第十二章电磁感应电磁场(二)作业答案

合集下载

大学物理答案第12章

大学物理答案第12章

第十二章 电磁感应 电磁场和电磁波12-1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( )(A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向(C ) 线圈中感应电流为逆时针方向(D ) 线圈中感应电流方向无法确定题 12-1 图分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).12-2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( )(A ) 铜环中有感应电流,木环中无感应电流(B ) 铜环中有感应电流,木环中有感应电流(C ) 铜环中感应电动势大,木环中感应电动势小(D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).12-3 有两个线圈,线圈1对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律ti M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 12-4 对位移电流,下述说法正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).12-5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为(B ).12-6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为tΦπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势. 分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦNξd d d d -=-=,其中ΦN ψ=称为磁链.解 线圈中总的感应电动势())V (π100cos 51.2d d t tΦN =-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.12-7 载流长直导线中的电流以tI d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x I S B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===d d Id x x Id ΦΦμμ再由法拉第电磁感应定律,有 tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dIΦμ=线圈与两长直导线间的互感为2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为 tI d t I M d d 21ln π2d d 0)(μξ=-=题 12-7 图12-8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱.解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12因此,流过导体截面的电量为ii R R NBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i 12-9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10匝的小圆线圈,线圈中的磁场可看作是均匀的.今在 ×10-2s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为×10-2Ω,求通过线圈横截面的感应电荷.题 12-9 图分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r IS μN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为 V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS N t μψξ 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为C 101.11821-⨯=∆=-=t RR q ξψψ 12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰lE v 求解. 在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2RvB .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.12-11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 12-11 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是OA 棒与OB 棒上电动势的代数和,如图(b)所示.而E 和E 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则 ()r L BL ωE E E OB OA AB 221--=-= 12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E vl αB lo d cos 90sin ⎰=v ()()l θB θωlo d 90cos sin ⎰-=l ()⎰==L L B l l B 022sin 21d sin θωθω 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以 ()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B = 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.12-13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40 A .求杆中的感应电动势,杆的哪一端电势较高题 12-13 图分析 本题可用两种方法求解.方法1:用公式()l B d ⋅⨯=⎰l E v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=. 方法2:用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=S ΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为 11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的导轨上电动势为零,所以V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.12-14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.题 12 -14 图分析 本题亦可用两种方法求解.其中应注意下列两点:(1)当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.(2)用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d d l I +=1vl μ由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为 ()ξξμξμ120020ln π2d π21l Il x x Il l +=+=Φ⎰ 相应电动势为 ()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.12-15 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为 2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 12-15 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=l k l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域, ⎰⎰⋅-=⋅=SB tl E k d d d d ξ t B r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小tB r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE l k k PQ -=-==⋅=⎰⎰θξx E 证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势 该如何求解 12-16 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .题 12-16 图分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式I ΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20= 由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.12-17 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)题 12-17 图分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为 221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 12-18 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).题 12-18 图分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 12-19 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .题 12-19 图分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=,故L IΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.12-20 如图所示,一面积为4.0 cm 2共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A ·s-1 时,线圈A 中感应电动势的大小和方向.题 12-20 图分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21/I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度RI μN B B200=,穿过小线圈A 的磁链近似为 A BA A A A S RI μN N S B N ψ200== 则两线圈的互感为 H 1028.6260-⨯===RS μN N I ψM A B A A (2)线圈A 中感应电动势的大小为 V 1014.3d d 4-⨯=-=t I ME A 互感电动势的方向和线圈B 中的电流方向相同.12-21 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少题 12-21 图解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +==则两线圈的互感为 ()2/3222202πd R R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍.12-22 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 = ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为 ×10-3 C .求:当螺绕环中通有电流I 1时,铁磁质中的B 和铁磁质的相对磁导率μr .题 12-22 图分析 本题与题12-8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的. 解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===SN Rq I n B C r μμ 相对磁导率 1991102==I n S N Rq C r μμ 12-23 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为 Ω.求:(1) 如把线圈接到电动势E = V 的电池上,电流稳定后,线圈中所储存的磁能有多少 磁能密度是多少*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间分析 单一载流回路所具有的磁能,通常可用两种方法计算:方法 1: 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能. 方法 2: 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布. 上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L . 解 (1) 密绕长直螺线管在忽略端部效应时,其自感l S N L 20μ=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为 J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度m w 处处相等,3m J 17.4-⋅==SLW w m m (2) 自感为L ,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律⎪⎪⎭⎫ ⎝⎛-=-t L R R E I e 1,当电流稳定后,其最大值R E I m = 按题意⎥⎦⎤⎢⎣⎡=22212121m LI LI ,则R E I 22=,将其代入⎪⎪⎭⎫ ⎝⎛-=-t L RR E I e 1中,得 ()s 1056.122ln 221ln 4-⨯=+=⎥⎦⎤⎢⎣⎡--=R L R L t 12-24 未来可能会利用超导线圈中持续大电流建立的磁场来储存能量.要储存1 kW ·h 的能量,利用T的磁场,需要多大体积的磁场 若利用线圈中500 A 的电流储存上述能量,则该线圈的自感系数应该多大解 由磁感强度与磁场能量间的关系可得302m 0.92/==μB W V m 所需线圈的自感系数为H 2922==I W L m 12-25 中子星表面的磁场估计为108T,该处的磁能密度有多大解 由磁场能量密度 21021098.32⨯==μB w m 3m /J 12-26 在真空中,若一均匀电场中的电场能量密度与一 T 的均匀磁场中的磁场能量密度相等,该电场的电场强度为多少解 2021E εw e =,022μB w m =,按题意,当m e w w =时,0220221μB E ε=则 1800m V 1051.1-⋅⨯==μεB E 12-27 设有半径R =0.20 m 的圆形平行板电容器,两板之间为真空,板间距离d =0.50 cm ,以恒定电流I =2.0 A 对电容器充电.求位移电流密度(忽略平板电容器的边缘效应,设电场是均匀的).分析 尽管变化电场与传导电流二者形成的机理不同,但都能在空间激发磁场.从这个意义来说,变化电场可视为一种“广义电流”,即位移电流.在本题中,导线内存在着传导电流I c ,而在平行板电容器间存在着位移电流I d ,它们使电路中的电流连续,即c d I I =.解 忽略电容器的边缘效应,电容器内电场的空间分布是均匀的,因此板间位移电流2πd R j I d Sd d =⋅=⎰S j ,由此得位移电流密度的大小 222m A 9.15ππ-⋅===R I R I j c d d。

第12章-电磁感应 电磁场和电磁波

第12章-电磁感应 电磁场和电磁波

0n1I1
则穿过半径为 r2 的线圈
的磁通匝数为
N2Φ21 N2B1(π r12 )
n2lB1(πr12 )
代入 B1 计算得 2 N2Φ21 0n1n2l(πr12 )I1

M 21
N 2Φ21 I1
0n1n2l(πr12 )
33
12-3 自感和互感
例3 上题中,若通过长度为 l2 的线圈 N2 的电流为 I2 , 且 I2 是随时间而变化的,那么,因互感的作用,在线 圈 N1 中激起的感应电动势是多少呢? 解 通过线圈 N1 的磁通匝数为
dV
V 2
36
12-4 磁场的能量 磁场能量密度
例1 有一长为 l 0.20m 、截面积 S 5.0cm2 的长直 螺线管。按设计要求,当螺线管通以电流 I 450mA 时,螺线管可储存磁场能量 Wm 0.10J . 试问此长直螺
线管需绕多少匝线圈?
解 由上一节可知,长直螺线管的自感为
L 0N 2S / l
i
OP Ek dl
(v
B)
dl
OP
l
p
i
设杆长为 l
i
vBdl vBl
0
o
16
12-2 动生电动势和感生电动势
例1 一长为 L 的铜棒在磁感强度为 B 的均匀磁场中,
以角速度 在与磁场方向垂直的平面上绕棒的一端转
动,求铜棒两端的感应电动势.
解 di (v B) dl
vBdl
螺线管储存的磁场能量为
Wm
1 2
LI 2
1 2
0 N 2S
l
I2
N 1 ( 2Wml )1/ 2 1.8104匝
当 dL 0 dt

大学物理B-第十二章 电磁感应

大学物理B-第十二章 电磁感应
法拉第电磁感应定律
电磁感应
产 生 机 理
i
d m dt
楞次定律 动生电动势
感生电动势
自感电动势
i (v B ) dl L B i dS S t
工业生产
12-3 自感和互感
互感电动势
一、自感电动势
自感系数 I(t) Φm
1.自感现象与自感系数 由于回路自身电流的变化,在回 路中产生感应电动势的现象。
N
ab a
I NIl a b ldr ln 2r 2 a
N B dS
s
dr
I
r
由互感系数定义可得互感为: Nl ab M ln I 2 a
l
a
b
I I I I
0
0
12-4磁场的能量与能量密度
I (t )
L
R
0
充电过程曲线
τ
t
I (t)
K2
麦克斯韦提出全电流的概念
I 全 I 传导 I D
全电流连续不中断的,构成闭合回路
ID

全电流安培环路定理
L H dl I 传导 I D dD d D dS D dS 位移电流 I D S t dt dt S
讨论: 1. 传导电流:电荷定向运动 2. 若传导电流为零
L
L
穿过S1 面 电流
穿过S2 面 电流
S1
I

+ + + +
S2
D
电流不连续 -
二、 全电流安培环路定理 S2 面电位移通量 D DS
极板间电位移矢量 D 位移电流

高考物理复习第十二章电磁感应综合检测(含解析)

高考物理复习第十二章电磁感应综合检测(含解析)

高考物理复习第十二章电磁感应综合检测(含解析)一、选择题(此题共14小题,共70分,在每题给出的四个选项中,有的只要一个选项正确,有的有多个选项正确,全部选对的得5分,选对但不全的得3分,有选错的得0分)1.(2021·湖北武汉市局部学校)在验证楞次定律实验中,竖直放置的线圈固定不动,将磁铁从线圈上方拔出或拔出,线圈和电流表构成的闭合回路中就会发生感应电流.图中区分标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中发生的感应电流的方向等状况,其中正确的选项是( )【解析】 对选项A ,由〝来者拒之〞,可判别出线圈中发生的感应电流的磁场上端为N 极,再由安培定那么,可判别出感应电流的方向与图中标的方向相反,应选项A 错.同理可判别出B 错,C 、D 对.【答案】 CD2.(2021·江苏南通)如下图,在磁感应强度为B 的匀强磁场中,有半径为r 的润滑半圆形导体框架,OC 为一能绕O 在框架上滑动的导体棒,OC 之间连一个电阻R ,导体框架与导体棒的电阻均不计,假定要使OC 能以角速度ω匀速转动,那么外力做功的功率是 ( ) A.B 2ω2r 4R B.B 2ω2r 42RC.B 2ω2r 44RD.B 2ω2r 48R【解析】 匀速转动,P 外=P 电=E 2R ,又E =Br ·ωr 2,联立解得:P 外=B 2ω2r 44R,应选项C 对.【答案】 C3.用相反导线绕制的边长为L 或2L 的四个闭合导体框,以相反的速度匀速进入右侧匀强磁场,如下图.在每个线框进入磁场的进程中,M 、N 两点间的电压区分为U a 、U b 、U c 、U d .以下判别正确的选项是 ( )A .U a <U b <U c <U dB .U a <U b <U d <U cC .U a =U b <U c =U dD .U b <U a <U d <U c【解析】 由题知E a =E b =BLv ,E c =E d =2BLv ,由闭合电路欧姆定律和串联电路电压与电阻成正比可知U a =34BLv ,U b =56BLv ,U c =32BLv ,U d =43BLv ,故B 正确. 【答案】 B4.如下图的电路中,D 1和D 2是两个相反的小灯泡,L 是一个自感系数相当大的线圈,其阻值与R 相反.在开关S 接通和断开时,灯泡D 1和D 2亮暗的顺序是 ( )A .接通时D 1先达最亮,断开时D 1后灭B .接通时D 2先达最亮,断开时D 1后灭C .接通时D 1先达最亮,断开时D 1先灭D .接能时D 2先达最亮,断开时D 2先灭【解析】 当开关S 接通时,D 1和D 2应该同时亮,但由于自感现象的存在,流过线圈的电流由零变大时,线圈上发生的自感电动势的方向是左边为正极,左边为负极,使经过线圈的电流从零末尾渐渐添加,所以末尾瞬时电流简直全部从D1经过,而该电流又将同时分路经过D2和R,所以D1先达最亮,经过一段时间电路动摇后,D1和D2到达一样亮.当开关S断开时,电源电流立刻为零,因此D2立刻熄灭,而关于D1,由于经过线圈的电流突然削弱,线圈中发生自感电动势(右端为正极,左端为负极),使线圈L和D1组成的闭合电路中有感应电流,所以D1后灭.应选A.【答案】 A5.如下图,竖直面内的虚线上方是一匀强磁场B,从虚线下方竖直上抛一正方形线圈,线圈越过虚线进入磁场,最后又落回原处,运动进程中线圈平面坚持在竖直平面内,不计空气阻力,那么( ) A.上升进程克制磁场力做的功大于下降进程克制磁场力做的功B.上升进程克制磁场力做的功等于下降进程克制磁场力做的功C.上升进程克制重力做功的平均功率大于下降进程中重力的平均功率D.上升进程克制重力做功的平均功率等于下降进程中重力的平均功率【解析】线圈上升进程中,减速度较大且在减速,下降进程中,运动状况比拟复杂,有减速、减速或匀速等,把上升进程看做反向的减速,可以比拟在运动到同一位置时,线圈速度都比下降进程中相应的速度要大,可以失掉结论:上升进程中克制安培力做功多;上升进程时间短,故正确选项为A、C.【答案】AC6.如下图,闭合导线框的质量可以疏忽不计,将它从如下图位置匀速向右拉出匀强磁场.假定第一次用0.3s拉出,外力所做的功为W1,经过导线横截面的电荷量为q1;第二次用0.9s拉出,外力所做的功为W2,经过导线横截面的电荷量为q2,那么( ) A.W1<W2,q1<q2 B.W1<W2,q1=q2C.W1>W2,q1=q2 D.W1>W2,q1>q2【解析】设线框长为L1,宽为L2,第一次拉出速度为v1,第二次拉出速度为v2,那么v1=3v2.匀速拉出磁场时,外力所做的功恰等于克制安培力所做的功,有W1=F1L1=BI1L2L1=B2L22L1v1/R,同理W2=B2L22L1v2/R,故W1>W2;又由于线框两次拉出进程中,磁通量的变化量相等,即ΔΦ1=ΔΦ2,由q=It=BL2v Rt=BL1L2Rtt=BL1L2R=ΔΦR,得:q1=q2,故正确答案为选项C.【答案】 C7.如下图,AOC是润滑的金属导轨道,AO沿竖直方向,OC沿水平方向,PQ是一根金属直杆如下图立在导轨上,直杆从图示位置由运动末尾在重力作用下运动,运动进程中Q端一直在OC上,P端一直在AO上,直到完全落在OC上.空间存在着垂直于纸面向外的匀强磁场,那么在PQ棒滑动的进程中,以下判别正确的选项是( )A.感应电流的方向一直是由P→QB.感应电流方向先是由P→Q,再是由Q→PC.PQ受磁场力的方向垂直于棒向左D.PQ受磁场力的方向垂直于棒先向左,再向右【解析】棒PQ在下滑的进程中,棒与AO之间的夹角为α,棒长为L,与导轨所围三角形POQ 的面积为S =12L 2sin αcos α=14L 2sin2α,棒在下滑的进程中棒与AO 间的夹角α是由零逐渐增大到90°,由面积表达式可知,当α=45°时,面积S 有最大值,而磁场是匀强磁场,故当PQ 在沿AO 下滑的进程中,棒与金属导轨所组成的回路中的磁通量是先增大后减小,那么回路中感应电流的磁场方向先与原磁场方向相反,是垂直于纸面向内,后与原磁场方向相反,是垂直于纸面向外,由安培定那么可以确定感应电流的方向先是由P →Q ,再由Q →P ,再由左手定那么可以确定棒受磁场力的方向垂直于棒先向左,后向右.【答案】 BD8.如图,在匀强磁场中固定放置一根串接一电阻R 的直角形金属导轨aOb (在纸面内),磁场方向垂直于纸面朝里,另有两根金属导轨c 、d区分平行于Oa 、Ob 放置.坚持导轨之直接触良好,金属导轨的电阻不计.现阅历以下四个进程:①以速度v 移动d ,使它与Ob 的距离增大一倍;②再以速率v 移动c ,使它与Oa 的距离减小一半;③然后,再以速率2v 移动c ,使它回到原处;④最后以速率2v 移动d ,使它也回到原处.设上述四个进程中经过电阻R 的电荷量的大小依次为Q 1、Q 2、Q 3和Q 4,那么( )A .Q 1=Q 2=Q 3=Q 4B .Q 1=Q 2=2Q 3=2Q 4C .2Q 1=2Q 2=Q 3=Q 4D .Q 2≠Q 2=Q 3≠Q 4【解析】 由Q =I ·Δt =ΔΦΔtR Δt =ΔΦR =B ·ΔS R可知,在四种移动状况下变化的面积是相反的,那么磁通质变化相反,跟导轨移动的速度有关,跟移动的时间也有关,所以A 选项正确.【答案】 A9.(2021·辽宁盘锦一模)如下图,边长为L 的正方形导线框质量为m ,由距磁场H 高处自在下落,其下边ab 进入匀强磁场后,线圈末尾做减速运动,直到其上边cd 刚刚穿出磁场时,速度减为ab 边进入磁场时的一半,磁场的宽度也为L ,那么线框穿越匀强磁场进程中发生的焦耳热为 ( )A .2mgLB .2mgL +mgHC .2mgL +34mgHD .2mgL +14mgH 【解析】 设ab 刚进入磁场时的速度为v 1,cd 刚穿出磁场时的速度v 2=v 12① 线框自末尾进入磁场到完全穿出磁场共下落高度为2L .由题意得12mv 21=mgH ② 12mv 21+mg ·2L =12mv 22+Q ③ 由①②③得Q =2mgL +34mgH .C 选项正确. 【答案】 C10.(2021·武汉调研)如下图,等腰三角形内散布有垂直于纸面向外的匀强磁场,它的底边在x 轴上且长为2L ,高为L .纸面内一边长为L 的正方形导框沿x 轴正方向做匀速直线运动穿过磁场区域,在t =0时辰恰恰位于图中所示的位置.以顺时针方向为导线框中电流的正方向,在下面四幅图中可以正确表示电流—位移(I —x )关系的是 ( )【解析】 线框进入磁场的进程中,线框的左边做切割磁感线运动,发生感应电动势,从而在整个回路中发生感应电流,由于线框做匀速直线运动,且切割磁感线的有效长度不时添加,其感应电流的大小不时添加,由右手定那么,可判定感应电流的方向是顺时针的;线框全部进入磁场后,线框的左边和左边同时切割磁感线,当x ≤32L 时,回路中的感应电流不时减小,由右手定那么可判定感应电流的方向是顺时针;当32L <x <2L 时,回路中的感应电流不时添加,但感应电流的方向是逆时针.线框出磁场的进程,可依照异样方法剖析.【答案】 A11.(2021·湖北局部重点中学联考)如图a 所示,在润滑水平面上用恒力F 拉质量为m 的单匝平均正方形铜钱框,边长为a ,在1位置以速度v 0进入磁感应强度为B 的匀强磁场并末尾计时t =0,假定磁场的宽度为b (b >3a ),在3t 0时辰线框抵达2位置速度又为v 0并末尾分开匀强磁场.此进程中v -t 图象如图b 所示,那么( )A .t =0时,线框右侧边MN 的两端电压为Bav 0B .在t 0时辰线框的速度为v 0-Ft 0mC .线框完全分开磁场的瞬间位置3的速度一定比t 0时辰线框的速度大D .线框从1位置进入磁场到完全分开磁场位置3进程中线框中发生的电热为2Fb【解析】 t =0时,线框右侧边MN 的两端电压为外电压,为34Bav 0,A 项错误;从t 0时辰至3t 0时辰线框做匀减速运动,减速度为F m ,故在t 0时辰的速度为v 0-2at 0=v 0-2Ft 0m,B 项错误;由于t =0时辰和t =3t 0时辰线框的速度相等,进入磁场和穿出磁场的进程中受力状况相反,故在位置3时的速度与t 0时辰的速度相等,C 项错误;线框在位置1和位置3时的速度相等,依据动能定理,外力做的功等于克制安培力做的功,即有Fb =Q ,所以线框穿过磁场的整个进程中,发生的电热为2Fb ,D 项正确.【答案】 D12.(2021·浙江杭州质检)超导磁悬浮列车是应用超导体的抗磁作用使列车车体向上浮起,同时经过周期性地变换磁极方向而取得的推进动力的新型交通工具.其推进原理可以简化为如下图的模型:在水平面上相距L 的两根平行直导轨间,有竖直方向等距离散布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽度都是L ,相间陈列,一切这些磁场都以相反的速度向右匀速运动,这时跨在两导轨间的长为L ,宽为L 的金属框abcd (悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属的总电阻为R ,运动中所遭到的阻力恒为F f ,金属框的最大速度为v m ,那么磁场向右匀速运动的速度v 可表示为 ( )A .v =(B 2L 2v m -F f R )/(B 2L 2)B .v =(4B 2L 2v m +F f R )/(4B 2L 2)C .v =(4B 2L 2v m -F f R )/(4B 2L 2)D .v =(2B 2L 2v m +F f R )/(2B 2L 2)【解析】 导体棒ad 和bc 各以相对磁场的速度(v -v m )切割磁感线运动,由右手定那么可知回路中发生的电流方向为abcda ,回路中发生的电动势为E =2BL (v -v m ),回路中电流为:I =2BL (v -v m )/R ,由于左右两边ad 和bc 均遭到安培力,那么合安培力F 合=2×BLI =4B 2L 2(v -v m )/R ,依题意金属框到达最大速度时遭到的阻力与安培力平衡,那么F f =F 合,解得磁场向右匀速运动的速度v =(4B 2L 2v m +F f R )/(4B 2L 2),B 对.【答案】 B13.(2021·北京西城区抽样测试)实验室经常运用的电流表是磁电式仪表.这种电流表的结构如图甲所示.蹄形磁铁和铁芯间的磁场是平均地辐向散布的.当线圈通以如图乙所示的电流,以下说法正确的选项是( )A .线圈转到什么角度,它的平面都跟磁感线平行B .线圈转动时,螺旋弹簧被扭动,阻碍线圈转动C .当线圈转到如图乙所示的位置,b 端遭到的安培力方向向上D .当线圈转到如图乙所示的位置,安培力的作用使线圈沿顺时针方向转动【解析】 考察电流表的任务原理.由辐向散布的磁场可知,线圈转就任何位置,它的平面都跟磁感线平行,A 正确;经过线圈中的电流在磁场作用下发生的安培力的力矩与螺旋弹簧的扭动力矩平衡时,指针运动,B 正确;当线圈转动到图乙所示的位置时,依据左手定那么,b 端遭到的安培力方向向下,C 错误;使线圈沿顺时针方向转动,D 正确.【答案】 ABD14.(2021·北京海淀区期末)如下图,润滑平行金属轨道平面与水平面成θ角,两轨道上端用一电阻R 相连,该装置处于匀强磁场中,磁场方向垂直轨道平面向上,质量为m 的金属杆ab ,以初速度v 0从轨道底端向上滑行,滑行到某一高度h 后又前往究竟端.假定运动进程中,金属杆一直坚持与导轨垂直且接触良好,且轨道与金属杆的电阻均疏忽不计,那么( )A .整个进程中金属杆所受合外力的冲量大小为2mv 0B .上滑到最高点的进程中克制安培力与重力所做功之和等于12mv 20C .上滑到最高点的进程中电阻R 上发生的焦耳热等于12mv 20-mgh D .金属杆两次经过斜面上的同一位置时电阻R 的热功率相反【解析】 金属杆从轨道底端滑上斜面到又前往到动身点时,由于电阻R 上发生热量,故前往时速度小于v 0,故整个进程中金属杆所受合外力的冲量大小小于2mv 0,A 错误;上滑到最高点时动能转化为重力势能和电阻R 上发生的焦耳热(即克制安培力所做的功),BC 正确;金属杆两次经过斜面上同一位置时的速度不同,电路的电流不同,故电阻的热功率不同,D 错误.【答案】 BC二、计算题(此题共包括4小题,共50分,解答时应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分,有数值计算的题,答案中必需明白写出数值和单位)15.截面积S =0.2m 2,匝数n =100匝的线圈A ,处在如图(甲)所示的磁场中,磁感应强度B 随时间按图(乙)所示规律变化,方向垂直线圈平面,规则向外为正方向.电路中R 1=4Ω,R 2=6Ω,C =30μF,线圈电阻不计.(1)闭合S 动摇后,求经过R 2的电流;(2)闭合S 一段时间后再断开,那么断开后经过R 2的电荷量是多少?【解析】 由于线圈A 所在的磁场变化惹起穿过线圈的磁通量发作变化,发生感应电动势.当S 闭合后,就有电流经过R 1、R 2.(1)由图知B 随时间按线性变化,变化率ΔB Δt =0.2T/s.由法拉第电磁感应定律得E =n ΔB Δt S =4V.由楞次定律确定电流方向,在0~1s 内,原磁场为负,即向里,大小在减小,故感应电流的磁场方向与原磁场方向相反,因此由安培定那么知线圈中的电流方向为顺时针方向.从电路角度来看,线圈就是电源,其内阻不计,R 1和R 2串联后构成外电路,C 与R 2并联,当电流恒定时,电容器支路中无电流.由闭合电路欧姆定律得流过R 2的电流I =ER 1+R 2=0.4A ,方向向下.(2)S 闭合后,将对C 充电,充电完毕后电容器支路断路,电容器两端的电势差等于R 2两端的电压.因此,其充电量Q =CU =C R 2R 1+R 2E =7.2×10-5C.S 断开后,电容器经过R 2放电,所以放电量为7.2×10-5C.【答案】 (1)0.4A ,方向向下 (2)7.2×10-5C16.两根润滑的长直金属导轨MN 、M ′N ′平行置于同一水平面内,导轨间距为l ,电阻不计,M 、M ′处接有如下图的电路,电路中各电阻的阻值均为R ,电容器的电容为C .长度也为l 、阻值同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为B 、方向竖直向下的匀强磁场中.ab 在外力作用下向右匀速运动且与导轨坚持良好接触,在ab 运动距离为s 的进程中,整个回路中发生的焦耳热为Q .求:(1)ab 运动速度v 的大小;(2)电容器所带的电荷量q .【解析】 此题是电磁感应中的电路效果,ab 切割磁感线发生感应电动势为电源.电动势可由E =BLv 计算.其中v 为所求,再结合闭合(或局部)电路欧姆定律、焦耳定律,电容器及运动学知识列方程可解得.(1)设ab 上发生的感应电动势为E ,回路中的电流为I ,ab 运动距离s 所用时间为t ,三个电阻R 与电源串联,总电阻为4R ,那么E =Blv由闭合电路欧姆定律有I =E 4Rt =s v由焦耳定律有Q =I 2(4R )t由上述方程得v =4QR B 2l 2s(2)设电容器两极板间的电势差为U ,那么有U =IR电容器所带电荷量q =CU解得q =CQR Bls【答案】 (1)4QRB 2l 2s (2)CQR Bls17.日本专家研讨调查得出了一个惊人的结论,东京高速路途所构成的振动可发生4GW 以上的电力,这一数值相当于供应东京23个区的家庭用电的4成.如图甲所示是某人设计的一种振动发电装置,它的结构是一个套在辐向形永世磁铁槽中的半径为r =0.1m 、匝数为n =20的线圈,磁场的磁感线均沿半径方向平均散布(其右视图如图乙所示).在线圈所在位置磁感应强度B 的大小均为0.2T ,线圈的电阻为1.5Ω,它的引出线接有质量为0.01kg 、电阻为0.5Ω的金属棒MN ,MN 置于倾角为30°的润滑导轨上,导轨宽度为0.25m.外力推进线圈框架的P 端,使线圈沿轴线做往复运动,便有电流经过MN .当线圈向右的位移x 随时间t 变化的规律如图丙所示时(x 取向右为正),g =10m/s 2.求:(1)假定MN 固定不动,流过它的电流大小和方向?(2)假定MN 可自在滑动,至少要加多大的匀强磁场B ′才干使MN 坚持运动,请在图丁中画出磁感应强度B ′随时间变化的图象.【解析】 (1)由图丙知线圈运动速度:v =x t=0.8m/s 线圈向右运动时切割磁感线,且各处磁场方向与组成线圈的导线垂直,线圈发生电动势:E =nBLv =2πrnBv流过MN 电流:I =E R 外+r 内 联立以上三式并代入数据得:I =2πrnBv R 外+r 内=1A 流过MN 的电流方向从M 到N .当线圈向左运动时,电流大小不变,流过MN 的电流方向从N 到M .(2)如下图MN 受重力、斜面支持力和安培力作用途于运动形状,要使外加磁场B ′最小,即安培力最小,当流过MN 的电流从M 到N 时,由左手定那么知磁场方向垂直轨道平面向下.mg sin30°=B ′ILB ′=mg sin30°IL=0.2T 当流过MN 的电流从N 到M 时,要使MN 运动,B ′的方向相反,即垂直轨道平面向上,以此方向为正方向,那么磁感应强度B ′随时间变化图象如下图.【规律总结】 此题涵盖力学中的位移图象、三力平衡,电磁学中的安培力、感应电动势、闭合电路欧姆定律、左手定那么等效果.解本类综合题的关键是依照物理现象的因果关系及实质特征将其分解为假定干个复杂效果,再逐一处置.18.(2021·河南省示范性高中联考)如下图,润滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd ,ab 边的边长l 1=1m ,bc 边的边长l 2=0.6m ,线框的质量m =1kg ,电阻R =0.1Ω,线框与绝缘细线相连,现用F =20N 的恒力经过定滑轮向下拉细线并带动线框移动(如下图),斜面上ef 线(ef ∥gh )的右方有垂直斜面向上的匀强磁场,磁感应强度B =0.5T ,假设线框从运动末尾运动,进入磁场最后一段时间做匀速运动,ef和gh 的距离s =18.6m ,取g =10m/s 2,求:(1)线框进入磁场前的减速度和线框进入磁场时做匀速运动的速度v ;(2)简明剖析线框在整个进程中的运动状况并求出ab 边由运动末尾到运动到gh 线处所用的时间t ;(3)ab 边运动到gh 线处的速度大小和在线框由运动末尾到运动到gh 线的整个进程中发生的焦耳热.【解析】 (1)线框进入磁场前,线框仅遭到细线的拉力F ,斜面的支持力和线框重力,设线框进入磁场前的减速度为a ,对线框由牛顿第二定律得F -mg sin α=ma解得a =F -mg sin αm=15m/s 2 由于线框进入磁场的最后一段时间做匀速运动所以线框abcd 受力平衡F =mg sin α+F Aab 边进入磁场切割磁感线,发生的电动势E =Bl 1v构成的感应电流I =E R =Bl 1v R,遭到的安培力F A =BIl 1 联立上述各式得F =mg sin α+B 2l 21v R,代入数据解得v =6m/s (2)线框abcd 进入磁场前,做匀减速直线运动;进磁场的进程中,做匀速直线运动;进入磁场后到运动到gh 线处,也做匀减速直线运动.进磁场前线框的减速度大小为a =15m/s 2该阶段运动的时间为t 1=v a =615s =0.4s 进磁场的进程中匀速运动的时间为t 2=l 2v =0.66s =0.1s 线框完全进入磁场后其受力状况同进入磁场前,所以该阶段的减速度大小仍为a =15m/s 2s -l 2=vt 3+12at 23 解得:t 3=1.2s因此ab 边由运动末尾运动到gh 线处所用的时间为t =t 1+t 2+t 3=1.7s(3)线框的ab 边运动到gh 线处的速度v ′=v +at 3=6m/s +15×1.2m/s=24m/s 整个运动进程中发生的焦耳热Q =F A l 2=(F -mg sin α)l 2=9J。

大学物理《普通物理学简明教程》第十二章 电磁感应 电磁场

大学物理《普通物理学简明教程》第十二章  电磁感应 电磁场

第十二章 电磁感应 电磁场问题12-1 如图,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,试确定在下列情况下,ABCD 上的感应电动势的方向:(1)矩形线圈在纸面内向右移动;(2)矩形线圈绕AD 轴旋转;(3)矩形线圈以直导线为轴旋转.解 导线在右边区域激发的磁场方向垂直于纸面向里,并且由2IB rμ0=π可知,离导线越远的区域磁感强度越小,即磁感线密度越小.当线圈运动时通过线圈的磁通量会发生变化,从而产生感应电动势.感应电动势的方向由楞次定律确定.(1)线圈向右移动,通过矩形线圈的磁通量减少,由楞次定律可知,线圈中感应电动势的方向为顺时针方向.(2)线圈绕AD 轴旋转,当从0o到90o时,通过线圈的磁通量减小,感应电动势的方向为顺时针方向.从90o到180o时,通过线圈的磁通量增大,感应电动势的方向为逆时针. 从180o到270o 时,通过线圈的磁通量减少,感应电动势的方向为顺时针.从270o到360o 时,通过线圈的磁通量增大,感应电动势的方向为逆时针方向. (2)由于直导线在空间激发的磁场具有轴对称性,所以当矩形线圈以直导线为轴旋转时,通过线圈的磁通量并没有发生变化,所以,感应电动势为零.12-2 当我们把条形磁铁沿铜质圆环的轴线插入铜环中时,铜环内有感应电流和感应电场吗? 如用塑料圆环替代铜质圆环,环中仍有感应电流和感应电场吗?解 当把条形磁铁沿铜质圆环的轴线插入铜环过程中,穿过铜环的磁通量增加,铜环中有感应电流和感应电场产生;当用塑料圆环替代铜质圆环,由于塑料圆环中的没有可以移动的自由电荷,所以环中无感应电流和感应电场产生.12-3 如图所示铜棒在均匀磁场中作下列各种运动,试问在哪种运动中的铜棒上会有感应电动势?其方向怎样?设磁感强度的方向铅直向下.(1)铜棒向右平移[图(a)];(2)铜棒绕通过其中心的轴在垂直于B 的平面内转动[图(b)];(3)铜棒绕通过中心的轴在竖直平面内转动[图(c)].CI解 在磁场中运动的导体所产生的感应电动势为()d Lε=⨯⎰v B l ⋅,在图(a)与(c)中的运动情况中,⨯v B 的方向与d l 方向垂直,铜棒中没有感应电动势.在图(b)中,铜棒绕中心轴运动,左右两段产生的感应电动势大小相等,方向相反,所以铜棒中总的感应电动势为零.12-4 有一面积为S 的导电回路,其n e 的方向与均匀磁场的B 的方向之间的夹角为θ.且B 的值随时间变化率为d d B t .试问角θ为何值时,回路中i ε的值最大;角θ为何值时,回路中i ε的值最小?请解释之.解 由i d d d cos S S dt dtεθ=--⎰B BS =⋅,可得当0θ=o 时,回路中i ε的值最大,当90θ=o 时,回路中iε的值最小.12-5 有人认为可以采用下述方法来测量炮弹的速度.在炮弹的尖端插一根细小的永久磁铁,那么,当炮弹在飞行中连续通过相距为r 的两个线圈后,由于电磁感应,线圈中会产生时间间隔为t ∆的两个电流脉冲.您能据此测出炮弹速度的值吗?如0.1m r =,4=210s t -∆⨯,炮弹的速度为多少?解 带有小磁铁的炮弹飞向线圈,线圈中会产生感应电流, 测得的两个电流脉冲产生的时间间隔即炮弹飞过这两个线圈间距所用的时间. 由题意可知, 炮弹的速度为1500m s rv t-==⋅∆12-6 如图所示,在两磁极之间放置一圆形的线圈,线圈的平面与磁场垂直.问在下述各种情况中,线圈中是否产生感应电流?并指出其方向.(1)把线圈拉扁时;(2)把其中B B B (a)(b)(c)ne Bθ一个磁极很快地移去时;(3)把两个磁极慢慢地同时移去时.解 这三种情况中, 通过的磁通量均减小,线圈中均会产生感应电流, 从上往下看, 感应电流的方向沿顺时针方向.12-7 如图所示,均匀磁场被限制在半径为R 的圆柱体内,且其中磁感强度随时间的变化率d d B t =常量,试问: 在回路1L 和2L 上各点的d d B t 是否均为零?各点的k E 是否均为零?1kd L ⋅⎰ÑEl 和2k d L ⋅⎰ÑE l 各为多少?解 由于磁场只存在于圆柱体内,在回路1L 上各点d d B t 为常量,在回路2L 上各点d d B t 为零.空间中各点的感生电场分布为r R < k d 2d r BE t=r R > 2k d 2d R BE r t=可见在回路1L 和2L 上各点的k E 均不为零.对于在回路1L11k d d d d d d L L S S t t⋅=-=-⎰⎰ÑB B E l S ⋅对于回路2L 22kd d 0d L tΦ⋅=-=⎰ÑE l12-8 一根很长的铜管铅直放置,有一根磁棒由管中铅直下落.试述磁棒的运动情况.解 长直铜管可以看作由许多铜线圈组成,当磁棒下落,每通过一个线圈,线圈中的磁通量都会发生变化,在下落过程中,铜管中始终会有感应电流产生,并且感应电流产生的磁场的方向与磁棒磁场方向相反,因此,磁棒始终受到铜管对它的阻碍作用.12-9 有一些矿石具有导电性,在地质勘探中常利用导电矿石产生的涡电流来发现它,这叫电磁勘探.在示意图中,A 为通有高频电流的初级线圈,B为次级线圈,并连接电流计G,从次级线圈中的电流变R2L 1L化可检测磁场的变化.当次级线圈B检测到其中磁场发生变化时,技术人员就认为在附近有导电矿石存在.你能说明其道理吗?利用问题12-9图相似的装置,还可确定地下金属管线和电缆的位置,你能提供一个设想方案吗?解 该检测方法利用的原理是电磁感应。

第十二章 电磁感应电磁场(二)作业答案

第十二章 电磁感应电磁场(二)作业答案

一. 选择题[ A ] 1 (基础训练4)、两根很长的平行直导线,其间距离为a ,与电源组成闭合回路,如图12-18.已知导线上的电流为I ,在保持I 不变的情况下,若将导线间的距离增大,则空间的(A) 总磁能将增大. (B) 总磁能将减少.(C) 总磁能将保持不变.(D) 总磁能的变化不能确定【解答】212m W L I =,距离增大,φ增大,L 增大, I 不变,m W 增大。

[ D ]2(基础训练7)、如图12-21所示.一电荷为q 的点电荷,以匀角速度作圆周运动,圆周的半径为R .设t = 0 时q 所在点的坐标为x 0 = R ,y 0 = 0 ,以i 、j分别表示x 轴和y 轴上的单位矢量,则圆心处O 点的位移电流密度为: (A)i t R q ωωsin 42π (B) j t Rq ωωcos 42π (C) k R q 24πω (D) )cos (sin 42j t i t Rq ωωω-π 图 12-21 【解答】设在0—t 的时间内,点电荷转过的角度为ωt ,此时,点电荷在O 点产生的电位移矢量为0D E ε=, ()222000cos sin ,444rqR q q E e ti tj R R R R ωωπεπεπε=-=-=-+ 式中的r e 表示从O 点指向点电荷q 的单位矢量。

()2sin cos 4d dD q J ti tj dt R ωωωπ∴==-。

[ C ] 3 (基础训练8)、 如图12-22,平板电容器(忽略边缘效应)充电时,沿环路L 1的磁场强度H 的环流与沿环路L 2的磁场强度H 的环流两者,必有: (A) >'⎰⋅1d L l H ⎰⋅'2d L l H . (B) ='⎰⋅1d L l H ⎰⋅'2d L l H .(C) <'⎰⋅1d L l H ⎰⋅'2d L l H. (D) 0d 1='⎰⋅L l H .【解答】全电流是连续的,即位移电流和传导电流大小相等、方向相同。

第十二章电磁感应电磁场

第十二章电磁感应电磁场

第十二章电磁感应电磁场题12.1:如图所示,在磁感强度T 106.74-⨯=B 的均匀磁场中,放置一个线圈。

此线圈由两个半径均为3.7 cm 且相互垂直的半圆构成,磁感强度的方向与两半圆平面的夹角分别为 62和 28。

若在s 105.43-⨯的时间内磁场突然减至零,试问在此线圈内的感应电动势为多少? 题12.1分析:由各种原因在回路中所引起的感应电动势,均可由法拉第电磁感应定律求解,即⎰⋅-=-=Sd d d d d S B t t Φε但在求解时应注意下列几个问题: 1.回路必须是闭合的,所求得的电动势为回路的总电动势。

2.Φ应该是回路在任意时刻或任意位置处的磁通量。

它由⎰⋅=Sd S B Φ计算。

对于均匀磁场则有θcos d SBS Φ=⋅=⎰S B ,其中⊥=S S θcos 为闭会回路在垂直于磁场的平面内的投影面积。

对于本题,2211cos cos θθBS BS Φ+=中1θ和2θ为两半圆形平面法线n e 与B 之间的夹角。

3.感应电动势的方向可由tΦd d -来判定,教材中已给出判定方法。

为方便起见,所取回路的正向(顺时针或逆时针)应与穿过回路的B 的方向满足右螺旋关系,此时Φ恒为正值,这对符号确定较为有利。

题12.1解:迎着B 的方向,取逆时针为线圈回路的正向。

由法拉第电磁感应定律V 1091.4)cos cos (cos cos d d cos cos d d d d 4221122112211-⨯=+∆∆-=+-=+-=-=θθθθθθεS S tB S S t B BS BS t t Φ)()(0>ε,说明感应电动势方向与回路正向一致题12.2:一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φ)s 100s i n ()Wb 100.8(15--⨯=π,求在s 100.12-⨯=t 时,线圈中的感应电动势。

题12.2解:线圈中总的感应电动势t t ΦN )s 100cos()V 51.2(d d 1-=-=πε当 s 100.12-⨯=t 时, ε= 2.51 V 。

第十二章 电磁感应和麦克斯韦电磁理论

第十二章 电磁感应和麦克斯韦电磁理论

第十二章 电磁感应和麦克斯韦电磁理论12-1将一条形磁铁插入一闭合线圈,线圈中将产生感应电动势。

问在磁铁与线圈相对位置相同的情况下,迅速插入和缓慢插入线圈中所产生的感应电动势是否相同?感应电流是否相同?因电磁感应所产生的总电量是否相同?答:迅速插入在线圈中产生的感应电动势大,缓慢插入线圈中产生的感应电动势小。

感应电流也不相同(因为I=Rε),但电磁感应所产生的总电量是相同的。

(因为11d q Idt dt dt R R dt RεΦ===-=-∆Φ⎰⎰⎰,∆Φ相同,所以q 相同)12-2一闭合圆形线圈在匀强磁场中运动,在下列情况下是否会产生感应电流?为什么? (1)线圈沿磁场方向平移; (2)线圈沿垂直于磁场方向平移;(3)线圈以自身的直径为轴转动,轴与磁场方向平行;(4)线圈以自身的直径为轴转动,轴与磁场方向垂直。

解:由d dt εΦ=-1d I R R dtεΦ==-(1)因为0d dt Φ=,所以没有电流产生(2)0d dtΦ= 也没有电流产生(3) 0Φ= 0d dtΦ= 没有电流产生(4)0d dt Φ≠ 若转动的角速度为,则2sin d R dtπωθΦ=(θ为线圈平台与之间的夹角)12-3在一环状铁芯上绕有两组线圈1和2,如题图所示,这样就构成了一个变压器。

当在线圈1中所通电流I 增大或减小时,在线圈2中都要感应电动势。

判断在这两种情况下,线圈2中的感应电流的方向。

答:(1)当I 增大,∆Φ增大,由楞次定律,I 产生的磁场应阻碍变化, 所以I 感的方向如图所示(从B 端流出)(2)当I 减小时,∆Φ减小,由楞次定律产生的磁场应阻碍变化 所以I 感的方向从A 端流出。

12-4将一条形磁铁插入电介质环中,环内会不会产生感应电动势?会不会产生感应电流?环内还会发生什么现象?(3) (4) AB答:不会产生感应电流,但会产生感应电动势(很小)。

环内还会产生极化现象,因为变化的磁场能产生电场,因此会使电解质极化。

大连理工物理答案12

大连理工物理答案12

作业12 电磁感应二1.用导线围成的回路(两个以O 点为圆心, 半径不同的同心圆, 在一处用导线沿半径方向相连), 放在轴线通过O 点的圆柱形均匀磁场中, 回路平面垂直于柱轴, 如图13-1所示。

如磁场方向垂直图面向里, 其大小随时间减小, 则(A ),(B) ,(C) ,(D) ,中正确表示涡旋电电场方向及感应电流的流向的是[ ]。

答: D解: 由楞次定律判断感应电流的方向。

由于磁场垂直于纸面向里, 并且减小, 所以, 感生电流产生的磁场垂直于纸面向里, 由此可以判断出: 回路中感生电流的方向是顺时针的。

注意:由于两环之间的导线上没有电动势, 所以不同环之间没有电流。

2.均匀磁场限制在圆柱形空间(如图13-2) 。

磁场中A,B 两点用直导线AB 连接, 或用弧导线AB 连接, 则[ ]。

A.直导线中电动势较大B.只有直导线中有电动势C.两导线中的电动势相等D.弧导线中电动势较大答: A解:连接 和 , 则由于感生电场是同心圆。

在 上, 线元 与感生的涡旋电场 垂直;在 上, 线元 与感生的涡旋电场 垂直。

因此, 和 上的电动势为零 0=⋅==⎰⎰OA iOA OAOA l d E d εε 0=⋅==⎰⎰OB iOB OB OB l d E d εε由法拉第电磁感应定律, 回路 上的感应电动势为OACBO OACBO ACBOB ACB OA BO ACB OA OACBO S t d dB t d d -=Φ-==-+=++=εεεεεεεε则弧线ACB 上的电动势为,弧线AB 上的电动势为22||ABO AB S dtdB =ε 回路OADBO 上的感应电动势为OADBO OADBO ADB OB ADB OA BO ADB OA OADBO S t d dB t d d -=Φ-==-+=++=εεεεεεεε则直线ADB 上的电动势为,由于 , 所以3.如图13-3所示,闭合线圈共50匝,半径r=4cm,线圈法线正向与磁感应强度之间的夹角 ,磁感应强度 。

大学物理学下册答案第12章(推荐文档)

大学物理学下册答案第12章(推荐文档)

第 12 章电磁感应与电磁场一选择题12-1 一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图12-1),则 [](A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定Iv 习题 12-1 图解:选(B) 。

矩形线圈向下运动,直导线穿过线圈的磁通量减少,根据楞次定律,线圈中感应电流的磁场方向垂直纸面向里,由右手螺旋法则确定线圈中感应电流为顺时针方向。

12-2 尺寸相同的铁环和铜环所包围的面积中,通以相同变化率的磁通量,则环中[](A)感应电动势不同,感应电流不同(B)感应电动势相同,感应电流相同(C)感应电动势不同,感应电流相同(D)感应电动势相同,感应电流不同解:选(D) 。

根据法拉第电磁感应定律,铁环和铜环所包围的面积中,若磁通量变化率相同,则感应电动势相同;但是尺寸相同的铁环和铜环的电阻不同,由欧姆定律I可知,感应电流不同。

R12-3 如图12-3 所示,导线AB 在均匀磁场中作下列四种运动,(1)垂直于磁场作平动;(2)绕固定端 A 作垂直于磁场转动;(3)绕其中心点 O 作垂直于磁场转动;(4)绕通过中心点 O 的水平轴作平行于磁场的转动。

关于导线 AB 的感应电动势哪个结论是错误的? [](A)(1)有感应电动势, A 端为高电势(B)(2)有感应电动势, B 端为高电势(C)(3)无感应电动势(D)(4)无感应电动势B B B B abOv OA A A A d c(1)(2)(3)( 4)习题12-3 图习题 12-4 图解:选 (B)。

由b B) d l 可知,(1)(2)有感应电动势,(3)OA、OB(va两段导线的感应电动势相互抵消,无感应电动势,( 4)无感应电动势, (C)、(D)正确;而的方向与 v B 的方向相同,(1)(2)电动势的方向均由B A,A端为高电势, (A) 正确, (B) 错误。

物理学教学教程(第二版)课后答案解析12

物理学教学教程(第二版)课后答案解析12

第十二章电磁感应电磁场和电磁波12-1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定题12-1 图分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).12-2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).12-3 有两个线圈,线圈1对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且t i t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 12-4 对位移电流,下述说法正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).12-5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).12-6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势())V (π100cos 51.2d d t tΦN =-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.12-7 载流长直导线中的电流以tI d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律t Φd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x I S B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===d d Id x x Id ΦΦμμ再由法拉第电磁感应定律,有 tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dI Φμ=线圈与两长直导线间的互感为 2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为tI d t I M d d 21ln π2d d 0)(μξ=-=题 12-7 图12-8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少?分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱.解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R R NBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i12-9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.题 12-9 图分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r IS μN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS N t μψξ 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为C 101.11821-⨯=∆=-=t RR q ξψψ 12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2RvB .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.12-11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 12-11 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是OA 棒与OB 棒上电动势的代数和,如图(b)所示.而E OA 和E OB 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则 ()r L BL ωE E E OB OA AB 221--=-=12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E vl αB l o d cos 90sin ⎰=v ()()l θB θωl o d 90cos sin ⎰-=l ()⎰==L L B l l B 022sin 21d sin θωθω 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以 ()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B = 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.12-13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40 A .求杆中的感应电动势,杆的哪一端电势较高?题 12-13 图分析 本题可用两种方法求解.方法1:用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=. 方法2:用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势. 解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为 11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的导轨上电动势为零,所以V 1084.35-⨯-==E E AB 式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.12-14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.题 12 -14 图分析 本题亦可用两种方法求解.其中应注意下列两点:(1)当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.(2)用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v()1202πl d d l I +=1vl μ由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()ξξμξμ120020ln π2d π21l Il x x Il l +=+=Φ⎰ 相应电动势为 ()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为 ()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.12-15 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为 2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 12-15 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=l k l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域,⎰⎰⋅-=⋅=S B tl E k d d d d ξ tB r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小tB r E k d d 2=设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为 ()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE l k k PQ -=-==⋅=⎰⎰θξx E 证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?12-16 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .题 12-16 图分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20= 由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍. 12-17 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)题 12-17 图分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果. 解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为 221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 12-18 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).题 12-18 图分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 12-19 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .题 12-19 图分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=, 故L IΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.12-20 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A ·s-1 时,线圈A 中感应电动势的大小和方向.题 12-20 图分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21/I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度RI μN B B 200=,穿过小线圈A 的磁链近似为 A BA A A A S RI μN N S B N ψ200== 则两线圈的互感为H 1028.6260-⨯===RS μN N I ψM A B A A (2)线圈A 中感应电动势的大小为 V 1014.3d d 4-⨯=-=t I ME A 互感电动势的方向和线圈B 中的电流方向相同.12-21 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?题 12-21 图解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁 感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +== 则两线圈的互感为 ()2/3222202πd R R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍.12-22 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10 -3 C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .题 12-22 图分析 本题与题12-8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的.解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===SN Rq I n B C r μμ 相对磁导率 1991102==I n S N Rq C r μμ 12-23 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少? 磁能密度是多少?*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析 单一载流回路所具有的磁能,通常可用两种方法计算:方法 1: 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能. 方法 2: 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中mw 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布. 上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L .解 (1) 密绕长直螺线管在忽略端部效应时,其自感l SN L 20μ=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为 J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度m w 处处相等,3m J 17.4-⋅==SLW w m m (2) 自感为L ,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律⎪⎪⎭⎫ ⎝⎛-=-t L R R E I e 1,当电流稳定后,其最大值R E I m = 按题意⎥⎦⎤⎢⎣⎡=22212121m LI LI ,则R E I 22=,将其代入⎪⎪⎭⎫ ⎝⎛-=-t L RR E I e 1中,得()s 1056.122ln 221ln 4-⨯=+=⎥⎦⎤⎢⎣⎡--=R L R L t 12-24 未来可能会利用超导线圈中持续大电流建立的磁场来储存能量.要储存1 kW ·h 的能量,利用1.0T的磁场,需要多大体积的磁场? 若利用线圈中500 A 的电流储存上述能量,则该线圈的自感系数应该多大? 解 由磁感强度与磁场能量间的关系可得302m 0.92/==μB W V m 所需线圈的自感系数为 H 2922==I W L m12-25 中子星表面的磁场估计为108T,该处的磁能密度有多大?解 由磁场能量密度 21021098.32⨯==μB w m 3m /J 12-26 在真空中,若一均匀电场中的电场能量密度与一 0.50T 的均匀磁场中的磁场能量密度相等,该电场的电场强度为多少?解 2021E εw e =,022μB w m =,按题意,当m e w w =时,0220221μB E ε=则 1800m V 1051.1-⋅⨯==μεB E 12-27 设有半径R =0.20 m 的圆形平行板电容器,两板之间为真空,板间距离d =0.50 cm ,以恒定电流I =2.0 A 对电容器充电.求位移电流密度(忽略平板电容器的边缘效应,设电场是均匀的).分析 尽管变化电场与传导电流二者形成的机理不同,但都能在空间激发磁场.从这个意义来说,变化电场可视为一种“广义电流”,即位移电流.在本题中,导线内存在着传导电流I c ,而在平行板电容器间存在着位移电流I d ,它们使电路中的电流连续,即c d I I =.解 忽略电容器的边缘效应,电容器内电场的空间分布是均匀的,因此板间位移电流2πd R j I d S d d =⋅=⎰S j ,由此得位移电流密度的大小222m A 9.15ππ-⋅===RI R I j c d d_。

第十二章-电磁感应电磁场(一)作业答案

第十二章-电磁感应电磁场(一)作业答案

一.选择题[ A ]1.(基础训练1)半径为a的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ,当把线圈转动使其法向与B 的夹角为α=60︒时,线圈中已通过的电量与线圈面积及转动时间的关系是:(A)与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间无关. (D) 与线圈面积成反比,与时间成正比. 【解析】[ D ]2.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为的正方向,则代表线圈内自感电动势随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【解析】dt dI LL -=ε,在每一段都是常量。

dtdI[ B ]3.(基础训练6)如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应电动势和a 、c 两点间的电势差U a – U c 为(A) =0,U a – U c =221l B ω (B) =0,U a – U c =221l B ω- (C) =2l B ω,U a – U c =221l B ω (D) =2l B ω,U a – U c=221l B ω-【解析】金属框架绕ab 转动时,回路中0d d =Φt,所以0=ε。

2012c L a c b c bc b U U U U v B d l lBdl Bl εωω→→→⎛⎫-=-=-=-⨯⋅=-=- ⎪⎝⎭⎰⎰[ C ]5.(自测提高1)在一通有电流I 的无限长直导线所在平面内,有一半经为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且r a >>。

当直导线的电流被切断后,沿着导线环流过的电量约为:(A))11(220ra a R Ir +-πμ (B)a r a R Ir +ln 20πμ (C)aR Ir 220μ (D) rR Ia 220μ 【解析】直导线切断电流的过程中,在导线环中有感应电动势大小:td d Φ=εaIR q 21φφ-=感应电流为:tR Ri d d 1Φ==ε则沿导线环流过的电量为:∆Φ=⋅Φ==⎰⎰Rt t R t i q 1d d d 1daR Ir R r a I R S B 212120200μππμ=⋅⋅=⋅∆≈[ C ]6.(自测提高4)有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为1和2.设r 1∶r 2=1∶2,1∶2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为:(A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1. (B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1. (C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2. (D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. 【解析】自感系数为l r n V n L 222πμμ==,磁能为221LI W m =[ B ]7.(附录C3)在圆柱形空间内有一磁感应强度为B 的均匀磁场,如图所示,B的大小以速率dB/dt 变化。

大学物理答案第12章

大学物理答案第12章

第十二章 电磁感应 电磁场和电磁波12-1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( ) (A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向 (C ) 线圈中感应电流为逆时针方向 (D ) 线圈中感应电流方向无法确定题 12-1 图分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).12-2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( ) (A ) 铜环中有感应电流,木环中无感应电流 (B ) 铜环中有感应电流,木环中有感应电流 (C ) 铜环中感应电动势大,木环中感应电动势小 (D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).12-3 有两个线圈,线圈1对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;tiM εd d 21212=.因而正确答案为(D ).12-4 对位移电流,下述说法正确的是( ) (A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).12-5 下列概念正确的是( ) (A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比 (D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).12-6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链.解 线圈中总的感应电动势())V (π100cos 51.2d d t tΦN=-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.12-7 载流长直导线中的电流以tId d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势. 分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tIM d d -=ξ求解.解1 穿过面元d S 的磁通量为x d xIS B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===ddIdx xIdΦΦμμ再由法拉第电磁感应定律,有tI d t Φd d 21ln π2d d 0)(μξ=-=解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dIΦμ=线圈与两长直导线间的互感为2ln π20d I ΦM μ==当电流以tId d 变化时,线圈中的互感电动势为 tI d t I Md d 21ln π2d d 0)(μξ=-=题 12-7 图12-8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少?分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱. 解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12因此,流过导体截面的电量为i i R R NBS R R Φq +=+=Δ则 ()T 050.0=+=NSR R q B i 12-9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.题 12-9 图分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r ISμN S NB ψ==,2022π2r IS μN S NB ψ==则线圈中的平均感应电动势为V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS N t μψξ 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为C 101.11821-⨯=∆=-=t RR q ξψψ12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由tΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰lE v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或 端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫⎝⎛+=2π212即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰-由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO 即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.12-11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 12-11 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-rrABAB 221d d --=-=⋅⨯=⎰⎰-l B v因此棒两端的电势差为()r L lB ωE U AB AB 221--==当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则()r L BL ωE E E OB OA AB 221--=-=12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OPOP E vl αB lo d cos 90sin ⎰=v()()l θB θωlod 90cos sin ⎰-=l()⎰==L L B l l B 022sin 21d sin θωθω由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B = 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效. 12-13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40 A .求杆中的感应电动势,杆的哪一端电势较高?题 12-13 图分析 本题可用两种方法求解. 方法1:用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xIμB π20=. 方法2:用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰vv v I μx x μxl E ABAB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xIμΦd 2πd d 0=⋅=S B 穿过回路的磁通量为11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===SIyμx y x I μΦΦ回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iyμt y x I μt ΦE 由于静止的导轨上电动势为零,所以V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.12-14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.题 12 -14 图分析 本题亦可用两种方法求解.其中应注意下列两点:(1)当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgefghefE E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.(2)用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgefl B l B d d v v()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μvv ()1202πl d d l I +=1vl μ由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()ξξμξμ120020lnπ2d π21l Il x x Il l +=+=Φ⎰ 相应电动势为()()1120π2d d l ξξll I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v由E >0 可知,线框中电动势方向为顺时针方向.12-15 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tBd d 为常量.试证:棒上感应电动势的大小为2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 12-15 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=l k l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域,⎰⎰⋅-=⋅=S B tl E k d d dd ξ tB r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小tBr E k d d 2=设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE lk k PQ -=-==⋅=⎰⎰θξx E证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫⎝⎛-==-==l R l t B t B S t ΦE E PQ讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?12-16 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .题 12-16 图分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式tI E L Ld /d =计算L .式中E L 和t I d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20=由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψSR R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL =若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.12-17 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)题 12-17 图分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+=12-18 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l 的一对导线的自感(导线内部的磁通量可略去不计).题 12-18 图分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为aa d l μr Bl ΦSad a-==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aad l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02lμL =,有兴趣的读者可自行求解.12-19 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .题 12-19 图分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=,故L IΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈. 12-20 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1时,线圈A 中感应电动势的大小和方向.题 12-20 图分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21/I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度RIμN B B 200=,穿过小线圈A 的磁链近似为A BA A A A S RIμN N S B N ψ200== 则两线圈的互感为H 1028.6260-⨯===RSμN N I ψM A B A A (2)线圈A 中感应电动势的大小为V 1014.3d d 4-⨯=-=tIME A 互感电动势的方向和线圈B 中的电流方向相同.12-21 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?题 12-21 图解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁 感强度近似为()2/322202dR IR μB +=穿过线圈C 的磁通为()22/32220π2r dR IR μBS ψC +==则两线圈的互感为()2/3222202πdR R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍.12-22 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10 -3C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .题 12-22 图分析 本题与题12-8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的. 解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RSI n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得T 10.02110===SN Rq I n B Cr μμ 相对磁导率1991102==I n S N Rq Cr μμ12-23 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少? 磁能密度是多少?*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析 单一载流回路所具有的磁能,通常可用两种方法计算:方法 1: 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能. 方法 2: 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W Vm m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L .解 (1) 密绕长直螺线管在忽略端部效应时,其自感lSN L 20μ=,电流稳定后,线圈中电流REI =,则线圈中所储存的磁能为 J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度m w 处处相等,3m J 17.4-⋅==SLW w mm (2) 自感为L ,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律⎪⎪⎭⎫ ⎝⎛-=-t LR R E I e 1,当电流稳定后,其最大值R E I m = 按题意⎥⎦⎤⎢⎣⎡=22212121m LI LI ,则R E I 22=,将其代入⎪⎪⎭⎫ ⎝⎛-=-t LRR E I e 1中,得 ()s 1056.122ln 221ln 4-⨯=+=⎥⎦⎤⎢⎣⎡--=RL R L t12-24 未来可能会利用超导线圈中持续大电流建立的磁场来储存能量.要储存1 kW·h 的能量,利用1.0T的磁场,需要多大体积的磁场? 若利用线圈中500 A 的电流储存上述能量,则该线圈的自感系数应该多大?解 由磁感强度与磁场能量间的关系可得302m 0.92/==μB W V m所需线圈的自感系数为H 2922==I W L m12-25 中子星表面的磁场估计为108T,该处的磁能密度有多大?解 由磁场能量密度21021098.32⨯==μB w m 3m /J12-26 在真空中,若一均匀电场中的电场能量密度与一 0.50T 的均匀磁场中的磁场能量密度相等,该电场的电场强度为多少?解 2021E εw e =,022μB w m =,按题意,当m e w w =时,0220221μB E ε=则1800m V 1051.1-⋅⨯==μεBE 12-27 设有半径R =0.20 m 的圆形平行板电容器,两板之间为真空,板间距离d =0.50 cm ,以恒定电流I =2.0 A 对电容器充电.求位移电流密度(忽略平板电容器的边缘效应,设电场是均匀的).分析 尽管变化电场与传导电流二者形成的机理不同,但都能在空间激发磁场.从这个意义来说,变化电场可视为一种“广义电流”,即位移电流.在本题中,导线内存在着传导电流I c ,而在平行板电容器间存在着位移电流I d ,它们使电路中的电流连续,即c d I I =.解 忽略电容器的边缘效应,电容器内电场的空间分布是均匀的,因此板间位移电流2πd R j I d Sd d =⋅=⎰S j ,由此得位移电流密度的大小222m A 9.15ππ-⋅===R I R I j c d d。

第十二章 电磁感应习题汇编 有答案

第十二章  电磁感应习题汇编  有答案

第十二章电磁感应[考点解读本章内容包括电磁感应现象、自感现象、感应电动势、磁通量的变化率等基本概念,以及法拉第电磁感应定律、楞次定律、右手定则等规律。

本章涉及到的基本方法,要求能够从空间想象的角度理解法拉第电磁感应定律。

用画图的方法将题目中所叙述的电磁感应现象表示出来。

能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图像。

[知识网络][解题方法指导]例1、如图25-1所示为矩形的水平光滑导电轨道abcd ,ab 边和cd 边的电阻均为5R 0,ad边和bc 边长均为L ,ad 边电阻为4R 0,bc 边电阻为2R 0,整个轨道处于与轨道平面垂直的匀强磁场中,磁感强度为B 。

轨道上放有一根电阻为R 0的金属杆mn ,现让金属杆mn 在平行轨道平面的未知拉力F 作用下,从轨道右端以速率V 匀速向左端滑动,设滑动中金属杆mn 始终与ab 、cd 两边垂直,且与轨道接触良好。

ab 和cd 边电阻分布均匀,求滑动中拉力F 的最小牵引功率。

分析与解:mn 金属杆从右端向左端匀速滑动切割磁感线产生感应电动势,mn 相当于电源,其电路为内电路,电阻为内电阻。

当外电阻最大时,即当mn 滑到距离ad=(2/5)ab 时,此时电阻R madn =R mbcn =8R 0时,外阻最大值R max =4R 0,这时电路中电流最小值:I min =ε/(R max +r)=BLV/(4R 0+R 0)=BLV/5R 0所以,P min =F min V=BLI min V=BLVBLV/5R 0=B 2L 2V 2/5R 0例2、如图26-1所示,用密度为D 、电阻率为ρ的导线做成正方形线框,从静止开始沿竖直平面自由下落。

线框经过方向垂直纸面、磁感应强度为B 的匀强磁场,且磁场区域高度等于线框一边之长。

为了使线框通过磁场区域的速度恒定,求线框开始下落时的高度h 。

大学物理第十二章 习题答案

大学物理第十二章 习题答案

第十二章 电磁感应及电磁场基本方程12–1 如图12-1所示,矩形线圈abcd 左半边放在匀强磁场中,右半边在磁场外,当线圈以ab 边为轴向纸外转过60º过程中,线圈中 产生感应电流(填会与不会),原因是 。

解:线圈以ab 边为轴向纸外转过60º过程中,尽管穿过磁感应线的线圈面积发生了变化,但线圈在垂直于磁场方向的投影的面积并未发生变化,因而穿过整个线圈的磁通量并没有发生变化,所以线圈中不会产生感应电流。

因而应填“不会”;“通过线圈的磁通量没有发生变化”。

12–2 产生动生电动势的非静电力是 力,产生感生电动势的非静电力是 力。

解:洛仑兹力;涡旋电场力(变化磁场激发的电场的电场力)。

12–3 用绝缘导线绕一圆环,环内有一用同样材料导线折成的内接正方形线框,如图12-2所示,把它们放在磁感应强度为B 的匀强磁场中,磁场方向与线框平面垂直,当匀强磁场均匀减弱时,圆环中与正方形线框中感应电流大小之比为___________。

解:设圆环的半径为a,圆环中的感应电动势1E 大小为2111d d d πd d d ΦB BS a t t t===E 同理,正方形线框中的感应电动势2E 大小为2212d d d 2d d d ΦB BS a t t t===E而同材料的圆环与正方形导线的电阻之比为12R R ==。

所以圆环与正方形线框中的感应电流之比为122I I a ==12–4 如图12-3所示,半径为R 的3/4圆周的弧形刚性导线在垂直于均匀磁感强度B 的平面内以速度v 平动,则导线上的动生电动势E = ,方向为 。

图12–5图12–4abdc图12–1Ba图12–2图12–3解:方法一:用动生电动势公式()d l =⨯⋅⎰B l v E 求解。

选积分路径l 的绕行方向为顺时针方向,建立如图12-4所示的坐标系,在导体上任意处取导体元d l ,d l 上的动生电动势为d ()d cos d B R θθ=⨯⋅B l =v v E所以导线上的动生电动势为3π3πd cos d 0BRBR θθ-===>⎰⎰v E E由于ε>0,所以动生电动势的方向为顺时方向,即bca 方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章电磁感应电磁场(二)作业答案————————————————————————————————作者:————————————————————————————————日期:第十二章 电磁感应 电磁场(二)一. 选择题[ C ] 1 (基础训练8)、 如图12-21,平板电容器(忽略边缘效应)充电时,沿环路L 1的磁场强度H 的环流与沿环路L 2的磁场强度H的环流两者,必有:(A) >'⎰⋅1d L l H ⎰⋅'2d L l H. (B)='⎰⋅1d L l H ⎰⋅'2d L l H .(C) <'⎰⋅1d L l H⎰⋅'2d L l H. (D)0d 1='⎰⋅L l H.【提示】全电流是连续的,即位移电流和传导电流大小相等、方向相同。

另,在忽略边界效应的情况下,位移电流均匀分布在电容器两极板间,而环路L 1所包围的面积小于电容器极板面积,故选(C )。

即0d I I =,20L H dl I ⋅=⎰,1S dd L I H dl J S S ⋅==⎰极板,其中S 是以L 1为边界的面积。

[ A ] 2 (自测提高3)、对位移电流,有下述四种说法,请指出哪一种说法正确.(A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理.[ B ] 3 (自测提高6)、如图12-27所示,空气中有一无限长金属薄壁圆筒,在表面上沿圆周方向均匀地流着一层随时间变化的面电流i (t ),则 (A) 圆筒内均匀地分布着变化磁场和变化电场. (B) 任意时刻通过圆筒内假想的任一球面的磁通量和电通量均为零. (C) 沿圆筒外任意闭合环路上磁感强度的环流不为零.(D) 沿圆筒内任意闭合环路上电场强度的环流为零. 【提示】如图所示的载流圆筒等同于一长直螺线管。

在筒内产生的时变磁场是空间均匀的,在筒外无磁场,所以(C )错;筒内的时变磁场将产生涡旋感生电场,涡旋电场在筒内不是均匀分布的(d 2d r Bt),所以(A )错;涡旋电场沿任意闭合回路的积分为感生电动势≠0,所以(D )错;HL 1L 2图12-21i (t )图12-27磁场(无论是变化的还是稳恒的)与感生电场都是涡旋场,其相应的场线都是一些闭合曲线,故穿过任意闭合曲面的通量都为零,所以选(B )。

二. 填空题4 (基础训练12)、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为⎰⎰⋅=VSV S D d d ρ, ① ⎰⎰⋅⋅∂∂-=SL S t B l Ed d , ② 0d =⎰⋅SS B, ③⎰⋅⎰⋅∂∂+=SL S t DJ l Hd )(d . ④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处.(1) 变化的磁场一定伴随有电场; _____② (2) 磁感线是无头无尾的; ③ (3) 电荷总伴随有电场; _①______5 (基础训练13)、平行板电容器的电容C 为20.0 μF ,两板上的电压变化率为d U /d t =1.50×105 V ·s -1,则该平行板电容器中的位移电流为3A .【提示】0()3d dq d CU dUI I C A dt dt dt===== 6(自测提高11)、 图示12-30为一圆柱体的横截面,圆柱体内有一均匀电场E ,其方向垂直纸面向内,E的大小随时间t 线性增加,P 为柱体内与轴线相距为r 的一点则(1)P 点的位移电流密度的方向为垂直纸面向内里. (2) P 点感生磁场的方向为竖直向下. 【提示】(1)d dD dEJ dt dtε==,当E 的大小随 t 增加时,d J 与E 同向,垂直于纸面向内; (2)由安培环路定理()d d lsH dl JJ s ⋅=+⎰⎰⎰知:d J 与H 的关系与0J 与H 的关系一样,满足右手螺旋关系,故P 点感生磁场的方向竖直向下。

7(自测提高12)、半径为r 的两块圆板组成的平行板电容器充了电,在放电时两板间的电场强度的大小为E = E 0e -t /RC ,式中E 0、R 、C 均为常数,则两板间的位移电流的大小为O P E××××图12-30200t RCE r eRCεπ--,其方向与场强方向相反.【提示】 000 t RC d dD dEJ E e dt dt RCεε-===-,负号表示位移电流的方向与场强的方向相反。

位移电流的大小为00tRCd d SI J S E eRCε-==.8(第十一章:基础训练10)、 一个绕有500匝导线的平均周长50 cm 的细环,载有 0.3 A 电流时,铁芯的相对磁导率为600.(1) 铁芯中的磁感强度B 为0.226T . (2) 铁芯中的磁场强度H 为300A/m . 【提示】3r 500=600, 10,0.5N n l μ=== 73200 410600100.37.2100.226,300/r rB nI T BH nI A mμμππμμ--==⨯⨯⨯⨯=⨯====9 (第十一章: 自测提高15)、 如图11-54所示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:a 代表____铁磁质_________的B ~H 关系曲线.b 代表____顺磁质___ _____的B ~H 关系曲线.c 代表____抗磁质__ ______的B ~H 关系曲线. 三. 计算题10(自测提高19)、平行板空气电容器接在电源两端,电压为U ,如图12-37所示,回路电阻忽略不计.今将电容器的两极板以速率v 匀速拉开,当两极板间距为x 时,求电容器内位移电流密度.解:如图建立一维坐标系。

电容器两极板之间的电场强度为U E i x=式中U 为常数(电容器一直与电源相连)。

电容器内位移电流密度为()0002 d d E U dD dE dxJ v i dt dt dx dt xεεε===⋅=-HBab c图11-54图12-37xO所以,其大小为02Uvx ε,方向从右向左。

11(自测提高20)、设一电缆,由两个无限长的同轴圆筒状导体所组成,内外圆筒之间充满了相对磁导率为r μ的磁介质。

内圆筒和外圆筒上的电流I 方向相反而大小相等,设内、外圆筒横截面的半径分别为R 1和R 2,如图12-38所示。

试计算长为l 的一段电缆内的磁场所储藏的能量。

解:根据安培环路定理⎰∑=⋅LL l d H 内I求解两圆筒之间的磁感应强度分布。

设场点P 到轴线的距离为r ,以r 为半径做一圆环为安培环路,则有2I L H r I π⋅==∑内,2I H rπ=,002r r IB H H rμμμμμπ===该处的磁能密度为2022128r m I w BH rμμπ== 在该处选取一个长度为l ,厚度为d r 的圆柱薄层,则薄层的体积为2dV rldr π=,薄层内所储藏的磁场能量为220022284r r m I I lw dV rldr dr r rμμμμπππ== 所以,长为l 的一段电缆内的磁场所储藏的能量为21220021ln44R r r m VR I l I l R W w dV dr r R μμμμππ===⎰⎰⎰⎰四、附加题12(基础训练7)、如图12-20所示.一电荷为q 的点电荷,以匀角速度ω作圆周运动,圆周的半径为R .设t = 0 时q 所在点的坐标为x 0 = R ,y 0 = 0 ,以i 、j分别表示x 轴和y 轴上的单位矢量,则圆心处O 点的位移电流密度为:(A)i t R q ωωsin 42π (B) j t R q ωωcos 42π (C) k R q 24πω (D) )cos (sin 42j t i t Rq ωωω-π 解:设在0—t 的时间内,点电荷转过的角度为ωt ,此时,点电荷在O 点产生的电位移矢量为图12-38rμ)(i x)(j yR q ω OtωD0D E ε=, ()222000cos sin ,444r qR q q E e ti tj R R R Rωωπεπεπε=-=-=-+ 式中的r e 表示从O 点指向点电荷q 的单位矢量。

()2sin cos 4d dD q J ti tj dt Rωωωπ∴==-。

相关文档
最新文档