初一数学上册(北师版) 11基本平面图形拓展(三)-知识点总结
七年级上册平面图形知识点
七年级上册平面图形知识点平面图形是初中数学中重要的知识点,属于几何部分的基础知识,在高中和大学的数学学习中也有较为深入的应用。
在七年级上册,我们首先要掌握的是基础的平面图形及其性质,下面就具体介绍一下。
二维坐标系二维坐标系是指以平面直角坐标系为基础,利用它的特点在平面内建立出的另一种坐标系。
在二维坐标系中,我们可以用有序实数对(x,y)来表示平面上的点P,并把它叫做点P的坐标,其中x、y分别叫做点P在x和y轴上的坐标。
平面直角坐标系平面直角坐标系简称坐标系,是平面内描述点、直线和曲线位置关系的一种几何工具。
平面直角坐标系包含了x轴和y轴两条相互垂直的直线,分别称为横轴和纵轴,它们相交于原点O。
利用平面直角坐标系,我们可以求解平面内任意两点之间的距离,还可以解决平面图形的相对位置关系问题。
多边形多边形是由线段首尾相接,形成一条封闭的折线,把线段围成的平面区域叫做多边形。
常见的多边形有三角形、正方形、长方形、菱形、梯形等。
在研究多边形性质的过程中,我们重点学习了多边形的内角和公式、外角和公式、对角线、对称轴等知识点。
三角形三角形是由三条线段构成的封闭图形,其中每一条线段都叫做三角形的一条边,三个顶点由每两条不同的边的交点相连。
在研究三角形的性质中,我们掌握了三角形的内角和公式、外角和公式、角平分线、中线、垂心、重心、外心等知识点。
正方形正方形是一种特殊的长方形,具有四条边和四个顶点,而且四条边相等,各个角都是90度。
因为正方形具有四个对称轴,所以我们可以用对称的方法求解正方形的对边平行、对边相等以及对角线相等等问题。
在日常生活中,正方形广泛用于图画、设计以及实际建筑中。
圆圆是由平面内距离圆心相等的所有点P组成的平面图形,其中圆心O是圆心P和圆周之间的距离最短的点。
我们可以用圆的直径、半径、圆心角、弧长等多个参数来描述圆的形态和性质,在研究圆周上的关系时,我们也会学习到圆与切线、圆与弦的关系等重要知识。
平面图形北师大版七年级上精选教学PPT课件
凸多边形
A D
B B
A
D 凹多边形
C
在多边形中,三角形是最基本的图形. 如下图所示,每一个多边形从同一个 顶点可以分割成几个三角形?
数一数其中三角形的个数,你能发现三角形 个数与多边形的边数之间什么规律吗?
三角形个数=多边形边数-2(n-2)
数一数图中三角形的个数,你能得到 分么割规A的律三?角形个数与D 多边形A的边数之E间什
练习 1、想一想 : 下面的几个图形是 多边形吗?
2.下列几何图形:三角形 , 圆柱 , 长方形 , 正方形 , 圆 , 球 .其中,
平面图形有几个? ( 4 ) 个
3.中国国旗上有没有多边形? 它是五边形吗? 那它是几边形?
在图形中找平面图形:
.有几个三角形?几个四边形?
4个 6个
下面两个多边形是四边 形吗?它们之间有什么 区别?
到!” 猎狗听了很不服气地辩解道:“我已经尽力而为了呀!” 再说兔子带着枪伤成功地逃生回家了,兄弟们都围过来惊讶地问它:“那只猎狗很凶呀,你又带了伤,是怎么甩掉它的呢?” 兔子说:“它是尽力而为,我是竭尽全力呀!它没追上我,最多挨一顿骂,而我若不竭尽全力地跑,可就没命了呀!” 泰勒牧师讲完故事之后,又向全班郑重其事地承诺:谁要是能背出《圣经·马太福音》中第五章到第七章的全部内容,他就邀请谁去西雅图的“太空针”高塔餐厅参加免费聚餐会。 《圣经·马太福音》中第五章到第七章的全部内容有几万字,而且不押韵,要背诵其全文无疑有相当大的难度。尽管参加免费聚餐会是许多学生梦寐以求的事情,但是几乎所有的人都浅尝则止,望而却步了。 几天后,班中一个11岁的男孩,胸有成竹地站在泰勒牧师的面前,从头到尾地按要求背诵下来,竟然一字不漏,没出一点差错,而且到了最后,简直成了声情并茂的朗诵。 泰勒牧师比别人更清楚,就是在成年的信徒中,能背诵这些篇幅的人也是罕见的,何况是一个孩子。泰勒牧师在赞叹男孩那惊人记忆力的同时,不禁好奇地问:“你为什么能背下这么长的文字呢?”
北师大版七年级上册数学各章节知识点归纳
北师大版七年级上册数学各章节知识点归纳第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥:三菱锥、四凌锥、五菱锥、……4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章有理数及其运算1、有理数的分类正有理数有理数零有限小数和无限循环小数负有理数或整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
北师大版七年级上册各章节数学知识点总结
北师大版七年级上册数学各章节知识点复习第一章丰富的图形世界一、知识点复习1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
(正方体、长方体、圆柱、圆锥、棱锥、球)平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
(三角形、圆、长方形、正方形、梯形、平行四边形)2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱:可由一个长方形绕其一条边旋转而成。
柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥:可由一个直角三角形绕其一条直角边旋转而成。
棱锥4、棱柱与棱锥及其有关概念:棱柱:两个底面相互平行且相等。
底面为正多边形的直棱柱为正棱柱。
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
棱柱的所有侧棱均相等。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
棱锥:由一个多边形与平面外一点连接而成的立体图形。
这个多边形叫做棱锥的底面,其他的面均为侧面,所有侧面全部是三角形。
正棱锥,底面是正多边形,且顶点在底面的投影是底面的中心,这样的棱锥叫正棱锥。
特别地,侧棱与底面边长相等的正三棱锥叫做正四面体。
n棱锥有1个底面,n个侧面,共(n+1)个面;2n条棱,n条侧棱;(n+1)个顶点5、正方体的平面展开图: 11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
一个平面截一个n棱柱,截出的面最多是(n+2)边形,例如,一个平面区截八棱柱,所得截面最多是10边形。
用一个平面截去正方体的一个角,剩下的几何题一定剩余7个面,顶点可能为7,8,9,10,与之对应的棱数分别为12,13,14,15.7、三视图物体的三视图指主视图、俯视图、左视图。
北师大版七年级上册数学[《基本平面图形》全章复习与巩固(提高版)知识点整理及重点题型梳理]
北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习《基本平面图形》全章复习与巩固(提高)知识讲解【学习目标】1.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;2. 掌握圆、扇形及多边形的概念及相关计算;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、线段、射线、直线1.直线,射线与线段的区别与联系2.基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==Cbba MBA要点诠释:①线段中点的等价表述:如上图,点M 在线段AB 上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P 均为线段AB 的四等分点.PNMBAAB PB NP MN AM 41==== 要点二、角 1.角的度量(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形. (2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. (3)角度制及角度的换算1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.(4)角的分类: ∠β 锐角 直角钝角平角 周角 范围0<∠β<90°∠β=90° 90°<∠β<180°∠β=180°∠β=360°(5)画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.2.角的比较与运算(1)角的比较方法: ①度量法;②叠合法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC是∠AOB的平分线,所以∠1=∠2=12∠AOB,或∠AOB=2∠1=2∠2.类似地,还有角的三等分线等.3.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45°通常叫做东北方向,北偏西45°通常叫做西北方向,南偏东45°通常叫做东南方向,南偏西45°通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.要点三、多边形和圆的初步认识1.多边形及正多边形:多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形.其中,各边相等、各角也相等的多边形叫做正多边形.如下图:要点诠释:(1)n边形有n个顶点、n条边,对角线的条数为(3)2n n.(2)多边形按边数的不同可分为三角形、四边形、五边形、六边形等.2. 圆及扇形:(1)圆:如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径. 以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”.要点诠释:圆心确定圆的位置,半径确定圆的大小.(2)扇形:由一条弧AB 和经过这条弧的端点的两条半径OA ,OB 所组成的图形叫做扇形.如下图:要点诠释: 扇形OAB 的面积公式:;扇形OAB 的弧长公式:180n Rl π=.【典型例题】类型一、线段、射线、直线1.下列判断错误的有( )①延长射线OA ;②直线比射线长,射线比线段长;③如果线段PA =PB ,则点P 是线段AB 的中点;④连接两点间的线段,叫做两点间的距离. A .0个 B .2个 C .3个 D .4个 【答案】D【解析】①由于射线向一方无限延伸,因此,不能延长射线;②由于直线向两方无限延伸,射线向一方无限延伸,因此它们都是不能度量的,所以它们不存在相等或不相等的关系,而线段是可以度量的,可以比较线段的长短;③线段PA =PB ,只有当点P 在线段AB 上时,才是线段AB 的中点,否则就不是;④两点间的距离是表示大小的量,而线段是图形,二者的本质属性不同.【总结升华】本题考查的是基本概念,要抓住概念间的本质区别. 举一反三:【变式】平面上有五条直线,则这五条直线最多有_____交点,最少有_____个交点. 【答案】10, 0. 类型二、角2.(2016春•南充校级期中)如图:若∠AOB与∠BOC是一对邻补角,OD平分∠AOB,OE在∠BOC内部,并且∠BOE=∠COE,∠DOE=72°.则∠COE的度数是.【思路点拨】设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【答案】72°.【解析】解:设∠EOB=x,则∠EOC=2x,则∠BOD=(180°﹣3x),则∠BOE+∠BOD=∠DOE,即x+(180°﹣3x)=72°,解得x=36°,故∠EOC=2x=72°.故答案为:72°.【总结升华】本题考查了对顶角、邻补角,设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.举一反三:【变式】(2014•陆川县校级模拟)在同一平面内,若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于.【答案】25°或65°.解:本题分两种情况讨论:(1)当OC在三角形内部时,如图1,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BO C=×40°=20°,∴∠DOE=∠DOB﹣∠EOB=45°﹣20°=25°;(2)当OC在三角形外部时,如图2,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BOC=×40°=20°,∴∠DOE=∠DOB+∠EOB=45°+20°=65°,故答案为:25°或65°.3.(2015•深圳校级模拟)如图,C岛在A岛的北偏东45°方向,C岛在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB的度数是()A.70° B.20° C.35° D.110°【思路点拨】根据两直线平行,同旁内角互补求得∠C的度数即可.【答案】A【解析】解:如图,连接AB,∵两正北方向平行,∴∠CAB+∠CBA=180°﹣45°﹣25°=110°,∴∠ACB=180°﹣110°=70°.【总结升华】本题考查了方向角,解决本题的关键是利用平行线的性质.举一反三:【变式】考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B位于O点南偏东60°,请在图(1)中画出射线OA、OB,并计算∠AOB的度数.【答案】解:如图(2),以O为顶点,正北方向线为始边向东旋转45°,得OA;以O为顶点,正南方向线为始边向东旋转60°,得OB,则∠AOB=180°-(45°+60°)=75°.4. 如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合.【答案与解析】解:设时针转过的度数为x时,与分针第一次重合,依题意有12x=90+x解得9011 x=答:时针转过9011⎛⎫⎪⎝⎭°时,与分针第一次重合.【总结升华】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及问题来解决.类型三、利用数学思想方法解决有关线段或角的计算1.方程的思想方法5. 如图所示,B、C是线段AD上的两点,且32CD AB=,AC=35cm,BD=44cm,求线段AD的长.【答案与解析】解:设AB =x cm ,则3cm 2CD x =(35)cm BC x =-或3(44)cm 2x -于是列方程,得335442x x -=-解得:x =18,即AB =18(cm) 所以BC =35-x =35-18=17(cm)33182722CD x ==⨯=(cm) 所以AD =AB+BC+CD =18+17+27=62(cm)【总结升华】根据题中的线段关系,巧设未知数,列方程求解. 2.分类的思想方法6. 同一直线上有A 、B 、C 、D 四点,已知AD =59DB ,AC =95CB ,且CD =4cm ,求AB 的长.【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小. 【答案与解析】 解:利用条件中的AD =59DB ,AC =95CB ,设DB =9x ,CB =5y , 则AD =5x ,AC =9y ,分类讨论:(1)当点D ,C 均在线段AB 上时,如图所示:∵ AB =AD+DB =14x ,AB =AC+CB =14y ,∴ x =y∵ CD =AC -AD =9y -5x =4x =4,∴ x =1,∴ AB =14x =14(cm). (2)当点D ,C 均不在线段AB 上时,如图所示:方法同上,解得87AB =(cm).(3)如图所示,当点D 在线段AB 上而点C 不在线段AB 上时,方法同上,解得11253AB =(cm).(4)如图所示,当点C 在线段AB 上而点D 不在线段AB 上时,方法同上,解得11253AB(cm).综上可得:AB 的长为14cm ,87cm ,11253 cm .【总结升华】解决没有图形的题目时,一要注意满足条件下的图形的多样性;二要注意解决的方法,注意方程法在解决图形问题中的应用. 在正确答案中,(3)与(4)的答案虽然相同,但作为图形上的差别应了解.类型四、多边形和圆7.(1)操作与证明:如图所示,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O 处,并将纸板绕O 点旋转,求证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a .(2)尝试与思考:如图a 、b 所示,•将一块半径足够长的扇形纸板的圆心角放在边长为a 的正三角形或边长为a 的正五边形的中心点处,并将纸板绕O 旋转,当扇形纸板的圆心角为________时,正三角形边被纸板覆盖部分的总长度为定值a ;当扇形纸板的圆心角为_______时,正五边形的边长被纸板覆盖部分的总长度也为定值a .D ECB O(a) (b) 【答案与解析】 解:(1)如图所示,不妨设扇形纸板的两边与正方形的边AB 、AD•分别交于点M 、N ,连结OA 、OD .∵四边形ABCD 是正方形∴OA =OD ,∠AOD =90°,∠MAO =∠NDO =45°, 又∠MON=90°,∠AOM=∠DON. ∴△AMO 与△DNO 形状完全相同.精品文档 用心整理资料来源于网络 仅供免费交流使用 ∴AM =DN∴AM+AN =DN+AN =AD =a(2)3601203︒︒=,所以当扇形纸板的圆心角为120°时,正三角形边被纸板覆盖部分的总长度为定值a ;同理可得,当扇形纸板的圆心角为72°时,正五边形的边长被纸板覆盖部分的总长度也为定值a .【总结升华】一般地,将一块半径足够长的扇形纸板的圆心放在边长为a 的正n 边形的中心O 点处,若将纸板绕O 点旋转,当扇形纸板的圆心角为360n︒时,正n 边形的边被纸板覆盖部分的总长度为定值a.。
北师大版初中几何知识点总结完整版
2.剪纸图案:剪纸是经过纸的折叠、剪切后得到的,所以得到的图案都是轴对称图形;
考点二轴对称与坐标变化
1.坐标对称特点:X轴对称:横坐标相同,纵坐标互为相反数;Y轴对称:纵坐标相同,横坐标互为相反数;原点对称:横纵坐标互为相反数;
2.根据点对称作轴对称图形;
八年级上:勾股定理
考点一 认识勾股定理及其逆定理
考点三 垂直平分线与角平分线
1.垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等;
2.判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上
3.角平分线定理:角平分线的点到这个角的两边的距离相等;
4.判定定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上;
5.三角形的角平分线性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等;
考点三 用尺规作角
1.直尺功能:在两点间连接一条线段或过平面上的两点画直线,也可作射线和线段
2.圆规功能:以平面上任意一点为圆心,任意长为半径做圆或圆弧,也可在直线上截取一线段,使它等于已知线
段;
3.作已知角和、差、倍角
七年级下:三角形
考点一 认识三角形
1.三角形按角的分类
1)锐角三角形:三个角都是锐角
1.勾股定理概念:在直角三角形中,两直角边的平方和等于斜边的平方,即 (a、b为直角边,c为斜边)
2.勾股定理逆定理:如果三角形的三边长a、b、c满足 ,那么这个三角形是直角三角形;
3.勾股定理的验证:图形的割补、拼接、面积方法证明;
4.利用勾股定理求直角边长或斜边长;
考点二勾股定理的应用
7.题型一:判别三角形的形状
5.多边形的分割:一个顶点出发有(n-3)条对角线,这些对角线将它分成(n-2)个三角形
北师大版七年级上册各章节数学知识点总结
北师大版七年级上册数学各章节知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n 边形分割成(n-2)个三角形。
弧:圆上A 、B 两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章 有理数及其运算1、有理数的分类 正有理数有理数 零 有限小数和无限循环小数负有理数或 整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
七年级平面图形知识点归纳
七年级平面图形知识点归纳在初中数学中,平面图形是一个非常重要的知识点。
本文将从基础概念、常用公式和解题方法三个方面进行讲解,希望能够帮助同学们更好地掌握平面图形。
一、基础概念平面图形是指在平面内的图形,包括点、线、面和曲线等。
常见的平面图形包括:直线、线段、射线、角、图形的边和表面等。
直线是没有端点的无限延伸,可以用两个点来确定。
线段是有两个端点的部分,射线则是有一个端点的部分。
角是由两条射线和它们的公共端点所组成的一个部分。
根据角的大小,可以分为锐角、直角和钝角。
图形的边是指图形的各条线段,表面则是指图形的边所围成的部分。
二、常用公式1. 长方形的面积公式:面积 = 长 ×宽2. 正方形的面积公式:面积 = 边长²3. 三角形的面积公式:面积 = 底边 ×高 ÷ 24. 圆的面积公式:面积= π × 半径²5. 矩形的周长公式:周长 = 2 × (长 + 宽)6. 三角形的周长公式:周长 = 边长之和7. 圆的周长公式:周长= 2 × π × 半径三、解题方法1. 认真分析题目中所给出的条件,确定需要求解的内容。
2. 根据所给出的条件选择合适的公式进行运算。
3. 在计算时注意单位的转换,例如长度单位从厘米转换成米等。
4. 最后检查计算结果,看是否符合实际意义,如是否存在负数或者逻辑上的矛盾等。
举例:小明的房间是一个矩形,长为4米,宽为3米。
现在要粘墙纸,假设每卷墙纸长度是10米,宽度是1.5米,问他需要购买几卷墙纸?解:由题意可知,小明的房间是一个长为4米,宽为3米的矩形,所以房间的墙纸需求量为:(周长×房间高度)÷每卷长×宽 = (4+3+4+3)×2.5÷10×1.5 ≈3由此可知,小明需要购买3卷墙纸。
总结:平面图形作为初中数学的重要知识点,同学们需要具备扎实的基本概念和熟练的运用技巧。
(完整版)北师大版七年级上数学知识点汇总(精心整理)
七年级上册第一章丰富的图形世界第二章有理数及其运算第三章整式及其加减第四章基本平面图形第五章一元一次方程第六章数据的收集与整理第一章:丰富的图形世界一、生活中的立体图形分类1.棱柱的相关概念(初中只讨论直棱柱,即侧面是长方形)①棱:在棱柱中,相邻两个面的交线叫做棱②侧棱:在棱柱中,相邻两个侧面的交线叫做侧棱③根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱......④棱柱所有侧棱都相等,棱柱的上、下底面的形状相同,侧面的形状都是平行四边形①点:线和线相交的地方是点,它是几何中最基本的图形②线:面和面相交的地方是线,分为直线和曲线③面:包围着体的是面,分为平面和曲面④体:几何体也简称体⑤点动成线,线动成面,面动成体二、展开与折叠1.常见立体图形的展开图①圆柱:两个圆,一个长方形②圆锥:一个圆,一个扇形③三棱锥:四个三角形④三棱柱:两个三角形,三个长方形⑤正方体展开图:共有11种,141(6种),231(3种),33(1种),222(1种)⑥要展开一个正方体,需要切开7条棱⑦正方体平面展开图找对立面:相间、Z端三、截一个几何体1.常见立体图形的截面2.用一个平面去截一个正方体,可能得到三边形、四边形、五边形、六边形(3456)四、三视图(主视图、左视图、俯视图)1.三视图的6种题型:(1)已知实物图画三视图;(2)已知俯视图,画主视图和左视图;(3)已知主视图、左视图和俯视图,确定小立方体的个数;(4)已知主视图和俯视图,确定小立方体最多和最少个数;(5)已知左视图和俯视图,确定小立方体最多和最少个数;(6)已知主视图和左视图,确定小立方体最多和最少个数。
五、多边形的一些规律1.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
2.从一个n边形的一边上的一点出发,分别连接这个点与其余各顶点,可以把这个n边形分割成(n-1)个三角形。
3.从一个n边形的内部的一个点出发,分别连接这顶点与其余各顶点,可以把这个n边形分割成n个三角形。
(完整版)北师大版数学七年级上册知识点总结
北师大版《数学》(七年级上册)知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n 边形分割成(n-2)个三角形。
弧:圆上A 、B 两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章 有理数及其运算1、有理数的分类正有理数有理数 零 有限小数和无限循环小数负有理数或 整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
北师大版初一数学上知识点总结
北师大版七年级上册数学知识点总结第一章 丰富的图形世界从实物中抽象出来的各种图形,包括立体图形和平面图形。
1.生活中的立体图形知识点一:立体图形的分类圆柱柱生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥 圆锥棱锥知识点二:棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
长方体和正方体都是四棱柱。
棱柱与圆柱的相同点与不同点:1、上下底面积一样2、展开侧面都是矩形3、体积公式都是sh不同点:1、棱柱底面是正多边形,而圆柱的底面是圆2、圆柱侧面为曲面,棱柱侧面为多个正方形知识点三:点、线、面、体几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
点动成线,线动成面,面动成体。
2.展开与折叠正方体的平面展开图:11种平面图形折成立体图形应注意:侧面的个数与底面图形的边数相等。
圆柱的侧面展开图是一个长方形;表面全部展开是两个圆和一个长方形;圆锥的表面全部展开图是一个扇形和一个圆;正方体表面展开图是一个长方形和两个小正方形,;长方形的展开图是一个大长方形和两个小长方形。
3.截一个几何体(1)长方体、正方体的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形、六边形。
(2)圆柱的截面是:长方形、圆(3)圆锥的截面是:三角形、四边形 。
(4)球的截面是: 圆4.从三个方向看物体的形状物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
第二章 有理数及其运算1.有理数正有理数 整数有理数 零 有理数负有理数 分数2.数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。
北师大七年级上册数学知识点总结
北师大七年级上册数学知识点总结北师大七年级上册数学知识点总结北师大版《数学》(七年级上册)知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、(按名称分)锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章有理数及其运算1、有理数的分类正有理数有理数零负有理数或整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
【K12学习】七年级数学《基本平面图形》知识点复习北师大版
七年级数学《基本平面图形》知识点复习北师大版线段、射线、直线)线段概念:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点;有长度,有方向性;表示法:一条线段可以用它的两个端点的大写字母来表示,以A,B为端点的线段,可以记作“线段AB”或“线段BA”;用一个小写字母表示,如“线段a”.线段基本性质:两点之间,线段最短.两点间的距离:两点之间线段的长度线段大小的比较方法:叠合法、度量法)射线概念:直线上的一点和它一旁的部分叫做射线,这点叫做射线的端点;可以向一端无限延伸,有方向性;表示法:一个射线可以用它的端点和射线上的另一点来表示,点o是端点,点A是射线上异于端点的另一点,记作“射线oA”;)直线概念:直线是直的,没有端点,可以向两边无限延伸.表示法:一条直线可以用一个小写字母表示,如“直线a”;也可以用在直线上的两个点来表示,如“直线AB”.性质:经过一点可以画无数条直线;经过两点有且只有一条直线点与直线关系:点在直线上,或者说直线经过这个点;点在直线外,或者说直线不经过这个点;直线与直线关系:平行,相交,垂直;角)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.)从运动的观点看,角也可以看成是由一条射线绕着它的端点旋转而成的图形.)平角和周角:一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角,终边继续旋转,当它又和始边重合时,所成的角叫做周角.)角的表示方法:用三个大写字母表示,记作∠AoB或∠BoA其中o是角的顶点,写在中间;A,B分别是角的两条边上一点,写在两边,可以交换位置.用大写的英文字母表示,记作∠o,用这种方法表示角的前提是以这个点做顶点的角只有一个,否则容易引起歧义.用数字或小写希腊字母表示,在靠近顶点处加上弧线注上阿拉伯数字或小写希腊字母;)角的度量:量角器:对中,重合,读数角的单位换算:度分秒是常用的角的度量单位,把一个周角360等分,每一份就是1度的角,记作1°,把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,叫做1″;1周角=2平角=4直角;1°=60′,1′=60″;两级之间进阶是60.)角的分类:锐角大于0度小于90度,直角90度,钝角大于90度小于180度,平角180度,周角360度.)角的比较:度量法、叠合法多边形和圆的初步认识:)三角形定义:由三条不在同一条直线上的线段首尾顺次相接组成的图形叫做三角形,组成三角形的线段叫三角形的边,相邻两边的公共端点是三角形的顶点,相邻两边组成的角是三角形的内角,简称三角形的角;表示方法:三角形用符号“”表示,顶点为A,B,c的三角形记作“ABc”,读作“三角形ABc”;ABc的三边,有时也用a,b,c;顶点A所对的边Bc用a表示,顶点B所对的边Ac用b表示,顶点c所对的边AB用c表示.)多边形定义:若干条不在同一直线上的线段首尾顺次相接组成的封闭图形叫做多边形;多边形有几条边就叫做几边形,只讨论凸多边形.内角:相邻两条边组成的角叫做多边形的内角,n边形有n个角.多边形的对角线:连接不相邻两个顶点的线段多边形的分割:任何一个多边形都可以分割成若干个三角形,一个n边形从一个顶点出发,分别连接这个顶点与其余各顶点,可以将其分割成个三角形.正多边形:各边相等,各角也相等的多边形叫做正多边形.)圆定义:在平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆确定圆的条件:圆心和半径,二者缺一不可.圆弧:圆上任意两点之间的部分叫做圆弧.扇形:由一条弧和经过这条弧的端点的两条半径组成的图形.圆心角:顶点在圆心的角叫做圆心角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本平面图形拓展(三)
一、角的基本概念
1.角的定义
定义1:有公共端点的两条射线组成的图形叫做角,这个
公共端点是角的顶点,这两条射线是角的两条边。
角的大小只与开口的大小有关,而与角的边画出部分的长短无关。
这是因为角的边是射线(无限延长)而不是线段。
定义2:角还可以看成是一条射线绕着它的端点从一个位置旋转到另一个位置所成的图形。
射线的起始位置称为始边,射线终止位置称作角的终边。
2.角的表示方法
⑴用三个大写字母来表示,取两边上各一点和顶点的字
母,顶点一定要写在中间,如图⑴。
也可记为
∠BOA,但不能写成∠BAO或∠ABO等。
⑵ 用一个大写字母来表示,这个大写字母一定要表示角的
顶点,而且以它为顶点的角有且只有一个。
如图⑵。
⑶用数字来表示角,如图⑶。
⑷ 用希腊字母来表示角,如图⑷。
【例2】⑴如图,分别在长方形ABCD的边DC、BC上取两点E、⑵如图,OM平分∠AOB,ON平分∠COD,若∠MON=50°,F,使得AE平分∠DAF,若∠BAF=60°,则∠DAE
=( )
A.15°B.30°C.45°D.60°
∠BOC=10°,求∠AOD=。
【例3】如图,OM是∠AOC的平分线,ON是∠BOC的平分
线,
⑴如果∠AOC=28°,∠MON=35°,求出∠AOB
的度数;
⑵如果∠MON=n°,求出∠AOB的度数;
⑶如果∠MON=n°的大小改
变,∠AOB的大小是否随之
改变?它们之间有怎样的大
小关系?请写出来。
【例4】已知∠AOB=40°,从O点引射线OC,若
∠AOC∶∠COB=2∶3。
求OC与∠AOB的平分线所
成的角的度数为( )
【例5】若∠AOB=170°,∠AOC=70°,∠BOD=60° 。
求∠COD的度数?
【例6】⑴如图所示的4×4正方形网格中,。
⑵如图,将一副三角板叠放在一起,使直角顶点重合于O点,
则∠AOC+∠DOB=。
⑶饭后,韩老师准备外出散步,出发时看了一下钟,时间是6
点多,时针与分针成90°角,散完步后回家,韩老师又看
了一下钟,还不到7点,而时针与分针又恰好成90°角,问
韩老师外出多少分钟?
【例7】如图,将两块三角板的直角顶点重叠在一起。
⑴若∠AOD=20°,则∠COB=。
⑵若∠AOD=30°,则∠COB=。
⑶若∠AOD=50°,则∠COB=。
⑷若∠AOD=α,猜想∠COB与α的数量关系为(用式子
表示)。