匀的.从最大载荷开始,产生局部伸长和颈缩.细颈出现后,横截面面积迅速减少,继续拉伸所需的载荷也变得小了,直至E点断裂为止.最初在对试件加载时,主动针即随载荷的增加向前转动,同时它还推动另外—个指针(副针)前进。

当达到最大载荷P时,主动指针开始后退,而副针则停留在载荷最大值的刻度上,副针给出的读数即为最大载荷。

铸铁试件在承受拉力变形极小时,就达到最大载荷而突然发生断裂.它没有屈服和颈缩现象,其强度极限远小于低碳钢的强度极限。

材料力学实验指导书

材料力学实验指导书

材料力学实验指导书实验一 拉伸实验拉伸实验是测定材料力学性能的最基本最重要的实验之一。

由本实验所测得的结果,可以说明材料在静拉伸下的一些性能,诸如材料对载荷的抵抗能力的变化规律、材料的弹性、塑性、强度等重要机械性能,这些性能是工程上合理地选用材料和进行强度计算的重要依据。

一、实验目的要求1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ。

2.碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ∆-曲线)。

3.较低碳钢和铸铁两种材料的拉伸性能和断口情况。

二、实验设备和仪器材料试验机、游标卡尺、两脚标规等三、拉伸试件金属材料拉伸实验常用的试件形状如图所示。

图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。

为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即d l 5=或d l 10=。

对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。

其截面面积和试件标距关系为A l 3.11=或A l 65.5=,A 为标距段内的截面积。

四、实验方法与步骤1、低碳钢的拉伸实验:1)试件的准备:在试件中段取标距d l 10=或d l 5=在标距两端用脚标规打上冲眼作为标志,用游标卡尺在试件标距范围内测量中间和两端三处直径d (在每处的两个互相垂直的方向各测一次取其平均值)取最小值作为计算试件横截面面积用。

2)机的准备;首先了解材料试验机的基本构造原理和操作方法,学习试验机的操作规程。

根据低碳钢的强度极限b σ及试件的横截面积,初步估计拉伸试件所需最大载荷,选择合适的测力度盘,并配置相应的摆锤,开动机器,将测力指针调到“零点”,然后调整试验机下夹头位置,将试件夹装在夹头内。

3)进行实验:试件夹紧后,给试件缓慢均匀加载,用试验机上自动绘图装置,绘出外力F 和变形L ∆的关系曲线(L F ∆-曲线)如图所示。

材料力学试验指导书

材料力学试验指导书

材料力学试验指导书一、引言材料力学试验是评估材料力学性能的重要手段,通过对材料进行不同的试验,可以获取材料的力学性能参数,为工程设计和材料选择提供依据。

本指导书旨在提供材料力学试验的详细步骤和操作要点,以确保试验结果的准确性和可靠性。

二、试验设备1. 材料力学试验机:型号XYZ-1000,最大载荷1000kN,精度等级为0.5级。

2. 试样制备设备:包括切割机、砂轮机、磨床等。

3. 试验测量设备:包括应变计、位移计、力传感器等。

三、试验准备1. 材料选择:选择符合试验要求的材料,例如钢材、铝合金等。

2. 样品制备:根据试验要求,制备符合标准尺寸的试样,并进行必要的表面处理。

3. 试验环境:确保试验室环境温度恒定,并消除外部干扰因素。

四、试验步骤1. 弹性模量试验a. 安装试样:将试样放置在试验机上,确保试样与试验机夹具接触良好。

b. 施加载荷:以恒定速度施加载荷,记录载荷和相应的应变。

c. 计算弹性模量:根据施加的载荷和应变数据,计算试样的弹性模量。

2. 屈服强度试验a. 安装试样:将试样放置在试验机上,确保试样与试验机夹具接触良好。

b. 施加载荷:以恒定速度施加载荷,记录载荷和相应的应变。

c. 确定屈服点:根据载荷-应变曲线,确定试样的屈服点。

3. 拉伸强度试验a. 安装试样:将试样放置在试验机上,确保试样与试验机夹具接触良好。

b. 施加载荷:以恒定速度施加载荷,记录载荷和相应的应变。

c. 计算拉伸强度:根据最大载荷和试样的原始横截面积,计算试样的拉伸强度。

4. 断裂韧性试验a. 安装试样:将试样放置在试验机上,确保试样与试验机夹具接触良好。

b. 施加载荷:以恒定速度施加载荷,记录载荷和相应的位移。

c. 计算断裂韧性:根据载荷-位移曲线,计算试样的断裂韧性。

五、数据处理与分析1. 数据记录:将试验过程中的载荷、应变、位移等数据记录下来。

2. 数据处理:对试验数据进行处理,包括计算平均值、标准差等统计参数。

材料力学实验指导书(正文)

材料力学实验指导书(正文)

实验一材料在轴向拉伸、压缩时的力学性能一、实验目的1.测定低碳钢在拉伸时的屈服极限σs、强度极限σb、延伸率δ和断面收缩率 。

2.测定铸铁在拉伸以及压缩时的强度极限σb。

3.观察拉压过程中的各种现象,并绘制拉伸图。

4.比较低碳钢(塑性材料)与铸铁(脆性材料)机械性质的特点。

二、设备及仪器1.电子万能材料试验机。

2.游标卡尺。

图1-1 CTM-5000电子万能材料试验机电子万能材料试验机是一种把电子技术和机械传动很好结合的新型加力设备。

它具有准确的加载速度和测力范围,能实现恒载荷、恒应变和恒位移自动控制。

由计算机控制,使得试验机的操作自动化、试验程序化,试验结果和试验曲线由计算机屏幕直接显示。

图示国产CTM -5000系列的试验机为门式框架结构,拉伸试验和压缩试验在两个空间进行。

图1-2 试验机的机械原理图试验机主要由机械加载(主机)、基于DSP的数字闭环控制与测量系统和微机操作系统等部分组成。

(1)机械加载部分试验机机械加载部分的工作原理如图1-2所示。

由试验机底座(底座中装有直流伺服电动机和齿轮箱)、滚珠丝杠、移动横梁和上横梁组成。

上横梁、丝杠、底座组成一框架,移动横梁用螺母和丝杠连接。

当电机转动时经齿轮箱的传递使两丝杠同步旋转,移动横梁便可水平向上或相下移动。

移动横梁向下移动时,在它的上部空间由上夹头和下夹头夹持试样进行拉伸试验;在它的下部空间可进行压缩试验。

(2)基于DSP的数字闭环控制与测量系统是由DSP平台;基于神经元自适应PID算法的全数字、三闭环(力、变形、位移)控制系统;8路高精准24Bit 数据采集系统;USB1.1通讯;专用的多版本应用软件系统等。

(3) 微机操作系统试验机由微机控制全试验过程,采用POWERTEST 软件实时动态显示负荷值、位移值、变形值、试验速度和试验曲线;进行数据处理分析,试验结果可自动保存;试验结束后可重新调出试验曲线,进行曲线比较和放大。

可即时打印出完整的试验报告和试验曲线。

材料力学性能-实验指导书

材料力学性能-实验指导书

实验一 低碳钢的拉伸试验任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。

材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学性能。

通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。

例如:弹性模量E 、比例极限σp 、上和下屈服强度σeu 和σeL 、强度极限σm 、延伸率δ、收缩率Ψ。

除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。

按国标GB/T228-2002,拉伸试样如图1所示。

实验段直径mm d 100=,标距mm l 1000=。

一、实验目的1.研究低碳钢的应力——应变曲线拉伸图。

2.确定低碳钢在拉伸时的力学指标(比例极限σp 、下屈服强度σeL 、强度极限σm 、延伸率δ、断面收缩率Ψ)。

3. 观察低碳钢拉伸时的断口特征,并与其他形式的断口相比较。

二、实验原理在拉伸实验前,测定低碳钢试件的直径0d 和标距0l 。

实验时,首先将试件安装在实验机的上、下夹头内,并在实验段的标记处安装引伸仪,以测量实验段的变形。

然后开动实验机,缓慢加载,与实验机相联的微机会自动绘制出载荷-变形曲线(l F ∆-曲线,见图2)或应力-应变曲线(εσ-曲线,见图3),随着载荷的逐渐增大,材料呈现出不同的力学性能:σεa b c e f αP σb σgf 'h s σo d d 'Δl Fs F b F 图2 图3 0d 0l 图1 拉伸试件(1)弹性阶段(Ob 段)在拉伸的初始阶段,εσ-曲线(Oa 段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点称为材料的比例极限(P σ),线性段的直线斜率即为材料的弹性摸量E 。

线性阶段后,εσ-曲线不为直线(ab 段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

07-01_《材料力学》实验指导书解析

07-01_《材料力学》实验指导书解析

第一部分材料的力学性能测试任何一种材料受力后都有变形产生,变形到一定程度材料就会降低或失去承载能力,即发生破坏,各种材料的受力——变形——破坏是有一定规律的。

材料的力学性能(也称机械性能),是指材料在外力作用下表现出的变形和破坏等方面的性能,如强度、塑性、弹性和韧性等。

为保证工程构件在各种负荷条件下正常工作,必须通过试验测定材料在不同负荷下的力学性能,并规定具体的力学性能指标,以便为构件的强度设计提供可靠的依据。

材料的主要力学性能指标有屈服强度、抗拉强度、材料刚度、延伸率、截面收缩率、冲击韧性、疲劳极限、断裂韧性和裂纹扩展特性等。

金属材料的力学性能取决于材料的化学成分、金相结构、表面和内部缺陷等,此外,测试的方法、环境温度、周围介质及试样形状、尺寸、加工精度等因素对测试结果也有一定的影响。

材料的力学性能测试必修实验为4学时,包括:轴向拉伸实验、轴向压缩实验、扭转实验。

1. 轴向拉伸实验1.1 实验目的1、 测定低碳钢的屈服强度eL R (s σ)、抗拉强度m R (b σ)、断后伸长率A 11.3(δ10)和断面收缩率Z (ψ)。

2、 测定铸铁的抗拉强度m R (b σ)。

3、 比较低碳钢(塑性材料)和铸铁(脆性材料)在拉伸时的力学性能和断口特征。

注:括号内为GB/T228-2002《金属材料 室温拉伸试验方法》发布前的旧标准引用符号。

1.2 设备及试样1、 液压式万能材料试验机。

2、 0.02mm 游标卡尺。

3、 低碳钢圆形横截面比例长试样一根。

把原始标距段L 0十等分,并刻画出圆周等分线。

4、 铸铁圆形横截面非比例试样一根。

注:GB/T228-2002规定,拉伸试样分比例试样和非比例试样两种。

比例试样的原始标距0L 与原始横截面积0S 的关系满足00S k L =。

比例系数k 取5.65时称为短比例试样,k 取11.3时称为长比例试样,国际上使用的比例系数k 取5.65。

非比例试样0L 与0S 无关。

《材料力学》实验指导书

《材料力学》实验指导书

江西应用科技学院《材料力学》实验指导书编制人:审核人:江西应用科技学院城市建设学院2015 年 5 月实验项目一 低碳钢的拉伸实验一、实验目的1.了解微机控制万能材料试验机的工作原理,演示试验机的基本操作方法;2.测定低碳钢的抗拉强度σb 、屈服强度σS 、伸长率δ及截面收缩率ψ;3.观察低碳钢在拉伸过程中的现象和试样的破坏特征,分析断口破坏原因,绘制拉伸曲线图及断口示意图。

二、实验设备万能材料试验机、游标卡尺、直尺。

三、实验原理根据国标GB228-99的试件形状如图1-1所示,图中L 0所说试件的变形就是指这一段的变形。

L c 两端是试验机夹持的部分。

试件在拉伸时,其尺寸、较,必须按国家标准GB6397-99分为比例和定标距两种试样,表1-1L=11.3A (长试件)或5.65A (短试件)。

A 点以前,杆件仅有弹性变形,且P 和L 成线性关系,即遵守虎克定律:ΔL=EAPL(1-1) A 点以后,曲线不再保持直线,至B ´点开始屈服,以后成锯齿形,B 点为载荷下降的最低点。

B ´点的数值与试件加载速度、试件形式等有关,而B 点的数值比较稳定,工程上常取B 点的载荷作为屈服载荷。

因此屈服应力σs =P s /A 。

到C 点,材料强化,曲线继续上升,至D 点试件开始出现颈缩,载荷达到最大值P b ,抗拉强度为:σb =0b P A (1-2)试件断裂后,用游标卡尺量得标距间长度L 1和试件收缩处面积A 1,则可得试件的塑性性能:δ=10L L L -×100% (1-3) ψ=10A A A -×100% (1-4) 四、实验步骤1、试件准备1)在试件中段取标距L=10d(100mm)(低碳钢试件),用试样划线机将其划分为10等份。

2)在试件标距范围内用游标卡尺测量中间和两端三处直径,每处在互相垂直的两个方向 上个测量直径一次,选取平均直径最小的一组作为计算截面面积用。

材料力学实验指导书

材料力学实验指导书

材料力学实验指导书1000字一、实验目的1、了解力学性质的测试与测量2、掌握基本的测力与测长仪器的使用方法3、掌握单轴拉伸实验的操作方法与数据处理二、实验仪器与设备1、材料试验机2、应变计与测长仪3、称量设备4、电子计算器三、实验步骤1、准备工作A、计算标称断面积S0B、提取试样C、安装应变计与测长仪2、测量伸长量与负载A、启动材料试验机B、设定实验参数C、调整实验仪器D、按压测试按钮3、实验数据处理A、绘制应力—应变曲线B、获取张应力—伸长率数据四、实验操作规范1、实验师必须熟悉操作手册与工作规程2、操作人员必须了解实验步骤与流程3、操作时必须戴上手套与护目镜4、操作人员对试样的获取、切割及其尺寸要求必须熟悉5、实验计算时必须准确获得数据6、操作人员对于材料题材知识必须有一定了解7、试验操作结束之后必须将设备归位。

五、安全事项1、实验时要始终戴上护目镜2、机器启动前要动手检查是否安装好所有设备3、试样必须安全固定4、试验中不能随意调整测试参数5、实验结束后要关闭所有设备六、注意事项1、测试数据必须准确、详尽、真实2、试验过程必须认真、仔细、谨慎3、要了解材料性质与特性4、应邀请专业人士协助5、对试质不能过度使用七、结果1、应研究数据并得出结果2、结果表明了材料的性质与特征3、结果应反映材料的本质属性本实验实验中心客户向其技术支持人员提供了材料性能测试的详细信息以及试样。

本试验旨在帮助学生了解材料性质和特性,并掌握现代测力测量工具的基本使用。

实验计算的要求是准确和实际的,并反映材料的属性,而不是表面现象。

四个材料力学实验指导书

四个材料力学实验指导书

实验一 金属材料拉伸、压缩实验实验简介:金属材料常温、静载下的轴向拉伸与压缩试验是材料力学实验中最基本且应用广泛的实验。

通过实验,可以全面测定材料的力学性能指标。

这些指标对材料力学的分析计算及工程设计有极其重要的作用。

本次试验将参照国家标准GB/T228-2002《金属材料室温 拉伸试验方法》选用低碳钢和铸铁作为塑性材料和脆性材料的代表,分别进行拉伸和压缩试验。

预习要求:学生在上实验课之前,必须复习课堂上讲过的有关材料在拉伸、压缩时力学性能的内容。

根据上述试验目的,写出确定各个力学性能参数的计算公式,明确在试验前应测量哪些初始数据,在试验过程中需要记录哪些数据,合理列出本次试验所需的数据记录与表格,画在实验记录纸上。

试验前交指导教师检查。

一.实验目的:1.测定低碳钢下列力学性能指标:拉伸时的屈服极限s σ、强度极限b σ、延伸率、截面收缩率;压缩时的屈服极限s σ。

2.测定铸铁下列力学性能指标:拉伸时的强度极限bt σ;压缩时的强度极限bc σ。

3.观察上述两种材料在拉伸和压缩的全过程中所出现的各种变形现象。

4.比较低碳钢(塑性材料)与铸铁(脆性材料)的力学性能特点与试件的断口情况,分析各自的破坏原因。

二.实验设备仪器:1.电子万能材料试验机。

2.画线机、力传感器、位移传感器和游标卡尺等。

3.符合国标规定的圆形截面拉伸和压缩试件。

三.实验原理 :进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。

一般试验机都设有自动绘图装置,用以记录试样的拉伸图即P-ΔL 曲线,形象地体现了材料变形特点以及各阶段受力和变形的关系。

但是P-ΔL 曲线的定量关系不仅取决于材质而且受试样几何尺寸的影响。

因此,拉伸图往往用名义应力-应变曲线(即σ-ε曲线)来表示:0A P=σ 试样的名义应力0L L∆=ε 试样的名义应变A 0和L 0分别代表初始条件下的面积和标距。

σ-ε曲线与P-ΔL 曲线相似,但消除了几何尺寸的影响。

材料力学实验指导书

材料力学实验指导书

实验一 拉伸试验一、目的1、测定低碳钢的流动极限(屈服极限)s σ,强度极限b σ,延伸率δ和面积收缩率ϕ。

2、测定铸铁的强度极限b σ。

3、观察拉伸过程中的各种现象,并绘制拉伸图(l P ∆-曲线)。

4、比较低碳钢(塑性材料)与铸铁(脆性材料)机械性质的特点。

二、设备1、液压式万能试验机。

2、游标卡尺。

三、试样试件可制成圆形或矩形截面。

常用试样为圆形截面的。

如图1-7所示。

试件中段用于测量拉伸变形,此段的长度o l 称为“标矩”,两端较粗部分是装入试验夹头中的,便于承受拉力,端部的形状视试验机夹头的要求而定,可制成圆柱形(1-7),螺纹形(图1-8)或阶梯形(图1-9)。

试验表明,试件的尺寸和形状对试验结果会有所影响,为了避免此各种影响,使各种材料的力学性质的数值能互相比较,所以对试件的尺寸和形状都有统一规定。

目前我国规定的试样有标准试件和比例试件两种,具体尺寸见表1-1,0.A 是圆形或矩形截面面积。

四、原理材料的力学性质s σ、b σ、δ和ϕ是由拉伸破坏试验来确定的,试验时,利用试验机的自动绘图器绘出低碳钢拉伸图(图-10)和铸铁拉伸图(图1-11)。

对于低碳材料,图1-10上的B -C 为流动阶段,B 点所对应的应力值称为流动极限。

确定流动载荷s p 时,必须缓慢而均匀地使试件产生变形,同时还需要注意观察。

测力盘主针回转后所指示的最小载荷(第一次下降的最小载荷)即为流动载荷s p ,继续加载,测得最大载荷b P 。

试件在达到最大载荷前,伸长变形在标距范围内均匀分布的。

从最大载荷开始,产生局部伸长和颈缩。

颈缩出现后,截面面积迅速减小,继续拉伸所需的载荷也变小了,直至E 点断裂。

铸铁试件在变形极小时,就达到最大载荷,而突然发生断裂。

没有流动和颈缩现象,如图1-11所示。

其强度极限远低于碳钢的强度极限。

五、试验步骤(一)低碳钢试验(1)用游标卡尺在试件的标距范围内测量三个截面的直径,每个截面测量互相垂直两个方向,取其平均值,填入记录表内。

材料力学实验指导书

材料力学实验指导书

材料力学实验指导书目录序言0 实验一金属材料拉伸实验 2 实验二金属材料扭转实验9 实验三纯弯曲梁正应力电测实验16 附件:1、实验报告册封面2、材料力学实验要求3、实验报告要求序言材料力学实验是材料力学的重要支柱之一。

材料力学从理论上研究工程结构构件的应力分析和计算,并对构件的强度、刚度和稳定性进行设计或校核其可靠性。

材料力学实验从实验角度为材料力学理论和应用提供实验支持。

一、材料力学实验由三部分组成:1、材料的力学性能测定。

材料的力学性能是指在力的作用下,材料的变形、强度等方面表现出的一些特征,如弹性模量、弹性极限、屈服极限、强度极限、疲劳极限、冲击韧度等。

这些强度指标或参数是构件强度、刚度和稳定性计算的依据,而他们一般通过实验来测定。

此外,材料的力学性能测定又是检验材质、评定材料热处理工艺、焊接工艺的重要手段。

随着材料科学的发展,各种新型材料不断涌现,力学性能测定是研究新型材料的重要手段。

材料的力学性能测定一般是通过对标准试样加载至破坏,记录其应力-应变关系曲线(扭转破坏时记录其扭矩-扭转角或剪应力-剪应变曲线),测定材料的一些力学性能特征指标,如弹性模量、弹性极限、屈服极限、强度极限、冲击韧度等;因此,学会记录材料的应力-应变关系曲线成为材料力学性能实验的一项重要任务。

2、验证已建立的理论。

材料力学的一些理论是以某些假设为基础的,例如杆件的弯曲理论是以平面假设为基础。

用实验验证这些理论的正确性和适用范围,有助于加深对理论的认识和理解。

实验是验证、修正、发展理论的必要手段,是揭示材料受力、变形过程本质的重要方法。

3、应力分析实验。

某些情况下,如因构件形状不规则、受力复杂或精确地边界条件难以确定等,应力分析计算难以获得准确结果。

这时,采用如电测实验应力分析方法可以直接测定构件的应力。

应力分析实验主要是对构件形状不规则、受力复杂或边界条件很难确定、计算法难以得到准确结果的情况,用实验方法测定构件的应力。

材料力学实验指导书、报告(4个项目)参考模板

材料力学实验指导书、报告(4个项目)参考模板

材料力学实验指导书与实验报告班级:姓名:学号:土木工程学院2014年4月目录第一章绪论§1—1 材料力学实验的作用§1—2 实验须知§1—3 实验报告的书写第二章基本实验§2—1 钢材拉伸与压缩实验§2—2 弹性模量E和泊松比 测定实验§2—3 纯弯曲正应力实验第一章绪论§1—1 材料力学实验的作用材料力学实验是材料力学课程的组成部分之一,材料的力学性能测定,材料力学的结论和理论公式的验证,都有赖于实验手段。

工程上,有很多实际构件的形状和受载荷情况较为复杂,此时,应力分析在理论上难以解决,也需通过实验手段来解决。

材料力学的发展历史就是理论和实验两者最好的融合。

材料力学实验课的目的是:1.熟悉了解常用机器、仪器的工作原理和使用方法,掌握基本的力学测试技术;2.测定材料的力学性能,观察受力全过程中的变形现象和破坏特征,以加深对建立强度破坏准则的认识;3.验证理论公式,巩固和深刻理解课堂中所学的概念;4.对实验应力分析方法有一个初步的了解。

§1—2 实验须知1.实验前,必须认真预习,了解本次实验的目的、内容、实验步骤和所使用的机器、仪器的基本原理以及对课堂讲授的理论应理解透彻。

2.要按课程表指定的时间进入实验室,完成规定的实验项目,因故不能参加者应取得教师同意后安排补做。

3.在实验室内,应自觉地遵守实验室规则及机器仪器的操作规程,非指定使用之机器、仪器,不能任意乱动。

4.实验时要严肃认真,相互配合,密切注意观察实验现象,记录下全部所需测量的数据.5.按规定日期,携同原始记录,每人交实验报告一份。

字迹要求整齐、清晰,数据书写要求用印刷体,问题回答要独立思考完成,不允许抄袭。

§1—3 实验报告的书写实验报告是实验者最后交出的成果,是实验资料的总结。

实验报告应当包括下列内容:1.实验名称,实验日期,当时的温度,实验者及组员姓名。

材料力学实验指导书(拉伸、扭转、冲击、应变)

材料力学实验指导书(拉伸、扭转、冲击、应变)

C 61`材料的拉伸压缩实验一、实验目的1.观察试件受力和变形之间的相互关系;2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物理现象;观察铸铁在压缩时的破坏现象。

3.测定拉伸时低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ);测定压缩时铸铁的强度极限σb。

4.学习、掌握电子万能试验机的使用方法及工作原理。

二、实验设备1.微机控制电子万能试验机;2.游标卡尺。

三、实验材料拉伸实验所用试件(材料:低碳钢)如图1所示,压缩实验所用试件(材料:铸铁)如图2所示:图1 拉伸试件图2 压缩试件四、实验原理1、拉伸实验低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-∆l曲线,即低碳钢拉伸曲线,见图3。

对于低碳钢材料,由图3曲线中发现OA直线,说明F正比于∆l,此阶段称为弹性阶段。

屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。

其中,B'点为上屈服点,它受变形大小和试件等因素影响;B 点为下屈服点。

下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。

测定屈服载荷Fs 时,必须缓慢而均匀地加载,并应用σs =F s / A 0(A 0为试件变形前的横截面积)计算屈服极限。

图3 低碳钢拉伸曲线屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。

当载荷达到强度载荷F b 后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。

应用公式σb =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。

根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即%100001⨯-=l l l δ,%100010⨯-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。

2、压缩实验铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D 转换和处理,并输入计算机,得到F-∆l 曲线,即铸铁压缩曲线,见图4。

材料力学拉伸试验指导书及报告书

材料力学拉伸试验指导书及报告书

材料力学拉伸试验指导书及报告书材料力学试验指导书及报告书专业:年级:组别:姓名:试验一:拉伸试验一、内容和目的1、测定低碳钢的屈服极限σs、强度极限σb、延伸率δ和截面收缩率ψ;测定铸铁的强度极限σb。

2、观察低碳钢、铸铁在拉伸过程中的各种现象,绘制拉伸图(P-?L图),由此了解试件变形过程中变形随荷载的变化规律,以及有关的破坏现象。

3、观察断口,比较低碳钢和铸铁两种材料的拉伸性能。

二、试验设备和量具1、试验设备万能试验机、游标卡尺、小直尺、低碳钢和铸铁标准试件2、标准试件尺寸:1)圆形截面试件长度L0与截面积A0的关系:长试件:L0/d0=10,以δ10表示;短试件:L0/d0=5,以δ5表示;2)矩形截面试件长度L0与截面积A0的关系: L0=11.3A0或L0=5.65A0其中, L0—初始长度, d0—初始直径, A0—初始截面面积。

试件形状如图5:三、实验原理材料的机械性能指标σs、σb、δ、ψ是由拉伸破坏实验来确定的,实验时万能材料试验机自动给出载荷与变形关系的拉伸图(P-?L图)如图2所示,观察试样和拉伸图可以看到下列变形过程。

1、弹性阶段—OA2、屈服分阶段—BC3、强化阶段—CD4、颈缩阶段—DE图2 载荷与变形关系的拉伸图(P-?L图)由实验可知弹性阶段卸荷后,试样变形立即消失,这种变形是弹性变形。

当负荷增加到一定值时,测力度盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况下,试样继续伸长,材料处在屈服阶段。

此吁可记录下屈服点Ps。

当屈服到一定程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。

此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。

但是断裂后的残余变形比原来降低了。

这种常温下经塑性变形后,材料强度提高,塑性降低的现象知名人士为冷作硬化。

当荷载达到最大值Pb后,试样的某一部位载面开始急剧缩小致使载荷下降。

材料力学实验指导书

材料力学实验指导书

材料力学实验指导书工程力学教研中心编前言材料力学实验是材料力学课程的重要组成部分。

科学史上许多重大发明是依靠科学实验而得到的,材料力学中的一些理论和公式也是建立在实验、观察、推理、假设的基础上,它们的正确性还必须由实验来验证。

学生通过做实验,用理论来解释、分析实验结果,又以实验结果来证明理论,互相印证,以达到巩固理论知识和学会实验方法的双重目的。

材料力学实验包括以下三个方面的内容。

一、测定材料的力学性质。

材料的力学性质通常是通过拉伸、压缩、扭转、断裂韧性测试等试验来测定的。

通过这些试验,学会测量材料力学性能的基本方法。

在工程上,各种材料的力学性能是设计构件时不可缺少的依据。

二、验证理论公式的正确性。

在理论分析中,将实际问题抽象为理想模型,并做出某些科学假设(如弯曲中的平截面假定等),使问题简化,从而推出一般性结论和公式,这是理论研究中常用的方法。

但是这些假设和结论是否正确,理论公式能否应用于实际之中,必须通过实验来验证。

三、实验应力分析。

在工程实践中,很多构件的形状和受载情况比较复杂,单纯依靠理论计算不易得到正确的结果,必须用实验的方法来了解构件的应力分布规律,从而解决强度问题,这种办法称为实验应力分析。

目前实验应力分析的方法很多,这里只介绍应用较广的电测法。

实验须知1.实验前必须预习实验指导书中相关的内容,了解本次实验的目的、要求及注意事项。

2.按预约实验时间准时进入实验室,不得无故迟到、早退、缺席。

3.进入实验室后,不得高声喧哗和擅自乱动仪器设备,损坏仪器要赔偿。

4.保持实验室整洁,不准在机器、仪器及桌面上涂写,不准乱丢纸屑,不准随地吐痰。

5.实验时应严格遵守操作步骤和注意事项。

实验中,若遇仪器设备发生故障,应立即向教师报告,及时检查,排除故障后,方能继续实验。

6.实验过程中,若未按操作规程操作仪器,导致仪器损坏者,将按学校有关规定进行处理。

7.实验过程中,同组同学要相互配合,认真测取和记录实验数据;8.实验结束后,将仪器、工具清理摆正。

材料力学实验指导书实验一拉伸和压缩实验(一)实验目的1、了解...

材料力学实验指导书实验一拉伸和压缩实验(一)实验目的1、了解...

材料力学实验指导书实验一拉伸和压缩实验(一)实验目的1、了解万能材料试验机的工作原理、构造和操作方法;2、测定低碳钢在拉伸时的,,和。

3、测定低碳钢在压缩时的。

4、测定铸铁在拉伸和压缩时的。

(二)实验仪器及设备1、万能材料试验机2、游标卡尺(三)实验步骤1、首先用游标卡尺分别量测出低碳钢拉伸试件、低碳钢压缩试件、铸铁拉伸试件、铸铁压缩试件的直径尺寸,再用游标卡尺量测出低碳钢拉伸试件拉伸前平直段的标距L 0 。

并将以上数据分别填入下列表一、表二中。

表一低碳钢拉伸试件尺寸表二铸铁拉压试件和低碳钢压缩试件的直径尺寸2、用万能材料试验机分别测试出低碳钢拉伸试件在拉伸时的屈服荷载P S 、强度荷载P b ;低碳钢压缩试件在压缩时的屈服荷载P S。

铸铁拉伸试件在拉伸时的强度荷载P b、铸铁压缩试件在压缩时的强度荷载P b。

(四)实验数据处理及计算1、低碳钢在拉伸时的屈服极限 = .2、低碳钢在拉伸时的强度极限 = .3、低碳钢在压缩时的屈服极限 = .4、低碳钢的延伸率δ =5、低碳钢的截面收缩率Ψ =6、铸铁在拉伸时的强度极限 =7、铸铁在压缩时的强度极限 =(五)、实验操作要点及注意事项1、选定适合的万能材料试验机测力度盘的量程,并配备相应的砝码;2、万能材料试验机开机前其送油阀和回油阀一定要处于关闭状态。

3、将万能材料试验机测力指针调零、开机并打开送油阀,对试件进行连续,均匀,缓慢地加载;4、注意观察实验现象并注意记录实验数据;5、实验时,如发现异常现象,马上停机检查。

(六)实验结果分析及讨论实验二 冲击韧性实验指导书(一)﹑实验目的测定低碳钢和铸铁两种材料的冲击韧度,观察破坏情况,并进行比较。

(二)﹑实验设备1. 冲击试验机2. 游标卡尺图2-26 冲击试验机结构图(三)﹑试样的制备若冲击试样的类型和尺寸不同,则得出的实验结果不能直接比较和换算。

本次试验采用U 型缺口冲击试样。

其尺寸及偏差应根据GB/T229-1994规定,见图2-27。

材料力学实验指导书(20140903)综述

材料力学实验指导书(20140903)综述

目录实验一金属材料的拉伸试验 (2)实验二金属材料的压缩试验 (5)实验三纯弯梁的正应力试验 (7)实验四等强度梁试验 (11)实验五同心拉杆试验 (16)实验六弯扭组合变形试验 (18)实验一 金属材料的拉伸试验一、实验目的1.测定低碳钢的拉伸时的屈服极限s σ、强度极限b σ、延伸率δ和断面收缩率ψ。

2.测定铸铁的拉伸强度极限b σ。

3.观察低碳钢和铸铁在拉伸过程中所出现的各种变形现象,并根据断口情况分析材料的破坏原因。

二、实验设备和仪表1. 电子万能试验机或液压万能试验机2. 游标卡尺 三、试件标准拉伸试件一般由工作部分、过渡部分和夹持部分三部分组成,如图1-1所示。

图中工作部分的长度0l 称为标距,c l 称为平行长度。

为得到合理的实验结果,试样各部分有一定的加工要求,一般地,工作部分必须有一定的光滑度,以使之受均匀分布的轴向应力作用;过渡部分必须有适当的倒角以降低由于截面的变化而导致的应力集中;两端较粗的夹持部分应有适当的粗造度以便夹紧试件。

图 1-1 圆截面试件考虑到试件尺寸和形状对材料塑性性质的影响,国标GB6397-86对试件的尺寸和形状分别作了标准化规定:对于圆形截面的试件,加工成0010d l =或005d l =;对于矩形截面试件,加工成003.11A l =或0056.5A l =的标准试件或比例试件。

此外,对于圆截面试件其平行长度加工尺寸c l 还应不小于00d l +;矩形截面试件的l 不小于005.0d l +。

四、实验原理及方法低碳钢属塑性材料,在拉伸实验过程中,其l P ∆-曲线如图1-2所示,大致可分为四个阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。

实验刚开始,由于试件和卡头之间存在空隙,因而曲线的开始阶段为一曲线(图1-2O O '段),这一阶段的曲线形状只与试件的装载情况有关,在数据处理时一般将其剔除。

(1)弹性阶段 随载荷缓慢增加,测力指针匀速移动,曲线呈现一段斜直线A O ',直线的斜率反映了材料单位长度的抗拉性能(l EA l P =∆)该阶段的变形与载荷呈线性关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论§1.1 材料力学实验的内容实验是进行科学研究的重要方法,科学史上许多重大发明是依靠科学实验而得到的,许多新理论的建立也要靠实验来验证。

例如材料力学中应力应变的线性关系就是虎克于1668年到1678年间作了一系列的弹簧实验之后建立起来的。

不仅如此,实验对材料力学有着更重要的一面。

因为材料力学的理论是建立在将真实材料理想化,实际构件典型化,公式推导假设化基础之上的,它的结论是否正确以及能否在工程中应用,都只有通过实验验证才能断定。

在解决工程设计的强度,刚度等问题时,首先要知道材料的力学性能和表达力学性能的材料常数。

这些常数只有靠材料试验测试才能得到。

有时实际工程中构件的几何形状和载荷都十分复杂,构件中的应力单纯靠计算难以得到正确的数据,这种情况下必须借助于实验应力分析的手段才能解决。

因此,材料力学实验是学习材料力学课程不可缺少的重要环节。

材料力学实验包括以下三个方面的内容:1.测定材料的力学性能材料的力学性能是指在力或能的作用下,材料在变形、强度等方面表现出的一些特性,如弹性极限、屈服极限(屈服强度)、强度极限、弹性模量、疲劳极限、冲击韧性等。

这些强度指标或参数都是构件强度、刚度和稳定性计算的依据,而它们一般要通过实验来测定。

此外,材料的力学性能测定又是检验材质、评定材料热处理工艺、焊接工艺的重要手段。

随着材料科学的发展,各种新型合金材料、合成材料不断涌现,力学性能的测定,是研究每一中新型材料的重要任务。

2.验证理论公式的正确性材料力学的一些理论是以某些假设为基础的,例如杆件的弯曲理论就以平面假设为基础。

用实验验证这些理论的正确性和适用范围,有助于加深对理论的认识和理解。

至于新建立的理论和公式,用实验来验证更是必不可少的。

实验是验证、修正和发展理论的必要手段。

3.实验应力分析某些情况下,例如因构件几何形状不规则,受力复杂或精确的边界条件难以确定等,应力分析计算难于获得准确结果。

这时,用诸如电测、光弹性等实验应力分析方法直接测定构件的应力,便成为有效的方法。

对经过较大简化后得出的理论计算或数值计算,其结果的可靠性更有赖于实验应力分析的验证。

§1.2 材料力学试验的标准、方法和要求材料的强度指标如屈服极限、强度极限、持久极限等,虽是材料的固有属性,但往往与试样的形状、尺寸、表面加工精度、加载速度、周围环境(温度、介质)等有关。

为使实验结果能相互比较,国家标准对试样的取材、形状、尺寸、加工精度、试验手段和方法以及数据处理都作了统一规定。

对破坏性试验,如材料强度指标的测定,考虑到材料质地的不均匀性,应采用多根试样,然后综合多根试样的结果,得出材料的性能指标。

对非破坏性试验如构件的变形测量,因为要借助于变形放大仪表,为减小测量系统引入的误差,一般也要多次重复进行,然后综合多次测量的数据得到所需结果。

实验应力分析除前面提到的电测法和光弹性法外,还有激光全息光弹性法、散斑干涉法、云纹法、声弹法等。

采用何种方法取决于试验的目的和对试验精度的要求。

一般说,如仅需了解构件某一局部的应力分布,电测法比较合适;如需了解构件的整体应力分布,则以光弹性法为宜。

有时也可把几种方法联合使用,例如可用光弹性法判定构件危险截面的位置,再使用电测法测出危险截面的局部应力分布。

关于试验应力分析,本书主要介绍电测法。

整理试验结果时,应剔除明显不合理的数据,并以表格或图线表明所得结果。

若试验数据中两个量之间存在线性关系,可用最小二乘法拟合为直线,然后进行计算。

数据运算的有效位数要依据机器、仪表的测量精度来确定。

最后要求写出试验报告,并对试验结果进行分析。

第二章材料的力学性能测定§2.1 WDW电子式万能材料试验机测定材料的力学性能的主要设备是材料试验机。

能兼作拉伸、压缩弯曲等多种实验的试验机称为万能试验机,或简称万能机。

供静力实验的万能材料试验机有液压式、机械式、电子机械式等类型。

下面着重介绍微机控制电子万能试验机。

电子万能材料试验机是现代电子测量、控制技术与精密机械传动相结合的新型试验机。

它对载荷、变形、位移的测量和控制有较高的精度和灵敏度。

与计算机联机还可进行试验进程模式控制、检测和数据处理自动化,并有低周载荷循环、变形循环、位移循环的功能。

国产电子万能材料试验机以WDW系列为基础,不同厂家生产的主机结构、信号转换元件配置、传动系统、检测控制原理基本相同,唯软件功能和操作系统有一些差异。

本文介绍的WDW电子万能试验机装载的是基于Windows平台的Auto CTS500全数字多通道闭环测控系统,其用户界面呈现与Windows风格一致的中文窗口系统,掌握和使用都比较方便。

图2-1 WDW-200C电子万能试验机一、加载控制系统图2-1为WDW-200C外形图,图2-2是其主机结构、检测、控制系统原理示意图。

在加载系统中,由上横梁、四根导向立柱和工作平台组成门式框架。

活动横梁把门式框架分成拉、压两个试验空间,拉伸夹具安装在活动横梁与工作平台之间,压缩和弯曲辅具则安装在活动横梁和上横梁之间。

活动横梁由滚珠丝杠副驱动。

根据试验要求控制系统得到控制信号,经调速系统放大后驱动伺服电机带动传动系统及滚珠丝杠转动,使活动横梁上升或下降运动,从而实现对试样的加载。

图2-2 WDW万能试验机结构原理示意图二、测量与显示系统测量系统包括载荷测量、试样变形测量和活动横梁的位移测量三部分。

试样受力变形时,通过负荷传感器、应变式引伸仪分别把机械量转换为电压信号,横梁的移动通过随滚珠丝杠转动的光电编码器输出脉冲信号,三路信号经多功能测量控制卡放大、A/D转换和标度变换处理后,直接在显示屏上以数字量显示试验力、试样变形和横梁位移,并自动给出试验力-变形或试验力-位移曲线。

三、常规静载试验操作规程现以WDW-200C电子万能试验机为例,其操作规程如下:1.根据试样的形状、尺寸及试验目的,选择合适的夹具。

2.开启试验机1) 打开显示器及计算机的电源开关;2) 打开试验机主机电源开关;3) 按控制器上的电源按钮,若计算机控制,控制器的工作方式必须选为“PC-CTRL”(单机工作时为“MC—CTRL”);4) 待控制器出现计算机控制界面后,双击桌面上的“试验软件”图标。

软件启动后点击主界面上的“伺服启动”按钮,之后可以进行移动横梁和试验等操作。

3.试验条件输入和选择测试前必须输入与测试相关的试验参数以及试验选择,具体过程如下:1) 设置选项→选择负荷传感器(若配置两个以上);→选择负荷单位、强度单位及修约间隔、长度单位及伸长率修约间隔;→选择引伸计处理方式;→选择试验类型(如拉伸、压缩等)及报告模板;→选择需要输出的数据项与之相应的修约间隔;→输入相关的规定值。

2) 试样参数→根据试样特性进行计算面积处理选择;试样尺寸、试验数量等参数输入。

3) 试验控制→确定过程控制阶段,并输入相关的数据,设置试验结束控制。

4) 图形设置→依材料的力学性能指标,,输入坐标轴,显示最大值,最小值通常设置为0,若最大值无法确定,通常设置小一些,在测试过程中自动调整大小。

5) 主界面→正确输入存储文件名(试验编号),系统在测试结束后自动按该编号存储文数据。

建议最好以年月日为字符串,以便追溯。

6) 负荷调零→在夹持试样(第一个试样)前必须点击负荷【调零】按钮进行负荷调零,以后可以不再调零。

测试时伸长、位移、时间自动调零。

4. 安装试样通过主机控制器上的快速升降按钮,调节上夹头到合适安装试样位置,依靠转动夹具上的手柄夹紧试样。

做压缩试验时,只要把试样置于上、下夹头之间即可。

试样安装完成后,应立即将横梁的位移速度调回到(2~5)mm/min的正常试验速度挡位。

5. 若为负荷控制(或应力控制),按【预加载】按钮,开始预加载,待预加载值达到后进行一下操作。

6. 夹持引伸仪(若使用引伸仪),最好夹持在试样的中间部分。

7. 测试开始,等上述工作全部完成后可进行以下操作:菜单操作,除用鼠标在主界面上菜单操作外还可用键盘操作。

快捷键:〈F5〉;便捷按钮操作:用鼠标点击【开始测试】按钮,即可进入测试。

8. 测试结束1)测试正常结束依测试条件中的试验结束条件而定:是破坏结束,还是非断裂结束,结束后十字头是停止,还是以最高速返回原来位置,结束后大约等1分钟,试验数据显示在主界面,观看其试验结果。

注:直接按〈空格〉键,试验正常结束。

2)测试中止由于人为原因,如试样未夹持好或引伸计忘夹持等原因,此时可以进行以下的任一操作而中止测试。

(1)菜单操作除用鼠标在主界面菜单操作外,还可以用键盘操作:热键:〈Alt〉+〈T〉+〈S〉,快捷键:〈F8〉。

(2)便捷按钮操作在测试状态下,点击主界面工具条上【中止测试】按钮,中止测试,同时十字头停止移动。

3)关机(1)关闭试验机主机电源;(2)退出试验软件;(3)退出Windows:点击任务栏的【开始】按钮,点击“关闭计算机”,弹出一对话框,选择“关闭计算机”,点击【是】按钮。

等主机电源关闭后,关闭显示器。

§2.2引伸仪材料力学试验中,除测定试样或构件的承载能力外,还经常要测定它们的变形。

变形一般很小,要用高精度、高放大倍数的仪器才能测出,这类仪器即为引伸仪。

引伸仪是感受试件变形的传感器。

应变计式的引伸仪由于原理简单、安装方便,目前广泛使用。

引伸仪按测量对象,可分为轴向引伸计、横向引伸计、夹式引伸计。

图2-3为夹式引伸仪的外形和结构原理图。

该引伸仪主要由应变片、变形传递杆、弹性元件、限位标距杆、刀刃和夹紧弹簧等组成。

测量变形时, 将引伸仪装卡于试件上,刀刃与试件接触而感受两刀刃间距内的伸长,通过变形杆使弹性元件产生应变,应变片将其转换为电阻变化量,再用适当的测量放大电路转换为电压信号。

安装于试样上的引伸仪,只能感受试样上长为0l 的一段变形。

0l 称为标距,引伸仪测出的是0l 的长度变化即总变形l ∆。

由此算出的应变0l l ∆=ε,其实是0l范围内的平均应变。

由于引伸仪上的读数C ∆是经放大系数放大后的数值,应除以引伸仪的放大倍数k 才是变形l ∆,即kC l ∆=∆。

仪器能测量的最大范围称为量程。

量程、标距和放大倍数是引伸仪的主要参数。

§2.3拉伸实验一、实验目的1. 了解万能材料试验机的结构及工作原理,熟悉其操作规程及正确使用方法。

2. 测定低碳钢的屈服极限s σ、强度极限b σ、弹性模量E 、伸长率δ、断面收缩率ψ。

3. 测定铸铁的强度极限b σ。

4. 观察以上两种材料在拉伸过程中的各种现象,并绘制拉伸图(P-L ∆曲线)。

5. 比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸时的机械性质。

二、实验设备6. 电子万能材料试验机。

7. 游标卡尺。

三、实验原理1. 为了检验低碳钢拉伸时的机械性质,应使试样轴向受拉直到断裂,在拉伸过程中以及试样断裂后,测读出必要的特征数据(如;s P 、b P 、1l 、1d ),经过计外壳 变形传递杆 刀口应变片 标距限位杆图2-3夹式引伸仪ab算,便可得到表示材料力学性能的四大指标:σs 、σb 、δ、ψ。

相关文档
最新文档