浅谈输电线路的防雷
浅谈输电线路的防雷保护措施
动 力 与 电 气工 程
SIC & EH L Y CNE TON O E OG.
皿圆
浅谈 输 电线 路 的 防 雷 保 护 措 施
孙 要 红
( 中国水利 水 电第 一工程局 有限公 司 吉林长春 1 0 6 ) 0 2 3 摘
要 : 雷电活 动的频繁 性及雷 击故障的 严重性来 看, 雷击故 障仍然是 影响 电同安 全运行 的重要 因素之 一 。 从
2 降低 杆塔接地 电阻
降 低 杆 塔接 地 电 阻 通 常 是 提 高 线 路 耐 雷性 能 最 经济 的 方 法 , 国《 程》 定 , 我 规 规 有 避 雷 线的 线 路 , 基 杆塔 ( 连 避 雷 线 ) 工 每 不 的 频 接 地 电 阻 , 雷 季 干 燥 时 , 宜 超 过 规 定 在 不 值 , 土壤 电 阻率 低 的 地 区 , 充 分 利 用 杆 在 应 塔 的 自然 接 地 电阻 , 土 壤 电 阻 率 高 的 地 在 区, 降低 接 地 电阻 较 困难 时 , 采 用 多 根 放 可 射 性 接 地 体 或 连 续 伸 长 接 地 体 , 长 效 化 或
漫 长 的输 电线 路 常 穿过 平 原 、 区 , 山 跨 过 江 河 湖 泊 , 伸 到 地 理 条 件 和 气 象 条 件 延 各 不 相 同的 地 区 , 以 遭 受 雷 击 的 机 会 就 所 多 , 使 输 电线 路能 可 靠 工 作 , 求输 电线 为 要 路 有 好 的 防 雷 性 能 , 讨 论 输 电线 路 防 雷 现 常用技术保护措施 。
浅谈山区输电线路防雷相关问题及对策
浅谈山区输电线路防雷相关问题及对策摘要:因雷击引起的输电线路跳闸,不但影响会电力系统的正常供电,还会增加输电线和开关设备维修的工作量,而且雷电流还会沿线路侵入变电站,最终会引起电力设备绝缘损坏。
本文主要通过分析高压输电线路雷击闪络跳闸中存在的,并根据自己的实践证明,提出了切实符合赣南山区经济可行的降阻防雷的技术措施方法,以提高供电可靠率为宗旨,大胆引用新技术和新方法来提高杆塔防雷的可靠性。
关键词:山区;输电线路;防雷措施;技术措施引言:在一般情况下,由于线路途径以及地理位置等综合方面的限制,很多的输电线路必须穿越山区,而山区又是雷电频繁发生额地段,夏季经常因雷击造成频繁跳闸的山区输电线并不少见。
就赣南地区而言,架空输电线路大部分要经过丘陵、高山等高接地电阻率的地区,输电线路较长,遭遇雷击的机率比一般的线路概率大很多,而架空输电线路又是电力网以及电力系统的重要构成部分,由于它暴露在自然中,故极易受到外界环境的影响和损害,其中最主要的就是雷击,针对这些问题对一些对山区输电线路合理的防雷方式的研究,以提高输电线路防雷和耐雷的水平。
一、存在的问题1.无法判断闪络类型针对赣南山区山区输电线路运行状况、现场实测和模拟的试验以及输电线路雷电绕击的具体情况表明,雷电绕击率和避雷线对边导线的保护角、杆塔高度以及输电线路要经过的地貌和地质条件有关,再加上大气雷电活动的随机和复杂性及存在技术上的有限性还无法准确测量而取得线路遭受雷击的每一次具体的参数,因此我们在技术上无法准确的判断闪络的类型。
2.基础建设方面在基础建设方面也同样存在着很多情况。
在线路施工过程中,由于种种原因造成水平接地体覆盖长度不够长,接地体埋深不足,部分接头焊接不良或者没按照要求填土等。
并且线路使用的水泥杆是利用作为连接杆塔上下接地装置的通道的钢筋,并且在检测时发现有的水泥杆塔并未形成接地通道。
3.设计方面在设计上存在一些问题。
过去220kV及以下线路在设计时均未提供土壤电阻率,接地电阻的设计值随意性大,500 kV 线路中一些杆塔接地射线长度仅2~10 m,导致全线接地电阻从根本上普遍居高不下,再加上设计单位也不太了解雷电在赣南地区的具体活动情况。
输电线路防雷接地措施的重要性及维护探讨
输电线路防雷接地措施的重要性及维护探讨随着电力系统的不断发展和完善,输电线路的防雷接地措施越来越受到重视。
由于输电线路在各种气候条件下均需要保持稳定的运行状态,因此对于输电线路的防雷接地措施的重要性不可忽视。
本文将从防雷接地措施的必要性、影响因素和维护方法等方面展开探讨。
一、防雷接地措施的必要性1. 保障电力系统的安全运行2. 保障输电线路设备的安全性输电线路设备在雷电天气下极易受损,特别是塔架和绝缘子等部件,若遭到雷击而受损,会直接影响输电线路的正常运行。
通过有效的防雷接地措施,可以大大降低输电线路设备受雷击的风险,保障设备的安全性。
3. 保障供电可靠性对于输电线路而言,供电可靠性是其最基本的要求之一。
雷电天气可能导致输电线路的短路、烧毁等故障,而这些故障将直接影响供电的稳定性和可靠性。
加强防雷接地措施,有助于提高输电线路的供电可靠性。
1. 输电线路周围的自然环境自然环境是影响防雷接地措施效果的重要因素之一。
例如地形、植被、降雨、降雪等因素都会对输电线路的防雷接地产生一定影响。
而在严酷的自然环境下,如高寒、高温、多雨、多雪等地区,防雷接地措施的设计和维护将更加复杂和困难。
2. 输电线路的设计和建设标准输电线路的设计和建设标准也直接影响到防雷接地措施的有效性。
在设计和建设阶段,就应当考虑到当地的气候特点以及地形条件,合理设置雷电防护装置和接地设施,以保证输电线路在各种气候条件下的安全运行。
3. 防雷接地设施的维护和管理对于已建成的输电线路,接地设施的维护和管理也直接关系到防雷接地措施的有效性。
只有定期进行接地设施的检测、维护和修复工作,才能保证防雷接地措施的有效性。
2. 加强接地系统的管理对于接地系统,必须加强其管理工作。
建立健全的接地设施档案和管理制度,对接地设施的建设、维护、管理等方面进行规范和监督,确保接地设施的安全稳定运行。
3. 加强人员培训加强相关人员的防雷接地知识培训,提高其对防雷接地措施的认识和理解,加强对防雷接地设施的维护和管理工作,提高接地设施的维护水平。
35kV输电线路防雷保护措施探究
35kV输电线路防雷保护措施探究摘要:现在电网发生雷击的现象很多,有的雷击现象不仅对电网造成影响,甚至危害了人的生命,因雷击电线出现意外事故的事情每年都有发生。
所以相关部门对于输电线路的防雷设施更加重视,现在多数的线路电压都是35kv,这样低的电压更容易遭到雷击,所以必须对35kv的输电线路做好防雷措施,以免因雷电的击打发生不必要的影响,造成不必要的伤害。
关键词:35kV;输电线路;防雷保护;措施探究引言根据作用方式的不同,雷电可以分为感应雷和直击雷。
对于感应雷的防范已经较为成熟,直击雷是目前防雷技术的主要研究对象。
广东省清远市为丘陵地形,气候湿润,春夏季节常出现雷雨天气,极易发生雷击,为了能够有效地降低雷击造成的输电线跳闸率,减少雷击造成的停电现象,必须对输电线及杆塔进行防雷改造。
防雷改造需要选择合适的防雷技术,并且要制定合理的防雷方案。
1. 由雷击引起跳闸的主要因素一般而言,由于绝缘水平较低,35kV输电线路因雷击造成短路是无法避免的。
雷击线路而造成的跳闸现象必须具有两个条件:一是单相接地短路形成,即由于脉络的原因形成的稳定工频电弧引发的线路跳闸;第二是线路的绝缘水平低于雷击的闪电过电压,造成休克线绝缘闪络,时间非常短暂,只有几十微秒而不足以有时间进行跳闸。
1.1线路杆塔的接地电阻值雷击档距中避雷线时,一般情况下空气间隙不会发生闪络,而雷电流在向两边杆塔传播时,由于强烈的电晕,当传播到杆塔时,幅值已大为降低,如果杆塔的接地电阻不高,杆塔的电位的升高不足以引起绝缘子串发生闪络。
雷击杆塔引起反击过电压时,绝缘子串能否闪络,与杆塔冲击接地电阻值有直接关系,接地电阻越大,塔顶电位越高,绝缘子串上的电位差越高,容易造成绝缘子串的闪络,甚至造成多串绝缘子串的同时闪络,导致相间短路,引起跳闸。
1.2消弧线圈的整定情况消弧线圈的设置如果不准确,输电线路因为雷击容易引起导线当单相对地短路,此时的消弧线圈补偿是不够的,如果35千伏线路单相接地短路电流对电容电流,当消弧线圈补偿过大,单相接地短路电流感应电流。
输电线路防雷措施
输电线路防雷措施在输电线路遭受雷击时,雷电会对输电线路造成过电压冲击,破坏输电线路的绝缘层使其出现闪络或产生涉漏电弧的现象,严重时可能会导致输电线路发生相间短路或者对地短路的故障,进而导致事故跳闸,如果不能在受到雷击的输电线路进行有效的处理措施,则会导致电力系统的供电中断,影响人们的日常生产和生活。
输电线路的防雷措施有:(1)避雷线(架空地线):沿全线装设避雷线是目前为止110KV及其以上架空线最重要和最有效的防雷措施。
35KV及以下一般不全线架设避雷器,因为其绝缘水平较低,即使增加绝缘水平仍很难防止直击雷,可以靠增加绝缘水平使线路在短时间故障情况运行,主要靠消弧线圈和自动重合闸装置。
(2)降低杆塔接地电阻:这是提高线路耐雷水平和减少反击概率的主要措施,措施有采用多根放射状水平接地体、降阻模块等。
反击是当雷电击到避雷针时,雷电流经过接地装置通入大地。
若接地装置的接地电阻过大,它通过雷电流时电位将升的很高,作用在线路或设备的绝缘体,可使绝缘发生击穿。
接地导体由于地电位升高可以反过来向带电导体放电的这种现象叫“雷电反击”。
(3)加强线路的绝缘:如增加绝缘子的片数、改用大爬距悬式绝缘子、增大塔头空气距离。
在实施上有很大的难度,一般为提高线路的耐雷水平,均优先采用降低杆塔接地电阻的方法。
(4)耦合地线:在导线的下方加装一条耦合地线,具有一定的分流作用和增大导地线之间的耦合系数,可提高线路的耐雷水平和降低雷击跳闸率。
(5)消弧线圈:能使雷电过电压所引起的单相对地冲击闪络不转变为稳定的工频电弧,即大大减少建弧率和断路器的跳闸次数。
(6)避雷器:不作密集安装,仅用作线路上雷电过电压特别大或绝缘薄弱的防雷保护。
能免除线路的冲击闪络,使建弧率降为零。
(7)不平和绝缘:为了避免线路落雷时双回路同事闪络跳闸而造成的完全停电的严重局面,当采用通常的防雷措施都不能满足要求时,在雷击线路时绝缘水平较低的线路首先跳闸,保护了其他线路。
浅谈输电线路综合防雷优化设计
将雷 电转移到避雷线上, 进而有效减少 了输 电线路遭受雷击 的
几 率 , 导 电流 通 过 杆 塔 以及 接 地 设 备 传 到 地 面 。 同 时还 应 注 引 意 的是, 到导线上方铺 设避雷线 , 直接接地 。 雷云经过避雷线放
ቤተ መጻሕፍቲ ባይዱ
电, 通过避雷线 , 电流可 以散播 在地下 。如果 是 1O V输 电线 lk 路, 以上 , 或 需全线铺设避雷线。对于雷击 多发地区, 双避雷线 的铺设是 必要手段 , 以有效地 隔离雷 电, 可 使其无 法与导线直
22 避 雷器及避 雷 针的合 理应 用 .
输 电线 路 遭 受 雷击 会 发 生 线 路 跳 闸故 障 , 相 对 频 繁 发 生 在
跳闸故障的地区, 可选择使用避雷器抵御雷击事故 。将避雷器 设 置 在 高 压 输 电线 路 上 对 于 防 雷 以及 保 护 输 电线 路 的 正 常 运 行 有 着无 可 取 代 的作 用 。一 旦 出现 避 雷器 电压 低 于 杆 塔 以 及 导 线 电位差 的状况 , 避雷器可 自动分流 , 不会 出现 绝缘子 闪络 的 问题 。 当前, 国的部分地 方已经开始应用和推广避 雷器 , 我 通过 不断的实践和经验 总结, 避雷器的运行效果较为 良好 。但 同时 又 因 为 避 雷 器 的 安 装 成 本 太 高 , 此 , 根 据 具 体 情 况 具 体 分 因 要 析是否需要安装避雷器, 尽量避免不必要 的浪费 。 此外 , 还能够有效避免雷击 以及 输电线路故障 的办法 是选 择 应 用氧 化 锌 避 雷 器 来 抑制 感 应 雷 过 电压 , 图 1 如 :
以电流行波的形式放电, 同时还会 以电压行波的方式沿着导线 散播。 是 , 但 由此而 产 生 的强 大 电流通 过 接 地 电子 排 除 。 击 过 雷 电压会 对 绝 缘 子 产 生 一 定 的破 坏 影 响 。当绝 缘 子 的 闪 络 电压 低 于雷击 电流的 电压,架空输 电线 路就会 出现绝缘 闪络事 故, 进 而就 会形 成工 频电弧,输 电线路 的系统保护就会发挥作用 , 通 过电压以及 电流互 感器等 的信号 , 最终致使输电线路跳闸故障
输电线路防雷措施
输电线路防雷措施咱先来说说输电线路为啥要防雷吧。
我记得有一次,我去乡下走亲戚,那地方电力设施不算太先进。
有一天傍晚,狂风大作,电闪雷鸣的,那雷打得跟放炮似的。
结果第二天就听说附近的输电线路被雷给击中出故障了,周边好多村子都停电,给大家的生活带来了老大的不便。
这让我深深感受到,做好输电线路的防雷工作那是相当重要啊!要做好输电线路的防雷,第一步得合理安装避雷线。
这避雷线就像是输电线路的“防护服”,能把大部分直击雷给引开,保护线路不受直击雷的伤害。
安装的时候,位置、角度啥的都得讲究。
比如说,在山区这种地形复杂的地方,避雷线就得安装得更密一些,这样才能更好地发挥作用。
接着就是降低杆塔的接地电阻。
这就好比给电流修一条顺畅的“回家路”,电阻小了,雷电流就能更快地导入大地,减少对线路的损害。
我还听说过一个事儿,有个地方的杆塔接地电阻一直不达标,每次打雷都提心吊胆的。
后来技术人员费了好大劲,重新改造接地装置,把电阻降下来了,打雷的时候再也不用担心线路出问题了。
然后呢,加强线路绝缘也是个重要措施。
就像给线路穿上一层厚厚的“绝缘铠甲”,让雷电不容易击穿。
特别是在雷电活动频繁的地区,使用高质量的绝缘子,增加绝缘子的片数,都能提高线路的绝缘水平。
还有一个办法就是安装避雷器。
避雷器就像是线路的“小保镖”,一旦有雷电过电压,它能迅速动作,把电压限制在安全范围内。
有个小区的输电线路,之前老是被雷打坏,后来装上了避雷器,情况就好多了。
再说说架设耦合地线吧。
这耦合地线能增强避雷线和导线之间的耦合作用,提高线路的耐雷水平。
在一些容易遭受雷击的地段,加上这耦合地线,效果那是杠杠的。
另外,咱们还得做好线路的巡视和维护工作。
就像人要定期体检一样,线路也得经常检查。
看看有没有绝缘子损坏啊,接地装置有没有松动啊等等。
有一回,我在路上看到电力工人顶着大太阳在检查输电线路,那认真劲儿,真让人佩服。
总之啊,输电线路的防雷可不是一件简单的事儿,得从多个方面入手,把各项措施都落实到位。
输电线路防雷措施
输电线路防雷措施随着电力工业的发展,输电线路的建设越来越普及,但雷击事故也时有发生,给人们的生活和生产带来了很大的困扰。
为了保障输电线路的安全运行,我们必须采取一系列的防雷措施。
要合理选择输电线路的走向。
在选择线路走向时,应尽量避免穿越雷区或高雷电活动区域,减少雷击的风险。
同时,还要考虑地形地貌等因素,选择相对安全的地带进行线路布置。
要加强对输电线路的绝缘保护。
绝缘设备是防止雷电进入输电线路的重要设备,其作用是将雷电击中的线路与地之间的电压差保持在安全范围内,防止电流过大而损坏设备。
因此,必须保证绝缘设备的可靠性和完整性,定期进行绝缘检测和维护工作,及时发现并解决绝缘故障。
要安装合适的避雷装置。
避雷装置是防止输电线路被雷电击中的主要手段,可分为直接避雷和间接避雷两种方式。
直接避雷是指通过在输电线路上安装避雷针等设施,将雷电直接引入地下,从而保护线路不被雷电击中。
间接避雷是通过在输电线路附近的高处安装避雷网,将雷电引入地下,进而保护线路的安全。
在选择避雷装置时,要根据具体情况进行合理选择,并定期检查和维护,确保其正常运行。
还要加强对输电线路周边环境的治理。
由于雷电是自然现象,难以完全避免,因此在输电线路周边的环境治理工作至关重要。
首先,要及时清理线路周围的树木、电线杆等高大物体,减少雷电击中的机会。
其次,要加强对输电线路周边的排水工作,避免因积水而导致雷电击中线路。
同时,还要加强对线路周边的绿化工作,增加植被覆盖,形成自然的避雷屏障,减少雷电的侵害。
要加强对输电线路的监测和预警。
建立完善的监测系统,及时掌握输电线路的工作状态和周围环境的变化,发现线路故障和雷电风险,采取及时措施进行处理。
同时,要加强预警工作,利用现代科技手段,提前预测雷电的发生,及时发布预警信息,引导人们做好防护措施,降低雷电事故的发生率。
输电线路防雷措施是保障电力传输安全的重要环节。
通过合理选择线路走向、加强绝缘保护、安装避雷装置、治理线路周边环境以及加强监测和预警工作,可以有效降低雷击风险,保障输电线路的安全运行。
输电线路的防雷措施
输电线路的防雷措施输电线路防雷设计的目的是提高线路的防雷性能,降低线路的雷击跳闸率。
在确定线路防雷的方式时,应综合考虑系统的运行方式、线路电压等级和重要程度、线路经过地区雷电活动的强弱、地形地貌特点、土壤电阻率等自然条件,并参考当地原有线路的运行阅历,经过技术经济比较,实行合理的爱护措施。
除架设避雷线措施之外,还应留意做好以下几项措施。
1.接地装置的处理(1)高压输电线路耐雷水平随杆塔接地电阻的增加而降低。
电压等级越高,降低杆塔接地电阻的作用将变得更加重要。
对土壤电阻率较高地区,应选择更换接地网形式和置换土壤的方法,达到降阻。
在雷击多发区域,主网线路杆塔接地电阻应保证小于10Ω,山区也应小于15Ω。
在雷雨季节前,对雷击多发区域线路应按规程要求的方法,进行杆塔接地电阻测量。
(2)接地装置埋深,要求大干0.6 m,采纳增大截面的接地引下线,引下线(热镀锌)表面要进行防腐处理。
严格根据规程执行接地装置的开挖检查制度。
重点检查接地装置的埋深、接头和截面的测量,对不合格的准时进行处理。
(3)降低杆塔接地电阻,还需要确保架空地线、接地引下线、地网相互之间的良好连接。
2.减小外边相避雷线的爱护角或者采纳负角爱护在以往进行防雷设计时,只要求遵照规程规定满意杆塔避雷线爱护角的要求就行了,忽视了山坡对防雷爱护角的影响,则造成了杆塔防雷爱护角不能满意防雷设计的实际要求,增加了线路闪络次数,影响了电网平安运行。
针对山区运行线路简单受绕击的状况,建议采纳有效屏蔽角公式计算校验杆塔有效爱护角,以便设计时针对爱护角偏大状况实行相应措施削减雷电绕击概率。
3.加强绝缘和采纳不平衡绝缘方式在雷电活动剧烈地段、大跨越高杆塔及进线段,应增加绝缘子片数。
由于这些地方落雷机会较多,塔顶电位高,感应过电压大,受绕击的概率也较大,通过适当增加绝缘子片数,增大导线和避雷线间的距离,达到加强绝缘的目的。
规程规定:全超群过40m的有地线杆塔,每增高10m应增加一片绝缘子。
输电线路的防雷措施
3.5.2 降低杆塔接地电阻
土壤电阻率低的地区,可利用自然接地电阻;
高土壤电阻率地区,可利用多根放射形接地体 或连续伸长接地体,配合降阻剂使用
3.5.3 架设耦合地线
增加避雷线与导线间的耦合以降低绝缘子串上的电 压; 增加对雷电流的分流作用
3.5.4 采用不平衡绝缘方式
两回路的绝缘子串的片有差异;
3.5.8 加强绝缘
冲击电压作用下木材绝缘材料性能较好,用木横担 来提高耐雷水平和降低建弧率(我国受条件限制很少 采用)
高杆塔时增加绝缘子片数 改用大爬距悬式绝缘子
增大塔头空气间隙
返回
雷击时绝缘子片数少的先闪络,闪络后的导线相当于 地线,增加了另一回路的耦合作用,提高了另一回路 的耐雷水平,使之不发生闪络,以保证不中断供电
3.5.5 装设自动重合闸
雷击造成的闪络大多数能在线路跳闸后自行恢复绝缘 性能,重合闸成功率较高 110kV线路成功率75%-95% 35kV及以下线路成功率50%-80%
3.5 输电线路的防雷措施
输电线路的防雷措施主要做好以下“四道防线”: 防止输电线路导线遭受直击雷; 防止输电线路受雷击后绝缘发生闪络; 防止雷击闪络后建立稳定的工频电弧; 防止工频电弧后引起中断电力供应。 确定输电线路防雷方式时,还应全面考虑线路综 合因素,因地制宜地采取合理的保护措施。
3.5.1 架设避雷线
作用: 防止雷直击于导线;
对雷电流有分流作用,使塔顶电位下降;
对导线有耦合作用,降低雷击杆塔时绝缘子串上 电压; 对导线有屏蔽作用,可降低导线上感应电压
具体实施: 330kV及以上: 全线架设双避雷线,α在20度左右 500kV时α小于等于15度,甚至负保护角 220kV: 宜全线架设双避雷线,α在20左右 110kV: 一般全线架设避雷线,α取20到30度之间 35kV及以下: 一般不沿全线架设避雷线 原因:绝缘水平低,雷击时易反击; 一般中性点非有效接地,单相接地后果不 是很严重,可依靠消弧线圈和自动重合闸
浅谈35kV架空输电线路防雷设计措施
浅谈35kV架空输电线路防雷设计措施单位省市:内蒙古自治区乌兰察布市兴和县单位邮编:013650摘要:电力能源是社会经济发展的重要基础,而架空输电线路是电力系统中的重要组成部分,架空输电线路的安全稳定性直接关系到电力系统的正常运行和社会电力能源的正常供给。
文章结合架空输电线路的故障原因,分析了架空输电线路的防雷及运维措施,希望对架空输电线路的运行保障工作有所帮助。
关键词:35KV;架空输电线路;线路故障;防雷措施1 35kV架空输电线路雷击原因分析1.1自然因素雷电是最常见的造成架空输电线路故障的自然因素,这是因为很难人为控制雷电,并且难以预测雷电的发生时间和发生强度。
我国的夏季高温多雨,在地势海拔较高的区域容易发生雷击现象,架空输电线路会受到不同程度的干扰。
尽管在架空输电线路中会采取一定的防雷措施,但是不能从根本上避免雷电的危害。
1.2输电线路自身因素由于架空输电线路周边会有其他电路,在这种密集环境下,被雷击中的频率会更高。
与其他防雷技术不同的是,架空输电线研究力度不够深入,其防雷方式也未能得到有效应用,从而导致雷击现象产生。
针式绝缘子具有较好的防雷效果,但也存在许多问题,当针式绝缘子被雷击中,其故障便难以找出,维修难度加剧,维修时间延长。
1.3错误的防雷方式对于架空线路的防雷措施,我国大部分地区都是采取接地的方式:利用接地线接地,并在接地处安装低电阻装置。
这种方法在地表电阻比较小的平原地区还是比较实用的,但是在山地丘陵地区,这种接地方法的效果就不太明显,原因是在铺设接地网时,需要在四个塔脚处铺设一个较大面积的接地网,并分别安装低电阻装置,在雷击降下时,因接地线长,所以附加的电感会比较大,使得塔顶的电位相对较高,更容易遭受雷击,降低了35kV架空线路防雷能力。
2 35kV架空输电线路防雷设计措施2.1合理装设消雷器、避雷针对于雷击活动较多、未装有避雷线的地区,可在其杆塔顶端安装架设避雷针,以避免雷击现象的出现。
浅谈输电线路的防雷保护及措施
浅谈输电线路的防雷保护及措施摘要:本文介绍了输电线路防雷改造原则,阐述了输电线路防雷保护,提出了输电线路防雷的主要措施。
关键词:输电线路防雷保护措施随着电网规模的不断发展,雷击引起输电线路跳闸故障也逐年增多,严重影响线路设备安全运行,架空输电线路的雷击跳闸一直是困扰安全供电的一个难题。
因此,寻求更有效的线路防雷保护措施,一直是供电企业工作者关注的课题。
1、输电线路防雷改造原则(1)可控放电避雷针造价较避雷器低,保护效果好,维护工作量小。
但其保护范围有限,适用于档距小线路段。
可控放电避雷针对接地电阻的要求比较宽松,一般10欧姆以下即可,对于土壤电阻率高的地方,可以放宽到30欧姆。
(2)可控放电避雷针安装完成以后不需要定期维护,针对有的地区交通不便的实际情况具有重要意义,可以大大减轻巡视人员的工作量。
(3)根据运行经验,消雷器的防雷能力存在一定问题,故需对已加装消雷器的部分杆塔进行改造。
(4)避雷器虽造价较高,但保护效果好,杆塔、导线被雷击时,能迅速动作,适用于大档距线路段,能有效的弥补可控放电避雷针保护范围不足的盲点。
2、输电线路防雷保护(1)装设自动重合闸。
由于雷击造成的闪络多数能在跳闸后自行恢复绝缘性能,所以重合闸成功率较高。
重合闸装置作为线路防雷的一项重要措施,可有效地保证雷击跳闸后的供电可靠性。
(2)采用消弧线圈接地方式。
对于雷电活动强烈,接地电阻又难以降低的地区,可采用中性点不接地或经消弧线圈接地的方式,绝大多数的单相闪络着雷接地故障能被消弧线圈所消除。
而在两相或三相着雷时,雷击引起第一相导线闪络并不会造成跳闸,闪络后的导线相当于地线,增加了耦合作用,使未闪络相绝缘子串上的电压下降,从而提高了耐雷水平。
(3)加装氧化锌避雷器。
这种方法造价高,效果最好,可以防止各种过电压,但避雷器本身需要定期检查试验,运行成本较高,对于交通不便的地方不适宜,一般用于35kV线路。
(4)采用不平衡绝缘方式。
架空输电线路防雷措施
架空输电线路防雷措施架空输电线路防雷措施架空输电线路是连接电源厂、变电站及用户的主要电力传输通道,是电网系统的重要组成部分。
然而,在雷电活动频繁的地区,架空输电线路往往面临严重的雷电灾害威胁,引发各种线路事故。
因此,架空输电线路的防雷工作至关重要,必须采取合理可行的措施来确保线路的安全运行。
一、架空输电线路的特点1、长线路、高杆塔:架空输电线路一般跨越山谷、河流等地形复杂的区域,需要高杆塔支撑,其线路长度往往达到几百公里以上。
2、集落密集:随着城市化进程的不断加快,架空输电线路不可避免地要穿越人口密集区域,这加大了防雷工作的难度。
3、高电压、大电流:架空输电线路一般采用高于220kV、甚至500kV以上的高电压输电,受电端的电流也很大,因此对防雷措施的要求很高。
二、架空输电线路的防雷措施1、引雷接地引雷接地是指将雷电引入地下,以减少雷电对架空输电线路的破坏力。
具体措施包括:(1)杆塔接地:对于架空输电线路的杆塔,在深层土壤中钻孔、埋放电极,将杆塔与深层土层直接接通,形成一定的接地网。
(2)导线接地:在架空输电线路导线的每个杆塔上,安装接地线,将导线接地,以震荡雷电电压。
2、避雷针避雷针是将空气中存在的雷电集中在避雷针顶部,减少大地与云之间的电荷过渡。
具体措施包括:(1)安装避雷针:在架空输电线路的每个杆塔上方,安装避雷针,将避雷针接地,使之与架空输电线路杆塔的接地网相连。
(2)避雷绝缘子串:在导线张力较大处,安装避雷绝缘子串,用以增强其防雷能力。
3、避雷装置避雷装置是指将雷击能量通过适当的元件进行断开,以保障线路安全。
具体措施包括:(1)雷电监测装置:通过架设适当的雷电监测装置,监测雷电密集区域的雷击情况,及时采取相应的措施。
(2)避雷放电装置:在导线张力较大处,采用避雷放电装置,在雷电冲击导线时,使其迅速放电,达到抵消雷电的效果。
三、结语架空输电线路的防雷工作需要综合考虑诸多因素,采取科学合理的措施和方法,才能确保线路的安全运行。
浅谈10kV输电线路设计中防雷措施及应用
浅谈10kV输电线路设计中防雷措施及应用随着社会的发展,电力需求日益增长,输电线路成为了电力系统中不可或缺的一部分。
天气变化不确定因素增多,雷击事故也屡有发生,为了保障输电线路的正常运行,防雷措施显得尤为重要。
本文将就10kV输电线路设计中的防雷措施及应用进行浅谈。
一、防雷措施1. 接地装置接地装置是输电线路防雷的基本措施之一。
在10kV输电线路设计中,需要对导线、杆塔、变压器等设备进行良好的接地设计。
接地装置的作用主要是将雷电流引入地下,减小雷电流对输电线路设备的伤害。
良好的接地装置也可以起到稳定电压、提升电力系统的可靠性的作用。
2. 避雷装置避雷装置是防止雷电直接击中输电线路设备的关键装置。
在10kV输电线路设计中,应在导线、变压器等设备上设置避雷器,通过避雷器将雷电流引入到地下,保护设备免受雷击损害。
避雷装置的选择要根据地区的雷电情况和设备的特点而定,避雷装置的可靠性和稳定性是防止雷电损害的关键。
3. 防雷接地线防雷接地线是输电线路设计中的一种被动型防雷措施。
它通过将导线等设备与大地接地连接,形成躲避雷电攻击的途径,起到降低雷电损害的作用。
在10kV输电线路设计中,应根据具体情况合理设置和布设防雷接地线,确保其导电性和承载能力,提高防雷效果。
二、防雷应用1. 防雷技术针对10kV输电线路的特点和使用环境,可以采用雷电探测系统、避雷器、接地装置等多种防雷技术,以提高输电线路的防雷能力。
通过大量实验和研究,不断改进防雷技术的可靠性和稳定性,使得10kV输电线路在雷电天气下也能正常运行,保障电力系统的安全和稳定。
2. 防雷材料在10kV输电线路设计中,选择防雷材料也是至关重要的。
避雷器、防雷接地线等部件的材料质量和性能直接关系到防雷效果和设备的可靠性。
在设计中应尽量选择高质量、耐腐蚀、导电性好、抗拉强度高的防雷材料,以提高防雷设备的使用寿命和可靠性。
防雷设备的维护也是保障10kV输电线路正常运行的关键。
探究输电线路防雷保护及新方式
探究输电线路防雷保护及新方式摘要:随着人类社会的进步和经济技术的革新,电力资源得到了广泛的运用。
随着电力线路的普及,电力安全事故逐年增多。
特别是雷击,致使电力保护建设面临严峻的考验,事故的造成导致大量的人力物力损害,增加了劳动强度。
如何有效地防雷保护是当前亟待解决的问题。
关键词:输电线路;防雷保护;新方式输电线路作为电网的重要组成部分,其正常运行直接关系到电网的安全稳定。
特别是在当前经济发展过程中,随着电能需求的不断增加,更需要保证输电线路的安全可靠运行,实现电能的稳定供应。
基于此,本文详细论述了输电线路防雷保护及新方式。
一、雷电对输电线路的危害雷电具有不确定性和强烈性,以及极大的破坏能力,能在瞬间产生巨大的磁场效应。
因此,雷电若击中输电线路,会导致其绝缘体失效,造成电压危害引发跳闸,从而造成电力事故,进而威胁人们的生命财产安全。
二、雷电对输电线路的影响电网中的事故以输电线路的故障占大部分,输电线路的故障又以雷击跳闸占的比重较大,尤其是在山区输电线路中,线路故障基本上是由于雷击跳闸引起的,据运行记录,输电线路的供电故障一半是雷电引起的,所以防止雷击跳闸可降低输电线路故障,进而降低电网中事故的发生频率。
1、感应雷过电压。
雷击线路周围地面或线路杆塔时,会出现电磁感应现象,从而在导线上引发过电压,增大导线中的电流,产生一种严重威胁人身财产安全的“高压线”。
因主放电自身速度的原因,会在导线两侧运动并产生一种感应过电压波,这种感应过电压会在瞬间把线路变成为“高压线”。
针对这种现象,在设置电缆时,最好把电缆埋入地下,而不是利用架空方式来预防感应雷,同时还应增设相应的室内线路防雷设施,加设专门弱电保护装置。
2、直击雷过电压。
雷电直接击中线路即是直击雷过电压,这时会有很多雷电经导线带来电压变化,在雷电直击方位会造成电位上升。
直击雷过电压会带来许多严重危害,例如热效应及电效应等,会给输电线路带来严峻的损坏,甚至会造成不必要的人员伤亡,所以在输电线路设置工作中,为了防止直击需布设很多避雷针,利用避雷针加强对雷击的引导,从而对屏蔽起到积极的作用。
输电线路雷击原因与防雷措施
输电线路雷击原因与防雷措施一、雷击原因雷电是一种自然现象,由于地球表面和云层之间电位差的存在,当电位差达到一定程度时,空气中的电荷会产生强烈的电弧放电。
输电线路在这种强电场的作用下,可能发生雷击。
1.1 天气因素天气是导致输电线路雷击的一个主要原因。
当遇到雷暴天气时,地球表面电势将会产生明显的变化,同时云层中的电荷分布也会非常不稳定,这些天气因素都可能造成雷电现象的发生,对输电线路带来影响。
1.2 空气湿度当空气湿度较大时,空气中的氧分子与水分子往往会被电场电离,释放出自由电子和空穴,这会导致电势在输电线路上的不均匀分布,从而容易引发雷击。
1.3 输电线路结构和形状输电线路的结构和形状对雷电的感应也有很大的影响。
若线路较长且周边的杂物较少,那么雷电流就比较容易进入导线内部,此时输电线路就比较容易受到雷击。
二、防雷措施为了防止输电线路发生雷击,可以采取以下几种防雷措施。
2.1 安装避雷针在输电线路上方安装避雷针是防雷措施的一种有效方法。
避雷针能够分散雷暴电流,减轻雷击对输电线路的影响。
2.2 使用雷电保护器在输电线路中安装雷电保护器可将雷电感应的电荷导向地线,最大程度保护输电线路的安全。
2.3 增加地网通过在输电线路安装大规模的地网,可以有效将雷击感应电荷导向地面,避免对输电线路造成过大影响。
2.4 降低线路电位通过在输电线路上引入降压变压器等装置,减缓输电线路的电位差,有效避免线路雷击。
总的来说,输电线路防雷措施涉及到许多领域,这需要广泛的基础知识和实践经验。
只要掌握了相关技术和方法,就能够有效地防止输电线路发生雷击现象,保证人们生活和工作的正常进行。
输电线路防雷措施
输电线路防雷措施输电线路是电力系统中的重要组成部分,负责将发电厂产生的电能传输到各个用户终端。
然而,在雷电活动频繁的地区,雷击对输电线路的安全运行构成了严重的威胁。
因此,针对输电线路的防雷措施显得尤为重要。
要提高输电线路的防雷能力,首先需要对雷电的特点和对输电线路的影响有一定的了解。
雷电是一种极其强大的自然现象,它的主要特点是瞬态高电压、高电流、高功率和高能量。
雷击对输电线路的影响主要体现在以下几个方面:1. 直接雷击:当雷电击中输电线路时,会产生巨大的电流和电压,可能会瞬间烧毁线路设备,造成停电事故。
因此,需要采取措施减少直接雷击对输电线路的影响。
2. 感应雷击:雷电在地面或其他物体上击中时,会产生电磁感应作用,对附近的输电线路产生干扰。
这种感应雷击可能导致输电线路的过电压和过电流,损坏线路设备,甚至造成输电线路短路故障。
为了解决以上问题,需要采取一系列防雷措施来保护输电线路的安全运行。
下面将介绍几种常用的防雷措施。
1. 金属接地网:金属接地网是一种将输电线路接地的措施,它能将雷电击中的电流引入地下,减少对线路设备的影响。
金属接地网应该与输电线路的金属结构(如杆塔、导线等)连接,形成一个完整的导电通路。
2. 避雷针:避雷针是一种尖锐的金属杆,通常安装在输电线路的杆塔或大型设备上方。
避雷针能够吸引雷电,将其导向地下,从而减少对输电线路的直接击中。
3. 避雷器:避雷器是一种专门用于防止输电线路过电压的装置。
它能够在线路电压超过设定值时迅速放电,保护线路设备不受雷击的影响。
4. 避雷绝缘子:避雷绝缘子是一种特殊设计的绝缘装置,它能够将输电线路与大地之间的电压隔离开来,减少雷电对线路的感应作用。
除了上述措施外,还可以利用雷电预警系统来提前预知雷电活动,并及时采取防护措施。
雷电预警系统通过监测雷电活动的电磁信号,判断雷电的位置和强度,并及时向相关人员发出预警信号,以便他们采取必要的防护措施。
针对输电线路的防雷措施是确保电力系统安全运行的重要环节。
浅谈输电线路的防雷方法与措施
避 雷针周围的区域 的避雷和接地措施 , 以避免出现 周围磁场 的
过电压反应: ③避免 由雷击产生 的强磁场所 导致 的计算机、 微波
通信等设备 的误动 。
2 . 1 . 2 架设避 雷 线
在输 电线路 的防雷保护措施 中, 最有效也是最基本 的防雷 方 法 就 是 架 设 避 雷 线 。避 雷 线 的架 设 可 以有 效 的 防止 和 避 免 导
降低线路导线上感应过电压 的 目的。 般情况下 , 输 电线路上的电压越高 , 其避雷线的防雷效果 也就越好, 并且避雷线的价格在整个输电线路的造价比例 中越来
一
1 . 1 直接 雷 击
直 接雷击 主要指 的是雷 电对 雷暴范 围 内的输 电线路 系统 的 电杆 ( 塔) 、 导线 以及 其他设备 进行直接 的雷击 , 导致输 电线 路 系统产生过 电压 的电击现象 。通 常情 况下, 线路遭受 直接雷 击 的概率 比较小 , 但 是一旦遭遇到直接雷击就会是摧毁 性的破
越低。因 此, 电压等级在 1 l O k V以上 ( 包括 1 l O k V ) 的 输 电线路应
该在其全线进行避雷线的架设 。此外 , 还要适当的做小避雷线同 边导线之间的保护角, 以减小绕击率, 提高避雷线 的屏蔽效果 。
坏, 对输 电系统造成 巨大的安全危 害和经济损失 。
关键词 : 输 电线路 ; 雷 电危害 ; 防雷措施
刖
吾
随着我 国电力事 业的不断发展 , 其 电力输 电网络 的规模也 得 到了迅速 的壮大 。与此 同时, 由雷 电危害所 引起 的输 电线路 停 电故障也在 日益的增加 , 雷电危害不仅严重影响到 了输 电设 备及其 线路的正常运行 ,导致 电力企业产生大量 的经济损失 , 也 同时对人们 的 日常工作和生活造成了严重 的影 响。本文就输 电线路 雷害故障的原因进行分析 , 并提 出相应的防雷方法和 措
浅谈架空输电线路遭受雷害及防雷措施
浅谈架空输电线路遭受雷害及防雷措施【摘要】架空输电线路遭受雷击导致线路跳闸甚至设备损坏,从而影响线路的供电可靠性。
因此,采取有防雷效措施避免架空输电线路遭受雷击和降低线路的雷击跳闸次数,是确保电网安全运行的一项重要工作。
【关键词】架空输电线路;雷击;防雷措施1.雷击机理雷电一般起于对流发展旺盛的雷雨云中。
感应起电理论认为,在晴天大气电场下,电场方向自上而下,在垂直电场中下落的雨水粒子被电场极化后,上部带负电荷,下部带正电荷。
云中的小冰粒或是小水滴在同这些较大的降水粒子相互碰撞后获得了正电荷,然后随着上升气流向上走,从而发生了电荷的转移,使得小冰粒或小水滴带正电荷、降水粒子带负电荷。
带有不同极性和不同数量电荷的雷雨云之间,或是雷雨云和大地物体之间形成了强大的电场。
随着雷雨云的移动和发展,一旦空间电场强度超过大气游离放电的临界电场强度(一般为25~30 kV/cm),就可能在雷雨云内部或雷雨云和大地物体之间发生放电现象,此时的放电电流可达几十千安到数百千安,伴随着强大的电流会产生强烈的发光和发热,空气受热极速膨胀会产生轰隆声,这就是雷电的产生过程。
2.雷击的危害雷电以其巨大的能量及破坏力对人类、社会带来严重的损失。
架空输电线路地处旷野、丘陵山区,往往又是地面上高高耸的物体,因此容易引雷遭受雷击。
长期以来雷击引起的输电线路跳闸对电网系统稳定运行构成了较大的威胁。
正因为雷电蕴藏着巨大能量,对电力系统的危害从它机械效应和电气效应两方面概括。
所谓机械效应,是指雷击架空输电线路时,导线屈服点会由于雷击点巨大热量而降低,径向自压缩力可能超过导线的屈服点,从而使得导线发生形变,最终导致原本组合在一起的线股剥离和分层,降低导线的机械强度,发生断股甚至断线事故。
3.架空输电线路防雷的重要性一般来说,在电力系统中绝缘性能最强的就是线路,其次是变电站,而发电机的绝缘性能是相对弱的。
架空输电线路遭受雷击,不仅对线路本身构成威胁,而且雷电流还可能会沿线路侵入变电站及发电厂会引起设备绝缘损坏,影响安全供电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I 『 J
Im L
化
共安装 了2只合成绝 缘外 套金 属氧化 物避雷 器 , 0 经过 两年 多的运行 实践 和一 系列 的带 电监测研 究 , 明这种改 进的 防雷措施 对于 山区 证
上, 该线 路 又是 雷击 事故 较 多 的线 路 之一 , 由于 这些 杆 有近 一半
量 很大 。
雷 击杆 塔 时塔 顶 电 位迅 速提 高 , 电位值 为 U=R + ./ 其 tid L it dd R 一 一 冲击 接 地 电阻 ; d
Ld d — —暂 态 分量 。 . /t i
氧化物避 雷器 的研制 成功 , 为解决线路 的防雷 提供 了一种 新的手段 。
体 的措 施 , 程 实施 后输 电杆 塔 的接地 电阻有 了明显 的 降低 。 工
如表 1 所示
地 形 地 庇 1糍 电 m . ¨ 值 20 0 7年 8 月 20 0 8年 4 改进 后 爿
我们 对 该段 的接 地 进行 了改 善 , 新埋 设 了接 地 引下 线 , 于接 重 对
地土壤 不好 的采取 了换 土措施 , 重 的采取 了埋设连 续伸 长接地 较严
线 路 的故障 占大 部分 , 电线路 的故 障 又以雷 击跳 闸 占较大 比重 , 输 尤 其是在 山 区的输 电线 路 中, 线路 故障基 本上是 由于 雷击跳 闸引起 的 , 电厂 运行 记 录显 示 , 空输 电线路 的供 电故 障一 半是 雷 电 据 架 引起 的 , 以防止 雷击 跳 闸可大 大 降低输 电线 路 的故障 , 而降低 所 进 电 网中事 故 的发 生频 率 , 少经 济 损失 。 多 年探 索 , 周 的输 电 减 经 我 线路 防雷基 本形成 了一 系列行之 有效 的常规 防雷方 法 , 如降低 接地 电阻 、 架设 避雷 线 、 装 自动重 合 闸等 , 是对 于一 些 山区线 路 , 安 但 雷 害 十分频 繁 , 降低接 地 电阻又 极其 困难 , 而且 费 用高 、 工作 量大 , 效 果 不理想 。 由于 近些 年 l0V 以上 电压等 级的 合成绝 缘外 套金 属 k及 1
经验交流
浅谈输 电线路 的防雷
文 /刘 向科 李爱华 范 永强 任 学民
摘 要 通过在 电网雷电活动频繁 地 区的1 V k 线路上, 1 0 采用合成绝缘 外套金属氧化物避 雷器改进 防雷措施 的研究 , 经过试
验和 实际运行 ,证 明此改进是成功 、经 济和有效的 ,雷击跳 闸次数 由 2 0 年 的 6 ,降 为 2 0 年的 1 ,2 0 年的 0 07 次 8 0 次 09 次。
在 山顶 上 , 以雷击 点 的查 找 以及 瓷瓶 串的更 换极 其 困难 ,丁作 5 %的放 电电 压时 , 发 生 由塔 顶 至导 线 的 闪络 。 tu1 5 , 所 _ 0 将 即u— >U 0
雷 击是 有 选择 性 的 , 雷 区和 易击 点 约 占全 线 的三 分之 一 , 多
加强 多雷 区和易击点 的防 雷措施 能显著 降低雷 击跳 闸率 。 以我们 放 电电压 、 电流强 度 和塔 体 的 冲击接 地 电 阻 。 般 来说 , 路 所 雷 一 线 决定 在线 19 ~17 2号 6号杆上 安装 避雷器 , 降低 该 线路 的雷击 跳闸 以
当塔顶 电位 u与 导线 上 的感 应 电位 u 的差值 超 过绝 缘 子 串 t 1 如 果考 虑 线路 工 频 电压 幅值 U m的影 响 , 为 U— IU >U 0 则 tU + m 5。 因此 , 线路 的耐雷 水 平 与 3 重要 因素 有 关 , 个 即线 路 绝缘 子 的5 % 0 的 5%放 电电压 是 一定 的 , 电 流强 度 与地 理位 置 和 大气 条件 相 0 雷 关, 不加 装避 雷 器 时 , 高输 电 线路 耐雷 水 平往 往 是采 用 降低 塔 提 体 的接 地 电 阻 , 山区 , 在 降低 接 地 电 阻是 非常 困难 的 , 也是 为 这 什么 输 电线 路屡 遭雷 击 的原 因 。 加 装 避雷 器 以后 , 当输 电线 路遭 受 雷 击时 , 电流 的分 流将 雷
线 路 的 防雷 是 经 济 、有 效 的 。 1 、线 路 的基本 情 况及 改造 情 况 1 线路 的基本情 况 . 2 线 路避雷器 防雷 的基 本原理 . 1 雷击 杆 塔时 , 部分 雷 电 流通 过避 雷线 流 到相 临杆塔 , 一 一 另
赏测值
J J f
尘测值
I I I腰 J
m L l _
M 化 岩 H化 岩
M化
风化
风化 腰 凡化
石
^
我们对 电网内雷 电活 动频繁 的两个 地区之一 的一条线 路来 进行分 析 整改 , 路经过 高 山大岭 的一段杆 塔 , 该线 在雷雨 季节 经常 遭受雷击 ,
部 分雷 电流经 杆 塔流 人 大地 , 杆塔 接地 电阻 呈暂 态 电阻 特性 , 一 般用 冲击接 地 电 阻来 表征 。
式 中 i —雷电流; —
、
高 山丘 岭约 占4 %, 电活 动非 常频 繁 , 雷 电 日在 4 J 雷 0 年 0日以 上 ,每 年 由于雷 击 而 引 起 的 故 障 占全 年 运 行 故 障的 6 % 左 右 。 0 10 V线路 全 长 3.k 1k 8 m,导 线 均无 换位 ,平地 占 1. 5 94 %,一般 山 地 占3. 91 %,高 山丘 岭 占 4 . 1 %。莱 芜 市年 平 均雷 暴 日在 3 天 以 5 5
关键 词 :输 电 线路 ,防 雷 ,接 地
2 0 年 7 , 芜某 大 型钢 铁 企业 集 团 ,因雷 击 损坏 10 V 06 月 莱 1 K 见 表 1 此段 杆 塔 高 山大岭 占5% , 般 山地 占3%, 。 0 一 4 平地 占 1% 6 的输 电线 路 ,导 致 钢厂 三 分之 一设 备停 产 近 1 , 天 损失 严 重 。电 网中 的事故 以输 电