材料科学基础武汉理工大学张联盟版课后习题及答案 第八章
材料科学基础习题库
![材料科学基础习题库](https://img.taocdn.com/s3/m/0a071347f5335a8102d2204c.png)
返回
何谓玻璃?从内部原子排列和性能上看, 答案 非晶态和晶态物质主要区别何在? 4.有序合金的原子排列有何特点?这种排列 和结合键有什么关系?为什么许多有序合金 答案 在高温下变成无序? 5. 试分析H、N、C、B在Fe和Fe中形成固熔 体的类型、存在位置和固溶度(摩尔分数)。 各元素的原子半径如下:H为0.046nm,N为 0.071nm,C为0.077nm,B为0.091nm,Fe 答案 为0.124nm, Fe为0.126 nm。
返回
答案 6.简述纯金属晶体长大的机制。 7. 指出下列概念的错误之处,并改正。 (1)所谓过冷度,是指结晶时,在冷却曲线上出现平 台的温度与熔点之差;而动态过冷度是指结晶过程 答案 中,实际液相的温度与熔点之差。 (2)金属结晶时,原子从液相无序排列到固相有序排 答案 列,使体系熵值减少,因此是一个自发过程。 (3)在任何温度下,液体金属中出现的最大结构起伏 答案 都是晶胚。 (4) 在任何温度下,液相中出现的最大结构起伏都 是核。 答案
3.
返回
6.已知Cd,Zn,Sn,Sb等 Nhomakorabea素在Ag中的固熔度
(摩尔分数)极限分别为 它们的原子直径分别为0.3042nm,0.314nm, 0.316nm,0.3228nm,Ag为0.2883nm。试 分析其固熔度(摩尔分数)极限差别的原因, 并计算它们在固熔度(摩尔分数)极限时的 电子浓度。 答案
6.
返回
10.
判断下列位错反应能否进行。 1) a/2[10-1]+a/6[-121]→a/3[11-1] 2) a[100]→a/2[101]+a/2[10-1] 3) a/3[112]+a/2[111]→a/6[11-1] 4) a[100]→a/2[111]+a/2[1-1-1]
材料科学基础(武汉理工大学,张联盟版)课后习题及答案之欧阳德创编
![材料科学基础(武汉理工大学,张联盟版)课后习题及答案之欧阳德创编](https://img.taocdn.com/s3/m/b7a1ecf10066f5335b812152.png)
第二章答案时间:2021.03.07 创作:欧阳德2-1略。
2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321);(2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[]答:2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
《材料科学基础》第二版 (张联盟 著)课后习题答案 武汉理工大学出版社
![《材料科学基础》第二版 (张联盟 著)课后习题答案 武汉理工大学出版社](https://img.taocdn.com/s3/m/61fc35414a7302768e993952.png)
2-30 石棉矿如透闪石Ca2Mg5[Si4O11](OH)2具有纤维状结晶习性,而滑石Mg3[Si4O10](OH)2却具 有片状结晶习性,试解释之。
2-21 (1)画出O2-作面心立方堆积时,各四面体空隙和八面体空隙的所在位置(以一个晶胞为结构基元 表示出来);(2)计算四面体空隙数、八而休空隙数与O2-数之比
2-22 根据电价规则,在下面情况下,空隙内各需填入何种价数的阳离子,并对每一种结构举出—个例子。 (1)所有四面体空隙位置均填满;(2)所有八面体空隙位置均填满;(3)填满—半四面体空隙位置; (4)填满—半八面体空隙位置。
2-3 在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[ ],(111)与[ 与[111],( )与[236],(257)与[ ],(123)与[ ],(102),[
2-4 定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?
答: 最紧密堆积原理是建立在质点的电子云分布呈球形对称以及无方向性的基础上的,故只适用于典型的 离子晶体和金属晶体,而不能用最密堆积原理来衡量原子晶体的稳定性。另外,金刚石的单键个数为4,即 每个原子周围有4个单键(或原子),由四面体以共顶方式共价结合形成三维空间结构,所以,虽然金刚石 结构的空间利用率很低(只有34.01%),但是它也很稳定。
答: 定性:对称轴、对称中心、晶系、点阵。定量:晶胞参数。 2-5 依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?
材料科学基础课后习题答案
![材料科学基础课后习题答案](https://img.taocdn.com/s3/m/46428d3ab4daa58da0114a72.png)
《材料科学基础》课后习题答案第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。
其中一次键的结合力较强,包括离子键、共价键和金属键。
一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。
二次键的结合力较弱,包括范德瓦耳斯键和氢键。
二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。
6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。
一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。
相反,对于离子键或共价键结合的材料,原子排列不可能很致密。
共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。
9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。
答:单相组织,顾名思义是具有单一相的组织。
即所有晶粒的化学组成相同,晶体结构也相同。
两相组织是指具有两相的组织。
单相组织特征的主要有晶粒尺寸及形状。
晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。
单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。
等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。
对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。
如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。
如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。
材科基
![材科基](https://img.taocdn.com/s3/m/9761f5f4f705cc17552709be.png)
NJ University of Technology
NJ University of Technology
NJ University of Technology
NJ University of Technology
NJ University of Technology
第六章、扩散与固相反应
பைடு நூலகம்
NJ University of Technology
第三章、非晶体固体
1、熔体的概念:不同聚合程度的各种聚合物的混合物 硅酸盐熔体的粘度与组成的关系 2、非晶态物质的特点 3、玻璃的通性(4个) 4、 Tg 、Tf ,相对应的粘度和特点 5、网络形成体、网络变化体、网络中间体
NJ University of Technology
第一章、晶体结构基础
1、晶体的基本概念 晶体的本质:质点在三维空间成周期性重复排列 晶体的基本性质:结晶均一性、各向异性、自限性、对称性、 最小内能性 2、对称的概念 物体中的相同部分作有规律的重复 对称要素:对称面、对称中心、对称轴(对称轴的类型和特点) 4次倒转轴不能被其他的对称要素及其组合取代 (L1、L2、L3、L4、L6、C、P、 L4i ) 对称操作:借助对称要素,使晶体的相同部分完全重复的操作 对称要素的组合必须满足晶体的整体对称要求,不是无限的
材料科学基础第8章习题答案
![材料科学基础第8章习题答案](https://img.taocdn.com/s3/m/3c93a639443610661ed9ad51f01dc281e53a5699.png)
第8章 习题答案8.2 什么叫相变?按照相变机理来划分,可分为哪些相变?相变:随自由能变化而发生的相结构的变化。
按相变机理可分为:成核-生长机理、连续型相变、马氏体相变、有序-无序转变。
8.10为什么在成核一生成机理相变中,要有一点过冷或过热才能发生相变? 什么情况下需过冷,什么情况下需过热,试证明之。
解:由热力学可知,在等温、等压下有:G H T S ∆=∆-∆在平衡条件下,0G ∆=,则有00H T S ∆-∆=,0/S H T ∆=∆式中: 0T 是相变的平衡温度;H ∆为相变热。
若在任意温度T 的不平衡条件下,则有0G H T S ∆=∆-∆≠若H ∆与S ∆不随温度而变化,将上式代入上式得:0000/T T T G H T H T H H T T -∆∆=∆-∆=∆=∆ 可见,相变过程要自发进行,必须有0G ∆<,则0/0H T T ∆∆<。
若相变过程放热(如凝聚、结晶等)0H ∆<。
要使0G ∆<,必须有0T ∆>,00T T T ∆=->,即0T T >,这表明系统必须“过冷”。
若相变过程吸热(如蒸发、熔融等)0H ∆>,要满足0G ∆<这一条件则必须0T ∆<,即0T T <,这表明系统要自发相变则必须“过热”。
8.13 铁的原子量为55.84 ,密度为 7.32 克 /cm 3,熔点为 1593 ℃,熔化热为 11495 J/mol ,固液界面能为 2.04×10-5 J/cm 2,试求在过冷度为 10 ℃、 100 ℃时的临界晶核大小并估计这些晶核分别由多少个晶胞所组成(已知铁为体心立方晶格,晶格常数a =3.05 nm)解: 当过冷度为10℃时337.311495108.0555.841866m V m H Tg cm J mol G J cm MT g mol ρ∆∆-⨯∆==⨯=-℃℃ 52*6322 2.0410 5.110518.05LS V r J cm r cm nm G J cm--⨯⨯=-=-=⨯=∆- 晶核体积:()3*143V r π= 晶胞体积:32V a = 因此,晶胞个数:()()3*373344 3.145133 1.95100.305r n a π⨯⨯===⨯个 当过冷度为100℃时 337.31149510080.555.841866m V m H Tg cm J mol G J cm MT g mol ρ∆∆-⨯∆==⨯=-℃℃ 52*7322 2.0410 5.110 5.180.5LS V r J cm r cm nm G J cm--⨯⨯=-=-=⨯=∆- 因此,晶胞个数:()()()33*43344 3.14 5.133 1.95100.305r n a π⨯⨯===⨯个 8.14 熔体析晶过程在 1000 ℃时,单位体积自由焓变化418 J/cm 3 ;在 900 ℃时是 2090 J/cm 3 。
材料科学基础-武汉理工出版(部分习题答案)[1]
![材料科学基础-武汉理工出版(部分习题答案)[1]](https://img.taocdn.com/s3/m/4baaffae0129bd64783e0912a216147917117ed5.png)
材料科学基础-武汉理工出版(部分习题答案)[1]第一章结晶学基础第二章晶体结构与晶体中的缺陷1名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。
晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.答:配位数:晶体结构中与一个离子直接相邻的异号离子数。
配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。
同质多晶:同一化学组成在不同外界条件下(温度、压力、pH值等),结晶成为两种以上不同结构晶体的现象。
多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。
位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。
重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。
晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。
配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论图2-1MgO晶体中不同晶面的氧离子排布示意图2面排列密度的定义为:在平面上球体所占的面积分数。
(a)画出MgO(NaCl型)晶体(111)、(110)和(100)晶面上的原子排布图;(b)计算这三个晶面的面排列密度。
解:MgO晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。
(a)(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。
(b)在面心立方紧密堆积的单位晶胞中,a022r(111)面:面排列密度=2r2/4r23/2/2/230.907(110)面:面排列密度=2r2/4r22r/420.555(100)面:面排列密度=2r2+22/22r/40.7853、已知Mg半径为0.072nm,O半径为0.140nm,计算MgO晶体结构的堆积系数与密度。
材料科学基础(武汉理工大学,张联盟版)课后习题及答案 第七章
![材料科学基础(武汉理工大学,张联盟版)课后习题及答案 第七章](https://img.taocdn.com/s3/m/15a04ed2a32d7375a5178063.png)
材料科学基础(武汉理工大学,张联盟版)课后习题及答案第七章第七章答案7-1略7-2浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么?解:扩散是由于梯度差所引起的,而浓度差只是梯度差的一种。
当另外一种梯度差,比如应力差的影响大于浓度差,扩散则会从低浓度向高浓度进行。
7-3欲使Ca在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,要求三价离子有什么样的浓度?试对你在计算中所做的各种特性值的估计作充分说明。
已知CaO肖特基缺陷形成能为6eV。
解:掺杂M引起V’’Ca的缺陷反应如下:当CaO在熔点时,肖特基缺陷的浓度为:3+2+所以欲使Ca在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,M的浓度为,即2+3+7-4试根据图7-32查取:(1)CaO在1145℃和1650℃的扩散系数值;(2)Al2O3在1393℃2+3+和1716℃的扩散系数值;并计算CaO和Al2O3中Ca和Al的扩散活化能和D0值。
解:由图可知CaO在1145℃和1650℃的扩散系数值分别为,Al2O3在1393℃和1716℃的扩散系数值分别为根据可得到CaO在1145℃和1650℃的扩散系数的比值为:,将值代入后可得,Al2O3的计算类推。
7-5已知氢和镍在面心立方铁中的扩散数据为2cm/s和2cm/s,试计算1000℃的扩散系数,并对其差别进行解释。
解:将T=1000℃代入上述方程中可得。
,同理可知原因:与镍原子相比氢原子小得多,更容易在面心立方的铁中通过空隙扩散。
7-6在制造硅半导体器体中,常使硼扩散到硅单晶中,若在1600K温度下,保持硼在硅单晶-3表面的浓度恒定(恒定源半无限扩散),要求距表面10cm深度处硼的浓度是表面浓度的一半,问需要多长时间(已知D1600℃=8×10-12cm/s;当2时,)?解:此模型可以看作是半无限棒的一维扩散问题,可用高斯误差函数求解。
其中-122=0,,所以有0.5=s。
材料科学基础(武汉理工大学,张联盟版)课后习题与答案第二章
![材料科学基础(武汉理工大学,张联盟版)课后习题与答案第二章](https://img.taocdn.com/s3/m/acb577553968011ca30091ee.png)
第二章答案2-1 略。
2-2 ( 1)一晶面在x、y、z轴上的截距分别为2a、 3b、6c,求该晶面的晶面指数;(2)一晶面在x 、、z轴上的截距分别为a/3、 /2、,求出该晶面的晶面指数。
y b c答:( 1) h:k:l==3:2:1, ∴该晶面的晶面指数为(321);(2) h:k:l=3:2:1 ,∴该晶面的晶面指数为( 321)。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:( 001)与 [] ,( 111)与 [] ,()与 [111],()与 [236],( 257)与[] ,( 123)与 [] ,(102),(),(), [110], [],[]答:2-4 定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5 依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6 等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8 个四面体空隙、6个八面体空隙。
2-7 n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答: n 个等径球作最紧密堆积时可形成n 个八面体空隙、2n 个四面体空隙。
不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。
张联盟《材料科学基础》(第2版)笔记和课后习题答案复习考研资料
![张联盟《材料科学基础》(第2版)笔记和课后习题答案复习考研资料](https://img.taocdn.com/s3/m/afdd26bd52d380eb63946d63.png)
张联盟《材料科学基础》(第2版)笔记和课后习题(含考研真题)详解完整版>精研学习网>免费在线试用20%资料全国547所院校视频及题库资料考研全套>视频资料>课后答案>往年真题>职称考试目录隐藏第1章材料引言1.1复习笔记1.2课后习题详解1.3名校考研真题详解第2章晶体结构2.1复习笔记2.2课后习题详解2.3名校考研真题详解第3章晶体结构缺陷3.1复习笔记3.2课后习题详解3.3名校考研真题详解第4章非晶态结构与性质4.1复习笔记4.2课后习题详解4.3名校考研真题详解第5章表面结构与性质5.1复习笔记5.2课后习题详解5.3名校考研真题详解第6章相平衡和相图6.1复习笔记6.2课后习题详解6.3名校考研真题详解第7章基本动力学过程—扩散7.1复习笔记7.2课后习题详解7.3名校考研真题详解第8章材料中的相变8.1复习笔记8.2课后习题详解8.3名校考研真题详解第9章材料制备中的固态反应9.1复习笔记9.2课后习题详解9.3名校考研真题详解第10章烧结10.1复习笔记10.2课后习题详解10.3名校考研真题详解第11章腐蚀与氧化11.1复习笔记11.2课后习题详解11.3名校考研真题详解第12章疲劳与断裂12.1复习笔记12.2课后习题详解12.3名校考研真题详解内容简介隐藏本书是张联盟主编的《材料科学基础》(第2版)的学习辅导书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。
本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。
因此,本书的内容几乎浓缩了该教材的知识精华。
(2)详解课后习题,巩固重点难点。
本书参考大量相关辅导资料,对张联盟主编的《材料科学基础》(第2版)的课后习题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
(3)精选考研真题,培养解题思路。
本书从历年考研真题中挑选具有代表性的部分,并对之做了详尽的解析。
材料科学基础(武汉理工大学,张联盟版)课后习题及答案之欧阳家百创编
![材料科学基础(武汉理工大学,张联盟版)课后习题及答案之欧阳家百创编](https://img.taocdn.com/s3/m/89bc57174028915f814dc259.png)
第二章答案欧阳家百(2021.03.07)2-1略。
2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321);(2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[]答:2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
材料科学基础_武汉理工出版(部分习题答案)[1]
![材料科学基础_武汉理工出版(部分习题答案)[1]](https://img.taocdn.com/s3/m/0b764dec89eb172ded63b78d.png)
第一章 结晶学基础 第二章 晶体结构与晶体中的缺陷1 名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。
晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应. 答:配位数:晶体结构中与一个离子直接相邻的异号离子数。
配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。
同质多晶:同一化学组成在不同外界条件下(温度、压力、pH 值等),结晶成为两种以上不同结构晶体的现象。
多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。
位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。
重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。
晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。
配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论图2-1 MgO 晶体中不同晶面的氧离子排布示意图2 面排列密度的定义为:在平面上球体所占的面积分数。
(a )画出MgO (NaCl 型)晶体(111)、(110)和(100)晶面上的原子排布图; (b )计算这三个晶面的面排列密度。
解:MgO 晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。
(a )(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。
(b )在面心立方紧密堆积的单位晶胞中,r a 220=(111)面:面排列密度= ()[]907.032/2/2/34/222==∙ππr r (110)面:面排列密度=()[]555.024/224/22==∙ππr r r(100)面:面排列密度=()785.04/22/222==⎥⎦⎤⎢⎣⎡ππr r3、已知Mg 2+半径为0.072nm ,O 2-半径为0.140nm ,计算MgO 晶体结构的堆积系数与密度。
材料科学基础学习知识(武汉理工大学,张联盟版)课后习题集及其规范标准答案第二章
![材料科学基础学习知识(武汉理工大学,张联盟版)课后习题集及其规范标准答案第二章](https://img.taocdn.com/s3/m/c5543f7d43323968011c92ea.png)
第二章答案2-1略。
2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321);(2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[]答:2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。
材料科学基础 第二版(张联盟 著)课后习题答案武汉理工大学出版
![材料科学基础 第二版(张联盟 著)课后习题答案武汉理工大学出版](https://img.taocdn.com/s3/m/7fa9c6713968011ca30091d9.png)
材料科学基础第二版(张联盟著)课后习题答案武汉理工大学出版材料科学基础第二版(张联盟著)课后习题大家找到答案了吗?下面是为大家推荐一些材料科学基础第二版(张联盟著)课后习题答案和下载地址,希望大家有用哦。
2-1名词解释晶系晶胞晶胞参数空间点阵晶面指数晶格能原子半径与离子半径配位数离子极化同质多晶与类质同晶正尖晶石与反正尖晶石反萤石结构铁电效应压电效应热释电效应电光效应2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[,[],[]2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
2-9计算面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
2-10根据最密堆积原理,空间利用率越高,结构越稳定,金刚石结构的空间利用率很低(只有34.01%),为什么它也很稳定?2-11证明等径圆球六方最密堆积的空隙率为25.9%。
2-12金属镁原子作六方密堆积,测得它的密度为1.74g/cm3,求它的晶胞体积。
2-13根据半径比关系,说明下列离子与O2—配位时的配位数各是多少?已知rO2-=0.132nm,rSi4+=0.039nm,rK+=0.131nm,rAl3+=0.057nm,rMg2+=0.078nm。
材料科学基础(武汉理工大学_张联盟版)课后习题及答案 第六章
![材料科学基础(武汉理工大学_张联盟版)课后习题及答案 第六章](https://img.taocdn.com/s3/m/88f9018d8762caaedd33d478.png)
第六章答案6-1略。
6-2什么是吉布斯相律?它有什么实际意义?解:相律是吉布斯根据热力学原理得出的相平衡基本定律,又称吉布斯相律,用于描述达到相平衡时系统中自由度数与组分数和相数之间的关系。
一般形式的数学表达式为F=C-P+2。
其中F为自由度数,C为组分数,P为相数,2代表温度和压力两个变量。
应用相率可以很方便地确定平衡体系的自由度数。
6-3固体硫有两种晶型,即单斜硫、斜方硫,因此,硫系统可能有四个相,如果某人实验得到这四个相平衡共存,试判断这个实验有无问题?解:有问题,根据相律,F=C-P+2=1-P+2=3-P,系统平衡时,F=0,则P=3,硫系统只能是三相平衡系统。
图6-1 图6-26-4如图6-1是钙长石(CaAl2Si2O)的单元系统相图,请根据相图回解:(1)六方、正交和三斜钙长石的熔点各是多少?(2)三斜和六方晶型的转变是可逆的还是不可逆的?你是如何判断出来的?(3)正交晶型是热力学稳定态?还是介稳态?解:(1)六方钙长石熔点约1300℃(B点),正钙长石熔点约1180℃(C点),三斜钙长石的熔点约为1750℃(A点)。
(2)三斜与六方晶型的转变是可逆的。
因为六方晶型加热到转变温度会转变成三斜晶型,而高温稳定的三斜晶型冷却到转变温度又会转变成六方晶型。
(3)正交晶型是介稳态。
6-5图6-2是具有多晶转变的某物质的相图,其中DEF线是熔体的蒸发曲线。
KE是晶型I 的升华曲线;GF是晶型II的升华曲线;JG是晶型III的升华曲线,回答下列问题:(1)在图中标明各相的相区,并写出图中各无变量点的相平衡关系;(2)系统中哪种晶型为稳定相?哪种晶型为介稳相?(3)各晶型之间的转变是可逆转变还是不可逆转变?解:(1)KEC为晶型Ⅰ的相区,EFBC过冷液体的介稳区,AGFB晶型Ⅱ的介稳区,JGA晶型Ⅲ的介稳区,CED是液相区,KED是气相区;(2)晶型Ⅰ为稳定相,晶型Ⅱ、Ⅲ为介稳相;因为晶型Ⅱ、Ⅲ的蒸汽压高于晶型Ⅰ的,即它们的自由能较高,有自发转变为自由能较低的晶型Ⅰ的趋势;(3)晶型Ⅰ转变为晶型Ⅱ、Ⅲ是单向的,不可逆的,多晶转变点的温度高于两种晶型的熔点;晶型Ⅱ、Ⅲ之间的转变是可逆的,双向的,多晶转变点温度低于Ⅱ、Ⅲ的熔点。
材料科学基础课后习题答案8
![材料科学基础课后习题答案8](https://img.taocdn.com/s3/m/5f88031ea300a6c30c229fe7.png)
SOLUTIONS FOR CHAPTER 81. FIND: When a phase transformation occurs such as a liquid phase transforming to asolid below its melting temperature, what are the two steps involved in the process?Briefly describe each.SOLUTION: During a phase transformation such as a liquid transforming to solid, there are two steps involved in the process. They are:1. nucleation of the new phase, and2. growth of the phase.Nucleation relates to the formation of the new phase and the development of theinterface seperating the two phases. Nucleation can either occur randomly throughout the structure - termed homogeneous nucleation or at specific sites such as interfaces - termed heterogeneous nucleation.Growth - Once the phases has nucleated, it begins to grow. The growth process iscontrolled by diffusion and undercooling. As in the nucleation step, there may becompeting processes that lead to a maximum growth rate at an intermediate temperature.2. FIND: We presented a derivation in Section 8.2.3 showing that the barrier for nucleation,∆G*, decreases with increasing undercooling following the proportionalityBy starting with an expression for the free energy of a distribution of spherical particles of radius r, derive equation 8.2-9a. Explain each step in the derivation. Explain anyassumptions that are made.SOLUTION: To determine the barrier to the nucleation process, ∆G* we begin bynoting that the free energy as a function of particle size for homogeneous nucleation has two terms, one that increases with r2, the interfacial energy per unit volume term, and one that decreases with r3. A maximum occurs in ∆G(r) at some r*. These graphicalrelationships are sketched below.The dependence of the various free energy terms associated with nucleation as a function of temperature: (a) the relationship between cluster radius and surface energy of agrowing spherical solid phase in liquid, (b) the relationship between the cluster radius and(c) the sum of (a) and (b). Instal l Equa tion E ditor a nd do uble -click h ere to view equat ion.The change in free energy can be written as:In this equation we assume that the nuclei can be considered as a random distribution of spheres. To locate the maximum of a function we equate the first derivative of thefunction with respect to the parameter which is the variable to zero. Here we assume thatr is the only variable. The is SL is independent of size and orentation.Using equation 8.2-4 for Instal l Equa tion E ditor a nd do uble -click h ere to view equat ion.we have:In writingwe have assumed that the heat capacity difference between the liquid and solid phases is zero. (Note: Although this may be a reasonable assumption at small undercoolings, i.e.small ∆T’s, at the large under coolings that are typical for homogeneous nucleation thatapproximation may not be valid and a more complex term is required. But for a firstorder approximation this assumption is reasonable.)In order to determine the value of ∆G(r) at r*, we introduce the expressionintoRearranging,If all the terms in parentheses are constant then,3. FIND: Explain the simultaneous influence that undercooling has on the barrier tonucleation and the atomic rearrangements necessary to initiate the transformation. Show how these competing effects lead to classical C-curve behavior in the nucleation ofdiffusional transformations.SOLUTION: With larger undercoolings, both r* and ∆G* decrease, suggesting thatsimply lowering the temperature of the system allows nucleation to occur ever morereadily. However, there are practical kinetic limits to this effect. For example, withdecreased temperature there is a corresponding reduction in atomic mobility. The random fluctuations in the local arrangements of atoms is the process that provides the clusters.Since the formation of the clusters depends on atomic mobility, a reduction in thetemperature reduces the rate of clustering. Thus, as shown in Figure (a) below, theoverall nucleation rate exhibits a maximum at an intermediate temperature. Themaximum in the nucleation rate leads to a minimum in the time required to nucleate aphase, as shown in Figure b. Because of its shape, this curve is known as a C-curve.(a) The influence of temperature on the mobility term and the nucleation barrier term.The opposing processes result in a maximum in the nucleation rate at anintermediate temperature.(b) Since the time for nucleation is inversely related to the nucleation rate, the timecurve exhibits a minimum at an intermediate temperature. Because of its shape,this curve is often referred to as a C-curve.4. FIND: Explain how the value of interfacial energy between the parent phase and thetransforming phase affects the critical radius and the barrier to nucleation.SOLUTION: Equation 8.25 gives the change in free energy as a function of r when aliquid transforms to a solid, for example. In the development of that equation it wasassumed that the transforming phase was spherical and the interfacial energy, γSL, wasisotropic. That equation consists of two terms on the right hand side, i.e.∆G(r) = (4πr2) γSL + 4/3 πr3 (∆G v)Since γSL > 0 and ∆G V < 0 for ∆T > 0, the first term increases with radius, and the second decreases. Figure 8.2-3 illustrates that there is a maximum that occurs at some r wedesignated as r* and a corresponding ∆G, we designated as ∆G* wherer* = (-2γSL)/∆G vandBoth the critical radius, r*, and the barrier to the nucleation process contain γSL in thenumerator. Thinking in terms of the barrier to nucleation, ∆G*, there is a cubicdependence on interfacial energy. The larger the S-L interfacial energy, the larger thebarrier to nucleation and hence the more difficult. The use of nucleating agents is basedon the principle of introducing particles with lower interfacial energies to stimulatenucleation.5. FIND: Compare homogeneous nucleation and heterogeneous nucleation.SOLUTION: The process of homogeneous nucleation occurs at random locations in the parent phase. The distribution of the transforming phase occurs without regard to specific sites, such as mold walls in solidification. Heterogeneous nucleation occurs at specificsites. In the case of solidification they can be at mold walls, unintentional additions such as ceramic inclusions from crucibles or it may occur at nucleating agents which areintentionally added to control the solidification microstructure.6. FIND: What is the difference between the following interfaces?a. coherentb. partially coherent, andc. incoherentSOLUTION: A coherent interface is one in which there is a one-to-one correspondence of atomic planes across the interface. This type of interface occurs when the latticeparameters in the two phases are the same or very close. When the lattice parameters are different in the two phases, the increase in strain energy that will occur as the particlegrows necessitates the periodic insertion of dislocations at the interface to accommodatethe misfit. This type of interface is referred to as partially coherent. An incoherentinterface occurs between two phases of different crystal structures and sufficientlydifferent atomic spacings that can not be accommodated by dislocations.7. FIND: How does interfacial energy vary with coherency?SOLUTION: Interfacial energy is sensitive to the nature of the interface separating thetwo phases. The interfacial energy increases going from coherent to partially coherent to incoherent, i.e. γincoh. > γpart.coh. . γcoh..8. FIND: Based upon your answer to question 7, explain how the probability forheterogeneous nucleation changes as the type of interface changes from coherent to partially coherent to incoherent.SOLUTION: Since the barrier to nucleation, ∆G*, is related to γα/β in the following way:∆G* ∝γα/β3increasing γα/β would increase the barrier to homogeneous nucleation. Consequently, the probability for heterogeneous nucleation would increase as interfacial energy increases. 9. FIND: Figure 5.3-5 contains a schematic illustration of a twin boundary in a crystal.From the point of view of coherency, what is the nature of the type of twin boundaryillustrated in the figure? Comment on the relative energy of a twin boundary compared with a random grain boundary in a polycrystalline material.GIVEN:Figure 5.3-5 illustrates a schematic of a twin in a matrix showing the two twin boundaries separating the matrix from the twin and Figure 8.2-10 illustrates an incoherent interface separating the matrix from a precipitate.Schematic of a twinMatrixPrecipitateSchematic of an incoherent boundarySOLUTION: Atoms that are on the twin plane are part of the stacking sequence in the matrix above the twin plane as well as the stacking of atoms below the twin plane. Sincea coherent interface is an interface that occurs when there is a one-to-one correspondenceacross the interface, then the twin illustrated in this figure would be classified as acoherent twin boundary. Array The incoherent boundary illustrated above occurs in asystem when there is not amatch across the boundaryseparating two phases. Since a general grain boundaryrepresents a situation where theorientation of two grains across a boundary are not the same, we would therefore expect that there would not be a match ofatoms across the boundary.Thus, a coherent twin plane would have lower interfacial energy than the interfacialenergy associated with grain boundary separating two randomly oriented grains.10. FIND: In certain nickel-base superalloys, a second phase can precipitate coherently fromthe matrix during aging because the lattice parameters of the two phases are very closeand both phases are cubic. For a coherent precipitate in this system, what is the mostlikely relationship between the crystallographic axes in the matrix phase and that of theprecipitate? Explain, using sketches.GIVEN: The matrix and precipitate are both cubic with similar lattice parameters.SOLUTION: The best match between two similar cubic structure with similar latticeparameters occurs when the two cubes are aligned with the two sets of orthogonal axesparallel to one another. Thus, the x-axis in the matrix, x m, would be parallel to the x-axis in the precipitate, x p, and the y-axis in the matrix, y m, parallel to the y-axis in theprecipitate, y p. This orientation relationship is sometimes referred to as cube//cubeorientation. That is, the two cubes defining the two crystal structures are oriented x-axisto x-axis and y-axis to y-axis.Furthermore, because the lattice parameters of the two phases are very close, the distances between the atoms in the matrix and theprecipitate match very closely.11. FIND: The transition precipitate γ'(Al2Ag) in the aluminum-silver system is a hexagonalclose-packed structure. The a axis of the HCP phase is 0.2858 nm, and the c axis is0.4607 nm. What crystallographic plane and direction in the aluminum matrix definesthe coherent interface between matrix and precipitate?GIVEN: Crystal structure of aluminum is fcc and that for γ' is hcp. Atomic radius foraluminum is 0.143 nm from Appendix C and the a and c lattice parameters for γ' are0.2858 nm and 0.4607, respectively.SOLUTION: Both structures are close-packed structures. The two structures have the same packing factor and coordination number. Both have sets of planes with the highest possible planar density, the close-packed planes. In the fcc structure these are the {111} and in the hcp they are the {0001}. Both structures have directions with the highestpossible linear density. In the fcc the highest linear density is in the 〈110〉 and in the hcp structure 〈1000〉 . The best potential match between the two structures is across the two highest packing planes. Thus the {0001} of the precipitate and the {111} of thealuminum matrix would form a boundary.Recall that the packing sequence for an fcc structure is ......ABCABCABC....., and thatfor the hcp structure is .....ABABABABAB...... . A schematic of the two structures with a common plane would be:To complete the analysis, the atomic spacings in a 〈111〉 direction of the fcc aluminummatrix must be calculated to determine if a match can be made with these planes andthose of the dense packed planes in the 〈0001〉 directions in the hcp structure of γ'.From Appendix C the atomic radius for aluminum is 0.143 nm, since the atoms touchalong 〈110〉 directions, see accompanying figure, in a fcc structure the lattice parameter, a o , for aluminum is:a o = 0.4045 nm.Schematic showing the dense packed arrangement of atoms in an fcc material like aluminum.For fcc stacking ( .....ABCABCABC.....) the distance between equivalent positions A positions can be determined using the above sketch:= ( 2a o 2 + a o2 ) ½ = a o √3 = 0.7006 nmThus the spacing between the adjacent dense packed layers in the fcc structure is= 0.7006/3 = 0.2335 nm.A schematic showing a comparison between the fcc aluminum and the hcp γ' structures are shown below.Thus the atomic spacing in the dense packed planes are similar, and the spacing between the dense packed planes for the two structures are similar.12. FIND: The expression: X = 1 - exp [ - (kt)n ] , equation 8.2-1, in the text, is a powerfulempirical function that is useful in describing the kinetics of diffusional transformations.In the equation, X is the fraction transformed, k is a rate constant having units ofreciprocal time, t is time and n is a unitless constant. Sketch the behavior of this function over a range of times that demonstrate why this expression is useful for describingmicrostructural changes like recrystallization, or the decomposition of austenite to form pearlite.SOLUTION: At the start of the transformation, t = 0, we expect no transformed phase, hence, X = 0. At very long transformation times, t →∞, we expect thetransformation to be complete, i.e. X= 1. Examining equation 9.2-1 at these twoextremes:At t = 1X = 1 - exp - (k ⋅ 0)n= 1 - 1 = 0, andAt t →∞X = 1 - exp - (k ⋅∞)n= 1 - 0 = 1.Over a range of values the function would behave like the sketch shown below:13.The value of n and k for the decomposition of a particular steel has been investigated by following the fraction transformed versus time. From the experimental data, values for n and k were determined at two temperatures. Plot the fraction transformed as a function ofo o SOLUTION: Using the equation:where X is fraction transformed, and k and n are as given in the table, to calculate the fraction transformed as a function of time.Typical values are summarized in the table below and the behavior of the function is plotted and shown on the next page.-1-114. FIND: Explain how the data from problem 10 could be used to determine the location ofthe start and finish times for the transformation.SOLUTION: Since it is often difficult to decide exactly when a reaction begins and iscompleted, the "start" and "finish" points on an isotherm transformation diagram areusually chosen when, for example, 1% of the parent phase has transformed to indicate thestart of transformation, and 99% has transformed for the finish.The start of the transformation:At 400o C0.01 = 1 - exp [ - (0.028)2 t s2]0.01 - 1 = - exp [ - (0.028)2 t s2]0.99 = exp [ - (0.028)2 t s2]- 0.01 = - (0.028)2 t s20.01 = 0.000784 t s212.75 = t22 ;t = 3.6 sec.At 360o C0.01 = 1 - exp [ - (0.085)2 t s2]0.01 = 0.007 2 t s2t s = 1.4 Sec.For the finish of the transformationAt 400o C0.99 = 1 - exp [ - (0.028)2 t f2]4.605 = 0.0078 t f2t f = 76.6 Sec.At 360o C0.99 = 1 - exp [ - 0.085)2 t f2]4.605 = 0.0072 t f2t f = 25.4 Sec.15. FIND: When fraction transformed as a function of the logarithm of time, plotted at twodifferent temperatures, results in two curves that are parallel (same n but different k), the mechanisms for the transformation are the same. Sometimes we refer to the process asbeing isokinetic. For the kinetic data shown below, plot fraction transformed versus time for the two temperatures. Does the process appear to be isokinetic?Isothermal Transformation Isothermal Transformationo oSOLUTION: The data are plotted in the form of fraction transformed versus time and shown belowSince the curves are parallel the processes appear to be isokinetic.16. FIND: The value of k in equation 8.2-12, for a set of kinetic data, can be determined bynoting:X = 1 - exp - (kt)n, andwhen kt = 1X = 1 - exp (-1) - 1 - 1/e orX = 0.632.What are the values for the rate constants for the data in problem 12 ?SOLUTION: To find the value of k, we need to find the time (t*) at which kt =1. The data is nearly linear at X = .632, therefore we can find this time by@ 415o Ct* = 10.5 sec.kt* = 1 k (10.5) = 1 k = 0.095@ 375o Ct* = 23.9 kt* = 1 k = 0.04217. FIND: When the mechanisms controlling a particular transformation are independent oftemperature, we can define an empirical activation energy, Q, for the process by noting:k = A exp (-Q/RT).Determine the empirical activation energy for the data given in problem 12 .SOLUTION: Since we have two value of k for two different temperatures we can solvetwo equations for Q.from problem 13:k 1 = .042 k 2 = .095 T 1 = 648 K T 2 = 688 KR = 8.314 J/(mole K)Q = 75,600 J/mole.18. FIND: The value of n from a set of data can be found by noting:X = 1 - exp - (kt)n 1-X = exp - (kt)n ln (1 - x) = - (kt)n-ln (1 - x) = ln (1/(1-x)), then ln (1/(1-x)) = (kt)nln ln (1/(1-x)) = n lnt + n lnk.Determine n at the two temperatures from the data in problem 12.SOLUTION: We have data for X vs t and we have already determined k at each temperature (problem 13). Computeand ln(t) for each data point. The slope of a plot of Instal l Equa tion E ditor a nd do uble -click h ere to view equat ion. vs ln(t) is equal ton.@ 415o C n = 2.08@ 375o Cn = 2.0819.FIND: In a diffusion-controlled transformation, the time t at different temperatures to yield the same fraction transformed X is as follows:uble -SOLUTION: By noting that the time for a given fraction transformed is inversely related to the rate of the reaction if the processes have the same activation energy. Then using the Arrhenius:Rate = constant exp (-Q/RT)where Q is the required activation energy, R the gas constant and T the absolute temperature, the activation energy is determined graphically by plotting, ln 1/t versus 1/T.From the graph: slope = - 3629.9Then, Q/R = 3629.9R = 8.314 Joules/mole⋅KQ = 30,180 Joules/mole⋅K20. FIND: Using the data from Problem 19, calculate the time required to yield the samefraction transformed at 125︒C.GIVEN: Data from problem 19.SOLUTION: Least squares fit of the experimental data give an equation of the form y (ln(reciprocal of the time)) = m⋅x (1/T) + bWith the values the expression becomes:y = -3630 ⋅ ( 1/ T ) + 9.8572To calculate the time at 125︒Cy = -3630 ⋅ ( 1/ (125 + 273)) + 9.8572y = 0.7366Taking the inverse ln gives:1/t = 2.089,or, t = .4787 hours21. FIND: The precipitation of carbides in certain steels can increase their strength. Shownbelow are data relating time to reach peak strength and the isothermal hold temperature.From the data, determine the activation energy for the precipitation process. Compareyour results with the activation energy for diffusion of carbon in bcc iron. Explain why the similarities between the two activation energies are not too surprising.T (︒C)Time to Peak Hardness (min.)353 0.9375 3.0400 4.0425 10.0450 20.0Applications to Engineering Materials (8.3)22. FIND: Sketch an isothermal transformation (IT) diagram for a plain carbon eutectoid steel. Label theSOLUTION: An IT diagram for a plain carbon eutectoid steel should contain thefollowing information:1. The temperature of the eutectoid - 727o C.2. The start and finish lines for the diffusional reactions:γ→ pearlite and γ→ bainite.3. The start and finish lines for the athermal martensitetransformation.Shown below is the IT diagram.23. FIND: Sketch a section of the Fe - Fe3C diagram over the composition range 0 to 2 wt%carbon and over the temperature range from 900o C to room temperature. Label the phase fields and compare the information that can be extracted from the phase diagram and the IT diagram.SOLUTION: An IT diagram such as that for a steel provides kinetic information that is, how rapidly austenite decomposes into a particular microstructure. It also provides theinformation regarding the morphology of the phases present. For example, dependingupon the quench temperature either coarse pearlite or fine pearlite may form. These are the same microstructures except for the scale. The lower the transformation temperature, the finer the lamellar spacing. Alternatively, rather than pearlite forming the austenitemight decompose into an alternative two phase structure of finely dispersed carbides in ferrite.Also noted on an IT diagram is the presence of metastable phases such as martensite. On an IT diagram, the temperature range (M s - M f) of the metastable phase is presented.In contrast, the equilibrium diagram provides no information regarding kinetics,morphology or the the presence of metastable phases. Since the diagram is constructed on the requirement of equilibrium, only equilibrate phases will be present.24. FIND: Explain experimentally how you would determine an IT diagram for a particularsteel.SOLUTION: Isothermal transformation (IT) diagrams are constructed by following the isothermal changes in microstructure at different temperatures. Since it is difficult todecide exactly when a reaction starts and is completed the start and finish lines on an IT diagram are arbitrarily defined. The microstructural changes occurring can be followed by monitoring microstructural changes directly using metallographic techniques ortracking a property such as electrical resistivity which is affected by the amount of solute in solution or hardness, which is controlled by the nature of the microstructure. As many microstructure sensitive properties as possible are used to provide sufficient collaborative information for a desired degree of accuracy.25. FIND: Based upon the methods you outlined in question 19, explain the limitations ofusing such a diagram. In particular, explain why the application of an IT diagram isrestricted and may not be applied directly to the production environment.SOLUTION: Since an IT diagram is constructed from numerous samples transformed under isothermal conditions, they can only be used that way. In general, the data for ITdiagrams are collected using thin specimens in order to assure that the requirement ofinstantaneous quench are realized. When larger pieces are considered, especially when considering a production environment where a variety of cross-sections are cooled,instantaneous temperature changes can not be realized. Depending upon the mass of the part, slow cooling may be achieved at the center, whereas rapid cooling may occur near the surface. If the cooling rate is slow, then some microstructural changes will occur as the sample cools down to the desired temperature. Consequently, the continuous cooling (CC) curves were established. These curves recognize that the effects of time andtemperature must be integrated.26. FIND: In our discussions in Chapter 7, we introduce the concept of a phase, and in thischapter we have been concerned with the microstructure of an alloy and ultimately how a particular microstructure affects properties. Explain the difference between the concept of a phase and the phases that are present, and the microstructure of the material.SOLUTION: A phase is a homogeneous portion of matter. A particular microstructure such as 100% martensite can be a single phase microstructure. The microstructure iscomposed of martensite and only martensite. However, a microstructure can bemultiphase. For example, pearlite is a two-phase microstructure which consists oftwophases that form as alternate lamellae of ferrite and cementite. So the concept of amicrostructure includes information about the phase or phases present and theirdistribution.27. FIND: Using the concepts associated with phases and microstructure, explain what ismeant by the terms:a. austeniteb. ferritec. pearlited. bainitee. martensitef. cementite, andg. spheroiditeSOLUTION:(a) austenite - The face-centered cubic (FCC) form of iron.(b) ferrite - The body-centered cubic (BCC) form of iron.(c) pearlite - A two-phase microstructure of alternate ferrite and cementite lamellaeoccurring in some steels. Pearlite forms by the decomposition of austenite.(d) bainite - A two-phase microstructure of ferrite and cementite. Bainite forms whenan austenitic steel is quenched to a temperature below the pearlite region, butabove the martensite start, M s, temperature.(e) martensite - Metastable body-centered tetragonal (BCT) iron phase that issaturated in carbon. Iron carbon martensite forms when austenite is rapidlyquenched to low temperatures. (Note: A wide variety of martensite-liketransformations occur in other systems. Consequently, the term martensite hastaken on a more general concept.)(f) cementite - An iron carbide phase, Fe3C.(g) spheroidite - A two-phase microstructure consisting of spheroidized carbide inferrite, which is formed by heat-treating pearlite, bainite, or martensite at atemperature below the eutectoid temperature.It should be noted that in this list of terms there is a distinction between single-phasematerials - austenite, ferrite, martensite and cementite and microstructures which can be combinations of phases such as pearlite and spheroidite.Problems 28 - 31 can be solved using Figures 8.3-6 and 8.3-11.28. FIND: Thin specimens of a plain carbon steel having eutectoid composition are held at800o C and have been at that temperature long enough to have achieved a complete andhomogeneous austenitic structure. Describe the phases present and the microstructuresthat would occur using the quench paths given below.a. Instantaneous quench to 650o C, hold at that temperature for 200 seconds, andquench to room temperature.b. Instantaneous quench to 300o C, hold for 1000 seconds, and quench to roomtemperature.c. Instantaneous quench to room temperature.d. Instantaneous quench to 500o C, hold for 3 seconds and quench to roomtemperature.SOLUTION: When a eutectoid steel containing approximately 0.8 wt% carbon is taken to 800o C and held, whatever microstructure was present prior to the 800o C exposure isreplaced by single phase, austenite containing 0.8% C.(a) When austenite containing 0.8 wt% carbon is instantaneously quenched to 650o Cand held for 200 seconds it forms the two-phase pearlite microstructure. Since allthe austenite has transformed to pearlite at this temperature and time, no othermicrostructures can form on the quench to room temperature. Consequently, themicrostructure consists of alternate ferrite and cementite lamellae - termed pearlite.The microstructure contains 100% pearlite.(b) When austenite containing 0.8% C is quenched to 300o C and held for 1000seconds approximately 75% of the austenite has transformed to bainite. Theremaining austenite transforms to martensite when the material is quenched toroom temperature. Consequently, the microstructure contains 75% bainite and25% martensite.(c) When the 0.8% C alloy is quenched from 800o C to room temperatureinstantaneously, all the austenite transforms to martensite. Consequently, themicrostructure is 100% martensitic.(d) When the 0.8% C alloy is instantaneously quenched from 800o C to 500o C andheld for 3 seconds, approximately 50% of the austenite transforms to amicrostructure that consists of fine pearlite. The remaining austenite transformsto martensite when the material is quenched to room temperature. Consequently,the microstructure is a mixture of 50% fine pearlite and 50% martensite.29. FIND: Using the same initial conditions outlined in problem 23, describe the phasespresent and the microstructures that would occur using the quench paths given below.a. Instantaneous quench to 650o C, hold for 15 seconds, and quench to roomtemperature.b. Instantaneous quench to 500o C hold for 60 seconds and quench to roomtemperature.c. Instantaneous quench to 170o C hold for 100 seconds and quench to roomtemperature.d. Instantaneous quench to 170o C and hold at that temperature.SOLUTION:。
武汉理工大学材料科学基础答案
![武汉理工大学材料科学基础答案](https://img.taocdn.com/s3/m/e8c24221192e45361066f5ec.png)
试题一答案一、1:4;2:O2-离子做面心立方密堆积,Na+填全部四面体空隙;3:=4CN O2-=8 [NaO4][ONa8];4:O2-电价饱和,因为O2-的电价=(Na+的电价/Na+的配位数)×O2的配位数;5:二、1:Al4[Si4O10](OH)8;2:单网层状结构;3:一层硅氧层一层水铝石层且沿C轴方向堆积;4:层内是共价键,层间是氢键;5:片状微晶解理。
三、1:点缺陷,线缺陷,面缺陷;2:由低浓度向高浓度的扩散;3:坯体间颗粒重排,接触处产生键合,大气孔消失,但固-气总表面积变化不大;4:按硅氧比值分类或按硅氧聚和体的大小分类;5:表面能的降低,流动传质、扩散传质、气相传质和溶解-沉淀传质;6:随自由能的变化而发生的相的结构的变化,一级相变、二级相变和三级相变。
四、 1:O←→VNa ′+VCl˙2:AgAg→Agi˙+VAg′3:3TiO23TiNb˙+VNb˙+6OO2TiO22TiNb˙+Oi′′+3ONb2-x Ti3xO3可能成立Nb2-2xTi2xO3+x4:NaCl NaCa′+ClCl+VCl˙五、一是通过表面质点的极化、变形、重排来降低表面能,二是通过吸附来降低表面能。
1:t=195h2:t=68h七、当O/Si由2→4时,熔体中负离子团的堆积形式由三维架状转化为孤立的岛状,负离子团的聚合度相应的降至最低。
一般情况下,熔体中负离子团的聚合度越高,特别是形成三维架状的空间网络时,这些大的聚合离子团位移、转动、重排都比较困难,故质点不易调整成规则排列的晶体结构,易形成玻璃。
熔体中负离子团的对称性越好,转变成晶体越容易,则形成玻璃愈难,反之亦然。
八、晶界上质点排列结构不同于内部,较晶体内疏松,原子排列混乱,存在着许多空位、位错、键变形等缺陷,使之处于应力畸变状态,具有较高能量,质点在晶界迁移所需活化能较晶内为小,扩散系数为大。
九、二次再结晶出现后,由于个别晶粒异常长大,使气孔不能排除,坯体不在致密,加之大晶粒的晶界上有应力存在,使其内部易出现隐裂纹,继续烧结时坯体易膨胀而开裂,使烧结体的机械、电学性能下降。
材料科学基础(武汉理工大学,张联盟版)课后习题及答案第二章
![材料科学基础(武汉理工大学,张联盟版)课后习题及答案第二章](https://img.taocdn.com/s3/m/2c4bcd43ccbff121dc368351.png)
第二章答案2-1略。
2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321);(2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[]答:2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。
材料科学基础(武汉理工大学,张联盟版)课后习题及答案 第八章
![材料科学基础(武汉理工大学,张联盟版)课后习题及答案 第八章](https://img.taocdn.com/s3/m/1b9666379ec3d5bbfc0a7480.png)
材料科学根底〔武汉理工大学,张联盟版〕课后习题及答案第八章第八章答案8-1假设由MgO和Al2O3球形颗粒之间的反响生成MgAl2O4是通过产物层的扩散进行的,〔1〕2画出其反响的几何图形,并推导出反响初期的速度方程。
〔2〕假设1300℃时DAl3+>DMg2+,O-根本不动,那么哪一种离子的扩散控制着MgAl2O4的生成?为什么?解:〔1〕假设:a〕反响物是半径为R0的等径球粒B,x为产物层厚度。
b〕反响物A是扩散相,即A总是包围着B的颗粒,且A,B同产物C是完全接触的,反响自球外表向中心进行。
c〕A在产物层中的浓度梯度是线性的,且扩散截面积一定。
反响的几何图形如图8-1所示:根据转化率G的定义,得将〔1〕式代入抛物线方程中,得反响初期的速度方程为:〔2〕整个反响过程中速度最慢的一步控制产物生成。
D小的控制产物生成,即DMg小,Mg2+2+扩散慢,整个反响由Mg的扩散慢,整个反响由Mg的扩散控制。
8-2镍〔Ni〕在0.1atm的氧气中氧化,测得其质量增量〔μg/cm〕如下表:时间时间温度 1〔h〕 2〔h〕 3〔h〕 4〔h〕 1〔h〕 2〔h〕 3〔h〕 4〔h〕13 23 15 29 20 36 650℃ 29 700℃ 56 41 75 50 88 65 106 22+2+温度 550℃ 9 600℃ 17 〔1〕导出适宜的反响速度方程;〔2〕计算其活化能。
解:〔1〕将重量增量平方对时间t作图,如图8-2所示。
由图可知,重量增量平方与时间呈抛物线关系,即符合抛物线速度方程式。
又由转化率的定义,得将式〔1〕代入抛物线速度方程式中,得反响速度方程为:图8-2重量增量平方与时间关系图〔2〕取各温度下反响1h时进行数据处理拟合,如图8-3所示,1/T G(%) ln[1-(1-G)] -3-1(×10K) 1/3T(℃) 550 600 650 700 图8-3数据处理9 17 29 56 1.22 1.14 1.08 1.03 -3.475 -2.810 -2.227 -1.430 由杨德尔方程可得,对数据作线性回归,得(相关系数为0.98839)由上式得活化能kJ/mol8-3由Al2O3和SiO2粉末反响生成莫来石,过程由扩散控制,如何证明这一点?扩散活化能为209kJ/mol,1400℃下,1h完成10%,求1500℃下,1h和4h 各完成多少?〔应用杨德方程计算〕解:如果用杨德尔方程来描述Al2O3和SiO2粉末反响生成莫来石,经计算得到合理的结果,那么可认为此反响是由扩散控制的反响过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章答案
8-1若由MgO和Al2O3球形颗粒之间的反应生成MgAl2O4是通过产物层的扩散进行的,(1)画出其反应的几何图形,并推导出反应初期的速度方程。
(2)若1300℃时D Al3+>D Mg2+,O2-基本不动,那么哪一种离子的扩散控制着MgAl
2O4的生成?为什么?
解:(1)假设:
a)反应物是半径为R0的等径球粒B,x为产物层厚度。
b)反应物A是扩散相,即A总是包围着B的颗粒,且A,B同产物C是完全接触的,反应自球表面向中心进行。
c)A在产物层中的浓度梯度是线性的,且扩散截面积一定。
反应的几何图形如图8-1所示:
根据转化率G的定义,得
将(1)式代入抛物线方程中,得反应初期的速度方程为:
(2)整个反应过程中速度最慢的一步控制产物生成。
D小的控制产物生成,即D Mg2+小,Mg2+扩散慢,整个反应由Mg2+的扩散慢,整个反应由Mg2+的扩散控制。
8-2镍(Ni)在0.1atm的氧气中氧化,测得其质量增量(μg/cm2)如下表:
温度
时间
温度
时间
1(h)2(h)3(h)4(h)1(h)2(h)3(h)4(h)
550℃600℃9
17
13
23
15
29
20
36
650℃
700℃
29
56
41
75
50
88
65
106
(1)导出合适的反应速度方程;(2)计算其活化能。
解:(1)将重量增量平方对时间t作图,如图8-2所示。
由图可知,重量增量平方与时间呈抛物线关系,即符合抛物线速度方程式。
又由转化率的定义,得
将式(1)代入抛物线速度方程式中,得反应速度方程为:
图8-2重量增量平方与时间关系图
(2)取各温度下反应1h时进行数据处理拟合,如图8-3所示,
T(℃)
G(%)
1/T
(×10-3K-1)
ln[1-(1-G)1/3] 550 9 1.22
-3.475
600 17 1.14 -2.810
650 29 1.08 -2.227
700 56 1.03 -1.430
图8-3数据处理
由杨德尔方程可得,
对数据作线性回归,得(相关系数为0.98839)
由上式得活化能kJ/mol
8-3由Al2O3和SiO2粉末反应生成莫来石,过程由扩散控制,如何证明这一点?已知扩散活化能为209kJ/mol,1400℃下,1h完成10%,求1500℃下,1h和4h各完成多少?(应用杨德方程计算)
解:如果用杨德尔方程来描述Al2O3和SiO2粉末反应生成莫来石,经计算得到合理的结果,则可认为此反应是由扩散控制的反应过程。
由杨德尔方程,得
又,故
从而1500℃下,反应1h和4h时,由杨德尔方程,知
所以,在1500℃下反应1h时能完成15.03%,反应4h时能完成28.47%。
8-4比较杨德方程、金斯特林格方程优缺点及适应条件。
解:两个方程都只适用稳定扩散的情况。
杨德尔方程在反应初期具有很好的适应性,但杨氏模型中假设球形颗粒截面始终不变。
因而只适用反应初期转化率较低的情况。
而金斯格林方程考虑了在反应进程中反应截面面积随反应过程变化这一事实,因而金氏方程适用范围更广,可以适合反应初、中期。
8-5粒径为1μm球状Al2O3由过量的MgO微粒包围,观察尖晶石的形成,在恒定温度下,第1h有20%的Al2O3起了反应,计算完全反应的时间。
(1)用杨德方程计算;(2)用金斯特林格方程计算。
解:(1)用杨德尔方程计算:
代入题中反应时间1h和反应进度20%,得
h-1
故完全反应(G=1)所需的时间h
(2)用金斯格林方程计算:
同理,代入题中反应时间1h和反应进度20%,得
h-1
故完全反应(G=1)时,
所以完全反应所需的时间h
8-6当测量氧化铝-水化物的分解速率时,发现在等温反应期间,质量损失随时间线性增加到50%左右,超过50%时质量损失的速率就小于线性规律。
速率随温度指数增加,这是一个由扩散控制的反应,还是由界面一级反应控制的反应?当温度从451℃增至493℃时,速率增大到10倍,计算此过程的活化能。
(利用表8-2及图8-22进行分析)
解:根据表8-2部分重要的固相反应动力学方程及图8-22各种类型反应中G-t/t0.5曲线分析,由题意,知
G<50%,G-t呈线性关系
G>50%,G-t小于线性规律,是由扩散控制的反应,且G2=kt
又因为,代入T1=451℃,T2=493℃,G1=G,G2=10G,得
kJ/mol
8-7由Al2O3和SiO2粉末形成莫来石反应,由扩散控制并符合扬德方程,实验在温度保持不变的条件下,当反应进行1h的时候,测知已有15%的反应物发生了反应。
(1)将在多少时间内全部反应物都生成产物?(2)为了加速莫来石的生成,应采取什么有效措施?
解:(1)由杨德尔方程,得
反应完全(G=1)所需的时间为h
(2)可以采用一切有利扩散的因素来加速莫来石的生成:减小粒度,采用活性反应物(如Al2O3·3H2O),适当加压等等
8-8试分析影响固相反应的主要因素。
解:(1)反应物化学组成与结构的影响:反应物中质点作用力越大,反应能力越小;同一反应体系中,固相反应速度与各反应物间的比例有关;矿化剂的特殊作用。
(2)颗粒度和分布影响:粒径越小,反应速度越快;同一反应体系中由于物料尺寸不同,反应速度会属于不同动力学范围控制;少量较大尺寸的颗粒存在会显著延缓反应过程的完成。
(3)反应温度的影响:温度越高,质点热运动增强,反应能力和扩散能力增强。
(4)压力、气氛的影响:两固相间的反应,增大压力有助颗粒的接触面积,加速物质传递过程,使反应速度增加;对有液汽相参加的固相反应,提高压力不表现积极作用,甚至适得其反。
(5)矿化剂的影响:晶格能越大,结构越完整和稳定,反应活性越低。
加入矿化剂可以提高固相反应。
8-9如果要合成镁铝尖晶石,可供选择的原料为MgCO3、Mg(OH)2、MgO、Al2O3·3H2O、γ-Al2O3、α-Al2O3。
从提高反应速率的角度出发,选择什么原料较好?请说明原因。
解:应选用MgCO3,Mg(OH)2和Al2O3·3H2O作原料较好。
因为MgCO3,Mg(OH)2在反应中可以发生热分解,Al2O3·3H2O发生脱水反应和晶型转变,将获得具有较大比表面和晶格缺陷的初生态或无定形物质从而提高了反应活性,加剧了固相反应的进行。