2020年中考数学复习 专题类型突破 专题一 5大数学思想方法训练

合集下载

2019-2020年中考数学专题复习题:数学思想方法

2019-2020年中考数学专题复习题:数学思想方法

2019-2020年中考数学专题复习题:数学思想方法数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路.因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常用的解题方法与技巧,从而为夺取中考高分搭起灵感和智慧的平台.初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等.由于我们前面各种思想方法均有渗透,故本专题只是侧重如下几个思想方法予以强化.类型之一整体思想例1 (xx·内江)已知+=3,则代数式的值为 .【思路点拨】要求分式的值,必须要知道分式中所有字母的取值,从条件看无法解决;观察分式的结构发现分子与分母都是m(a+2b)+n(ab)的形式,所以从条件中找出(a+2b)与ab之间的关系,即可解决问题.【解答】方法归纳:整体思想就是在解决问题时,不是着眼于它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对整体的把握和运用达到解决问题的目的.1.(xx·安徽)已知x2-2x-3=0,则2x2-4x的值为( )A.-6B.6C.-2或6D.-2或302.(xx·乐山)若a=2,a-2b=3,则2a2-4ab的值为 .3.(xx·宿迁)已知实数a,b满足ab=3,a-b=2,则a2b-ab2的值是 .4.( xx·菏泽)已知x2-4x+1=0,求-的值.类型之二分类思想例2 (xx·襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是 .【思路点拨】从图中看有两个直角,这两个直角都有可能是原直角三角形的直角,分两种情况将原图补充完整,即可求出原直角三角形的斜边长.【解答】方法归纳:在几何问题中,当图形的形状不完整时,需要根据图形的已知边角及图形特征进行分类画出图形,特别注意涉及等腰三角形与直角三角形的边和角的分类讨论.1.(xx·凉山)已知⊙O的直径CD=10 cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8 cm,则AC的长为()A.2cmB.4cmC.2cm或4cmD.2cm或4cm2.(xx·凉山)已知一个直角三角形的两边的长分别是3和4,则第三边长为 .3.已知点D与点A(8,0),B(0,6),C(3, -3)是一平行四边形的顶点,则D点的坐标为 .4.(xx·株洲调研)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .5.射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2 cm,QM=4 cm.动点P从点Q出发,沿射线QN以每秒1 cm的速度向右移动,经过t秒,以点P为圆心, cm 为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒).6.(xx·呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(-6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为 .7.(xx·襄阳)在□ABCD中,BC边上的高为4,AB=5,AC=2,则□ABCD的周长等于 .类型之三转化思想例3 (xx·滨州)如图,点C在⊙O的直径AB的延长线上,点D在⊙O上,AD=CD,∠ADC=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.【思路点拨】(1)因为D点在圆上,连接OD,证明OD与CD垂直即可;(2)连接OD,将图中不规则的阴影部分面积转化为三角形与扇形的面积之差.【解答】方法归纳:化归意识是指在解决问题的过程中,对问题进行转化,将“未知”转化为“已知”、将“陌生”转化为“熟知”、将“复杂”转化为“简单”的解题方法,其核心就是将有待解决的问题转化为已有明确解决的问题,以便利用已有的结论来解决问题.1.(xx·泰安)如图,半径为2 cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为( )A.(-1)cm2B.(+1)cm2C.1 cm2D. cm22.(xx·潍坊)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[]=5,则x的取值可以是( )A.40B.45C.51D.563.(xx·菏泽调考)将4个数a、b、c、d排成两行、两列,两边各加一条竖线段记成,定义=ad-bc,上述记号就叫做二阶行列式,若 =8,则x= .4.(xx·白银)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 .5.(xx·凉山)如图,圆柱形容器高为18 cm,底面周长为24 cm,在杯内壁离杯底4 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为 cm.6.(xx·枣庄)图1所示的正方体木块棱长为6 cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图2的几何体,一只蚂蚁沿着图2的几何体表面从顶点A爬行到顶点B的最短距离为 cm.类型之四数形结合思想例4 (xx·黄州模拟)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1 cm/s,设P,Q出发t秒时,△BPQ的面积为y cm2,已知y与t的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE=5 cm;②当0<t≤5时,y= t2;③直线NH 的解析式为y=-t+27;④若△ABE与△QBP相似,则t=秒.其中正确的结论个数为( )A.4B.3C.2D.1【解答】方法归纳:数形结合主要有两种:①由数思形,数形结合,用形解决数的问题;②由形思数,数形结合,用数解决形的问题.1.(xx·菏泽)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D,F分别在AC,BC边上,设CD的长为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )2.(xx·内江)若关于x的方程m(x+h)2+k=0(m、h、k均为常数,m≠0)的解是x1=-3,x2=2,则方程m(x+h-3)2+k=0的解为( )A.x1=-6,x2=-1B.x1=0,x2=5C.x1=-3,x2=5D.x1=-6,x2=23.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是( )A.①②③B.①②④C.①③④D.①②③④4.(xx·黄石调考)如图,两个正方形的面积分别为16、9,两阴影部分的面积分别为a,b(a>b),则a-b等于( )A.7B.6C.5D.45.(xx·枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )A.a2+4B.2a2+4aC.3a2-4a-4D.4a2-a-2类型之五方程、函数思想例5 (xx·泰安调考)将半径为4 cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图所示),当圆柱的侧面的面积最大时,圆柱的底面半径是 cm.【思路点拨】设圆柱的底面半径为r,圆柱的侧面积为S,建立S与r之间的函数关系式,利用函数的性质确定S取最大值时r的值.【解答】方法归纳:在问题中涉及“最大值”或“最小值”时,一般要运用函数思想去解决问题,解决这里问题的关键是建立两个变量之间的函数关系.1.(xx·安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )A. B. C.4 D.52.(xx·武汉)如图,若双曲线y=与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为 .3.(xx·广州)若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为 .4.(xx·鄂州)如图,正方形ABCD边长为1,当M、N分别在BC,CD上,使得△CMN的周长为2,则△AMN的面积的最小值为 .。

中考复习数学思想方法篇(一线教师精编教师版可编辑有详细解析)

中考复习数学思想方法篇(一线教师精编教师版可编辑有详细解析)

数学方法篇一:配方法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.【范例讲析】1.配方法在确定二次根式中字母的取值范围的应用在求二次根式中的字母的取值范围时,经常可以借助配方法,通过平方项是非负数的性质而求解。

例1、求二次根式322+-a a 中字母a 的取值范围分析:根据二次根式的定义,必须被开方数大于等于零,再观察被开方数可以发现可以利用配方法求得。

解:2)1(2)12(32222+-=++-=+-a a a a a因为无论a 取何值,都有0)1(2≥-a 。

所以a 的取值范围是全体实数。

点评:经过配方,观察被开方数,然后利用被开方数必须大于等于零求得所需要的解。

2.配方法在化简二次根式中的应用在二次根式的化简中,也经常使用配方法。

例2、化简526-分析:题中含有两个根号,化简比较困难,但根据题目的结构特征,可以发现526-可以写成2)15(1525-=+-,从而使题目得到化简。

解:1 5 )1 5 ( 1 52 ) 5 ( 1 5 2 5 5 2 6 2 2 2 - = - = + - = + - = - 点评:题型b a 2+一般可以转化为y x y x +=+2)((其中⎩⎨⎧==+b xy ay x )来化简。

3.配方法在证明代数式的值为正数、负数等方面的应用在证明代数式的值为正数或负数,配方法也是一种重要的方法。

例3、不管x 取什么实数,322-+-x x 的值一定是个负数,请说明理由。

分析:本题主要考查利用配方法说明代数式的值恒小于0,说明一个二次三项式恒小于0的方法是通过配方将二次三项式化成“2a -+负数”的形式。

解:2)1(31)12(3)2(322222---=-++--=---=-+-x x x x x x x ∵0)1(2≤--x , ∴02)1(2<---x 。

因此,无论x 取什么实数,322-+-x x 的值是个负数。

中考数学专题数学思想方法

中考数学专题数学思想方法

中考数学专题复习之五:数形结合思想【中考题特点】:数形结合思想是一种重要的数学思想方法。

近几年各地中考试题中都体现了这种数学思想方法。

在数学问题中,数量关系与图形位置关系这两者之间有着紧密却又较隐含的相互关系。

解题时,往往需要揭示它们之间的内在联系,通过图形,探究数量关系,再由数量关系研究图形特征,使问题化难为易,由数想形、由形知数,这就是一种数形结合思想。

【范例讲析】:例1:二次函数y=ax 2+bx+c 的图象如图所示,根据图象,化简||)23(||2b a c b c a b -+----例2:如图,△ABC 中,∠C=90°,BE 是角平分线,DE ⊥BE 交AB 于D ,半圆O 是△BDE 的外接半圆。

⑴求证:AC 是半⊙O 的切线; ⑵若AD=6,AE=62,求DE 的长。

例3:已知:抛物线y=x 2-mx+22m 与抛物线y=x 2+mx -243m在平面直角坐标系xOy 中的位置如图所示,其中一条与x 轴交于A 、B 两点。

⑴试判定哪条抛物线经过A 、B 两点,并说明理由; ⑵若A 、B 两点到原点的距离AO 、OB 满足3211=-AO OB ,求经过A 、B 两点的这条抛物线的解析式。

例4已知:如图6,在半径为6,圆心角为90°的扇形OAB 的弧上有一动点P ,PH ⊥OA ,垂足为H ,ΔOPH 的重心为G.(1) 当P 在弧上运动时,线段GO 、GP 、GH 中有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度; (2) 设PH=x ,GP=y ,求y 关于x 的函数解析式,并写出自变量的取值范围;(3) 如果ΔPGH 是等腰三角形,试求出线段PH 的长。

P GBO例5:把两个全等的等腰直角三角形ABC 和EFG (其直角边长均为4)叠放在一起(如图①),且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合.现将三角板EFG 绕O 点顺时针旋转(旋转角α满足条件:0°<α<90°=,四边形CHGK 是旋转过程中两三角板的重叠部分(如图②)。

数学中考复习数学思想方法专题

数学中考复习数学思想方法专题

数学思想方法专题一、数形结合思想数形结合思想,其实质是将抽象的数学语言与直观的图形结合起来,关键是数与形之间的相互转化.在运用数形结合思想分析和解决问题时,要彻底明白一些概念和运算的几何意义以及常见函数图象的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义.例1 如图1,数轴上的A ,B ,C ,D 四点所表示的数分别为a ,b ,c ,d ,且O 为原点.根据图中各点位置,判断与|a -c|的值不同的是( )A . |a|+|b|+|c|B . |a-b|+|c-b|C . |a-d|-|d-c|D . |a|+|d|-|c-d|分析:根据绝对值的性质计算出各绝对值表示的线段长,与|a-c|的长进行比较即可. 解:由题意,知|a-c|=AC.∵|a|+|b|+|c|=AO+BO+CO ≠AC ,故A 选项正确;∵|a -b|+|c -b|=AB+BC=AC ,故B 选项错误;∵|a -d|-|d -c|=AD -CD=AC ,故C 选项错误;∵|a|+|d|-|c -d|=AO+DO -CD=AC ,故D 选项错误.所以选A .点评:本题考查了实数与数轴,知道绝对值的意义是解题的关键.例2 (2012年河南省)如图2,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x<ax+4的解集为( )A. x<23 B. x<3 C. x>23 D. x>3 分析:由于两条直线交于点A ,结合函数表达式y=2x 确定点A的横坐标.注意在交点左边和右边y 值的变化情况,根据图象信息直接确定不等式的解集.解:把A (m ,3)代入y=2x ,得m=23.所以A (23,3). 由图象可知,不等式2x <ax+4的解集为x <23. 故选A.点评:本题主要考查对一次函数与一元一次不等式等知识点的理解和掌握,能熟练运用性质进行解题,并通过图象判断不等式的关系是解题的关键.二、分类讨论思想分类讨论思想是指当被研究的问题存在一些不明确的因素,无法用统一的方法或结论给出统一的描述时,按可能出现的所有情况来分别进行讨论,得出各种情况下相互独立的结论.分类的原则是:①分类的每一部分是相互独立的;②一次分类必须依据同一个标准;③分类必须是逐次进行的.例3 (2012年湘潭市)已知一次函数y=kx+b (k ≠0)的图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的表达式.分析:根据点(0,2)以及图象与两坐标轴围成的三角形面积确定图象与x 轴的交点坐标,注意分交点位于原点左侧和原点右侧两种情况讨论,根据两个点的坐标即可确定一次函数的表达式.解:∵一次函数y=kx +b (k ≠0)的图象过点(0,2),∴b=2.令y=0,则x=-k2. ∵函数图象与两坐标轴围成的三角形面积为2, ∴21×2×k2-=2,即k 2=2. 当k >0时,k2=2.解得k=1; 当k <0时,-k 2=2.解得k=-1. 故此一次函数的表达式为y=x+2或y=-x+2.点评:确定一次函数的表达式,关键是确定图象与坐标轴的另一交点坐标.由于题目中没有明确指出图象与x 轴交于正半轴还是负半轴,故需要分两种情况进行讨论.例4 (2012年龙东市)等腰三角形的一腰长为5,一边上的高为3,则底边长为________. 分析:结合题意“一边上的高”将问题分为底上的高与腰上的高两种情况,等腰三角形腰上的高又分为高在三角形内(锐角三角形)与高在三角形外(钝角三角形)两种情况,运用勾股定理,分别求解.解:(1)若高是该等腰三角形底边上的高,如图3,此时,AB=AC=5,AD=3.由勾股定理,得BD=22BD AB -=2235-=4.所以底边BC=8.(2)若高是该等腰三角形腰上的高.①当等腰三角形为锐角三角形时,如图4,此时AB=AC=5,BD=3.由勾股定理,得AD=22BD AB -=2235-=4.故CD=1.在Rt △BCD 中,由勾股定理,得BC=22CD BD +=2213+=10;②当等腰三角形为钝角三角形时,如图5.此时AB=AC=5,CD=3.由勾股定理,得AD=22CD AC -=2235-=4.故BD=9.在Rt △BCD 中,由勾股定理,得BC=22CD BD +=2213+=310.综上,底边长为8或10或310.点评:题目没有图形,仅仅已知腰长以及一边上的高,答案不唯一,可以分高是底边上的高和是腰上的高两种情况讨论,其中腰上的高又分两种情况,高位于等腰三角形内和高位于等腰三角形外进行分类讨论,避免漏解或重解.三、转化思想转化思想常用的解题策略是:(1)已知与未知的转化:分析已知条件的内涵,挖掘其隐含条件,使得已知条件朝着明朗化的方面转化;对于一个未知的新问题,通过联想,寻找转化为已知的途径,或者是从结论入手进行转化;(2)数与形的转化:把抽象的数学语言与直观的图形相结合,使许多概念直观而形象,有利于发现解题途径;(3)一般与特殊的转化:比如探究规律问题,从简单的某些属性,按照某种不变的规律向一般图形具有的性质进行探究等;(4)复杂与简单的转化:把一个复杂的、陌生的问题转化为简单的、熟悉的问题来解答.例5 (2012年湛江市)先阅读理解下面的例题,再按要求解答下列问题.例:解一元二次不等式x2-4>0.解:∵x2-4=(x +2)(x -2),∴x2-4>0可化为(x +2)(x -2)>0.由有理数的乘法法则“两数相乘,同号得正”,得①⎩⎨⎧-+0202 x x ,或②⎩⎨⎧-+0202 x x . 解不等式组①,得x >2;解不等式组②,得x <-2.∴(x +2)(x -2)>0的解集为x >2或x <-2.即一元二次不等式x2-4>0的解集为x >2或x <-2.(1)一元二次不等式x2-16>0的解集为_______;(2)分式不等式31+-x x >0的解集为____________; (3)解一元二次不等式2x 2-3x <0.分析:(1)将一元二次不等式的左边分解因式后化为两个一元一次不等式组求解即可;(2)根据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可;(3)将一元二次不等式的左边分解因式后化为两个一元一次不等式组求解即可. 解:(1)x >4或x <-4.(2)x >3或x <1.(3)∵2x 2-3x=x (2x -3),∴2x 2-3x <0可化为x (2x -3)<0.由有理数的乘法法则“两数相乘,异号得负”,得①⎩⎨⎧-0320 x x 或②⎩⎨⎧-0320 x x .解不等式组①,无解;解不等式组②,得0<x <23. ∴x (2x -3)<0的解集为0<x <23. 即一元二次不等式2x2-3x <0的解集为0<x <23. 点评:这是一道方法渗透性阅读理解题,解题的关键是认真阅读材料,并运用材料中提供的方法解答新的问题,这里渗透了转化思想.例6 (2012年日照市)如图6-①,正方形OCDE 的边长为1,阴影部分的面积记作S 1;如图6-②,最大圆的半径r=1,阴影部分的面积记作S 2,则S 1_______S 2(用“>”、“<”或“=”填空).分析:观察图①可知,阴影部分的面积等于矩形CAFD 的面积,观察图②可知,阴影部分的面积等于最大圆面积的41,分别求出矩形CAFD 的面积、最大圆面积的41后作比较即可. 解:连接OD ,如图6-①.∵四边形OCDE 为正方形,OE=1,∴由勾股定理,得OD=22DE OE +=2211+=2.∴AO=2.∴AC=AO-CO=2-1.∴S 1=S 矩形CAFD =(2-1)×1=2-1.∵S 大圆=πr2=π,∴S 2=41π. ∵2<49,即2<23, ∴ 2-1<23-1,即2-1<41. 又21<43<41π, ∴2-1<41π. ∴S 1<S 2.点评:对不规则图形面积的考查是近几年中考的热点问题,主要是通过转化,将不规则图形转化为规则图形,再利用和或差进行计算.四、整体思想整体思想就是从问题的整体出发,把某些式子或图形看成一个整体,把握它们之间的联系,进行有目的、有意识的整体处理.例7 (2012年南通市)无论a取什么实数,点P(a-1,2a-3)都在直线l上,Q(m,n)是直线l上的点,则(2m-n+3)2的值等于________.分析:根据无论a取什么实数,点P(a-1,2a-3)都在直线l上,确定函数的表达式,再把x=m,y=n代入函数表达式,求出2m-n的值,最后整体代入.解:因为2a-3=2(a-1)-1,而无论a取什么实数,点P(a-1,2a-3)都在直线l上,所以直线l的表达式是y=2x-1.又Q(m,n)是直线l上的点,所以n=2m-1,即2m-n=1.所以(2m-n+3)2=(1+3)2=16.点评:如果已知以含有字母的代数式为坐标的点在某直线上,可以通过研究点的横、纵坐标之间的关系来确定函数表达式.用整体代入的方法求代数式的值是一种常用的方法.例8 (2012年内江市)如图7,在矩形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,则阴影部分图形的周长为()A. 15B. 20C. 25D. 30分析:要求阴影部分的周长,我们可以把两块阴影部分的周长相加,运用轴对称的性质,找到阴影部分的周长与原矩形边长的关系.解:因为在矩形ABCD中,AB=10,BC=5,所以CD=AB=10,AD=BC=5.根据轴对称的性质,得A1E=AE,A1D1=AD,D1F=DF.设线段D1F与线段AB交于点M,则阴影部分的周长是:(A1E+EM+MD1+A1D1)+(MB+MF+FC+CB)=AE+EM+MD1+AD+MB+MF+FC+CB=(AE+EM+MB)+(MD1+MF+FC)+AD+CB=AB+(FD1+FC)+5+5=10+(FD+FC)+10=20+DC=20+10=30.故选D.点评:灵活运用轴对称的性质是解决此类问题的关键,正确找出折叠前后的对应边和对应角,运用整体代换有助于解决问题.五、建模思想建模思想就是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的数学模型的一种思想方法.例9某地上年度电价为0.8元/度,年用电量为1亿度,本年度计划将电价调至0.55至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y亿度与x-0.4成反比例,又当x=0.65元时,y=0.8.(1)求y与x的函数关系式.(2)若每度电的成本价为0.3元,则电价调至0.6元时,本年度电力部门的收益是多少?[收益=用电量×(实际电价-成本价)]分析:本题y与x虽不是反比例函数,但根据题意y与x-0.4成反比例,根据反比例的特点列出关系式y=4.0-x k ,用待定系数法就可确定函数关系式.用电量与实际电价减去成本价,二者乘积即为收益.根据题意列出方程解之即可得到结果.解:(1)∵ y与x-0.4成反比例,∴设y与x的函数关系式为y=4.0-x k (k≠0),把x=0.65,y=0.8代入,可以求出k=0.2.∴ y=4.02.0-x =251-x . (2)根据题意,收益为1+251-x ·(x-0.3)亿元.将x=0.6代入,得收益为0.6亿元.所以当电价调至0.6元时,本年度电力部门的收益是0.6亿元.点评:函数是描述变量之间相互关系的重要数学模型之一.很多实际问题都可以归结为函数问题.根据题意,找出变量之间的关系,建立适当的数学模型是解题的关键.六、方程思想方程思想是从问题的数量关系入手,运用数学语言将问题转化为数学模型,然后通过解方程(组)来使问题获解.一般方法是认真分析题中的各个量以及相互关系,用一个或者几个等量关系描述题目中所有的相等关系,建立方程(组)模型,进而确定未知数的值,使问题获得解答.例10 (2012年济宁市)一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?分析:设该校共购买了x 棵树苗.由题意,得x [120-0.5(x -60)]=8800,解方程即可.解:因为60棵树苗售价为120元×60=7200元,7200元<8800元,所以该校购买树苗超过60棵.设该校共购买了x 棵树苗.由题意,得x [120-0.5(x -60)]=8800.解得x1=220,x2=80.当x1=220时,120-0.5×(220-60)=40<100,∴x1=220(不合题意,舍去);当x2=80时,120-0.5×(80-60)=110>100,∴该校共购买了80棵树苗.点评:根据已知“如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元”列出方程是解题关键.例11 (2012年潍坊市)为了援助失学儿童,九年级学生李明从2012年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内的存款一并汇出(汇款手续费不计).已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元.(1)在李明2012年1月份存款前,储蓄盒内已有存款多少元?(2)为了实现到2015年6月份存款后存款总数超过1000元的目标,李明计划从2013年1月份开始,每月存款都比2012年每月存款多t 元(t 为整数),求t 的最小值.分析:(1)根据题目中的两个相等关系:①储蓄盒内原有存款+2个月的存款=80元;②储蓄盒内原有存款+5个月的存款=125元,列方程组求解即可.(2)首先计算出2012年共有的存款数,再由题意可得从2013年1月份开始,每月存款为(15+t )元;从2013年1月到2015年6月共有30个月,共存款30×(15+t ),再加上2012年共有的存款总数超过1000元,由此构造不等式取符合条件的最小整数值即可.解:(1)设李明每月存款x 元,储蓄盒内原有存款y 元.依题意,得2x+y=80和5x+y=125. 解得x=15,y=50.所以储蓄盒内原有存款50元.(2)由(1),得李明2012年共有存款12×15+50=230(元),2013年1月份后每月存入(15+t )元,2013年1月到2015年6月共有30个月.依题意,得230+30(15+t )>1000.解得t >1032.所以t 的最小值是11. 点评:建立方程模型应从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式等,求出结果并结合题意讨论结果的意义,得出符合题意的解.七、函数思想函数思想是指用函数的概念和性质去分析问题和解决问题.也是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型,一般方法是认真分析题意,恰当设变量,寻找题目中相关量之间的相等关系,构造方程(组),确定函数的表达式,再结合题意进行有关探究、计算.例12 (2012年温州市)如图8,在△ABC 中,∠C=90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B .已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ .在整个运动过程中,△MPQ面积的变化情况是( )A . 一直增大B . 一直减小C . 先减小后增大D . 先增大后减少分析:思路1,找出几个特殊情况时△MPQ 的面积大小情况:①当P ,Q 两点刚开始运动时,△MPQ 的面积;②当P ,Q 两点同时运动到三角形所在边的中点时,△MPQ 的面积;③当P ,Q 两点运动到接近终点时,△MPQ 的面积.然后比较求解.思路2,把△MPQ 的面积用运动时间t 的函数表示出来,根据函数性质解答.解法一(合情推理):当点P 从点A 出发时,△MPQ 的面积等于△ACM 的面积,即等于△ABC 面积的21; 当点P 运动到边AC 的中点时,点Q 也相应地运动到BC 边的中点,此时△MPQ 是△ABC 的中点三角形,△MPQ ∽△CBA ,其相似比为21. ∴△MPQ 的面积等于△ABC 面积的41; 当点P 接近点C ,点Q 接近点B 时,△MPQ 的面积接近于△BCM 的面积,即约等于△ABC面积的21. 综上可知,△MPQ 的面积大小变化情况是先减小后增大.故选C .解法二(建立面积的函数模型):设点P 从A 到C 运动的总时间为t ,从A 到P 运动的时间为m ,从P 到C 运动的时间为n ,则m +n=t ,记AC=b ,BC=a ,则△APM 中,AP=nm m +b ,AP 边上的高为21a ,所以 S △APM=21·n m m +b ·21a=41·nm m +·ab. 同理得到S △BQM =21·n m n +a ·21b=41·n m n +·ab ; S △PCQ=21·n m m +b ·n m n +a=21·()2n m m n +·ab ; S △ABC=21ab. ∴S △MPQ =S △ABC-S △APM -S △BQM -S △PCQ =21ab-41·n m m +·ab -41·n m n +·ab -21·()2n m m n +·ab =21ab-21·()2n m m n +·ab =21ab ·1-()⎥⎦⎤⎢⎣⎡+22-1n m mn =41ab ·()222n m n m ++ =24t ab[m 2+(t-m )2] =22tab (m 2-tm+21t 2) =22tab (m-21t )2+81ab. ∵22t ab >0且81ab 是一个常数, ∴当m=21t 时,△MPQ 的面积取最小值81ab ; 当m<21t 时,即点P 到达AC 中点前,△MPQ 的面积逐渐减小; 当m>21t 时,即点P 过AC 中点后,△MPQ 的面积逐渐增大.故选C.点评:在解答运动变化的选择题时,过程不一定需要很严谨,利用特殊位置确定一些特殊值,然后结合变化过程运用合情推理找到正确答案即可.如果从变化的数量上描述变化的规律,可以建立函数模型,运用函数的性质加以分析,最终得出变化的规律.例13 (2012年绵阳市)某种子商店销售“黄金一号”玉米种子,为惠民促销,推出两种销售方案供采购者选择.方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分种子价格打7折.(1)请分别求出方案一和方案二中购买的种子数量x(千克)和付款金额y(元)之间的函数表达式.(2)若你去购买一定量的种子,你会怎样选择方案?请说明理由.解析:(1)方案一:y=4x;方案二:()()⎩⎨⎧+≤=35.45.335xyxxx(2)设购买x千克的种子.当x≤3时,选择方案一.当x>3时:当4x=3.5x+4.5时,x=9;当4x>3.5x+4.5时,x>9;当4x<3.5x+4.5时,x<9.所以当购买种子的质量少于9千克时,应选择方案一;当购买种子的质量为9千克时,选择两种方案均可;当购买种子的质量超过9千克时,应选择方案二.。

备战2020年中考 数学思想方法

备战2020年中考  数学思想方法

在小矩形的顶点上.如果 P 是某个小矩形的顶点,连接 PA,PB,那么使△ABP
为等腰直角三角形的点 P 的个数是( B )
A.2
B.3
C.4
D.5
点 B.如果它运动的路径是最短的,那么 AC 的长为 3 .
图3
【变式训练】 2.(2019·无锡)一次函数 y=kx+b 的图象与 x 轴的负半轴相交于点 A,与 y 轴的正 半轴相交于点 B,且 sin∠ABO= 23,△OAB 的外接圆的圆心 M 的横坐标为-3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.
3.相似三角形的分类讨论:若△ABC 与△DEF 相似,要注意它与△ABC∽△DEF 是不同的,要分对应关系讨论. 4.平行四边形的分类讨论:以 A,B,C,D 为顶点的平行四边形与平行四边形 ABCD 是不同的,要分 AB 是平行四边形的边还是对角线等情况讨论. 5.对于反比例函数、二次函数等的增减性,要分象限或对称轴的左边还是右边等 情况讨论. 6.圆中一条弦所对的圆周角,要分圆周角的顶点在优弧上还是劣弧上两种情况讨 论.
图4
题型之三 分类讨论思想 中考命题热点 1.涉及一元二次方程根的情况,或利用根与系数的关系解题时,若所给的一元二 次方程的系数是字母,常考查二次项系数不为 0 的隐含条件. 2.等腰三角形的分类讨论:如果等腰三角形给出两条边求第三条边或给出一角求 另外两角,要考虑所给出的边是腰还是底边,所给出的角是顶角还是底角.对于 等腰三角形的存在性问题,若三角形的三条边长分别为 a,b,c,要分 a=b,a= c,b=c 三种情况讨论.
3 (2019·陇南)如图 5,抛物线 y=ax2+bx+4 交 x 轴于 A(-3,0),B(4,0)两点, 与 y 轴交于点 C,连接 AC,BC.P 是第一象限内抛物线上的一个动点,点 P 的横 坐标为 m. (1)求此抛物线的解析式; (2)过点 P 作 PM⊥x 轴,垂足为点 M,PM 交 BC 于点 Q.试探究点 P 在运动过程中, 是否存在这样的点 Q,使得以 A,C,Q 为顶点的三角形是等腰三角形?若存在, 请求出此时点 Q 的坐标;若不存在,请说明理由;

中考数学二轮复习专题突破讲练:专题一 数学思想方法

中考数学二轮复习专题突破讲练:专题一 数学思想方法

专题一 数学思想方法数学思想方法揭示了概念、原理、规律的本质,是解决数学问题的根本策略,是沟通基础知识与能力的桥梁,是数学的精髓.在复习中一定要注重培养在解题中提炼数学思想方法的习惯,达到触类旁通的目的.中考常用到的数学思想方法有:整体思想、转化与化归思想、方程与函数思想、数形结合思想、分类讨论思想等.整体思想就是整体与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规 ,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决.整体思想常见的几种类型:①整体代入法求代数式的值;①用整体思想解方程(组)及不等式(组);③运用整体思想求角度.1.(2019·常州)如果a -b -2=0,那么代数式1+2a -2b 的值是________.2.(2018·岳阳)已知a 2+2a =1,则3(a 2+2a )+2的值为________.3.(2019·常德)若x 2+x =1,则3x 4+3x 3+3x +1的值为________.4.(2020·朝阳)已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =2a +1,x +2y =5-5a 的解满足x +y =-3,则a 的值为________. 5.(2019·曲靖)如图,已知点O 是①ABC 的内切圆的圆心,若①BOC =124°,则③A =________.,第5题图) ,第6题图)6.(2018·黔东南州)如图,分别以n 边形的顶点为圆心,以2为半径画圆,则图中阴影部分面积之和为( )A .πB .2πC .3πD .4π分类讨论思想分类讨论的知识点有三大类:①由数学概念、性质、运算引起的讨论;①由图形的形状或位置引起的讨论;①由实际意义引起的讨论.分类讨论思想体现了化整为零、积零为整的思想与归类整理的方法.分类的原则:①分类中的每一部分是相互独立的;①一次分类按一个标准,找准分类讨论的标准是解题的关键;③分类讨论应逐级进行.正确的分类必须是周全的,既不重复,也不遗漏.一、与数与式有关的分类讨论1.如果多项式9+mx +x 2是完全平方式,那么m =________.2.一组数据100,100,x ,80,80的平均数和中位数相等,则x 的值为________________.3.已知实数a ,b 满足等式a 2-2a -1=0,b 2-2b -1=0,则1a +1b的值是____________________. 二、与方程有关的分类讨论4.已知关于x 的方程kx 2+(2k +1)x +(k -1)=0有实数根,则k 的取值范围为( )A .k≥-18B .k>-18C .k≥-18且k≠0D .k<-185.如果关于x 的方程a x +3+1x -3=3+a x 2-9无解,则a 的值为________________. 三、与函数有关的分类讨论6.若一次函数y =kx +b ,当-3≤x≤1时,对应的y 值为1≤y≤9,则一次函数的解析式为______________________________________________.7.已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,求k 的取值范围为________.8. 若点A (a, m ),B (a -1, n )(a >0)在反比例函数 y =4x上,则 m, n 的大小关系是 ________________.四、与三角形有关的分类讨论①等腰三角形①9.若等腰三角形的一个角为72°,则这个等腰三角形的顶角为____________.10.在①ABC 中,①B =50°,当①A 为________________时,①ABC 是等腰三角形.11.等腰三角形一腰上的高与另一腰所成的夹角为45°,则这个等腰三角形的顶角的度数为________________________________________________________________________.12.已知等腰三角形的一边长为9,另一边长为方程x 2-8x +15=0的根,则该等腰三角形的周长为________.13.如图,已知①ABC 中,AB =AC =5,BC =8,若①ABC 沿射线BC 方向平移m 个单位得到①DEF ,顶点A ,B ,C 分别与D ,E ,F 对应,若以点A ,D ,E 为顶点的三角形是等腰三角形,则m 的值是__________.14.如图,在Rt①ABC 中,①C =90°,以①ABC 的一边为边画等腰三角形,使得它的第三个顶点在①ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为________.①直角三角形①15.一个直角三角形的两边长为4和5,则另一边长是__________.16.直角三角形的一个外角是115°,则该直角三角形的锐角是____________.17.如图,四边形ABCD 中,①BAD =①ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD的边上,若点P 到BD 的距离为32,则点P 的个数为______个. ,第17题图) ,第18题图)18.如图,在Rt①ABC 中,①ACB =90°,①B =30°,BC =3,点D 是BC 边上的一动点(不与点B ,C 重合),过点D 作DE①BC 交AB 于点E ,将①B 沿直线DE 翻折,点B 落在射线BC 上的点F 处.当①AEF 为直角三角形时,则BD 的长为________.①相似三角形①19. 如图,在①ABC 中,AB =4,BC =8,点P 是AB 边的中点,点Q 是BC 边上一个动点,当BQ =________时,①BPQ 与①BAC 相似.五、与圆有关的分类讨论20.(1)半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数等于________________________________________________________________________;(2)在半径为1的①O 中,弦AB ,AC 的长分别为3和2,则①BAC 的度数是____________;(3)已知圆内接①ABC 中.AB =AC ,圆心O 到BC 的距离为3 cm ,圆的半径为7 cm ,则腰长AB 为____________cm.21.已知在半径为10 cm的①O中,弦AB①CD,且AB=16 cm,CD=12 cm,则AB与CD 之间的距离为________cm.六、与图形位置有关的分类讨论22.如图,正方形ABCD的边长为6,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作①P.当①P与正方形ABCD的边相切时,BP的长为____________.,第22题图),第23题图) 23.如图,在Rt①ABC中,①C=90°,AC=3,BC=4,点E,F分别在边BC,AC上,沿EF所在的直线折叠①C,使点C的对应点D恰好落在边AB上,若①EFC和①ABC相似,则AD的长为____________.24.平行四边形ABCD中,对角线AC,BD相交于点O,若E,F是线段AC上的两动点,分别从A,C以相同的速度1 cm/s向目标C,A运动,若BD=12 cm,AC=16 cm,在这个运动过程中,当运动时间t=____________s时,四边形DEBF是矩形.25.如图,正方形ABCD的边长是18,点E是AB边上的一个动点,点F是CD边上一点,CF=8,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点A′,D′处,当点D′落在直线BC上时,线段AE的长为________.,转化与化归思想在研究数学问题时,我们通常是将未知的问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题.常见的几种类型:①把分式方程去分母转化为整式方程,把二元一次方程组“消元”为一元一次方程来解;①在求面积时,将不规则图形通过割补转化为规则图形;①求线段和的最小值(或路程最短)时,转化为两点之间,线段最短;①立体图形问题转化为平面图形.总之,都把陌生的问题转化为我们熟悉的问题来研究.1.若代数式(x +1)(x +2)(x +3)(x +4)的值为24,则x 的值可以是________(写一个不扣分).2.已知a>b>0,且2a +1b +3b -a =0,则b a=____________________________________. 3.如图,以直角三角形的两条直角边AC ,AB 为直径,向三角形内作半圆,两半圆交于点D ,CD =1,BD =3,则图中阴影部分的面积为________(平方单位).,第3题图) ,第4题图)4.如图,在Rt①ABC 中,①ACB =90°,AC =BC =2,分别以AB ,AC 为直径作①O 1与①O 2,则图中阴影部分面积为________.5.如图,圆柱形玻璃杯高为24 cm 、底面周长为36 cm ,在杯内离杯底8 cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿8 cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm.,第5题图) ,第6题图)6.如图,在菱形ABCD 中,AC =8,BD =6.E ,P 分别是线段AB ,AC 上的任意一点,则PB +PE 的最小值为________.7.二次函数y =x 2+bx 的图象如图,对称轴为x =-2.若关于x 的一元二次方程x 2+bx -t =0(t 为实数)在-5<x<2的范围内有解,则t 的取值范围是____________.8.解方程:2x x -2-8x 2-2x=1 ,数形结合思想著名数学家华罗庚说过,“数缺形时少直观,形少数时难入微”.数形结合思想:从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形).数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决.1.如果有理数a ,b ,c 在数轴上的位置如图所示,则||b -1+||a -c +||1-c -||a +b =________.2.用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,其中AE =33,空白的地方是一个正方形,那么这个小正方形的周长为________.3.如图,从边长为(a +3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的一条边长是a ,另一条边长是________.4.一次函数y =-32x +3的图象如图所示,当-3<y<3时,x 的取值范围是____________. ,第4题图) ,第5题图)5.如图,函数y 1=6x与y 2=x +b 交与点A ,B 两点,其中点A 的纵坐标是3,则满足y 2>y 1的x 的取值范围是____________________.6.如图,在平面直角坐标系中,O 为坐标一原点,A 是函数y =2x(x>0)图象上一点,过点A 作x 轴的平行线交函数y =k x(k>0,x>0)的图象于点B (点B 在点A 的右边),若S ①AOB =2,则k 的值为______. ,第6题图) ,第7题图)7.快、慢车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早12小时,慢车速度是快车速度的一半.快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y (千米)与所用时间x (小时)的函数图象如图所示.在快车从乙地返回甲地的过程中,当慢车恰好在快车前,且与快车相距80千米的路程时,慢车行驶的总的时间是________小时.8.如图,抛物线y =-x 2+2x +m +1交x 轴于A ,B 两点,交y 轴于点C ,抛物线的顶点为D.下列三个判断:①当x>0时,y>0;①抛物线上有两点P (x 1,y 1)和Q (x 2,y 2),若x 1<1<x 2,且x 1+x 2>2,则y 1>y 2;①点C 关于抛物线对称轴的对称点为E ,点G 、F 分别在x 轴和y 轴上,当m =2时,四边形EDFG 周长的最小值为62,其中正确判断的序号是________.,方程与函数思想方程思想是指在求解数学问题时,从题中的已知量和未知量的数量关系中找到等量关系,先将等量关系转化为方程(组),然后解方程(组)使问题得以解决.函数思想是指以函数概念为基础,研究题目中的变量关系,并建立函数关系的数学思想方法.函数思想主要体现对运动变化的动态事物的描述,体现了变量在研究客观事物中的重要作用.在解题过程中,通常需要两者之间的切换,要熟练掌握两者之间的联系.一、方程思想在代数问题中的应用1.若单项式a m -1b 2与12a 2b n 的和是单项式,则m n 的值是( ) A .5 B .6 C .8 D .92.当m =________时,函数y =-(m -2)xm 2-3+(m -4)是关于x 的一次函数.3.若一个反比例函数的图象与直线y =2x -6的一个交点为A (m ,m -2),则这个反比例函数的表达式是________________________________________________________________________.4.抛物线y =ax 2+4x -2=0(a≠0)与x 轴有交点,那么负整数a =________(一个即可).二、方程思想在几何问题中的应用5.以①AOB 的顶点O 为端点引射线OC ,使①AOC①①BOC =5①4,若①AOB =27°,则①AOC=________________________________________________________.6.如图,在①ABC中,①C=90°,AC=4,BC=6,点D是BC上一动点,DE①AB,DF①BC,将①BDE沿直线DF翻折得到①B′E′D,连接AB′,AE′,当①AB′E′是直角三角形时,则BD=__________.7.我国古代数学著作《九章算术》中有题如下:“今有勾五步,股十二步,问勾中容方几何?”其大意译为:如图,在Rt①ABC中,①ACB=90°,BC=5,AC=12,四边形CDEF是Rt①ABC的内接正方形,点D,E,F分别在边BC,AB,AC上,则正方形CDEF边长为________.三、列方程解实际应用题8.元代《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几何追及之?”设良马x天能追上驽马,可列方程为________________________.9.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,设这种商品每件的进价为x 元,根据题意得,列方程是_________________________________________________________.10.我国古代的数学著作《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94只脚,问鸡兔各有几何?译文:鸡和兔子圈在一个笼子中,共有头35个,脚94只,问鸡、兔各有多少只?设笼子里有鸡x只,兔y只,则可列方程组为____________.11.“绿水青山就是金山银山”.为了山更绿、水更清,某县大力实施生态修复工程,发展林业产业,确保到2021年实现全县森林覆盖率达到72.75%的目标.已知该县2019年全县森林覆盖率为69.05%,设从2019年起该县森林覆盖率年平均增长率为x,则可列方程________________________.12.(2019·江西)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A-B-C横穿双向行驶车道,其中AB=BC=6米,在绿灯亮时,小明共用11秒通过AC,其中通过BC的速度是通过AB速度的1.2倍,求小明通过AB时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:______________________________________________.四、函数与方程之间的联系13.已知抛物线y =ax 2-4ax -5a ,其中a<0,则不等式ax 2-4ax -5a>0的解集是____________.14.若二次函数y =ax 2+bx +c 的图象经过点(4,3),且对称轴是x =1,则关于x 的方程ax 2+bx +c =3的解为________________.15.平面直角坐标系中,过动点P (n ,0)且垂直于x 轴的直线与直线y =-3x -1及双曲线y =-2x的交点分别为B 和C ,当点B 位于点C 下方时,则n 的取值范围是________________.16.如图,在①ABC 中,AB =AC =5,BC =6,若P 是BC 边上任意一点,且满足①APM =①ABC ,PM 与AC 边的交点为M ,则线段AM 的最小值是________.参考答案[类型1]1. 5 2. 5 3. 4 4. 5 5. 68° 6.D[类型2]1.±6 2. 40或140或90 3. -2或22-2或-22-2. 4.A 5. -1或3或-376.y =2x +7或y =-2x +37.k ≤48. m >n 或 m <n9. 36°或72° 10. 50°或65°或80° 11. 45°或135° 12. 19或21或23 13. 5或8或25814. 7个 15. 3或41 16. 25°和65° 17. 2 18. 1或2 19. 1或4 20.(1)60°或120° (2)75°或15° (3)235或214 21. 14或2 22. 94或33 23. 95或5224. 2或14 25. 4或16 [类型3]1. 0或-5 2. -1+32 3. 3-π3 4. π2 5. 30 6. 245 7. -4≤t<128.解:去分母得:2x 2-8=x 2-2x ,即x 2+2x -8=0,分解因式得:(x -2)(x +4)=0,解得:x =2或x =-4,经检验x =2是增根,分式方程的解为x =-4.[类型4]1. 2 2. 43 3. a +6 4. 0<x<45. -3<x<0或x>26. 67. 838. ② [类型5]1. D 2.-2 3. y =8x4.-25. 15°或135°6. 53或1337. 60178. 150×12+150x =240x 9. 330×0.8-x =10%x 10. ⎩⎨⎧x +y =35,2x +4y =9411. 69.05%(1+x )2=72.75% 12. 6x +61.2x=11 13. -1<x<5 14. x =-2或x =415. -1<n<0或n>23 16. 165。

2020年数学中考 专题复习 专题复习(一) 数学思想方法

2020年数学中考 专题复习 专题复习(一) 数学思想方法

第二轮中考题型专题复习专题复习(一)数学思想方法类型1整体思想前言:“一学就会,一考就废?”,正是因为考试后缺少了这个环节从小学到初中,学生们经历了无数次考试。

通过考试可以检测同学们对知识的理解、掌握情况,提高应试能力。

但对待考试,部分同学只关注自己的分数,而对试卷的分析和总结缺乏重视。

结果常常出现一些题在考试中屡次出现,但却一错再错的情况。

这样,学生们无法从考试中获益,考试也就失去了它的重要意义。

做好试卷分析和总结是十分有必要的。

那么,怎样做好试卷分析呢?我认为,应从下面两点做起:一.失分的原因主要有如下四方面:(1)考试心理:心理紧张,马虎大意;(2)知识结构:知识面窄,基础不扎实;(3)自身能力:审题不清,读不懂题意;(4)解题基本功:答题规范性差。

只有查出、找准原因,才能对症下药,从弱项方面加强训练,以提高成绩。

二.“扭转乾坤”的方法做题的过程中对每一道题要试图问如下几个问题?(1)怎样做出来的?——想解题方法;(2)为什么这样做?——思考解题原理;(3)怎样想到这种方法?——想解题的基本思路;(4)题目体现什么样的思想?——揭示本质,挖掘规律;(5)是否可将题目变化?——一题多变,拓宽思路;(6)题目是否有创新解法?——创新、求异思维。

转变,让我们从一轮复习开始。

按照上面两点认真完成后面练习题。

希望每一位同学经过一轮复习后,能够扭转“一考就废”的局面,最后决胜中考。

整体思想是一种解题思想,它主要渗透在解题步骤当中.常见的有:1.求代数式的值时,不是求出代数式中每个字母的值,而是求代数式中整体某一个部分的值.2.求零散图形的面积时,利用它们的结构特点或全等变换进行整体求出.1.(2019·泰州)若2a -3b =-1,则代数式4a 2-6ab +3b 的值为(B)A .-1B .1C .2D .32.若3x 2-5x +1=0,则5x(3x -2)-(3x +1)(3x -1)=(A)A .-1B .0C .1D .-23.(2019·北京)如果m +n =1,那么代数式(2m +n m 2-mn+1m )·(m 2-n 2)的值为(D) A .- 3 B .-1 C .1 D .34.(2018·南充)已知1x -1y =3,则代数式2x +3xy -2y x -xy -y的值是(D) A .-72 B .-112 C.92 D.345.如图,分别以n 边形的顶点为圆心,2为半径画圆,则图中阴影部分的面积之和为(D)A .ΠB .2πC .3πD .4π6.(2018·玉林)已知ab =a +b +1,则(a -1)(b -1)=2.7.如图,点E 是矩形ABCD 内任一点.若AB =30,BC =40,则图中阴影部分的面积为600.8.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -my =5,2x +ny =6的解是⎩⎪⎨⎪⎧x =1,y =2,则关于a ,b 的二元一次方程组⎩⎪⎨⎪⎧3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6的解是⎩⎨⎧a =32b =-12.9.(2018·内江)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为1.类型2 分类讨论思想分类讨论思想常见的几种类型:1.等腰三角形:如果等腰三角形给出两条边求第三条边或给出一角求另外两角时,要考虑所给的边是腰还是底边,所给的角是顶角还是底角进行分类解决.2.直角三角形:在直角三角形中未明确哪个角为直角时,要注意分情况进行讨论(分类讨论),然后利用勾股定理或解直角三角形即可求解.3.相似三角形:若题目中出现两个三角形相似,则需要讨论各边的对应关系;若出现位似,则考虑两个图形在位似中心的同旁或两旁两种情况讨论.4.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两旁两种情况讨论.10.(2018·安顺)一个等腰三角形的两条边长分别是方程x2-7x+10=0的两根,则该等腰三角形的周长是(A) A.12 B.9 C.13 D.12或911.(2018·安顺)若x2+2(m-3)x+16是关于x的完全平方式,则m=-1或7.12.(2019·本溪)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相似比为12,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为(2,1)或(-2,-1).13.已知在半径为2的⊙O中,弦AC=2,弦AD=22,则∠COD的度数为30°或150°.14.(2019·通辽)腰长为5,高为4的等腰三角形的底边长为15.(2019·徐州)函数y=x+1的图象与x轴、y轴分别交于A,B两点,点C在x轴上.若△ABC为等腰三角形,则满足条件的点C共有4个.16.在一个等腰三角形中,若腰上的高与底角的平分线的比值为32,则这个等腰三角形的顶角的度数为20°或100°.17.(2019·绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB,OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为18.(2018·河南)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC 与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为类型3化归思想化归思想是指在解决问题的过程中,对问题进行转化,将“未知”转化为“已知”,将“陌生”转化为“熟悉”,将“复杂”转化为“简单”的解题方法.化归思想常见的六种类型:1.在解方程和方程组中的应用:通过消元将二元一次方程组转化为一元一次方程;通过降次把一元二次方程转化为一元一次方程;通过去分母把分式方程转化为整式方程.2.多边形化为三角形:解决平行四边形、正多边形的问题通过添加辅助线转化为全等三角形、等腰三角形、直角三角形去解决.3.立体图形转化为平面图形:立体图形的展开与折叠、立体图形的三视图体现了立体图形与平面图形之间的相互转化.4.一般三角形转化为直角三角形:通过作已知三角形的高,将问题转化为直角三角形问题.5.化不规则图形为规则图形:根据图形的特点进行平移、旋转、割补等方法将不规则图形的面积转化为规则图形(如三角形、矩形、扇形等)面积的和或差进行求解.6.转化和化归在圆中的应用:圆中圆心角与圆周角、等弧与等弦、等弧与等弧所对的圆周角都是可以相互转化的.19.(2019·娄底)如图,⊙O的半径为2,双曲线的解析式分别为y=1x和y=-1x,则阴影部分的面积是(C)A.4π B.3πC.2π D.π20.(2018·东营)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是(C)A .31+πB .3 2 C.34+π22D .31+π221.在矩形ABCD 内,将两张边长分别为a 和b(a >b)的正方形纸片按图1、图2两种方式放置(图1、图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD -AB =2时,S 2-S 1的值为(B)图1 图2A .2aB .2bC .2a -2bD .-2b 22.已知x 为实数,且3x 2+x -(x 2+x)=2,则x 2+x 的值为1. 23.如图,在扇形OAB 中,C 是OA 的中点,CD ⊥OA ,CD 与AB ︵交于点D ,以O 为圆心,OC 的长为半径作CE ︵交OB 于点E.若OA =4,∠AOB =120°3(结果保留π)24.(2018·无锡)如图,已知∠XOY =60°,点A 在边OX 上,OA =2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边△ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E.设OD =a ,OE =b ,则a +2b 的取值范围是2≤a +2b ≤5.类型4 数形结合思想数形结合思想常见的四种类型:1.实数与数轴:实数与数轴上的点具有一一对应关系,因此借助数轴观察数的特点,直观明了.2.在解方程(组)或不等式(组)中的应用:利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;利用数轴或函数图象解有关不等式(组)的问题更直观、形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解.3.在函数中的应用:借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法.4.在几何中的应用:对于几何问题,我们常通过图形找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等.25.数轴上有O ,A ,B ,C 四点,各点位置与各点所表示的数如图所示.若数轴上有一点D ,D 点所表示的数为d ,且|d -5|=|d -c|,则关于D 点的位置,下列叙述正确的是(D)A .在A 的左边B .介于A ,C 之间C .介于C ,O 之间D .介于O ,B 之间26.(2019·娄底)如图,直线y =x +b 和y =kx +2与x 轴分别交于点A(-2,0),点B(3,0),则⎩⎪⎨⎪⎧x +b>0,kx +2>0的解集为(D)A .x <-2B .x >3C .x <-2或x >3D .-2<x <327.(2019·梧州)已知m >0,关于x 的一元二次方程(x +1)(x -2)-m =0的解为x 1,x 2(x 1<x 2),则下列结论正确的是(A)A .x 1<-1<2<x 2B .-1<x 1<2<x 2C .-1<x 1<x 2<2D .x 1<-1<x 2<228.(2018·河南)如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1 cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y(cm 2)随时间x(s)变化的关系图象,则a 的值为(C)图1 图2 A. 5 B .2C.52 D .2 5 29.(2019·贵阳)在平面直角坐标系内,已知点A(-1,0),点B(1,1)都在直线y =12x +12上.若抛物线y =ax 2-x +1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是(C)A .a ≤-2B .a <98C .1≤a <98或a ≤-2D .-2≤a <92类型5 方程、函数思想方程与函数思想是一种重要的数学思想:(1)在某些图形的折叠问题中,求线段长时,通常利用勾股定理建立方程模型来解决问题;(2)在运动中求最大值或最小值时,通常可以考虑将问题转化为函数的最值讨论问题,利用二次函数的顶点坐标或函数取值范围解决.30.如图,正方形ABCD 的边长为3,将正方形折叠,使点A 落在边CD 上的点A′处,点B 落在点B′处,折痕为EF.若A′C =2,则DF 的长是(B)A .1 B.43C.53D .231.如图,在△ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,点P 从点A 沿AC 向点C 以1 cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2 cm/s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为(C)A .19 cm 2B .16 cm 2C .15 cm 2D .12 cm 232.在我国古代数学著作《九章算术》的第九章《勾股》中记载了这样的一个问题:“今有开门去阔一尺,不合二寸,问门广几何?”意思是:如图,推开两扇门(AD 和BC),门边缘D ,C 两点到门槛的距离是1尺,两扇门的间隙CD 为2寸,则门宽AB 是101寸.(1尺=10寸)。

中考数学复习 专题类型突破 专题一 5大数学思想方法训练

中考数学复习 专题类型突破 专题一 5大数学思想方法训练

专题一5大数学思想方法类型一分类讨论思想(2018·临沂中考)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时,求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.【分析】 (1)先判定四边形BDFA是平行四边形,可得FD=AB,再根据AB=CD,即可得出FD=CD;(2)当GC=GB时,点G在BC的垂直平分线上,分情况讨论,即可得到旋转角α的度数.【自主解答】在数学中,如果一个命题的条件或结论有多种可能的情况,难以统一解答,那么就需要按可能出现的各种情况分类讨论,最后综合归纳问题的正确答案.1.(2018·宿迁中考)在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是( )A.5 B.4 C.3 D.22.(2018·随州中考)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围;(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后,统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?类型二数形结合思想(2018·齐齐哈尔中考)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20 min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的107继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6 km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程s(km)和行驶时间t(min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为________ km,大客车途中停留了________ min,a=________;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速 80 km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待________分钟,大客车才能到达景点入口.【分析】 (1)根据图形可得总路程和大客车途中停留的时间,先计算小轿车的速度,再根据时间计算a的值;(2)计算大客车的速度,可得大客车后来行驶的速度,计算小轿车赶上来之后大客车行驶的路程,从而可得结论;(3)先计算直线CD的解析式,计算小轿车驶过景点入口6 km时的时间,再计算大客车到达终点的时间,根据路程与时间的关系可得小轿车行驶6 km的速度与80 km/h作比较可得结论.(4)利用路程÷速度=时间计算出大客车所用时间,计算与小轿车的时间差即可.【自主解答】把问题中的数量关系与形象直观的几何图形有机地结合起来,并充分利用这种结合寻找解题的思路,使问题得以解决.3.(2018·大庆中考)如图,二次函数y =ax 2+bx +c 的图象经过点A(-1,0),点B(3,0),点C(4,y 1),若点D(x 2,y 2)是抛物线上任意一点,有下列结论: ①二次函数y =ax 2+bx +c 的最小值为-4a ; ②若-1≤x 2≤4,则0≤y 2≤5a; ③若y 2>y 1,则x 2>4;④一元二次方程cx 2+bx +a =0的两个根为-1和13.其中正确结论的个数是( )A .1B .2C .3D .44.(2018·苏州中考)如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数y =kx 在第一象限内的图象经过点D 交BC 于点E.若AB =4,CE =2BE ,tan∠AOD=34,则k 的值为( )A .3B .2 3C .6D .125.(2018·上海中考)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y 关于x 的函数关系式;(不需要写自变量的取值范围)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?类型三 转化与化归思想(2017·江西中考)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB 水平,且与屏幕BC 垂直.(1)若屏幕上下宽BC =20 cm ,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离DG =100 cm ,上臂DE =30 cm ,下臂EF 水平放置在键盘上,其到地面的距离FH =72 cm.请判断此时β是否符合科学要求的100°?(参考数据:sin 69°≈1415,cos 21°≈1415,tan 20°≈411,tan 43°≈1415,所有结果精确到个位)【分析】 (1)在Rt△ABC 中利用三角函数即可直接求解;(2)延长FE 交DG 于点I ,利用三角函数求得∠DEI 即可求得β的值,从而作出判断. 【自主解答】把一种数学问题合理地转化成另一种数学问题可以有效地解决问题.在解三角形中,将非直角三角形问题转化为解直角三角形问题,把实际问题转化为数学问题等.6.(2018·山西中考)如图,正方形ABCD 内接于⊙O,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是( )A .4π-4B .4π-8C .8π-4D .8π-87.(2018·黄冈中考)则a -1a =6,则a 2+1a2值为______.8.(2018·白银中考)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成A ,B 两地的直达高铁,可以缩短从A 地到B 地的路程.已知∠CAB=30°,∠CBA =45°,AC =640公里,求隧道打通后与打通前相比,从A 地到B 地的路程将缩短约多少公里?(参考数据:3≈1.7,2≈1.4)类型四 方程思想(2018·娄底中考)如图,C ,D 是以AB 为直径的⊙O 上的点,AC ︵=BC ︵,弦CD 交AB 于点E.(1)当PB 是⊙O 的切线时, 求证:∠PBD=∠DAB; (2)求证:BC 2-CE 2=CE·DE;(3)已知OA =4,E 是半径OA 的中点,求线段DE 的长.【分析】 (1)由AB 是⊙O 的直径知∠BAD+∠ABD=90°,由PB 是⊙O 的切线知∠PBD+∠ABD=90°,据此可得证;(2)连接OC ,设圆的半径为r ,证△ADE∽△CBE,由AC ︵=BC ︵知∠AOC=∠BOC=90°,再根据勾股定理即可得证;(3)先求出BC ,CE ,再根据BC 2-CE 2=CE·DE 计算可得. 【自主解答】在解决数学问题时,有一种从未知转化为已知的手段就是设元,寻找已知与未知之间的等量关系,构造方程或方程组,然后求解方程完成未知向已知的转化.9.(2018·白银中考)若正多边形的内角和是1 080°,则该正多边形的边数是________.10.(2018·上海中考)如图,已知正方形DEFG的顶点D,E在△ABC的边BC上,顶点G,F分别在边AB,AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是________.类型五函数思想(2017·杭州中考)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数解析式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【分析】(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;(2)直接利用x+y的值结合根的判别式得出答案.【自主解答】在解答此类问题时,建立函数模型→求出函数解析式→结合函数解析式与函数的性质作出解答.要注意从几何和代数两个角度思考问题.11.(2018·桂林中考)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数解析式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.参考答案类型一【例1】 (1)如图1,连接AF.由四边形ABCD是矩形,结合旋转可得BD=AF,∠EAF=∠ABD.∵AB=AE,∴∠ABD=∠AEB,∴∠EAF=∠AEB,∴BD∥AF,∴四边形BDFA是平行四边形,∴FD=AB.∵AB=CD,∴FD=CD.(2)如图2,当点G位于BC的垂直平分线上,且在BC的右边时,连接DG,CG,BG,易知点G也是AD的垂直平分线上的点,∴DG=AG.又∵AG=AD,∴△ADG是等边三角形,∴∠DAG=60°,∴α=60°.如图3,当点G位于BC的垂直平分线上,且在BC的左边时,连接CG,B G,DG,同理,△ADG是等边三角形,∴∠DAG=60°,此时α=300°.综上所述,当α为60°或300°时,GC=GB.变式训练1.C2.解:(1)设p与x之间的函数关系式为p=kx+b,代入(1,7.5),(3,8.5)得⎩⎪⎨⎪⎧k +b =7.5,3k +b =8.5,解得⎩⎪⎨⎪⎧k =0.5,b =7, 即p 与x 的函数关系式为p =0.5x +7(1≤x≤15,x 为整数).当1≤x<10时,W =[20-(0.5x +7)](2x +20)=-x 2+16x +260.当10≤x≤15时,W =[20-(0.5x +7)]×40=-20x +520,即W =⎩⎪⎨⎪⎧-x 2+16x +260(1≤x<10,x 为整数),-20x +520(10≤x≤15,x 为整数). (2)当1≤x<10时,W =-x 2+16x +260=-(x -8)2+324,∴当x =8时,W 取得最大值,此时W =324.当10≤x≤15时,W =-20x +520,∴当x =10时,W 取得最大值,此时W =320.∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元.(3)当1≤x<10时,令-x 2+16x +260=299,得x 1=3,x 2=13,当W >299时,3<x <13.∵1≤x<10,∴3<x <10.当10≤x≤15时,令W =-20x +520>299,得x <11.05,∴10≤x≤11.由上可得,李师傅获得奖金的月份是4月到11月,李师傅共获得奖金为20×(11-3)=160(元). 答:李师傅共可获得160元奖金.类型二【例2】(1)由图形可得学校到景点的路程为40 km ,大客车途中停留了5min ,小轿车的速度为4060-20=1(km/min), a =(35-20)×1=15.故答案为40,5,15.(2)由(1)得a =15,∴大客车的速度为1530=12(km/min).小轿车赶上来之后,大客车又行驶了(60-35)×107×12=1257(km),40-1257-15=507(km). 答:在小轿车司机驶过景点入口时,大客车离景点入口还有507km. (3)设直线CD 的解析式为s =kt +b ,将(20,0)和(60,40)代入得⎩⎪⎨⎪⎧20k +b =0,60k +b =40,解得⎩⎪⎨⎪⎧k =1,b =-20, ∴直线CD 的解析式为s =t -20.当s =46时,46=t -20,解得t =66.小轿车赶上来之后,大客车又行驶的时间为40-1512×107=35(min), 小轿车司机折返时的速度为6÷(35+35-66)=32(km/min)=90 km/h >80km/h. 答:小轿车折返时已经超速.(4)大客车的时间:4012=80(min),80-70=10(min). 故答案为10.变式训练3.B 4.A5.解:(1)设该一次函数解析式为y =kx +b ,将(150,45),(0,60)代入y =kx +b 中得⎩⎪⎨⎪⎧150k +b =45,b =60,解得⎩⎪⎨⎪⎧k =-110,b =60,∴该一次函数解析式为y =-110x +60. (2)当y =-110x +60=8时,解得x =520, 即行驶520千米时,油箱中的剩余油量为8升.530-520=10(千米),油箱中的剩余油量为8升时,距离加油站10千米.答:在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米. 类型三【例3】 (1)∵Rt△ABC 中,tan A =BC AB ,∴AB=BC tan A =BC tan 20°≈20411=55(cm).(2)如图,延长FE 交DG 于点I ,则四边形GHFI 为矩形,∴IG=FH ,∴DI=DG -FH =100-72=28(cm).在Rt△DEI 中,sin∠DEI=DI DE =2830=1415,∴∠DEI≈69°,∴β=180°-69°=111°≠100°,∴此时β不符合科学要求的100°.变式训练6.A 7.88.解:如图,过点C 作CD⊥AB 于点D.在Rt△ADC 和Rt△BCD 中,∵∠CAB=30°,∠CBA=45°,AC =640,∴CD=320,AD =3203,∴BD=CD =320,BC =3202,∴AC+BC =640+3202≈1 088,∴AB=AD +BD =3203+320≈864,∴1 088-864=224(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程将缩短约224公里.类型四【例4】 (1)∵A B 是⊙O 的直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°.∵PB 是⊙O 的切线,∴∠ABP=90°,∴∠PBD+∠ABD=90°,∴∠BAD=∠PBD.(2)∵∠A=∠DCB,∠AED=∠CEB,∴△ADE∽△CBE,∴DE BE =AE CE,即DE·CE=AE·BE. 如图,连接OC.设圆的半径为r ,则OA =OB =OC =r ,则DE·CE=AE·BE=(OA -OE)(OB +OE)=r 2-OE 2.∵AC ︵=BC ︵,∴∠AOC=∠BOC=90°,∴CE 2=OE 2+OC 2=OE 2+r 2,BC 2=BO 2+CO 2=2r 2,则BC 2-CE 2=2r 2-(OE 2+r 2)=r 2-OE 2,∴BC 2-CE 2=DE·CE.(3)∵OA =4,∴OB=OC =OA =4, ∴BC=OB 2+OC 2=4 2.又∵E 是半径OA 的中点,∴AE=OE =2,则CE =OC 2+OE 2=42+22=2 5.∵BC 2-CE 2=DE·CE, ∴(42)2-(25)2=DE·25,解得DE =655. 变式训练 9.8 10.127类型五【例5】 (1)①由题意可得xy =3,则y =3x .②当y≥3时,3x≥3,解得x≤1, ∴x 的取值范围是0<x≤1.(2)∵一个矩形的周长为6,∴x+y =3,∴x+3x=3,整理得x 2-3x +3=0. ∵b 2-4ac =9-12=-3<0,∴矩形的周长不可能是6,∴圆圆的说法不对.∵一个矩形的周长为10,∴x+y =5,∴x+3x=5,整理得x 2-5x +3=0. ∵b 2-4ac =25-12=13>0,∴矩形的周长可能是10,∴方方的说法对.变式训练11.解:(1)将点A ,B 的坐标代入函数解析式得⎩⎪⎨⎪⎧9a -3b +6=0,a +b +6=0,解得⎩⎪⎨⎪⎧a =-2,b =-4, ∴抛物线的函数解析式为y =-2x 2-4x +6,当x =0时,y =6,∴点C 的坐标为(0,6).(2)由MA =MB =MC 得M 点在AB 的垂直平分线上,M 点在AC 的垂直平分线上. 设M(-1,y),由MA =MC 得(-1+3)2+y 2=(y -6)2+(-1-0)2,解得y =114, ∴点M 的坐标为(-1,114). (3)①如图,过点A 作DA⊥AC 交y 轴于点F ,交CB 的延长线于点D.∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°, ∴∠DAO=∠ACO,∠CAO=∠AFO,∴△AOF∽△COA,∴AO OF =CO AO, ∴AO 2=OC·OF.∵OA=3,OC =6,∴OF=326=32,∴F(0,-32).∵A(-3,0),F(0,-32), ∴直线AF 的解析式为y =-12x -32. ∵B(1,0),C(0,6),∴直线BC 的解析式为y =-6x +6,联立⎩⎪⎨⎪⎧y =-12x -32,y =-6x +6,解得⎩⎪⎨⎪⎧x =1511,y =-2411, ∴D(1511,-2411),∴AD=24115,AC =35, ∴tan∠ACB=2451135=811.∵4tan∠ABE=11tan∠ACB,∴tan∠ABE=2.如图,过点A 作AM⊥x 轴,连接BM 交抛物线于点E.∵AB=4,tan∠ABE=2,∴AM=8,∴M(-3,8).∵B(1,0),M(-3,8),∴直线BM 的解析式为y =-2x +2.联立⎩⎪⎨⎪⎧y =-2x +2,y =-2x 2-4x +6,解得⎩⎨⎧x =-2,y =6或⎩⎪⎨⎪⎧x =1,y =0,(舍去)∴E(-2,6).②当点E 在x 轴下方时,如图,过点E 作EG⊥AB,连接BE. 设点E(m ,-2m 2-4m +6),∴tan∠ABE=GE BG =2m 2+4m -6-m +1=2,∴m=-4或m =1(舍去),可得E(-4,-10).综上所述,E 点坐标为(-2,6)或(-4,-10).。

中考专题复习之 数学思想方法

中考专题复习之 数学思想方法

中考7大题型轻松搞定 专题复习(一) 数学思想方法数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路.因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常用的解题方法与技巧,从而为夺取中考高分搭起灵感和智慧的平台.初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等.由于我们前面各种思想方法均有渗透,故本专题只是侧重如下几个思想方法予以强化.类型之一 整体思想(2015²菏泽)已知m 是方程x 2-x -1=0的一个根,求m(m +1)2-m 2(m +3)+4的值.【思路点拨】 先将代数式化简,然后根据m 是方程x 2-x -1=0的一个根,得关于m 的等式,再整体代入求值.【解答】 原式=m(m 2+2m +1)-m 2(m +3)+4=m 3+2m 2+m -m 3-3m 2+4=-m 2+m +4=-(m 2-m)+4.∵m 是方程x 2-x -1=0的一个根,∴m 2-m -1=0,即m 2-m =1.∴-(m 2-m)+4=-1+4=3.整体思想就是在解决问题时,不是着眼于它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对整体的把握和运用达到解决问题的目的.1.(2015²天门)已知3a -2b =2,则9a -6b =________.2.(2015²呼和浩特)若实数a 、b 满足(4a +4b)(4a +4b -2)-8=0,则a +b =__________. 3.(2015²绵阳)关于m 的一元二次方程7nm 2-n 2m -2=0的一个根为2,则n 2+n -2=________.4.(2015²北京)已知2a 2+3a -6=0.求代数式3a(2a +1)-(2a +1)(2a -1)的值.类型之二 分类思想(2015²襄阳)在▱ABCD 中,AD =BD ,BE 是AD 边上的高,∠EBD =20°,则∠A 的度数为________. 【解答】 本题分两种情况讨论:如图1,当BE 在△ABD 的内部时,∠1=90°-∠EBD =90°-20°=70°. ∴∠A =∠ABD =12(180°-∠1)=55°.如图2,当BE 在△ABD 的外部时,∠1=90°+∠EBD =90°+20°=110°. ∴∠A =∠ABD =12(180°-∠1)=35°.故答案为55°或35°.在几何问题中,当图形的形状不能确定时,需要根据图形的已知边角及图形的特征进行分类画图;在代数问题中,当某个字母的取值不能确定时,也应根据条件对字母的取值进行分类讨论.特别是对等腰三角形或直角三角形的形状不定进行分类在压轴题中渗透较多.1.(2015²烟台)等腰三角形三边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2-6x +n -1=0的两根,则n 的值为( )A .9B .10C .9或10D .8或102.(2015²黄石)当1≤x ≤2时,ax +2>0,则a 的取值范围是( ) A .a>-1 B .a>-2 C .a>0 D .a>-1且a ≠03.(2015²襄阳)点O 是△ABC 的外心,若∠BOC =80°,则∠BAC 的度数为( ) A .40° B .100° C .40°或140° D .40°或100°4.(2015²东营)若分式方程x -ax +1=a 无解,则a 的值为________.5.(2015²黄冈)在△ABC 中,AB =13 cm ,AC =20 cm ,BC 边上的高为12 cm ,则△ABC 面积为________cm 2.6.(2014²株洲调研)已知:如图,O 为坐标原点,四边形OABC 为矩形,A(10,0),C(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标为__________________.第6题图 第7题图7.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2 cm ,QM =4 cm.动点P 从点Q 出发,沿射线QN 以每秒1 cm 的速度向右移动,经过t 秒,以点P 为圆心, 3 cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值________(单位:秒).类型之三 转化思想(2015²黄石)解方程组:⎩⎨⎧x 2+4y 2=4,①3x +2y =2.②【思路点拨】 原方程组存在二次方程,先将二元一次方程化简,用未知数x 表示未知数y ,再根据方程组的特点进行消元求解.【解答】 由②得4y 2=4-43x +3x 2.③把③代入①,得x 2-3x =0.解得x 1=0,x 2= 3.当x 1=0时,y 1=1;当x 2=3时,y 2=-12.∴原方程组的解为⎩⎪⎨⎪⎧x 1=0,y 1=1,⎩⎪⎨⎪⎧x 2=3,y 2=-12.化归意识是指在解决问题的过程中,对问题进行转化,将“未知”转化为“已知”、将“陌生”转化为“熟知”、将“复杂”转化为“简单”的解题方法,其核心就是将有待解决的问题转化为已有明确解决的问题,以便利用已有的结论来解决问题.1.(2014²白银)如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为________.第1题图 第2题图2.(2015²武汉)如图,∠AOB =30°,点M ,N 分别在边OA ,OB 上,且OM =1,ON =3,点P ,Q 分别在边OB ,OA 上,则MP +PQ +QN 的最小值是________.3.(2015²临沂)如图,点O 为Rt △ABC 斜边AB 上的一点,以OA 为半径的⊙O 与BC 切于点D ,与AC 交于点E ,连接AD.(1)求证:AD 平分∠BAC ;(2)若∠BAC =60°,OA =2,求阴影部分面积(结果保留π).类型之四 数形结合思想(2014²黄州模拟)如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1 cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为y cm 2,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5 cm ;②当0<t ≤5时,y =25t 2;③直线NH 的解析式为y =-52t +27;④若△ABE 与△QBP 相似,则t =294秒.其中正确的结论个数为( )A .4B .3C .2D .1【解答】 ①根据图2可得,当点P 到达点E 时点Q 到达点C ,BC =BE ,故①小题正确; ②当0<t ≤5时,设y =at 2,将t =5,y =10代入求得a =25,故②小题正确;③根据题意可得N(7,10),H(11,0),利用待定系数法可以求出一次函数解析式y =-52t +552,故③小题错误;④∵∠A =90°,而点P 在运动过程中,∠BPQ ≠90°,∠PBQ ≠90°,∴△ABE 与△QBP 相似,Q 点在C 点处,P 点运动到CD 边上,∠PQB =90°.此时分△ABE ∽△QBP 和△ABE ∽△QPB 两种情况,当△ABE ∽△QBP 时,则AB QB =AEQP 可知QP =154,可得t =294,符合题意;当△ABE ∽△QPB 时,AB QP =AE QB ,可知QP =203>4,不符合题意,应舍去.故④小题正确.因此答案选B.数形结合主要有两种:①由数思形,数形结合,用形解决数的问题;②由形思数,数形结合,用数解决形的问题.1.(2015²莱芜)如图,在矩形ABCD 中,AB =2a ,AD =a ,矩形边上一动点P 沿A →B →C →D 的路径移动,设点P 经过的路径长为x ,PD 2=y ,则下列能大致反映y 与x 的函数关系图象是( )2.(2014²内江)若关于x 的方程m(x +h)2+k =0(m 、h 、k 均为常数,m ≠0)的解是x 1=-3,x 2=2,则方程m(x +h -3)2+k =0的解为( )A .x 1=-6,x 2=-1B .x 1=0,x 2=5C .x 1=-3,x 2=5D .x 1=-6,x 2=23.(2015²荆州)如图,OA 在x 轴上,OB 在y 轴上,OA =8,AB =10,点C 在边OA 上,AC =2,⊙P 的圆心P在线段BC 上,且⊙P 与边AB ,AO 都相切,若反比例函数y =kx(k ≠0)的图象经过圆心P ,则k =________.4.(2015²黄石)已知双曲线y =1x (x>0),直线l 1:y -2=k(x -2)(k<0)过定点F 且与双曲线交于A ,B 两点,设A(x 1,y 1),B(x 2,y 2)(x 1<x 2),直线l 2:y =-x + 2.(1)若k =-1,求△OAB 的面积S ;(2)若AB =522,求k 的值;(3)设N(0,22),P 在双曲线上,M 在直线l 2上且PM ∥x 轴,求PM +PN 最小值,并求PM +PN 取最小值时P 的坐标.(参考公式:在平面直角坐标系中,若A(x 1,y 1),B(x 2,y 2),则A ,B 两点间的距离为AB =(x 1-x 2)2+(y 1-y 2)2)类型之五 方程、函数思想(2015²莱芜)如图,在扇形OAB 中,∠AOB =60°,扇形半径为r ,点C 在弧AB 上,CD ⊥OA ,垂足为D ,当△OCD 的面积最大时,弧AC 的长为________.【思路点拨】 由OC =r ,点C 在弧AB 上,CD ⊥OA ,求得DC =r 2-OD 2,运用S △OCD =12OD ²r 2-OD 2,求得△OCD的面积最大时,△OCD 是等腰直角三角形,由此可得弧AC 的圆心角为45°,利用弧长公式可求得弧AC 的长度. 【解答】 ∵OC =r ,点C 在弧AB 上,CD ⊥OA ,∴DC =r 2-OD 2.∴S △OCD =12OD ²r 2-OD 2.∴S △OCD 2=14OD 2²(r 2-OD 2)=-14(OD 2-12r 2)2+116r 4.∴当OD 2=12r 2,即OD =22r 时,△OCD 的面积最大.此时DC =r 2-OD 2=22r. ∴DC =OD.∴∠COD =45°.∴弧AC 的长为45°²π²r 180°=π4r.故答案为π4r.在问题中涉及“最大值”或“最小值”时,一般要运用函数思想去解决问题,解决这里问题的关键是建立两个变量之间的函数关系.1.(2015²潍坊)如图,有一块边长为6 cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A. 3 cm 2B.32 3 cm 2C.92 3 cm 2D.2723 cm 2第1题图第2题图2.(2014²安徽)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A.53B.52C .4D .5 3.(2014²武汉)如图,若双曲线y =kx 与边长为5的等边△AOB 的边OA ,AB 分别相交于C ,D 两点,且OC =3BD ,则实数k 的值为________.第3题图第4题图4.(2015²莱芜)如图,反比例函数y =kx (x>0)的图象经过点M(1,-1),过点M 作MN ⊥x 轴,垂足为N ,在x轴的正半轴上取一点P(t ,0),过点P 作直线OM 的垂线l ,若点N 关于直线l 的对称点在此反比例函数的图象上,则t =________.参考答案类型之一 整体思想1.6 2.-12或1 3.264.原式=3a(2a +1)-(2a +1)(2a -1)=6a 2+3a -4a 2+1=2a 2+3a +1.∵2a 2+3a -6=0,∴2a 2+3a =6, ∴原式=7.类型之二 分类思想1.B2.A 提示:①当a>0时,得x>-2a ,∴-2a <1,即a>-2.又a>0,∴a>0;②当a =0时,原不等式为2>0,∴当1≤x ≤2时,不等式恒成立; ③当a<0时,得x<-2a ,∴-2a>2,即a>-1.又a<0,∴-1<a<0.综上所述,a 的取值范围是a>-1.故选择A.3.C 提示:分△ABC 是锐角三角形和钝角三角形两种情况讨论.4.±1 提示:分整理得的整式方程无解和分式方程增根两种情况讨论.5.66或126 提示:分当高在三角形内部和外部两种情况讨论.6.(3,4)或(2,4)或(8,4)7.t =2或3≤t ≤7或t =8类型之三 转化思想1.122.10 提示:如图,作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接OM ′、ON ′、PM ′、QN ′、M ′N ′.由M ′P +PQ +N ′Q ≥M ′N ′(PQ 在M ′N ′上时等号成立),则利用勾股定理求出M ′N ′的长即可.3.(1)证明:∵⊙O 切BC 于D , ∴OD ⊥BC. ∵AC ⊥BC , ∴AC ∥OD.∴∠CAD =∠ADO. ∵OA =OD ,∴∠DAO =∠ADO.∴∠CAD =∠DAO ,即AD 平分∠CAB. (2)设EO 与AD 交于点M ,连接ED.∵∠BAC =60°,OE =OA , ∴△AEO 是等边三角形. ∴AE =OA =OD. 又AE ∥OD ,∴四边形AEDO 是平行四边形.∴EM =MO ,AM =MD. 又AE =OD ,∴△AME ≌△DMO. ∴S △AEM =S △DMO .又∠DOE =2∠DAE =∠BAC =60°, ∴S 阴影=S 扇形EOD =60°³π³22360°=2π3.类型之四 数形结合思想1.C 2.B3.-5 提示:如图,连接AP 并延长交OB 于点E ,作PD ⊥OA 于点D ,EF ⊥AB 于点F.易求一些线段的长,再利用△ADP ∽△AOE 得AD OA =DPOE,计算得出DP 的长,得到P 点的坐标,从而得k 值.4.(1)当k =-1时,l 1解析式为y =-x +22,联立⎩⎪⎨⎪⎧y =-x +22,y =1x,得x 2-22x +1=0,∴x 1=2-1,x 2=2+1.设直线l 1与y 轴交于点C ,则C(0,22).∴S △OAB =S △BOC -S △AOC =12²22(x 2-x 1)=2 2.(2)联立⎩⎪⎨⎪⎧y -2=k (x -2),y =1x,得kx 2+2(1-k)x -1=0(k<0),∴Δ=2(1-k)2+4k =2(k 2+1)>0,则x 1,x 2是方程的两根. ∴⎩⎪⎨⎪⎧x 1+x 2=2(k -1)k ,x 1²x 2=-1k.①AB =(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+(1x 1-1x 2)2=(x 1-x 2)2(1+1x 12x 22)=[](x 1+x 2)2-4x 1x 2²(1+1x 12x 22). 将①代入,得AB =2(k 2+1)2k 2=2(k 2+1)-k(k<0). ∴2(k 2+1)-k =52 2.∴2k 2+5k +2=0.∴k =-2或k =-12.(3)由题可知:F(2,2),设P(x ,1x ),则M(-1x +2,1x ) 则PM =(x +1x -2)2+(1x -1x)2=(x +1x-2)2=x 2+1x 2-22(x +1x )+4PF=(x -2)2+(1x -2)2=x 2+1x 2-22(x +1x)+4,∴PM =PF.∴PM +PN =PF +PN ≥NF =2.且当P 在NF 上时等号成立,此时NF 的方程为y =-x +2 2. 由(1)知,P(2-1,2+1),∴当P(2-1,2+1)时,PM +PN 最小值是2.类型之五 方程、函数思想1.C2.C 提示:设BN =x ,则依据折叠原理可得DN =AN =9-x. 又D 为BC 的中点,∴BD =3.在Rt △NBD 中,利用勾股定理,可得BN 2+BD 2=DN 2,则有32+x 2=(9-x)2,解得x =4,即BN =4. 故选择C. 3.934提示:过点C 作CE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,设OC =3x ,则BD =x.在Rt △OCE 中,∠COE =60°,则OE =32x ,CE =332x ,∴点C 坐标为(32x ,332x).在Rt △BDF 中,BD =x ,∠DBF =60°,则BF =12x ,DF =32x ,∴点D 的坐标为(5-12x ,32x).将点C 的坐标代入反比例函数解析式可得k =934x 2.将点D 的坐标代入反比例函数解析式可得k =532x -34x 2.∴934x 2=532x -34x 2,解得x 1=1,x 2=0(舍去). 故k =934³12=934.4.1+52提示:作点N 关于直线l 的对称点E ,连接PE.则NE ⊥l ,PN =PE. ∵OM ⊥l ,∴NE ∥OM.∴∠PNE =∠POM.∵M(-1,1),∴ON =MN =1.∴∠NOM =45°.∴∠PNE =∠PEN =45°,PE =PN =t -1.∴EP ⊥x 轴.∴反比例函数的关系式为y =-1x. ∵E(t ,1-t),∴1-t =-1t ,解得t =1±52. ∵t >0,∴t =1+52.。

初中数学专题辅导之数学思想方法(精品)[整理]

初中数学专题辅导之数学思想方法(精品)[整理]

初中数学专题辅导之数学思想方法一. 数形结合思想知识综述(1)函数几何综合问题是近年来各地中考试题中引人注目的新题型,这类试题将几何问题与函数知识有机地结合起来,重在考查学生的创新思维及灵活运用函数、几何有关知识,通过分析、综合、概括和逻辑推理来解决数学综合问题的能力,此类试题倍受命题者青睐,究其原因,它是几何与代数的综合题,构题者巧妙地将几何图形置于坐标系中,通过函数图象为纽带,将数与形有机结合,并往往以开放题的形式出现。

(2)解答此类问题必须充分注意以下问题: a. 认识平面坐标系中的两条坐标轴具有垂直关系 b. 灵活将点的坐标与线段长度互相转化c. 理解二次函数与二次方程间的关系——抛物线与x 轴的交点,横坐标是对应方程的根。

d. 熟练掌握几个距离公式: 点P (x ,y )到原点的距离PO x y =+22AB x x a =-=||||12∆e. 具备扎实的几何推理论证能力。

一、填空题(每空5分,共50分)1. 如果a ,b 两数在数轴上的对应点如图所示:则化简:||||a b a b ++-=__________。

2. 已知A ,B 是数轴上的两点,AB=2,点B 表示数-1,则点A 表示的数为__________。

3. 已知△ABC 的三边之比是752::,则这个三角形是__________三角形。

4. 已知点A 在第二象限,它的横坐标与纵坐标之和是1,则点A 的坐标是__________。

(写出符合条件的一个点即可)5. 如图,在梯形ABCD 中,AB ∥CD ,E 为CD 的中点,△BCE 的面积为1,则△ACD 的面积为__________。

6. 已知二次函数y ax bx c =++2的图象如图所示,则由抛物线的特征写出如下含有系数a ,b ,c 的关系式:①abc >0 ②a b c -+=0 ③44122ac b a -= ④a b +=0,其中正确结论的序号是__________(把你认为正确的都填上)7. 如图,AB 是半圆的直径,AB=10,弦CD ∥AB ,∠CBD=45°,则阴影部分面积为__________。

数学中考复习数学思想方法专题

数学中考复习数学思想方法专题

数学思想方法专题一、数形结合思想数形结合思想,其实质是将抽象的数学语言与直观的图形结合起来,关键是数与形之间的相互转化.在运用数形结合思想分析和解决问题时,要彻底明白一些概念和运算的几何意义以及常见函数图象的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义.例1 如图1,数轴上的A ,B ,C ,D 四点所表示的数分别为a ,b ,c ,d ,且O 为原点.根据图中各点位置,判断与|a -c|的值不同的是( )A . |a|+|b|+|c|B . |a-b|+|c-b|C . |a-d|-|d-c|D . |a|+|d|-|c-d|分析:根据绝对值的性质计算出各绝对值表示的线段长,与|a-c|的长进行比较即可. 解:由题意,知|a-c|=AC.∵|a|+|b|+|c|=AO+BO+CO ≠AC ,故A 选项正确;∵|a -b|+|c -b|=AB+BC=AC ,故B 选项错误;∵|a -d|-|d -c|=AD -CD=AC ,故C 选项错误;∵|a|+|d|-|c -d|=AO+DO -CD=AC ,故D 选项错误.所以选A .点评:本题考查了实数与数轴,知道绝对值的意义是解题的关键.例2 (20XX 年河南省)如图2,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x<ax+4的解集为( )A. x<23 B. x<3 C. x>23 D. x>3 分析:由于两条直线交于点A ,结合函数表达式y=2x 确定点A的横坐标.注意在交点左边和右边y 值的变化情况,根据图象信息直接确定不等式的解集.解:把A (m ,3)代入y=2x ,得m=23.所以A (23,3). 由图象可知,不等式2x <ax+4的解集为x <23. 故选A.点评:本题主要考查对一次函数与一元一次不等式等知识点的理解和掌握,能熟练运用性质进行解题,并通过图象判断不等式的关系是解题的关键.二、分类讨论思想分类讨论思想是指当被研究的问题存在一些不明确的因素,无法用统一的方法或结论给出统一的描述时,按可能出现的所有情况来分别进行讨论,得出各种情况下相互独立的结论.分类的原则是:①分类的每一部分是相互独立的;②一次分类必须依据同一个标准;③分类必须是逐次进行的.例3 (20XX 年湘潭市)已知一次函数y=kx+b (k ≠0)的图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的表达式.分析:根据点(0,2)以及图象与两坐标轴围成的三角形面积确定图象与x 轴的交点坐标,注意分交点位于原点左侧和原点右侧两种情况讨论,根据两个点的坐标即可确定一次函数的表达式.解:∵一次函数y=kx +b (k ≠0)的图象过点(0,2),∴b=2.令y=0,则x=-k2. ∵函数图象与两坐标轴围成的三角形面积为2, ∴21×2×k 2-=2,即k 2=2. 当k >0时,k2=2.解得k=1; 当k <0时,-k 2=2.解得k=-1. 故此一次函数的表达式为y=x+2或y=-x+2.点评:确定一次函数的表达式,关键是确定图象与坐标轴的另一交点坐标.由于题目中没有明确指出图象与x 轴交于正半轴还是负半轴,故需要分两种情况进行讨论.例4 (20XX 年龙东市)等腰三角形的一腰长为5,一边上的高为3,则底边长为________. 分析:结合题意“一边上的高”将问题分为底上的高与腰上的高两种情况,等腰三角形腰上的高又分为高在三角形内(锐角三角形)与高在三角形外(钝角三角形)两种情况,运用勾股定理,分别求解.解:(1)若高是该等腰三角形底边上的高,如图3,此时,AB=AC=5,AD=3.由勾股定理,得BD=22BD AB -=2235-=4.所以底边BC=8.(2)若高是该等腰三角形腰上的高.①当等腰三角形为锐角三角形时,如图4,此时AB=AC=5,BD=3.由勾股定理,得AD=22BD AB -=2235-=4.故CD=1.在Rt △BCD 中,由勾股定理,得BC=22CD BD +=2213+=10;②当等腰三角形为钝角三角形时,如图5.此时AB=AC=5,CD=3.由勾股定理,得AD=22CD AC -=2235-=4.故BD=9.在Rt △BCD 中,由勾股定理,得BC=22CD BD +=2213+=310.综上,底边长为8或10或310.点评:题目没有图形,仅仅已知腰长以及一边上的高,答案不唯一,可以分高是底边上的高和是腰上的高两种情况讨论,其中腰上的高又分两种情况,高位于等腰三角形内和高位于等腰三角形外进行分类讨论,避免漏解或重解.三、转化思想转化思想常用的解题策略是:(1)已知与未知的转化:分析已知条件的内涵,挖掘其隐含条件,使得已知条件朝着明朗化的方面转化;对于一个未知的新问题,通过联想,寻找转化为已知的途径,或者是从结论入手进行转化;(2)数与形的转化:把抽象的数学语言与直观的图形相结合,使许多概念直观而形象,有利于发现解题途径;(3)一般与特殊的转化:比如探究规律问题,从简单的某些属性,按照某种不变的规律向一般图形具有的性质进行探究等;(4)复杂与简单的转化:把一个复杂的、陌生的问题转化为简单的、熟悉的问题来解答.例5 (20XX 年湛江市)先阅读理解下面的例题,再按要求解答下列问题.例:解一元二次不等式x2-4>0.解:∵x2-4=(x +2)(x -2),∴x2-4>0可化为(x +2)(x -2)>0.由有理数的乘法法则“两数相乘,同号得正”,得①⎩⎨⎧-+0202 x x ,或②⎩⎨⎧-+0202 x x . 解不等式组①,得x >2;解不等式组②,得x <-2.∴(x +2)(x -2)>0的解集为x >2或x <-2.即一元二次不等式x2-4>0的解集为x >2或x <-2.(1)一元二次不等式x2-16>0的解集为_______;(2)分式不等式31+-x x >0的解集为____________; (3)解一元二次不等式2x 2-3x <0.分析:(1)将一元二次不等式的左边分解因式后化为两个一元一次不等式组求解即可;(2)根据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可;(3)将一元二次不等式的左边分解因式后化为两个一元一次不等式组求解即可.解:(1)x >4或x <-4.(2)x >3或x <1.(3)∵2x 2-3x=x (2x -3),∴2x 2-3x <0可化为x (2x -3)<0.由有理数的乘法法则“两数相乘,异号得负”,得①⎩⎨⎧-0320 x x 或②⎩⎨⎧-0320 x x .解不等式组①,无解;解不等式组②,得0<x <23. ∴x (2x -3)<0的解集为0<x <23. 即一元二次不等式2x2-3x <0的解集为0<x <23. 点评:这是一道方法渗透性阅读理解题,解题的关键是认真阅读材料,并运用材料中提供的方法解答新的问题,这里渗透了转化思想.例6 (20XX 年日照市)如图6-①,正方形OCDE 的边长为1,阴影部分的面积记作S 1;如图6-②,最大圆的半径r=1,阴影部分的面积记作S 2,则S 1_______S 2(用“>”、“<”或“=”填空).分析:观察图①可知,阴影部分的面积等于矩形CAFD 的面积,观察图②可知,阴影部分的面积等于最大圆面积的41,分别求出矩形CAFD 的面积、最大圆面积的41后作比较即可. 解:连接OD ,如图6-①.∵四边形OCDE 为正方形,OE=1,∴由勾股定理,得OD=22DE OE +=2211+=2. ∴AO=2.∴AC=AO-CO=2-1.∴S 1=S 矩形CAFD =(2-1)×1=2-1.∵S 大圆=πr2=π,∴S 2=41π. ∵2<49,即2<23, ∴ 2-1<23-1,即2-1<41. 又21<43<41π, ∴2-1<41π. ∴S 1<S 2.点评:对不规则图形面积的考查是近几年中考的热点问题,主要是通过转化,将不规则图形转化为规则图形,再利用和或差进行计算.四、整体思想整体思想就是从问题的整体出发,把某些式子或图形看成一个整体,把握它们之间的联系,进行有目的、有意识的整体处理.例7 (20XX年南通市)无论a取什么实数,点P(a-1,2a-3)都在直线l上,Q(m,n)是直线l上的点,则(2m-n+3)2的值等于________.分析:根据无论a取什么实数,点P(a-1,2a-3)都在直线l上,确定函数的表达式,再把x=m,y=n代入函数表达式,求出2m-n的值,最后整体代入.解:因为2a-3=2(a-1)-1,而无论a取什么实数,点P(a-1,2a-3)都在直线l上,所以直线l的表达式是y=2x-1.又Q(m,n)是直线l上的点,所以n=2m-1,即2m-n=1.所以(2m-n+3)2=(1+3)2=16.点评:如果已知以含有字母的代数式为坐标的点在某直线上,可以通过研究点的横、纵坐标之间的关系来确定函数表达式.用整体代入的方法求代数式的值是一种常用的方法.例8 (20XX年内江市)如图7,在矩形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,则阴影部分图形的周长为()A. 15B. 20C. 25D. 30分析:要求阴影部分的周长,我们可以把两块阴影部分的周长相加,运用轴对称的性质,找到阴影部分的周长与原矩形边长的关系.解:因为在矩形ABCD中,AB=10,BC=5,所以CD=AB=10,AD=BC=5.根据轴对称的性质,得A1E=AE,A1D1=AD,D1F=DF.设线段D1F与线段AB交于点M,则阴影部分的周长是:(A1E+EM+MD1+A1D1)+(MB+MF+FC+CB)=AE+EM+MD1+AD+MB+MF+FC+CB=(AE+EM+MB)+(MD1+MF+FC)+AD+CB=AB+(FD1+FC)+5+5=10+(FD+FC)+10=20+DC=20+10=30.故选D.点评:灵活运用轴对称的性质是解决此类问题的关键,正确找出折叠前后的对应边和对应角,运用整体代换有助于解决问题.五、建模思想建模思想就是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的数学模型的一种思想方法.例9某地上年度电价为0.8元/度,年用电量为1亿度,本年度计划将电价调至0.55至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y亿度与x-0.4成反比例,又当x=0.65元时,y=0.8.(1)求y与x的函数关系式.(2)若每度电的成本价为0.3元,则电价调至0.6元时,本年度电力部门的收益是多少?[收益=用电量×(实际电价-成本价)]分析:本题y与x虽不是反比例函数,但根据题意y与x-0.4成反比例,根据反比例的特点列出关系式y=4.0-x k ,用待定系数法就可确定函数关系式.用电量与实际电价减去成本价,二者乘积即为收益.根据题意列出方程解之即可得到结果.解:(1)∵ y与x-0.4成反比例,∴设y与x的函数关系式为y=4.0-x k (k≠0),把x=0.65,y=0.8代入,可以求出k=0.2.∴ y=4.02.0-x =251-x . (2)根据题意,收益为1+251-x ·(x-0.3)亿元.将x=0.6代入,得收益为0.6亿元.所以当电价调至0.6元时,本年度电力部门的收益是0.6亿元.点评:函数是描述变量之间相互关系的重要数学模型之一.很多实际问题都可以归结为函数问题.根据题意,找出变量之间的关系,建立适当的数学模型是解题的关键.六、方程思想方程思想是从问题的数量关系入手,运用数学语言将问题转化为数学模型,然后通过解方程(组)来使问题获解.一般方法是认真分析题中的各个量以及相互关系,用一个或者几个等量关系描述题目中所有的相等关系,建立方程(组)模型,进而确定未知数的值,使问题获得解答.例10 (20XX 年济宁市)一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?分析:设该校共购买了x 棵树苗.由题意,得x [120-0.5(x -60)]=8800,解方程即可.解:因为60棵树苗售价为120元×60=7200元,7200元<8800元,所以该校购买树苗超过60棵.设该校共购买了x 棵树苗.由题意,得x [120-0.5(x -60)]=8800.解得x1=220,x2=80.当x1=220时,120-0.5×(220-60)=40<100,∴x1=220(不合题意,舍去);当x2=80时,120-0.5×(80-60)=110>100,∴该校共购买了80棵树苗.点评:根据已知“如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元”列出方程是解题关键.例11 (20XX 年潍坊市)为了援助失学儿童,九年级学生李明从20XX 年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内的存款一并汇出(汇款手续费不计).已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元.(1)在李明20XX 年1月份存款前,储蓄盒内已有存款多少元?(2)为了实现到20XX 年6月份存款后存款总数超过1000元的目标,李明计划从20XX 年1月份开始,每月存款都比20XX 年每月存款多t 元(t 为整数),求t 的最小值.分析:(1)根据题目中的两个相等关系:①储蓄盒内原有存款+2个月的存款=80元;②储蓄盒内原有存款+5个月的存款=125元,列方程组求解即可.(2)首先计算出20XX 年共有的存款数,再由题意可得从20XX 年1月份开始,每月存款为(15+t )元;从20XX 年1月到20XX 年6月共有30个月,共存款30×(15+t ),再加上20XX 年共有的存款总数超过1000元,由此构造不等式取符合条件的最小整数值即可.解:(1)设李明每月存款x 元,储蓄盒内原有存款y 元.依题意,得2x+y=80和5x+y=125. 解得x=15,y=50.所以储蓄盒内原有存款50元.(2)由(1),得李明20XX 年共有存款12×15+50=230(元),20XX 年1月份后每月存入(15+t )元,20XX 年1月到20XX 年6月共有30个月.依题意,得230+30(15+t )>1000.解得t >1032.所以t 的最小值是11. 点评:建立方程模型应从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式等,求出结果并结合题意讨论结果的意义,得出符合题意的解.七、函数思想函数思想是指用函数的概念和性质去分析问题和解决问题.也是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型,一般方法是认真分析题意,恰当设变量,寻找题目中相关量之间的相等关系,构造方程(组),确定函数的表达式,再结合题意进行有关探究、计算.例12 (20XX 年温州市)如图8,在△ABC 中,∠C=90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B .已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ .在整个运动过程中,△MPQ面积的变化情况是( )A . 一直增大B . 一直减小C . 先减小后增大D . 先增大后减少分析:思路1,找出几个特殊情况时△MPQ 的面积大小情况:①当P ,Q 两点刚开始运动时,△MPQ 的面积;②当P ,Q 两点同时运动到三角形所在边的中点时,△MPQ 的面积;③当P ,Q 两点运动到接近终点时,△MPQ 的面积.然后比较求解.思路2,把△MPQ 的面积用运动时间t 的函数表示出来,根据函数性质解答.解法一(合情推理):当点P 从点A 出发时,△MPQ 的面积等于△ACM 的面积,即等于△ABC 面积的21; 当点P 运动到边AC 的中点时,点Q 也相应地运动到BC 边的中点,此时△MPQ 是△ABC 的中点三角形,△MPQ ∽△CBA ,其相似比为21. ∴△MPQ 的面积等于△ABC 面积的41; 当点P 接近点C ,点Q 接近点B 时,△MPQ 的面积接近于△BCM 的面积,即约等于△ABC面积的21. 综上可知,△MPQ 的面积大小变化情况是先减小后增大.故选C .解法二(建立面积的函数模型):设点P 从A 到C 运动的总时间为t ,从A 到P 运动的时间为m ,从P 到C 运动的时间为n ,则m +n=t ,记AC=b ,BC=a ,则△APM 中,AP=nm m +b ,AP 边上的高为21a ,所以 S △APM=21·n m m +b ·21a=41·nm m +·ab. 同理得到S △BQM =21·n m n +a ·21b=41·n m n +·ab ; S △PCQ=21·n m m +b ·n m n +a=21·()2n m mn +·ab ; S △ABC=21ab. ∴S △MPQ =S △ABC-S △APM -S △BQM -S △PCQ =21ab-41·n m m +·ab -41·n m n +·ab -21·()2n m mn +·ab =21ab-21·()2n m mn +·ab =21ab ·1-()⎥⎦⎤⎢⎣⎡+22-1n m mn =41ab ·()222n m n m ++ =24t ab[m 2+(t-m )2] =22tab (m 2-tm+21t 2) =22tab (m-21t )2+81ab. ∵22t ab >0且81ab 是一个常数, ∴当m=21t 时,△MPQ 的面积取最小值81ab ; 当m<21t 时,即点P 到达AC 中点前,△MPQ 的面积逐渐减小; 当m>21t 时,即点P 过AC 中点后,△MPQ 的面积逐渐增大.故选C.点评:在解答运动变化的选择题时,过程不一定需要很严谨,利用特殊位置确定一些特殊值,然后结合变化过程运用合情推理找到正确答案即可.如果从变化的数量上描述变化的规律,可以建立函数模型,运用函数的性质加以分析,最终得出变化的规律.例13 (20XX年绵阳市)某种子商店销售“黄金一号”玉米种子,为惠民促销,推出两种销售方案供采购者选择.方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分种子价格打7折.(1)请分别求出方案一和方案二中购买的种子数量x(千克)和付款金额y(元)之间的函数表达式.(2)若你去购买一定量的种子,你会怎样选择方案?请说明理由.解析:(1)方案一:y=4x;方案二:()()⎩⎨⎧+≤=35.45.335xyxxx(2)设购买x千克的种子.当x≤3时,选择方案一.当x>3时:当4x=3.5x+4.5时,x=9;当4x>3.5x+4.5时,x>9;当4x<3.5x+4.5时,x<9.所以当购买种子的质量少于9千克时,应选择方案一;当购买种子的质量为9千克时,选择两种方案均可;当购买种子的质量超过9千克时,应选择方案二.。

中考数学 专题1数学思想方法问题复习课件 人教新课标版

中考数学 专题1数学思想方法问题复习课件 人教新课标版

类型一 转化思想
(1)解方程:x+x 1=3x2+x 3+1.
【点拨】解分式方程时,应去分母“转化”为整式方程再求解,最后注意验根.
【解答】去分母,得 3x=2x+3x+3,整理,得-2x=3, 解得 x=-23. 经检验,x=-23是原方程的根.
(2)已知:如图,在梯形 ABCD 中,AD//BC,AB=DC=AD=2,BC=4,求∠B 的度数 及 AC 的长.
A.y1>y2>0 B.y1<y2<0 C.y1>0>y2 D.y1<0<y2
解析:数形结合法可选 C.
答案:C
3.已知⊙O 的半径为 13 cm,弦 AB//CD,AB=24 cm,CD=10 cm,则 AB、CD 之间 的距离为( )
A.17 cm B.7 cm C.12 cm D.17 cm 或 7 cm 解析:分类讨论的思想方法.如图,当 AB、CD 在圆心的同侧时,在 Rt△OAE 中,OE = OA2-AE2= 132-122=5(cm).
1.方程组2xx+-y=y=33 的解是(
A.xy==21
B.xy==12
C.xy==11
)
D.xy==32
解析:两式左右分别相加,得 3x=6(转化为一元一次方程),解得 x=2,把 x=2 代入②
得 y=1,∴xy==21 是原方程组的解,故选 B.
答案:B
2.若点 A(x1,y1)、B(x2,y2)在反比例函数 y=-3x的图象上,且 x1<0<x2,则 y1、y2 和 0 的大小关系是( )
(1)求点 A 与点 B 的坐标; (2)求此二次函数的解析式; (3)如果点 P 在 x 轴上,且△ABP 是等腰三角形,求点 P 的坐标.

数学思想方法(整体思想、转化思想、分类讨论思想

数学思想方法(整体思想、转化思想、分类讨论思想

数学思想方法(整体思想、转化思想、分类讨论思想专题知识突破五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。

数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。

数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。

抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。

三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。

例1 (2014•德州)如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是.思路分析:观察发现,阴影部分的面积等于正三角形ABC的面积减去三个圆心角是60°,半径是2的扇形的面积..考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。

在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。

中考数学专题复习:数学思想方法

中考数学专题复习:数学思想方法

专题01 数学思想方法【要点提炼】一、【分类讨论的思想方法】有些问题包含的对象比较复杂,很难用一种情况概括它的全貌,这时往往按照一种标准把问题分成几类,分别进行讨论,再综合起来进行说明,这种思想方法称为分类讨论思想。

二、【数形结合思想】数形结合思想就是数学问题的题设与结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,使问题得到解决。

在进行二次根式的化简时,可以利用数轴确定字母的取值范围,然后对式子进行化简。

三、【整体思想】整体思想是一种重要的思想方法,它把研究对象的一部分(或全部)视为整体,在解题时,则把注意力和着眼点放在问题整体结构上,从而触及问题的本质,避开不必要的计算,使问题得以简化。

四、【转化的思想方法】如果a.b互为相反数,那么a+b=O,a= -b;如果c,d互为倒数,那么cd=l,c=1/d;如果|x|=a(a >0),那么x=a或-a.【专题训练】一、单选题(共10小题)1.将一元二次方程x2+4x+2=0配方后可得到方程()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=6 D.(x+2)2=6【答案】B【解答】解:x2+4x+2=0,x2+4x=﹣2,x2+4x+4=2,(x+2)2=2.故选:B.【知识点】解一元二次方程-配方法2.若对所有的实数x,x2+ax+a恒为正,则()A.a<0 B.a>4 C.a<0或a>4 D.0<a<4【答案】D【解答】解:令y=x2+ax+a,这个函数开口向上,式子的值恒大于0的条件是:△=a2﹣4a<0,解得:0<a<4.故选:D.【知识点】配方法的应用3.已知a,b,c为有理数,当a+b+c=0,abc<0,求的值为()A.1或﹣3 B.1,﹣1或﹣3 C.﹣1或3 D.1,﹣1,3或﹣3【答案】A【解答】解:∵a+b+c=0,∴b+c=﹣a、a+c=﹣b、a+b=﹣c,∵abc<0,∴a、b、c三数中有2个正数、1个负数,则原式=+﹣=﹣1﹣1﹣1=﹣3或1﹣1+1=1或﹣1+1+1=1.故选:A.【知识点】绝对值、代数式求值4.若a﹣b=3,ab=1,则a3b﹣2a2b2+ab3的值为()A.3 B.4 C.9 D.12【答案】C【解答】解:a3b﹣2a3b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2将a﹣b=3,ab=1代入,原式=1×32=9,故选:C.【知识点】整式的混合运算—化简求值5.实数a、b在数轴上的位置如图所示,化简的结果是()A.﹣2 B.0 C.﹣2a D.2b【答案】A【解答】解:由数轴可知﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+(b﹣1)+(a﹣b)=﹣a﹣1+b﹣1+a﹣b=﹣2故选:A.【知识点】二次根式的性质与化简、实数与数轴6.若一个正比例函数的图象经过点A(1,﹣2),B(m,4)两点,则m的值为()A.2 B.﹣2 C.8 D.﹣8【答案】B【解答】解:设正比例函数的解析式为y=kx(k≠0),将A(1,﹣2)代入y=kx,得:﹣2=k,∴正比例函数解析式为y=﹣2x.当y=4时,﹣2m=4,解得:m=﹣2.故选:B.【知识点】待定系数法求正比例函数解析式7.下列分式方程无解的是()A.B.C.D.【答案】B【解答】解:∵方程A去分母,得2x=3(x﹣3),解得x=9,当x=9时,x(x﹣3)≠0,所以原方程的解为x=9;方程B去分母,得x2﹣1=2x﹣2,解得x=1,当x=1时,(x﹣1)(x2﹣1)=0,所以原方程无解;方程C去分母,得x+3﹣4x=0,解得x=1,当x=1时,2x(x+3)≠0,所以原方程的解为x=1;方程D去分母,得3x=2x+3x+3,解得x=﹣,当x=﹣时,3x+3≠0,所以原方程的解为x=﹣.故选:B.【知识点】分式方程的解8.当时,x+y的值为()A.2 B.5 C.D.【答案】D【解答】解:∵+=﹣,∴两边平方得出x+y+2=8﹣2,∵=﹣,∴两边同乘2,得2=2﹣2,∴x+y+2﹣2=8﹣2,则x+y=8﹣4+2.故选:D.【知识点】二次根式的化简求值9.已知变量y与x的关系满足下表,那么能反映y与x之间的函数关系的解析式是()x…﹣2 ﹣10 1 2 …y…4 3 2 1 0…A.y=﹣2x B.y=x+4 C.y=﹣x+2 D.y=2x﹣2【答案】C【解答】解:设y与x之间的函数关系的解析式是y=kx+b(k≠0),则,解得,所以,y与x之间的函数关系的解析式是y=﹣x+2.故选:C.【知识点】待定系数法求一次函数解析式10.如图,在平面直角坐标系xOy中,已知点A(﹣9,7),B(﹣3,0),点P在x轴的正半轴上运动,将线段AB沿直线AP翻折到AC,当点C恰好落在y轴上时,直线AP对应的函数表达式可以是()A.y=x+8 B.y=﹣C.y=﹣x+1 D.y=﹣x+4【答案】B【解答】解:连接BC,交P A于Q,由题意可知,P A垂直平分BC,设直线P A的解析式为y=kx+b,把A(﹣9,7)代入得,7=﹣9k+b,∴b=9k+7,∴直线P A的解析式为y=kx+9k+7,设直线BC的解析式为y=﹣x+n,把B(﹣3,0)代入得0=+n,∴n=﹣,∴C(0,﹣),∴Q(﹣,﹣),∵Q在直线P A上,∴﹣=﹣k+9k+7,整理得,15k2+14k+3=0,解得k1=﹣,k2=﹣,∴直线P A的解析式为y=﹣x+,或y=﹣x+4,故选:B.【知识点】待定系数法求一次函数解析式二、填空题(共8小题)11.用配方法解方程x2﹣2x﹣6=0,原方程可化为﹣.【答案】(x-1)2=7【解答】解:方程变形得:x2﹣2x=6,配方得:x2﹣2x+1=7,即(x﹣1)2=7.故答案为:(x﹣1)2=7.【知识点】解一元二次方程-配方法12.如图,字母b的取值如图所示,化简:|b﹣1|+=.【答案】4【解答】解:由数轴得2<b<5,所以原式=|b﹣1|+=|b﹣1|+|b﹣5|=b﹣1+5﹣b=4.故答案为4.【知识点】实数与数轴、二次根式的性质与化简13.若关于x的方程﹣1=有无解,则m=﹣﹣.【解答】解:去分母得:2mx+x2﹣x2+3x=2x﹣6,整理得:(2m+1)x=﹣6,当2m+1=0,即m=﹣时,整式方程无解,即分式方程无解;当2m+1≠0,即m≠﹣时,x=﹣,由分式方程无解,得到x=0或x=3,把x=0代入整式方程无解;把x=3代入整式方程得:m=﹣,综上,m=﹣或﹣,故答案为:﹣或﹣【知识点】分式方程的解14.如图,点P、A、B、C在同一平面内,点A、B、C在同一直线上,且PC⊥AC,在点A处测得点P在北偏东60°方向上,在点B处测得点P在北偏东30°方向上,若AP=12千米,则A,B两点的距离为千米.【解答】解:∵PC⊥AC,在点A处测得点P在北偏东60°方向上,∴∠PCA=90°,∠P AC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在点B处测得点P在北偏东30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴BC===2千米,∴AB=AC﹣BC=6﹣2=4(千米),故答案为:4千米.【知识点】解直角三角形的应用-方向角问题15.如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=3,则BD的长度为.【解答】解:∵∠C=90°,∠ADC=60°,∴∠DAC=30°,∴CD=AD,∵∠B=30°,∠ADC=60°,∴∠BAD=30°,∴BD=AD,∴BD=2CD,∵BC=3,∴CD+2CD=3,∴CD=,∴DB=2,故答案为:2.【知识点】勾股定理、含30度角的直角三角形16.在平面直角坐标系xOy中,一次函数y=k1x+b(k1,b均为常数)与正比例函数y=k2x(k2为常数)的图象如图所示,则关于x的不等式k2x<k1x+b的解集为.【答案】x<3【解答】解:两条直线的交点坐标为(3,﹣1),且当x<3时,直线y=k2x在直线y=k1x+b的下方,故不等式k2x<k1x+b的解集为x<3.故答案为x<3.【知识点】一次函数与一元一次不等式、一次函数的图象17.如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.若劣弧的长为,则图中阴影部分的面积为.【解答】解:连接OA,如图,∵AD=AB,∴∠B=∠D=30°,∵OA=OB,∴∠OAB=∠B=30°,∴∠AOC=2∠B=60°,∵劣弧的长为,∴=,解得OC=2,∵∠D=30°,∠DOA=60°,∴∠OAD=90°,∴AD=OA=2,∴图中阴影部分的面积=S△AOD﹣S扇形AOC=×2×2﹣=2﹣π.故答案为2﹣π.【知识点】弧长的计算、扇形面积的计算、圆周角定理18.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为直线x=﹣1.则该抛物线的解析式为﹣﹣.【答案】y=-x2-2x+3【解答】解:∵抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),对称轴为直线x=﹣1,∴A点坐标为(﹣3,0),设抛物线解析式为y=a(x+3)(x﹣1),把C(0,3)代入得3=a×3×(﹣1),解得a=﹣1,∴抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3.故答案为y=﹣x2﹣2x+3.【知识点】抛物线与x轴的交点、待定系数法求二次函数解析式、二次函数的性质三、解答题(共8小题)19.解不等式组:并把解集在数轴上表示出来.【解答】解;解不等式x+1<2,得:x<1,解不等式2(1﹣x)≤6,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,将不等式组的解集表示在数轴上如下:【知识点】在数轴上表示不等式的解集、解一元一次不等式组20.(1)解方程:.(2)关于x的分式方程无解,求a的值.【解答】解:(1)方程整理得:+=+,即=,当2x+8=0,即x=﹣4时,方程成立;当2x+8≠0,即x≠﹣4时,方程无解,经检验x=﹣4是分式方程的解;(2)去分母得:x2﹣ax﹣3x+3=x2﹣x,即﹣ax﹣3x+3=﹣x,由分式方程无解,得到x=0或x﹣1=0,解得:x=0或x=1,把x=0代入整式方程得:无解;把x=1代入整式方程得:a=0,则a的值为1.【知识点】分式方程的解、解分式方程21.某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙(墙长25m)另外三边用木栏围成,木栏长40m.(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.(2)养鸡场面积能达到最大吗?如果能,请你用配方法求出;如果不能,请说明理由.【解答】解:(1)设鸡场垂直于墙的一边AB的长为x 米,则x(40﹣2x)=168,整理得:x2﹣20x+84=0,解得:x1=14,x2=6,∵墙长25m,∴0≤BC≤25,即0≤40﹣2x≤25,解得:7.5≤x≤20,∴x=14.答:鸡场垂直于墙的一边AB的长为14米.(2)围成养鸡场面积为S,则S=x(40﹣2x)=﹣2x2+40x=﹣2(x2﹣20x)=﹣2(x2﹣20x+102)+2×102=﹣2(x﹣10)2+200,∵﹣2(x﹣10)2≤0,∴当x=10时,S有最大值200.即鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值200米2.【知识点】一元二次方程的应用、二次函数的应用、配方法的应用22.如图,已知四边形ABCD是平行四边形,△AOB是等边三角形.(1)求证:四边形ABCD是矩形.(2)若AB=5cm,求四边形ABCD的面积.【解答】解:(1)平行四边形ABCD是矩形.理由如下:∵四边形ABCD是平行四边形(已知),∴AO=CO,BO=DO(平行四边形的对角线互相平分),∵△AOB是等边三角形(已知),∴OA=OB=OC=OD(等量代换),∴AC=BD(等量代换),∴平行四边形ABCD是矩形(对角线相等的平行四边形是矩形);(2)因为AB=5,在Rt△ABC中,由题意可知,AC=10,则BC==5,所以平行四边形ABCD的面积S=5×5=25(cm2).【知识点】等边三角形的性质、矩形的判定与性质、平行四边形的性质23.如图,等腰△ABC中,AC=BC=8,点D、E分别在边AB、BC上(不与顶点重合),且∠CDE=∠A=∠B,CE=5,设AD=x,BD=y.(1)求y关于x的函数关系式(不用写x的取值范围);(2)当AB=10时,求AD的值.【解答】解:(1)∵CB=8,CE=5,∴BE=CB﹣CE=3,∵∠ADB是△ADC的一个外角,∴∠BAE+∠CDE=∠A+∠ACD,∵∠CDE=∠A,∴∠ACD=∠BDE,∵∠A=∠B,∴△ACD∽△BDE,∴=,即=,整理得,y=;(2)当AB=10,即x+y=10时,10﹣x=,整理得,x2﹣10x+24=0,解得,x1=4,x2=6,则AD的值为4或6.【知识点】等腰三角形的性质、相似三角形的判定与性质24.四边形ABCD内接于⊙O,AC为其中一条对角线.(Ⅰ)如图①,若∠BAD=70°,BC=CD.求∠CAD的大小;(Ⅱ)如图②,若AD经过圆心O,连接OC,AB=BC,OC∥AB,求∠ACO的大小.【解答】解:(1)∵BC=CD,∴=,∴∠CAD=∠CAB=∠BAD=35°;(2)连接BD,∵AB=BC,∴∠BAC=∠BCA,∵OC∥AB,∴∠BAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠BAC=∠BCA=∠OAC,由圆周角定理得,∠BCA=∠BDA,∴∠BAC=∠BDA=∠OAC,∵AD是⊙O的直径,∴∠ABD=90°,∴∠ACO=30°.【知识点】圆心角、弧、弦的关系、圆内接四边形的性质、圆周角定理25.如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=.(1)求OD的长;(2)计算阴影部分的面积.【解答】解:(1)∵AB⊥OD,∴∠OCB=90°,AC=BC=AB=,∵点C为OD的中点,∴OC=OB,∵cos∠COB==,∴∠COB=60°,∴OC=BC=×=1,∴OB=2OC=2,∴OD=OB=2;(2)阴影部分的面积=S扇形BOD﹣S△COB=﹣××1=π﹣.【知识点】勾股定理、垂径定理、扇形面积的计算26.如图,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为P.已知B(1,0),C(0,﹣3).请解答下列问题:(1)求抛物线的解析式,并直接写出点P的坐标;(2)抛物线的对称轴与x轴交于点E,连接AP,AP的垂直平分线交直线PE于点M,则线段EM 的长为.注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标是(﹣,).【解答】解:(1)∵抛物线经过点B(1,0),C(0,﹣3),代入得:,解得:,∴抛物线表达式为:y=x2+2x﹣3=(x+1)2﹣4,∴顶点P的坐标为(﹣1,﹣4);(2)∵直线PE为抛物线对称轴,∴E(﹣1,0),∵B(1,0),∴A(﹣3,0),∴AP==,∵MN垂直平分AP,∴AN=NP=,∠PNM=90°,∵∠APE=∠MPN,∴△PMN∽△P AE,∴,即,解得:PM=,∴EM=PE﹣PM=4﹣=,故答案为:.【知识点】二次函数图象与系数的关系、线段垂直平分线的性质、待定系数法求二次函数解析式、抛物线与x轴的交点、二次函数图象上点的坐标特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一5大数学思想方法类型一分类讨论思想(2018·临沂中考)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时,求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.【分析】 (1)先判定四边形BDFA是平行四边形,可得FD=AB,再根据AB=CD,即可得出FD=CD;(2)当GC=GB时,点G在BC的垂直平分线上,分情况讨论,即可得到旋转角α的度数.【自主解答】在数学中,如果一个命题的条件或结论有多种可能的情况,难以统一解答,那么就需要按可能出现的各种情况分类讨论,最后综合归纳问题的正确答案.1.(2018·宿迁中考)在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是( )A.5 B.4 C.3 D.22.(2018·随州中考)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围;(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后,统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?类型二数形结合思想(2018·齐齐哈尔中考)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20 min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的107继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6 km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程s(km)和行驶时间t(min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为________ km,大客车途中停留了________ min,a=________;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速 80 km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待________分钟,大客车才能到达景点入口.【分析】 (1)根据图形可得总路程和大客车途中停留的时间,先计算小轿车的速度,再根据时间计算a的值;(2)计算大客车的速度,可得大客车后来行驶的速度,计算小轿车赶上来之后大客车行驶的路程,从而可得结论;(3)先计算直线CD的解析式,计算小轿车驶过景点入口6 km时的时间,再计算大客车到达终点的时间,根据路程与时间的关系可得小轿车行驶6 km的速度与80 km/h作比较可得结论.(4)利用路程÷速度=时间计算出大客车所用时间,计算与小轿车的时间差即可.【自主解答】把问题中的数量关系与形象直观的几何图形有机地结合起来,并充分利用这种结合寻找解题的思路,使问题得以解决.3.(2018·大庆中考)如图,二次函数y =ax 2+bx +c 的图象经过点A(-1,0),点B(3,0),点C(4,y 1),若点D(x 2,y 2)是抛物线上任意一点,有下列结论: ①二次函数y =ax 2+bx +c 的最小值为-4a ; ②若-1≤x 2≤4,则0≤y 2≤5a; ③若y 2>y 1,则x 2>4;④一元二次方程cx 2+bx +a =0的两个根为-1和13.其中正确结论的个数是( )A .1B .2C .3D .44.(2018·苏州中考)如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数y =kx 在第一象限内的图象经过点D 交BC 于点E.若AB =4,CE =2BE ,tan∠AOD=34,则k 的值为( )A .3B .2 3C .6D .125.(2018·上海中考)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y 关于x 的函数关系式;(不需要写自变量的取值范围)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?类型三 转化与化归思想(2017·江西中考)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB 水平,且与屏幕BC 垂直.(1)若屏幕上下宽BC =20 cm ,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离DG =100 cm ,上臂DE =30 cm ,下臂EF 水平放置在键盘上,其到地面的距离FH =72 cm.请判断此时β是否符合科学要求的100°?(参考数据:sin 69°≈1415,cos 21°≈1415,tan 20°≈411,tan 43°≈1415,所有结果精确到个位)【分析】 (1)在Rt△ABC 中利用三角函数即可直接求解;(2)延长FE 交DG 于点I ,利用三角函数求得∠DEI 即可求得β的值,从而作出判断. 【自主解答】把一种数学问题合理地转化成另一种数学问题可以有效地解决问题.在解三角形中,将非直角三角形问题转化为解直角三角形问题,把实际问题转化为数学问题等.6.(2018·山西中考)如图,正方形ABCD 内接于⊙O,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是( )A .4π-4B .4π-8C .8π-4D .8π-87.(2018·黄冈中考)则a -1a =6,则a 2+1a2值为______.8.(2018·白银中考)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成A ,B 两地的直达高铁,可以缩短从A 地到B 地的路程.已知∠CAB=30°,∠CBA =45°,AC =640公里,求隧道打通后与打通前相比,从A 地到B 地的路程将缩短约多少公里?(参考数据:3≈1.7,2≈1.4)类型四 方程思想(2018·娄底中考)如图,C ,D 是以AB 为直径的⊙O 上的点,AC ︵=BC ︵,弦CD 交AB 于点E.(1)当PB 是⊙O 的切线时, 求证:∠PBD=∠DAB; (2)求证:BC 2-CE 2=CE·DE;(3)已知OA =4,E 是半径OA 的中点,求线段DE 的长.【分析】 (1)由AB 是⊙O 的直径知∠BAD+∠ABD=90°,由PB 是⊙O 的切线知∠PBD+∠ABD=90°,据此可得证;(2)连接OC ,设圆的半径为r ,证△ADE∽△CBE,由AC ︵=BC ︵知∠AOC=∠BOC=90°,再根据勾股定理即可得证;(3)先求出BC ,CE ,再根据BC 2-CE 2=CE·DE 计算可得. 【自主解答】在解决数学问题时,有一种从未知转化为已知的手段就是设元,寻找已知与未知之间的等量关系,构造方程或方程组,然后求解方程完成未知向已知的转化.9.(2018·白银中考)若正多边形的内角和是1 080°,则该正多边形的边数是________.10.(2018·上海中考)如图,已知正方形DEFG的顶点D,E在△ABC的边BC上,顶点G,F分别在边AB,AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是________.类型五函数思想(2017·杭州中考)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数解析式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【分析】(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;(2)直接利用x+y的值结合根的判别式得出答案.【自主解答】在解答此类问题时,建立函数模型→求出函数解析式→结合函数解析式与函数的性质作出解答.要注意从几何和代数两个角度思考问题.11.(2018·桂林中考)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数解析式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.参考答案类型一【例1】 (1)如图1,连接AF.由四边形ABCD是矩形,结合旋转可得BD=AF,∠EAF=∠ABD.∵AB=AE,∴∠ABD=∠AEB,∴∠EAF=∠AEB,∴BD∥AF,∴四边形BDFA是平行四边形,∴FD=AB.∵AB=CD,∴FD=CD.(2)如图2,当点G位于BC的垂直平分线上,且在BC的右边时,连接DG,CG,BG,易知点G也是AD的垂直平分线上的点,∴DG=AG.又∵AG=AD,∴△ADG是等边三角形,∴∠DAG=60°,∴α=60°.如图3,当点G位于BC的垂直平分线上,且在BC的左边时,连接CG,B G,DG,同理,△ADG是等边三角形,∴∠DAG=60°,此时α=300°.综上所述,当α为60°或300°时,GC=GB.变式训练1.C2.解:(1)设p与x之间的函数关系式为p=kx+b,代入(1,7.5),(3,8.5)得⎩⎪⎨⎪⎧k +b =7.5,3k +b =8.5,解得⎩⎪⎨⎪⎧k =0.5,b =7,即p 与x 的函数关系式为p =0.5x +7(1≤x≤15,x 为整数).当1≤x<10时,W =[20-(0.5x +7)](2x +20)=-x 2+16x +260.当10≤x≤15时,W =[20-(0.5x +7)]×40=-20x +520,即W =⎩⎪⎨⎪⎧-x 2+16x +260(1≤x<10,x 为整数),-20x +520(10≤x≤15,x 为整数).(2)当1≤x<10时,W =-x 2+16x +260=-(x -8)2+324,∴当x =8时,W 取得最大值,此时W =324.当10≤x≤15时,W =-20x +520,∴当x =10时,W 取得最大值,此时W =320.∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元.(3)当1≤x<10时,令-x 2+16x +260=299,得x 1=3,x 2=13,当W >299时,3<x <13.∵1≤x<10,∴3<x <10.当10≤x≤15时,令W =-20x +520>299,得x <11.05,∴10≤x≤11.由上可得,李师傅获得奖金的月份是4月到11月,李师傅共获得奖金为20×(11-3)=160(元). 答:李师傅共可获得160元奖金.类型二【例2】(1)由图形可得学校到景点的路程为40 km ,大客车途中停留了5min ,小轿车的速度为4060-20=1(km/min),a =(35-20)×1=15.故答案为40,5,15.(2)由(1)得a =15,∴大客车的速度为1530=12(km/min).小轿车赶上来之后,大客车又行驶了(60-35)×107×12=1257(km),40-1257-15=507(km).答:在小轿车司机驶过景点入口时,大客车离景点入口还有507 km.(3)设直线CD 的解析式为s =kt +b ,将(20,0)和(60,40)代入得⎩⎪⎨⎪⎧20k +b =0,60k +b =40,解得⎩⎪⎨⎪⎧k =1,b =-20,∴直线CD 的解析式为s =t -20.当s =46时,46=t -20,解得t =66.小轿车赶上来之后,大客车又行驶的时间为40-1512×107=35(min),小轿车司机折返时的速度为6÷(35+35-66)=32(km/min)=90 km/h >80km/h. 答:小轿车折返时已经超速.(4)大客车的时间:4012=80(min),80-70=10(min).故答案为10.变式训练3.B 4.A5.解:(1)设该一次函数解析式为y =kx +b ,将(150,45),(0,60)代入y =kx +b 中得⎩⎪⎨⎪⎧150k +b =45,b =60,解得⎩⎪⎨⎪⎧k =-110,b =60,∴该一次函数解析式为y =-110x +60.(2)当y =-110x +60=8时,解得x =520,即行驶520千米时,油箱中的剩余油量为8升.530-520=10(千米),油箱中的剩余油量为8升时,距离加油站10千米.答:在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米. 类型三【例3】 (1)∵Rt△ABC 中,tan A =BC AB ,∴AB=BC tan A =BC tan 20°≈20411=55(cm).(2)如图,延长FE 交DG 于点I ,则四边形GHFI 为矩形,∴IG=FH,∴DI=DG-FH=100-72=28(cm).在Rt△DEI中,sin∠DEI=DIDE =2830=1415,∴∠DEI≈69°,∴β=180°-69°=111°≠100°,∴此时β不符合科学要求的100°.变式训练6.A 7.88.解:如图,过点C作CD⊥AB于点D.在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=3203,∴BD=CD=320,BC=3202,∴AC+BC=640+3202≈1 088,∴AB=AD+BD=3203+320≈864,∴1 088-864=224(公里).答:隧道打通后与打通前相比,从A地到B地的路程将缩短约224公里.类型四【例4】(1)∵AB是⊙O的直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°.∵PB是⊙O的切线,∴∠ABP=90°,∴∠PBD+∠ABD=90°,∴∠BAD=∠PBD.(2)∵∠A=∠DCB,∠AED=∠CEB,∴△ADE∽△CBE,∴DEBE=AECE,即DE·CE=AE·BE.如图,连接OC.设圆的半径为r ,则OA =OB =OC =r ,则DE·CE=AE·BE=(OA -OE)(OB +OE)=r 2-OE 2.∵AC ︵=BC ︵,∴∠AOC=∠BOC=90°,∴CE 2=OE 2+OC 2=OE 2+r 2,BC 2=BO 2+CO 2=2r 2,则BC 2-CE 2=2r 2-(OE 2+r 2)=r 2-OE 2,∴BC 2-CE 2=DE·CE.(3)∵OA =4,∴OB=OC =OA =4, ∴BC=OB 2+OC 2=4 2.又∵E 是半径OA 的中点,∴AE=OE =2,则CE =OC 2+OE 2=42+22=2 5.∵BC 2-CE 2=DE·CE, ∴(42)2-(25)2=DE·25,解得DE =655.变式训练 9.8 10.127类型五【例5】 (1)①由题意可得xy =3,则y =3x .②当y≥3时,3x ≥3,解得x≤1,∴x 的取值范围是0<x≤1.(2)∵一个矩形的周长为6,∴x+y =3,∴x+3x =3,整理得x 2-3x +3=0.∵b 2-4ac =9-12=-3<0,∴矩形的周长不可能是6,∴圆圆的说法不对.∵一个矩形的周长为10,∴x+y =5,∴x+3x =5,整理得x 2-5x +3=0.∵b 2-4ac =25-12=13>0,∴矩形的周长可能是10,∴方方的说法对.变式训练11.解:(1)将点A ,B 的坐标代入函数解析式得⎩⎪⎨⎪⎧9a -3b +6=0,a +b +6=0,解得⎩⎪⎨⎪⎧a =-2,b =-4,∴抛物线的函数解析式为y =-2x 2-4x +6,当x =0时,y =6,∴点C 的坐标为(0,6).(2)由MA =MB =MC 得M 点在AB 的垂直平分线上,M 点在AC 的垂直平分线上. 设M(-1,y),由MA =MC 得(-1+3)2+y 2=(y -6)2+(-1-0)2,解得y =114,∴点M 的坐标为(-1,114).(3)①如图,过点A 作DA⊥AC 交y 轴于点F ,交CB 的延长线于点D. ∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°, ∴∠DAO=∠ACO,∠C AO =∠AFO,∴△AOF∽△COA,∴AO OF =CO AO ,∴AO 2=OC·OF.∵OA=3,OC =6,∴OF=326=32,∴F(0,-32).∵A(-3,0),F(0,-32),∴直线AF 的解析式为y =-12x -32.∵B(1,0),C(0,6),∴直线BC 的解析式为y =-6x +6,联立⎩⎪⎨⎪⎧y =-12x -32,y =-6x +6,解得⎩⎪⎨⎪⎧x =1511,y =-2411,∴D(1511,-2411),∴AD=24115,AC =35, ∴tan∠ACB=2451135=811.∵4tan∠ABE=11tan∠ACB,∴tan∠ABE=2.如图,过点A 作AM⊥x 轴,连接BM 交抛物线于点E. ∵AB=4,tan∠ABE=2,∴AM=8,∴M(-3,8).∵B(1,0),M(-3,8),∴直线BM 的解析式为y =-2x +2.联立⎩⎪⎨⎪⎧y =-2x +2,y =-2x 2-4x +6,解得⎩⎨⎧x =-2,y =6或⎩⎪⎨⎪⎧x =1,y =0,(舍去)∴E(-2,6).②当点E 在x 轴下方时,如图,过点E 作EG⊥AB,连接BE. 设点E(m ,-2m 2-4m +6),∴tan∠ABE=GE BG =2m 2+4m -6-m +1=2,∴m=-4或m =1(舍去),可得E(-4,-10).综上所述,E 点坐标为(-2,6)或(-4,-10).。

相关文档
最新文档