平面解析几何直线练习题含答案
平面解析几何直线练习题含答案
![平面解析几何直线练习题含答案](https://img.taocdn.com/s3/m/3edcb8e543323968011c92fb.png)
直线测试题一.选择题(每小题 5 分共 40 分) 1. 下列四个命题中的真命题是( ) A.经过定点 P 0(x 0. y 0)的直线都可以用方程 y -y 0=k (x -x 0)表示; B.经过任意两个不同的点 P 1( x 1. y 1)、P 2(x 2.y 2)的直线都可以用方程 (y -y 1)·(x 2-x 1)=( x -x 1)(y 2-y 1)表示; C.不经过原点的直线都可以用方程 x y1 表示; ab D.经过定点 A (0. b )的直线都可以用方程 y =kx +b 表示。
【答案】 B解析】 A 中过点 P 0( x 0. y 0)与 x 轴垂直的直线 x =x 0不能用 y -y 0=k (x -x 0)表示.因为其斜率 k 不存在; C 中不过 xy原点但在 x 轴或 y 轴无截距的直线 y =b ( b ≠ 0)或 x =a (a ≠0)不能用方程 =1 表示; D 中过 A ( 0. b )的直线 abx =0 不能用方程 y =kx +b 表示 . 评述:本题考查直线方程的知识 . 应熟练掌握直线方程的各种形式的适用范围 2. 图 1中的直线 l 1、l 2、l 3的斜率分别为 k 1、 k 2、 k 3. 则( ) A.k 1<k 2<k 3 B. k 3< k 1<k 2C.k 3<k 2<k 1D.k 1< k 3<k 2【答案】 D 图1解析】直线 l 1的倾斜角 α1是钝角 .故k 1<0.直线 l 2与 l 3的倾斜角 α2、 α3 均为锐角 . 且α2>α3. 所以 k 2> k 3> 0. 因此 k 2> k 3> k 1.故应选 D. 3. 两条直线 A 1x +B 1y +C 1=0. A 2x + B 2y + C 2= 0 垂直的充要条件是( )A. A 1A 2+ B 1B 2=0B. A 1A 2- B 1B 2= 0C. A 1A2 B 1B2 1D. B1B2 =1 A 1A2答案】A解析】法一:当两直线的斜率都存在时A 1B 1 ( A 2 )=- 1. A 1A 2+ B 1B 2= 0.当一直线的斜率不存在. 一直线的斜率为时. B 2 A 1 0或 A 2 0 B 2 0 B 1 0同样适合A1A2+B1B2= 0. 故选 A.法二:取特例验证排除 .如直线x+y=0 与x-y=0 垂直 . A1A2= 1. B1B2=- 1. 可排除B、D. 直线x=1 与y=1 垂直 . A1A2= 0. B1B2= 0. 可排除 C.故选 A.评述:本题重点考查两直线垂直的判定、直线方程的一般式等基本知识点维能力 .4. 若直线l :y=kx 3 与直线 2x+3y-6=0 的交点位于第一象限 .则直线l 的倾斜角的取值范围是()答案】 B解析】法 1:求出交点坐标 . 再由交点在第一象限求得倾斜角的范围:解得k∈( 3. +∞3∴倾斜角范围为(, )623.0 ) . B(0.2 ).直线l 必过点( 0.-3 ). 当直线过A点时 . 两直线的交点在x 轴. 当直线l 绕C 点逆时针旋转时. 交点进入第一象限 . 从而得出结果 .5. 设a、b、c 分别是△ ABC中∠ A、∠ B、∠ C所对边的边长 . 则直线 sin A·x+ay+c=0 与bx-sin B· y+sin C=0 的位置关系是()3,2D.[6,2]. 重点考查分类讨论的思想及逻辑思y kx 32x 3y 6 03(2 3) x2 3k6k 2 3 y2 3k∵交点在第一象限x03(2 3) 02 3k y0 6k 2 32 3k法 2:如图 . 直线 2x+3y-6=0 过点A.平行B. 重合C. 垂直D.相交但不垂直答案】 CsinA b 解析】由题意知 a ≠ 0.s i n B ≠ 0. 两直线的斜率分别是 k 1=- . k 2=asinBsinA b由正弦定理知 k 1·k 2=-·=- 1. 故两直线垂直 .a sinB评述:本题考查两直线垂直的条件及正弦定理 .6. 已知两条直线 l 1:y =x . l 2: ax - y =0. 其中 a 为实数 . 当这两条直线的夹角在(答案】 C解析】直线 l 1的倾斜角为 . 依题意 l 2的倾斜角的取值范围为4∪( . ), 从而 l 2的斜率 k 2的取值范围为43评述:本题考查直线的斜率和倾斜角 . 两直线的夹角的概念 . 以及分析问题、解决问题的能力 7. 若直线xy1 通过点M (cos ,sin) . 则()ab22221 11 1A . a 2b2≤1 B . a 2b 2≥1C . 22≤ 1 D . 22≥1 a 2 b 2a 2b 2答案】 D 本题是训练思路的极好素材 . 看能否找到 10 种解法?8.已知点 A( 1,0),B(1,0),C(0,1), 直线 y ax b(a 0) 将△ ABC 分割为 面积相等的两部分 , 则 b 的取值范围是-. ) ∪( .+ )即 : ()4 12 44 4 126 4A. (0.1 )B. 33, 3 ) C.33.1 ∪( 1. 3 ) D. (1. 3 )0. )内变动时 . a 的取值范围是3.1 3∪( 1, 3 ) ) A . (0,21B . (1 22 ,12)( C) 21 (1 22 ,13]答案】 B二.填空题(每小题 5分.共30分)9. 过点P(2,3).且在两坐标轴上的截距互为相反数的直线方程是解析】错解:设所求直线方程为xa y 1.过点P(2,3). 则有a231a1aa∴直线的方程为x y 1 0.错因:少了直线经过原点的情况. 故还有y 3x. 即3x 2y 0也适合题意 .210. 与直线2x 3y 5 0平行 .且距离等于13的直线方程是m5 解析】设所求直线方程为2x 3y m 0. 则1322 32 解得m 18 或m∴直线方程为2x 3y 18 0或2x 3y 8 0.11. 直 线 l 经 过 点 P(2,3) . 且 与 两 坐 标 轴 围 成 一 个 等 腰 直 角 三 角 形 . 则 直 线l 的 方 程 为 .【解析】 依题意 . 直线 l 的斜率为± 1. ∴直线 l 的方程为 y 3 x 2 或 y 3 (x 2) . 即 x y 1 0 或 x y 5 0.12. 在△ ABC 中.BC 边上的高所在的直线的方程为 x-2y+1=0. ∠A 的平分线所在的直线方程为 y=0.若点 B 的坐标为 (1.2 ). 则点 A 和点 C 的坐标分别为 。
高二数学解析几何练习题带答案
![高二数学解析几何练习题带答案](https://img.taocdn.com/s3/m/ced7183b03768e9951e79b89680203d8cf2f6a73.png)
高二数学解析几何练习题带答案一、直线与平面的交点1. 已知直线AB的坐标为A(2,3,5)和B(-1,4,2),平面P 的方程为2x-y+z-1=0,求直线AB与平面P的交点。
解:设交点为M(x,y,z),则M同时满足直线AB的参数方程和平面P的方程,即:x = 2 + t(-1-2)y = 3 + t(4-3)z = 5 + t(2-5)代入平面P的方程得:2(2 + t(-1-2)) - (3 + t(4-3)) + (5 + t(2-5)) - 1 = 0化简得:-3t + 7 = 0解得t = 7/3代入直线AB的参数方程得:x = 2 + 7/3(-1-2) = -5/3y = 3 + 7/3(4-3) = 20/3z = 5 + 7/3(2-5) = -6/3所以,直线AB与平面P的交点为M(-5/3, 20/3, -6/3)。
二、直线的位置关系2. 设直线l1:(x-2)/3=y/2=(z-1)/4,直线l2:(x+1)/2=(y-3)/4=(z+2)/6,判断直线l1和直线l2的位置关系。
解:直线l1和l2方向向量分别为v1=(3,2,4)和v2=(2,4,6)。
若两条直线平行,则v1与v2平行或其比例相等。
计算v1与v2的比例:3/2 = 2/4 = 4/6 = 1/2所以,v1与v2的比例相等,即直线l1和l2平行。
若两条直线相交,则设交点为M(x,y,z),满足直线l1和l2的参数方程。
由直线l1的参数方程可得:x = 2 + 3ty = 2tz = 1 + 4t代入直线l2的参数方程得:(2 + 3t + 1)/2 = (2t - 3)/4 = (1 + 4t + 2)/6化简得:3t + 1 = 4t - 6 = 4t + 3解得t = -7/3代入直线l1的参数方程得:x = 2 + 3(-7/3) = -19y = 2(-7/3) = -14/3z = 1 + 4(-7/3) = -19/3所以,直线l1和l2的交点为M(-19, -14/3, -19/3)。
高考数学历年(2018-2022)真题按知识点分类平面解析几何(直线与方程)练习(附答案)
![高考数学历年(2018-2022)真题按知识点分类平面解析几何(直线与方程)练习(附答案)](https://img.taocdn.com/s3/m/8524832f03020740be1e650e52ea551810a6c964.png)
高考数学历年(2018-2022)真题按知识点分类平面解析几何(直线与方程)练习一、单选题1.(2022ꞏ全国ꞏ统考高考真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A B C .12D .132.(2022ꞏ全国ꞏ统考高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021ꞏ全国ꞏ统考高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+的距离为p =( )A .1B .2C .D .44.(2020ꞏ全国ꞏ统考高考真题)点(0,﹣1)到直线()1y k x =+距离的最大值为( )A.1BC D .25.(2020ꞏ浙江ꞏ统考高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y =图像上的点,则|OP |=( )A .2B .5C D6.(2020ꞏ山东ꞏ统考高考真题)直线2360x y +-=关于点()1,2-对称的直线方程是( ) A .32100x y --= B .32230x y --= C .2340x y +-=D .2320x y +-=7.(2020ꞏ山东ꞏ统考高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角8.(2018ꞏ全国ꞏ高考真题)已知双曲线22221(00)x y C a b a b -=>>:,则点(4,0)到C 的渐近线的距离为A B .2 C .2D .9.(2018ꞏ北京ꞏ高考真题)在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .410.(2019ꞏ北京ꞏ高考真题)已知直线l 的参数方程为13,24x t y t =+⎧⎨=+⎩(t 为参数),则点(1,0)到直线l 的距离是A .15B .25C .45D .65二、多选题11.(2022ꞏ全国ꞏ统考高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( )A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒三、填空题12.(2022ꞏ全国ꞏ统考高考真题)设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是________.13.(2022ꞏ全国ꞏ统考高考真题)设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.14.(2021ꞏ全国ꞏ统考高考真题)双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.15.(2021ꞏ全国ꞏ统考高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 16.(2019ꞏ江苏ꞏ高考真题)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.四、解答题17.(2018ꞏ全国ꞏ高考真题)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.18.(2018ꞏ全国ꞏ高考真题)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.19.(2019ꞏ江苏ꞏ高考真题)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小..于圆..O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.五、双空题20.(2020ꞏ北京ꞏ统考高考真题)已知双曲线22:163x yC-=,则C的右焦点的坐标为_________;C的焦点到其渐近线的距离是_________.参考答案1.A【要点分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b +=,将1y 用1x 表示,整理,再结合离心率公式即可得解. 【答案详解】[方法一]:设而不求 设()11,P x y ,则()11,Q x y - 则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+, 由2211221x y a b +=,得()2221212b a x y a-=, 所以()2221222114b a x ax a -=-+,即2214b a =, 所以椭圆C的离心率c e a === A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQ k k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a = 所以椭圆C的离心率c e a === A.2.D【要点分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项.【答案详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D 3.B【要点分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【答案详解】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B. 4.B【要点分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果. 【答案详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -, 当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.【名师点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题. 5.D【要点分析】根据题意可知,点P既在双曲线的一支上,又在函数y =的图象上,即可求出点P 的坐标,得到OP 的值.【答案详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得2x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==故选:D.【名师点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题. 6.D【要点分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,代入已知直线即可求得结果.【答案详解】设对称的直线方程上的一点的坐标为()x y ,, 则其关于点()1,2-对称的点的坐标为(2,4)x y ---, 因为点(2,4)x y ---在直线2360x y +-=上, 所以()()223460x y --+--=即2320x y +-=. 故选:D.7.D【要点分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果. 【答案详解】结合图像易知,sin 0θ<,cos 0θ>, 则角θ是第四象限角, 故选:D.8.D【答案详解】要点分析:由离心率计算出ba,得到渐近线方程,再由点到直线距离公式计算即可.答案详解:e c a === 1ba∴= 所以双曲线的渐近线方程为x y 0±=所以点(4,0)到渐近线的距离d== 故选D名师点睛:本题考查双曲线的离心率,渐近线和点到直线距离公式,属于中档题.9.C【要点分析】P 为单位圆上一点,而直线20x my --=过点()2,0A ,则根据几何意义得d 的最大值为1OA +.【答案详解】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A , 所以d 的最大值为1213OA +=+=,选C.【名师点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.10.D【要点分析】首先将参数方程化为直角坐标方程,然后利用点到直线距离公式求解距离即可. 【答案详解】直线l 的普通方程为()()41320x y ---=,即4320x y -+=,点()1,0到直线l 的距离65d ==,故选D. 【名师点睛】本题考查直线参数方程与普通方程的转化,点到直线的距离,属于容易题,注重基础知识、基本运算能力的考查.11.ACD【要点分析】由AF AM =及抛物线方程求得3(42p A ,再由斜率公式即可判断A 选项;表示出直线AB的方程,联立抛物线求得(,33p B -,即可求出OB 判断B 选项;由抛物线的定义求出2512pAB =即可判断C 选项;由0OA OB ⋅< ,0MA MB ⋅< 求得AOB ∠,AMB∠为钝角即可判断D 选项.【答案详解】对于A ,易得(,0)2pF ,由AF AM =可得点A 在FM 的垂直平分线上,则A 点横坐标为3224p pp +=, 代入抛物线可得2233242p y p p =⋅=,则3()42p A ,则直线AB的斜率为2342p p =-,A 正确;对于B,由斜率为可得直线AB的方程为2px y =+,联立抛物线方程得220y py p -=,设11(,)B x y1p y p +=,则1y =2123p x ⎛⎫-=⋅ ⎪ ⎪⎝⎭,解得13p x =,则(,)33p B ,则2p OB OF =≠=,B 错误; 对于C ,由抛物线定义知:325244312p p pAB p p OF =++=>=,C 正确; 对于D,2333(,(,0423343234p p p p p OA OB ⎛⎫⋅=⋅-=⋅+⋅-=-< ⎪ ⎪⎝⎭,则AOB ∠为钝角,又2225()(,)0423343236p p p p p MA MB ⎛⎫⎛⎫⋅=-⋅--=-⋅-+⋅=-< ⎪ ⎪ ⎪⎝⎭⎝⎭,则AMB ∠为钝角,又360AOB AMB OAM OBM ∠+∠+∠+∠= ,则180OAM OBM ∠+∠< ,D 正确. 故选:ACD.12.13,32⎡⎤⎢⎥⎣⎦【要点分析】首先求出点A 关于y a =对称点A '的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【答案详解】解:()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=; 圆()()22:321C x y +++=,圆心()3,2C --,半径1r =, 依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦13.22(1)(1)5x y -++=【要点分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【答案详解】[方法一]:三点共圆∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M到两点的距离相等且为半径R , ∴==R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R=M 的方程为22(1)(1)5x y -++=. 故答案为:22(1)(1)5x y -++= [方法二]:圆的几何性质由题可知,M 是以(3,0)和(0,1)为端点的线段垂直平分线 y=3x-4与直线210xy +-=的交点(1,-1).R =M 的方程为22(1)(1)5x y -++=. 故答案为:22(1)(1)5x y -++= 14【要点分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【答案详解】由已知,3c ==,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===.15.()0,1【要点分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1A x M =,2B x N =,化简即可得解.【答案详解】由题意,()1011,0,xx x e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0xx x f x e e x ⎧-⎪=<>⎨'⎪⎩,所以点()11,1x A x e -和点()22,1x B x e -,12,x xAM BN k e k e =-=,所以12121,0x xe e x x -⋅=-+=,所以()()111111,0:,11x x x xe e x x e AM e y M x -+=---+,所以1x AM ==,同理2B x N =,所以()10,1x e N AM B ===∈=. 故答案为:()0,1【名师点睛】关键点名师点睛:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解. 16.4.【要点分析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【答案详解】当直线0x y +=平移到与曲线4y x x=+相切位置时,切点Q 即为点P 到直线0x y +=的距离最小.由2411y x '=-=-,得)x =,y =即切点Q ,则切点Q 到直线0x y +=4=,故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.17.(1)AM的方程为2y x =-2y x =(2)证明见解析. 【要点分析】(1)根据l 与x 轴垂直,且过点()1,0F ,求得直线l 的方程为=1x ,代入椭圆方程求得点A的坐标为2⎛⎫ ⎪ ⎪⎝⎭或1,2⎛-⎝⎭,利用两点式求得直线AM 的方程; (2)方法一:分直线l 与x 轴重合、l 与x 轴垂直、l 与x 轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.【答案详解】(1)由已知得()1,0F ,l 的方程为=1x .由已知可得,点A的坐标为1,2⎛ ⎝⎭或1,2⎛⎫ ⎪ ⎪⎝⎭. 所以AM的方程为2y x =+2y x =. (2)[方法一]:【通性通法】分类+常规联立 当l 与x 轴重合时,0OMA OMB ∠=∠=o .当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为()()10y k x k =-≠,()()1122,,,A x y B x y ,则12x x <<MA 、MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y k k x y k x k =-=-得()()()12121223422MA MB kx x k x x kk k x x -+++=--.将()1y k x =-代入2212x y +=得()2222214220k x k x k +-+-=.所以,22121222422,2121k k x x x x k k -+==++. 则()33312122441284234021k k k k kkx x k x x k k --++-++==+.从而0MA MB k k +=,故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.[方法二]:角平分线定义的应用当直线l 与x 轴重合或垂直时,显然有OMA OMB ∠=∠.当直线l 与x 轴不垂直也不重合时,设直线l 的方程为1x my =+,交椭圆于()11,A x y ,()22,B x y . 由22+=12=+1x y x my ⎧⎪⎨⎪⎩得()222210m y my ++-=. 由韦达定理得12122221,22m y y y y m m --+==++. 点A 关于x 轴的对称点()11,N x y -,则直线BN 的方程为()()()()121121y y x x y y x x +-=+-.令=0y ,()()221211212122111212122122222222mm y x x my y y y x y x y m m x x m y y y y y y m -⋅--+++++=+====-++++,则直线BN 过点M ,OMA OMB ∠=∠. [方法三]:直线参数方程的应用设直线l 的参数方程为=1+cos =sin x t y t αα⎧⎨⎩(t 为参数).(*)将(*)式代入椭圆方程2212x y +=中,整理得()221sin 2cos 10t t αα++-=.则12211sin t t α-⋅=+,1222cos 1sin t t αα+=-+. 又()()11221cos ,sin ,1cos ,sin A t t B t t αααα++,则MA MB k k +=1212sin sin 1cos 21cos 2t t t t αααα+=+-+-1212sin sin cos 1cos 1t t t t αααα+=--()(()()122112sin cos 1+sin cos=cos 1cos 1t t t t t t αα-αα-α-()()()1212122sin cos sin cos 1cos 1t t t t t t ααααα-+=--()()22122sin cos 2sin cos 1sin 1sin 0cos 1cos 1t t αααααααα-+++=--, 即MA MB k k =-.所以OMA OMB ∠=∠. [方法四]:【最优解】椭圆第二定义的应用 当直线l 与x 轴重合时,0OMA OMB ∠=∠=︒.当直线l 与x 轴不重合时,如图6,过点A ,B 分别作准线=2x 的垂线,垂足分别为C ,D ,则有AC BD x ∥∥轴.由椭圆的第二定义,有e AF AC=,||e ||BF BD =,得||||||||AF BF AC BD =,即||||||||AF AC BF BD =.由AC BD x ∥∥轴,有||||||||AF BF CM DM =,即||||||||AF CM BF DM =,于是||||||||AC CM BD DM =,且90ACM BDM ∠=∠=︒.可得AMC BMD ∠=∠,即有∠=∠AMO BMO .[方法五]:角平分线定理逆定理+极坐标方程的应用椭圆22:12x C y +=以右焦点为极点,x轴正方向为极轴,得ρ=设()()12,,,A B ρθρθπ+.22221122||12cos ,||12cos AM BM ρρθρρθ=+-=++.所以1||||AM AF ==2||||BM BF ==由角平分线定理的逆定理可知,命题得证. [方法六]:角平分线定理的逆定理的应用设点O (也可选点F )到直线,MA MB 的距离分别为12,d d ,根据角平分线定理的逆定理,要证OMA OMB ∠=∠,只需证12d d =. 当直线l 的斜率为0时,易得120d d ==.当直线l 的斜率不为0时,设直线l 的方程为:()()11221,,,,x my A x y B x y =+.由方程组22+=1,2=+1,x y x my ⎧⎪⎨⎪⎩得()222210,Δ0m y my ++-=>恒成立,12222m y y m +=-+.12212y y m =-+. 直线MA 的方程为:()1111220,y x x y y d ---==因为点A 在直线l 上,所以111x my =+,故1d =同理,2d =()()()()12121222122222112242121121y y y y my y d d m y my m y my -+-⎡⎤⎣⎦-=⎡⎤⎡⎤+-++-+⎣⎦⎣⎦.因为()121222222022m m y y my y m m +-=-+=++,所以22120d d -=,即12d d =. 综上,OMA OMB ∠=∠.[方法七]:【通性通法】分类+常规联立当直线l 与x 轴重合或垂直时,显然有OMA OMB ∠=∠.当直线l 与x 轴不垂直也不重合时,设直线l 的方程为1x my =+,交椭圆于()11,A x y ,()22,B x y .由22+=12=+1x y x my ⎧⎪⎨⎪⎩得()222210m y my ++-=. 由韦达定理得12122221,22m y y y y m m --+==++. 所以()()()1212121212121220221111MA MB my y y y y y y y k k x x my my my my -++=+=+==------, 故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠. [方法八]:定比点差法设()0,1AF FB λλ=≠± ,()()1122,,,A x y B x y ,所以1212+1=1++0=1+x x y y λλλλ⎧⎪⎪⎨⎪⎪⎩,由22112222222+=12+=2x y x y λλλ⎧⎪⎪⎨⎪⎪⎩作差可得,()12121212112111x x x x y y y y λλλλλλλλ+-+-⨯+⨯=+-+-,所以, ()1221x x λλ-=-,又121x x λλ+=+,所以,()121113,322x x λλ⎛⎫=-=- ⎪⎝⎭,故()1222120111221122MA MB y y y y k k x x λλλ-+=+=+=--⎛⎫-+-+ ⎪⎝⎭,MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠.当1λ=时,l 与x 轴垂直,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠. 故OMA OMB ∠=∠.【整体点评】(2)方法一:通过分类以及常规联立,把角相等转化为斜率和为零,再通过韦达定理即可实现,是解决该类问题的通性通法;方法二:根据角平分线的定义可知,利用点A 关于x 轴的对称点N 在直线BM 上,证直线AN 过点M 即可;方法三:利用直线的参数方程证明斜率互为相反数;方法四:根据点M 是椭圆的右准线=2x 与x 轴的交点,用椭圆的第二定义结合平面几何知识证明,运算量极小,是该题的最优解;方法五:利用椭圆的极坐标方程以及角平分线定理的逆定理的应用,也是不错的方法选择; 方法六:类比方法五,角平分线定理的逆定理的应用; 方法七:常规联立,同方法一,只是设直线的方程形式不一样; 方法八:定比点差法的应用.18.(1)112y x =+或112y x =--;(2)证明见解析.【要点分析】(1)根据题意可得直线l 的方程为=2x ,从而得出点M 的坐标为()2,2或()2,2-,利用两点式求得直线BM 的方程;(2)方法一:设直线l 的方程为2x ty =+,点()11,M x y 、()22,N x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,由斜率公式并结合韦达定理计算出直线BM 、BN 的斜率之和为零,从而得出所证结论成立.【答案详解】(1)当l 与x 轴垂直时,l 的方程为=2x ,可得M 的坐标为()2,2或()2,2-. 所以直线BM 的方程为112y x =+或112y x =--;(2)[方法一]:【通性通法】韦达定理+斜率公式 设l 的方程为2x ty =+,()11,M x y 、()22,N x y ,由2=+2=2x ty y x ⎧⎨⎩,得2240y ty --=,可知122y y t +=,124y y =-. 直线BM 、BN 的斜率之和为()()()()()()()()21122112121212122244222222BM BN x y x y ty y ty y y yk k x x x x x x +++++++=+==++++++()()()()()()1212121224244202222ty y y y t tx x x x ++⨯-+⨯===++++,所以0BM BN k k +=,可知BM 、BN 的倾斜角互补,所以ABM ABN ∠=∠. [方法2]:【最优解】斜率公式+三点共线的坐标表示因为M ,N 在抛物线上,可设()2112,2M t t ,()2222,2N t t ,故()21122,2AM t t =- ,()22222,2AN t t =- .而A ,M ,N 共线,故AM AN ∥,即()()2221122222220t t t t -⋅--⋅=,化简得()()1221410t t t t +-=.而M ,N 是不同的点,故12t t ≠,可得1210t t +=.这样()()()()121212222212121220222211BM BN t t t t t t k k t t t t +++=+==++++.故ABM ABN ∠=∠. 【整体点评】(2)方法一:通过联立方程得出根与系数的关系,再直接使用斜率公式化简即可证出,是此题问题的通性通法;方法二:通过设点,根据三点共线的坐标表示寻找关系,再利用斜率公式化简证出,省略了联立过程,适当降低了运算量,是此类问题的最优解. 19.(1)15(百米); (2)见解析;(3)17+. 【要点分析】解:解法一:(1)过A 作AE BD ⊥,垂足为E .利用几何关系即可求得道路PB 的长; (2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离. 解法二:(1)建立空间直角坐标系,分别确定点P 和点B 的坐标,然后利用两点之间距离公式可得道路PB 的长;(2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离.【答案详解】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====. 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,115PB =, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,CQ===此时,线段QA上所有点到点O的距离均不小于圆O 的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+因此,d最小时,P,Q两点间的距离为17+.解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3. 因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(−4,−3),直线AB的斜率为3 4 .因为PB⊥AB,所以直线PB的斜率为43 -,直线PB的方程为42533 y x=--.所以P(−13,9),15PB==.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3),所以线段AD:36(44)4y x x=-+-剟.在线段AD上取点M(3,154),因为5OM=<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,115PB =,此时()113,9P -;当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识要点分析和解决实际问题的能力.20. ()3,0【要点分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【答案详解】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x =,所以,双曲线C.故答案为:()3,0【名师点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.。
高中 平面解析几何 两直线的位置关系 练习 含答案
![高中 平面解析几何 两直线的位置关系 练习 含答案](https://img.taocdn.com/s3/m/8a558a50c77da26924c5b087.png)
训练目标会判断两直线的位置关系,能利用直线的平行、垂直、相交关系求直线方程或求参数值.训练题型(1)判断两直线的位置关系;(2)两直线位置关系的应用;(3)直线过定点问题.解题策略(1)判断两直线位置关系有两种方法:①斜率关系,②系数关系;(2)在平行、垂直关系的应用中,要注意结合几何性质,利用几何性质,数形结合寻求最简解法.=________.2.(2015·黑龙江哈六中上学期期末)已知直线l1:x+(a-2)y-2=0,l2:(a-2)x+ay-1=0,则“a=-1”是“l1⊥l2”的________条件.3.(2015·绵阳一诊)若P、Q分别为直线3x+4y-12=0与6x+8y+5=0上任意一点,则PQ 的最小值为________.4.(2015·吉林实验中学第三次模拟)设a,b,c分别是△ABC中角A,B,C所对边的边长,则直线sin A·x-ay-c=0与直线bx+sin B ·y+sin C=0的位置关系是________.5.已知A(2,0),B(3,3),直线l∥AB,则直线l的斜率k=________.6.不论a为何实数,直线(a+1)x+(2-a)y+3=0 恒过第________象限.7.已知直线l1:2x+(m+1)y+4=0与直线l2:mx+3y-2=0平行,则m=________. 8.直线x+a2y+6=0和(a-2)x+3ay+2a=0无公共点,则a=________.9.设集合A={(x,y)|y-3x-1=2},B={(x,y)|4x+ay-16=0},若A∩B=∅,则a的值为__________.10.已知点A(-3,-4),B(6,3)到直线l:ax+y+1=0的距离相等,则实数a的值为________.11.(2015·苏北四市一模)已知a,b为正数,且直线ax+by-6=0与直线2x+(b-3)y+5=0互相平行,则2a+3b的最小值为________.12.P1(x1,y1)是直线l:f(x,y)=0上一点,P2(x2,y2)是直线l外一点,则方程f(x,y)+f(x1,y 1)+f (x 2,y 2)=0所表示的直线与l 的关系是__________.13.已知等差数列{a n }的首项a 1=1,公差d =-12,若直线x +y -3a n =0和直线2x -y +2a n -1=0的交点M 在第四象限,则a n =________.14.已知有n 条平行直线:l 1:x -y +C 1=0,l 2:x -y +C 2=0,…,l n :x -y +C n =0(其中C 1<C 2<…<C n ),若C 1=2,每相邻两条直线间的距离都为1,则第10条直线l 10与两坐标轴围成的三角形的面积为________.答案解析1.122.充分不必要3.29104.垂直 5.36.三解析 (a +1)x +(2-a )y +3=0,可整理为a (x -y )+(x +2y +3)=0,则⎩⎪⎨⎪⎧ x -y =0,x +2y +3=0,解得⎩⎪⎨⎪⎧x =-1,y =-1, 即原直线恒过定点(-1,-1),故原直线恒过第三象限.7.-3或2解析 方法一 当m =0时,l 1与l 2不平行;当m ≠0时,若l 1∥l 2,只需2m =m +13≠4-2, 即m 2+m -6=0,解得m =-3或2.方法二 若l 1∥l 2,只需2×3-m (m +1)=0,解得m =-3或2.当m =-3或2时,A 1C 2-A 2C 1=2×(-2)-m ·4=-4-4m ≠0,∴m =-3或2.8.0或-1解析 两直线无公共点,即两直线平行.当a =0时,这两条直线分别为x +6=0和x =0,无公共点;当a ≠0时,由-1a 2=-a -23a, 解得a =-1或a =3.若a =3,这两条直线分别为x +9y +6=0,x +9y +6=0,两直线重合,有无数个公共点,不符合题意,舍去;若a =-1,这两条直线分别为x +y +6=0和3x +3y +2=0,两直线平行,无公共点. 综上,a =0或a =-1.9.4或-2解析 A ∩B =∅包含两种情况:①直线4x +ay -16=0过点(1,3);②直线4x +ay -16=0与直线y -3=2(x -1)平行.由①可得a =4;由②可得a =-2.10.-13或-79解析 由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1, 解得a =-13或-79. 11.25解析 由两直线互相平行可得a (b -3)=2b , 即2b +3a =ab ,2a +3b=1, 又 a ,b 为正数,所以2a +3b =(2a +3b )·(2a +3b) =13+6a b +6b a ≥13+2 6a b ·6b a=25, 当且仅当a =b =5时等号成立,故2a +3b 的最小值为25.12.平行解析 ∵P 1点在直线l 上,∴f (x 1,y 1)=0,又∵P 2点不在直线上,∴f (x 2,y 2)≠0,∵f (x ,y )+f (x 1,y 1)+f (x 2,y 2)=0,即f (x ,y )+f (x 2,y 2)=0,∴直线l 与方程表示的直线平行.13.0或-12解析 联立方程⎩⎪⎨⎪⎧ x +y -3a n =0,2x -y +2a n -1=0,解得⎩⎨⎧ x =a n +13,y =8a n -13,即两直线交点为M (a n +13,8a n -13),由于交点在第四象限,故⎩⎨⎧ a n +13>0,8a n -13<0,解得-1<a n <18, 由于a n =a 1+(n -1)d =-n 2+32, 所以-1<-n 2+32<18, 即114<n <5, 所以n =3,4,则a 3=0,a 4=-12. 14.100解析 由已知,直线l 10与l 1的距离为9, ∴|C 1-C 10|2=9, 解得C 10=102,所以直线l 10:x -y +102=0, 则直线l 10与两坐标轴围成的三角形是等腰直角三角形,腰长为102,故围成的三角形的面积为S =12×(102)2=100.。
平面几何练习题及解答
![平面几何练习题及解答](https://img.taocdn.com/s3/m/8e46e4d3dc88d0d233d4b14e852458fb770b38a5.png)
平面几何练习题及解答一、直线与角度1. 给定一条直线L1和两条直线L2和L3,若L1与L2垂直,L2与L3平行,则L1与L3之间的夹角为多少度?解答:由于L1与L2垂直,可得出L2的斜率为无穷大,即L2为竖直线。
而L2与L3平行,说明它们具有相同的斜率。
因此,L3的斜率也为无穷大,即L3也是竖直线。
由此可知,L1与L3之间的夹角为90度。
2. 给定一条直线L和两点A、B,若L与AB的垂线相交于点M,且角AMB为40度,则角LMA的度数是多少?解答:由垂线的性质可得出,角LMA与角AMB互补,它们的度数和为90度。
已知角AMB为40度,因此角LMA的度数为90度减去40度,即50度。
二、三角形3. 已知三角形ABC,其中∠B = 90度,AB = 3 cm,BC = 4 cm,求AC的长度。
解答:根据勾股定理可得:AC² = AB² + BC²AC² = 3² + 4²AC² = 9 + 16AC² = 25AC = √25AC = 5 cm4. 已知三角形ABC,其中AB = 6 cm,BC = 8 cm,AC = 10 cm,求∠B的度数。
解答:根据余弦定理可得:BC² = AB² + AC² - 2 * AB * AC * cosB8² = 6² + 10² - 2 * 6 * 10 * cosB64 = 36 + 100 - 120 * cosB64 = 136 - 120 * cosB120 * cosB = 136 - 64120 * cosB = 72cosB = 72 / 120cosB = 0.6根据反余弦函数可得:∠B = arccos(0.6)∠B ≈ 53.13度三、圆的性质5. 在平面直角坐标系中,给定圆心为O(2, 3),半径为5的圆C,点P(6, 7)是否在圆C上?解答:利用距离公式可计算OP的距离:OP = √((6-2)² + (7-3)²)OP = √((4)² + (4)²)OP = √(16 + 16)OP = √32OP ≈ 5.66由于OP的长度不等于圆C的半径,即5.66不等于5,因此点P不在圆C上。
平面解析几何经典题(含答案)
![平面解析几何经典题(含答案)](https://img.taocdn.com/s3/m/b796b8667cd184254b3535ef.png)
平面解析几何一、直线的倾斜角与斜率1、直线的倾斜角与斜率(1)倾斜角的范围000180(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1//l2k1k2。
特别地,当直线l1,l2的斜率都不存在时,l1与l2的关系为平行。
(2)两条直线垂直如果两条直线l1,l2斜率存在,设为k1,k2,则l1l2k1k21注:两条直线l1,l2垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果l1,l2中有一条直线的斜率不存在,另一条直线的斜率为0时,l1与l2互相垂直。
二、直线的方程1、直线方程的几种形式名称方程的形式已知条件局限性点斜式不包括垂直于x轴的直线为直线上一定点,k为斜率斜截式k为斜率,b是直线在y轴上的截距不包括垂直于x轴的直线两点式不包括垂直于x轴和y轴的是直线上两定点直线截距式a是直线在x轴上的非零截距,b是直不包括垂直于x轴和y轴或线在y轴上的非零截距过原点的直线一般式A,B,C为系数无限制,可表示任何位置的直线三、直线的交点坐标与距离公式三、直线的交点坐标与距离公式3.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
4.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算(二)直线的斜率及应用利用斜率证明三点共线的方法:已知A(x,y),B(x,y),C(x,y),若x1x2x3或k AB k AC,则有A、B、C三点共112233线。
2024年数学九年级上册解析几何基础练习题(含答案)
![2024年数学九年级上册解析几何基础练习题(含答案)](https://img.taocdn.com/s3/m/9f558d3e26d3240c844769eae009581b6bd9bd2d.png)
2024年数学九年级上册解析几何基础练习题(含答案)试题部分一、选择题:1. 在平面直角坐标系中,点A(2, 3)关于x轴的对称点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)2. 已知点P在第二象限,且到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A. (3, 4)B. (3, 4)C. (4, 3)D. (4, 3)3. 直线y=2x+1的斜率是()A. 1B. 2C. 1D. 24. 下列函数中,哪一个是一次函数?()A. y=x^2B. y=2xC. y=x^3D. y=1/x5. 在平面直角坐标系中,点A(1, 2)和点B(2, 4)所在的直线方程是()A. y=2x+4B. y=2x+4C. y=x+3D. y=x+36. 一次函数y=kx+b的图象经过一、二、四象限,则k和b的取值范围是()A. k>0, b>0B. k<0, b>0C. k>0, b<0D. k<0, b<07. 下列各点中,哪一个点不在直线y=x+3上?()A. (1, 2)B. (2, 1)C. (1, 4)D. (2, 5)8. 已知直线y=2x+1与y轴的交点坐标是(0, a),则a的值为()A. 0B. 1C. 2D. 19. 在平面直角坐标系中,两条平行线的斜率分别是2和2,则这两条直线()A. 相交B. 平行C. 重合D. 垂直10. 已知一次函数y=kx+b的图象与y轴交于点(0, 3),且过点(1,5),则该函数的解析式为()A. y=2x+3B. y=3x+3C. y=2x+3D. y=3x+3二、判断题:1. 一次函数的图象是一条直线。
()2. 两条平行线的斜率一定相等。
()3. 一次函数y=kx+b中,当k>0时,直线必经过第一象限。
()4. 点(0, 0)是所有直线上的点。
()5. 直线y=2x+1的斜率为2,说明直线与x轴的夹角为60度。
空间平面及直线测试题(解析几何)
![空间平面及直线测试题(解析几何)](https://img.taocdn.com/s3/m/11c80ccc250c844769eae009581b6bd97f19bc9c.png)
x 1 y2 z1 . 直线与平面4x y mz 5 0 平行,则m _____ . x y2. 点 (1,0,1)到直线 的距离是______________。
3x z 03 . 直线x 3y 5z 与平面4x 12y 20z 1 0的位置关系为 。
4. 自坐标原点指向平面: 2x 3y 6z 35 0 的单位法向量为 。
5. 平面 1 (x y 2z 2) 2 (3x 4y 2z ) 0 ,如在 z 轴上的截距为 2,则 1 : 2 ____________ 。
1.设直线 L 为 ,平面 :4x 2y z 2 0 ,则( )。
4 2 1(A ) L 平行于 (B ) L 在 上 (C ) L 垂直于 (D ) L 与 斜交 2 . 直线与平面x y z 1的位置关系是 ( )。
(A)直线在平面内 (B)平行 (C)垂直 (D)相交但不垂直 x y z 1 0 3 . 过点M (3, 2,1)且与直线L : 平行的直线方程是:( )。
2x y 3z 4 0(A) (B)(C) (D)4 .过 z 轴和点(1,2,-1)的平面方程是:( )。
(A) x 2y z 6 0 (B) 2x y 0 (C) y 2z 0 (D) x z 05 .设平面 的方程为3x 4y 5z 2 0 ,以下选项中错误的是:( )。
(A) 平面 过点(-1,0,-1)(B) 平面 的法向量为 3i 4j 5k(C) 平面 在z 轴的截距是(D) 平面 与平面 2x y 2z 2 0 垂直1.求经过点 A (3,2,1)和B (1,2,3) 且与坐标平面xOz 垂直的平面的方程。
2 .求过点(1,2,1) 且与直线 x y z 1 0 及 x 1 y 2 z 都平行的平面方程。
x 2y z 1 0 2 1 x 2z 0 3.平面 x y z 1 0上的直线 l 通过直线 l 1 : 与此平面的交点且与 l 1 垂y z 1 0直, 求l 的方程。
解析几何经典练习题(含答案)
![解析几何经典练习题(含答案)](https://img.taocdn.com/s3/m/f69b5ada50e79b89680203d8ce2f0066f4336460.png)
解析几何经典练习题(含答案)题目一:已知平面直角坐标系中两点A(-3,4)和B(5,-2),求直线AB的斜率和方程。
解答:直线AB的斜率可以使用斜率公式计算:斜率 = (y2 - y1) / (x2 - x1)其中,A的坐标为(x1, y1) = (-3, 4),B的坐标为(x2, y2) = (5, -2)。
斜率 = (-2 - 4) / (5 - (-3)) = -6 / 8 = -3/4直线AB的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - 4 = (-3/4)(x + 3)化简得到直线AB的方程为:4y - 16 = -3x - 9整理得到标准形式方程:3x + 4y = 7答案:直线AB的斜率为 -3/4,方程为 3x + 4y = 7。
题目二:已知直线L的斜率为2,经过点A(3,-1),求直线L的方程。
解答:直线L的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = 2(x - 3)化简得到直线L的方程为:y + 1 = 2x - 6整理得到标准形式方程:2x - y = 7答案:直线L的方程为 2x - y = 7。
题目三:已知直线L的方程为 3x + y = 5,求直线L的斜率和经过点A (2,-1)的方程。
解答:直线L的斜率可以从方程的标准形式中直接读取:3x + y = 5将方程转化成斜截式形式:y = -3x + 5可以看出直线L的斜率为-3。
经过点A(2,-1)的直线方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = -3(x - 2)化简得到通过点A的直线方程为:y + 1 = -3x + 6整理得到标准形式方程:3x + y = 5答案:直线L的斜率为-3,经过点A(2,-1)的方程为 3x + y = 5。
平面解析几何的直线方程与位置关系练习题
![平面解析几何的直线方程与位置关系练习题](https://img.taocdn.com/s3/m/d517592fa55177232f60ddccda38376baf1fe0d2.png)
平面解析几何的直线方程与位置关系练习题在平面解析几何中,直线是研究的重要对象之一。
直线的方程和位置关系是解析几何的基础知识,掌握这些内容对于理解和应用解析几何技巧至关重要。
本文将针对平面解析几何中的直线方程与位置关系进行练习题的讨论。
1. 设直线L1的方程为2x - y + 3 = 0,直线L2平行于L1且过点(1,2),求直线L2的方程。
解析:由于直线L1的方程为2x - y + 3 = 0,可以转换为y = 2x + 3的斜截式方程。
由此可知直线L1的斜率为2。
由于直线L2与L1平行,所以直线L2的斜率也为2。
又因为直线L2过点(1, 2),代入点斜式公式y - y1 = k(x - x1),其中k为斜率,代入可得直线L2的方程为y - 2 = 2(x - 1)。
整理得到直线L2的方程为y = 2x。
2. 设直线L1的方程为3x + 4y - 5 = 0,直线L2垂直于L1且过点(2, -1),求直线L2的方程。
解析:首先将直线L1的方程转换为斜截式方程,得到y = -(3/4)x +5/4。
由此可知直线L1的斜率为-(3/4)。
由于直线L2与L1垂直,所以直线L2的斜率为直线L1斜率的负倒数,即4/3。
根据点斜式公式y - y1 = k(x - x1),将直线L2过点(2, -1)代入,可得直线L2的方程为y - (-1) = (4/3)(x - 2)。
整理得到直线L2的方程为y = (4/3)x - (5/3)。
3. 已知直线L1过点(-2, 3)和(-1, 5),直线L2过点(-1, 2)且与L1垂直,求直线L2的方程。
解析:首先计算直线L1的斜率,斜率公式为y2 - y1 / x2 - x1,代入得到斜率为2。
由于直线L2与L1垂直,所以直线L2的斜率为直线L1斜率的负倒数,即-1/2。
根据点斜式公式y - y1 = k(x - x1),将直线L2过点(-1, 2)代入,可得直线L2的方程为y - 2 = -1/2(x - (-1))。
完整版必修二平面解析几何初步知识点及练习带答案
![完整版必修二平面解析几何初步知识点及练习带答案](https://img.taocdn.com/s3/m/3f27ed961eb91a37f0115c65.png)
1.直线的倾斜角与斜率:x 轴订交的直线,若是把 x 轴绕着 (1 )直线的倾斜角:在平面直角坐标系中,对于一条与交点按逆时针方向旋转到和直线重合时所转的最小正角记为 叫做 直线的倾斜角 .倾斜角[0,180 ) ,90 斜率不存在 .(2 )直线的斜率:ky 2y 1( x 1 x 2 ), k tan .( P 1 ( x 1 , y 1 ) 、 P 2 ( x 2 , y 2 ) ) .x 2 x 12.直线方程的五种形式:( 1)点斜式: y y 1 k( x x 1 ) ( 直线 l 过点 P 1 ( x 1 , y 1 ) ,且斜率为 k ).注:当直线斜率不存在时,不能够用点斜式表示,此时方程为xx 0 .( 2)斜截式: ykx b (b 为直线 l 在 y 轴上的截距 ).y y 1xx 1( y 1 y 2 , x 1x 2 ).( 3)两点式:y 1x 2 x 1y 2注:① 不能够表示与 x 轴和 y 轴垂直的直线;② 方程形式为: (x 2 x 1 )( yy 1 ) ( y 2y 1 )( x x 1 )0 时,方程能够表示随意直线.( 4)截距式:xy 1 ( a, b 分别为 x 轴 y 轴上的截距,且 a 0,b 0 ).a b注:不能够表示与 x 轴垂直的直线, 也不能够表示与 y 轴垂直的直线, 特别是不能够表示过原点的直线.( 5)一般式: Ax ByC 0(其中 A 、 B 不一样样时为 0).一般式化为斜截式:yA x C,即,直线的斜率:kA .BBB注:( 1)已知直线纵截距b ,常设其方程为 ykx b 或 x0.已知直线横截距x 0 ,常设其方程为 x my x 0 ( 直线斜率 k 存在时, m 为 k 的倒数 )或 y 0 .已知直线过点 (x 0 , y 0 ) ,常设其方程为 y k (x x 0 ) y 0 或 x x 0 .(2)分析几何中研究两条直线地址关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩 可正,可负,也可为 0.( 1)直线在两坐标轴上的截 距相等 直线的斜率为 或直线过原点..... 1( 2)直线两截距互为相反数 直线的斜率为 1 或直线过原点........( 3)直线两截距绝对值相等直线的斜率为1 或直线过原点. ....... 4.两条直线的平行和垂直 :( 1)若 l 1 : y k 1 x b 1 , l 2 : y k 2 x b 2① l 1 // l 2k 1 k 2 , b 1 b 2 ;② l 1 l 2k 1k 21.( 2)若 l 1 : A 1 x B 1 y C 10 , l 2 : A 2 x B 2 y C 20 ,有① l 1 // l 2A 1B 2A 2B 1且 A 1C 2 A 2 C 1 .② l 1l 2A 1 A 2B 1B 2 0.5.平面两点距离公式:( P 1 ( x 1 , y 1 ) 、 P 2 (x 2 , y 2 ) ) , P 1 P 2(x 1x 2 )2 ( y 1 y 2 ) 2 . x 轴上两点间距离:AB x B x A.x0x1x 22线段P1P2的中点是 M ( x0 , y0 ) ,则.y1y 2y 026.点到直线的距离公式:点P( x0 , y0 ) 到直线 l: Ax By C 0 的距离:d Ax0By0CA2 B 2.7.两平行直线间的距离:两条平行直线 l1: Ax By C1 0, l2: Ax By C 20 距离:dC1 C2A2.B2 8.直线系方程:( 1)平行直线系方程:①直线 y kx b 中当斜率k必可是b变动时,表示平行直线系方程..②与直线 l : Ax By C0 平行的直线可表示为Ax By C10 .③过点 P( x0 , y0 ) 与直线 l : Ax By C0平行的直线可表示为:A( x x0 ) B( y y0 ) 0 .( 2)垂直直线系方程:①与直线 l : Ax By C0 垂直的直线可表示为Bx Ay C10 .②过点 P( x0 , y0 ) 与直线 l : Ax By C0垂直的直线可表示为:B( x x0 ) A( y y0 ) 0 .( 3)定点直线系方程:①经过定点 P0 ( x0 , y0 ) 的直线系方程为y y0k(x x0 ) (除直线 x x0),其中 k 是待定的系数.②经过定点 P0 ( x0 , y0 ) 的直线系方程为A(x x0 )B( y y0 )0,其中 A,B是待定的系数.( 4)共点直线系方程:经过两直线l1:A1x B1 y C10, l 2: A2 x B2 y C 20 交点的直线系方程为A1x B1 y C1( A2 x B2 y C 2 )0 (除l 2),其中λ是待定的系数.9.曲线C1: f ( x, y) 0与 C2 : g (x, y)0 的交点坐标方程组 f ( x, y)0的解.g ( x, y)0 10.圆的方程:a)2( y b) 2r 2(r( 1)圆的标准方程:( x0 ).( 2)圆的一般方程:x2y 2Dx Ey F0(D 2 E 24F0) .( 3)圆的直径式方程:若 A( x1 , y1 ),B( x2 , y2 ),以线段 AB为直径的圆的方程是:( x x1 )( x x2 ) ( y y1 )( y y2 ) 0.注: (1) 在圆的一般方程中,圆心坐标和半径分别是( D ,E) , r1 D 2 E 24F .( 2)一般方程的特点:222① x 2和 y 2的系数相同且不为零;②没有 xy 项;③D2 E 24F0( 3)二元二次方程 Ax 2BxyCy 2Dx Ey F 0 表示圆的等价条件是:①AC0;②B 0;③D 2E 2 4AF0 .11.圆的弦长的求法:l ,弦心距为 d ,半径为 r ,(1)几何法:当直线和圆订交时,设弦长为则:“半弦长 2 +弦心距 2=半径 2”—— ( l)2d 2 r 2 ;(2)代数法:设2的斜率为 , 与圆交点分别为 ( , ) ( , ) l k l y 1 x 2 y 2 ,则A x 1 ,B|AB|1 k 2| x Ax B | 11| y A y B |k2(其中 | x 1x 2 |,| y 1 y 2 |的求法是将直线和圆的方程联立消去y 或 x ,利用韦达定理求解)12.点与圆的地址关系:点 P( x 0 , y 0 ) 与圆 ( x a)2( yb) 2 r 2 的地址关系有三种① P 在在圆外 dr( x 0a) 2 ( y 0 b) 2 r 2 .② P 在在圆内 dr(x 0a) 2( y 0 b) 2 r 2 .③P 在在圆上d r( x 0a) 2 ( y 0 b) 2r 2 .【P 到圆心距离d( a x 0 )2 (b y 0 )2 】13.直线与圆的地址关系:0 与 圆 ( x a) 2( y b) 2r 2 的 位 置 关 系 有 三 种直 线 Ax By C( dAa Bb CA2B2):圆心到直线距离为 d ,由直线和圆联立方程组消去 x (或 y )后,所得一元二次方程的鉴别式为.d r相离0; d r 相切0 ; d r 订交 0 .14.两圆地址关系 : 设两圆圆心分别为 O 1 ,O 2 ,半径分别为 r 1 , r 2 , O 1O 2 dd r 1 r 2 外离 4条公切线 ; d r 1 r 2 内含无公切线 ; dr 1 r 2外切3条公切线 ; dr 1 r 2内切1条公切线 ;r 1 r 2 d r 1 r 2订交 2条公切线 .15.圆系方程: x 2 y 2 Dx Ey F 0( D 2 E 2 4F0)( 1)过点 A( x 1, y 1 ) , B( x 2 , y 2 ) 的圆系方程:(x x 1)( x x 2 ) ( y y 1 )( y y 2 )[( x x 1 )( y 1 y 2 ) ( y y 1 )(x 1x 2 )] 0( x x 1)( xx 2 ) ( y y 1)( y y 2 ) (ax by c) 0 , 其中 axby c0 是直线 AB 的方程.0 与圆 C : x 2y 2(2 )过直线 l : AxBy CDxEy F 0的交点的圆系方程:x 2 y 2 Dx Ey F( Ax ByC ) 0, λ是待定的系数.(3 )过圆 C 1 : x 2y 2D 1xE 1 yF 1 0 与圆 C 2 : x 2y 2 D 2 x E 2 y F 2 0 的交点的圆系方程: x 2y 2 D 1 x E 1 yF 1(x 2y 2D 2 xE 2 yF 2 ) 0 , λ是待定的系数.特别地,当1时, x2y2D1 x E1 y F1(x2y2 D 2 x E2 y F2) 0就是( D1 D 2 )x ( E1E2 ) y (F1F2 )0 表示两圆的公共弦所在的直线方程,即过两圆交点的直线.16.圆的切线方程:( 1)过圆x2y 2r 2上的点 P(x0 , y0 ) 的切线方程为: x0 x y0 y r 2.( 2)过圆 ( x a)2( y b) 2r 2上的点P( x0, y0)的切线方程为: ( x a)( x0a)( y b)( y0b)r 2.( 3)过圆x2y 2Dx Ey F0 上的点 P( x0 , y0 ) 的切线方程为:x0 x y0 y D ( x0x)E( y0y)F0 .22(4)若 P( x0 ,y0)是圆 x2y 2r 2外一点,由P( x0,y0)向圆引两条切线,切点分别为A,B则直线 AB的方程为xx0yy0r 2(5)若 P(x0,y0)是圆 ( x a) 2( y b)2r 2外一点,由P( x0,y0)向圆引两条切线,切点分别为 A,B 则直线 AB的方程为(x0a)( x a)( y0b)( y b)r 2( 6)当点P( x0, y0)在圆外时,可设切方程为y y0k( x x0 ) ,利用圆心到直线距离等于半径,即 d r ,求出 k ;或利用0,求出 k .若求得 k 只有一值,则还有一条斜率不存在的直线 x x0.17.把两圆x2y 2D1 x E1 y F10 与 x 2y2 D 2 x E2 y F20方程相减即得订交弦所在直线方程:(D1 D 2 ) x( E1E2 ) y( F1F2 )0.18.空间两点间的距离公式 :若 A ( x1, y1, z1), B ( x2, y2, z2),则 AB(x2x1 )2(y2y1)2 ( z2 z1 )2一、选择题1.已知点A(1,2), B(3,1),则线段 AB 的垂直均分线的方程是()A .4 x 2 y 5B.4x 2 y 5C.x 2 y 5D.x 2y 52.若A(1, m) 三点共线则 m 的值为()2,3), B(3, 2), C (A.112B.C. 2D. 2 2x y23.直线 1 在 y 轴上的截距是()b2a2A .b B.b2C.b2D.b4.直线kx y 1 3k ,当k变动时,所有直线都经过定点()A .(0,0)B.(0,1)C.(3,1)D.(2,1)5.直线x cos y sin a0 与 x sin y cos b 0 的地址关系是()A .平行B.垂直C.斜交D.与a,b,的值相关6.两直线3x y 3 0 与 6x my 1 0 平行,则它们之间的距离为()A .4B.213 C .513 D .7101326207.已知点A(2,3), B( 3,2) ,若直线l过点 P(1,1)与线段 AB 订交,则直线l的斜率 k 的取值范围是()33k 23D.k 2A .k B. C .k 2或k444二、填空题1.方程x y 1 所表示的图形的面积为_________。
平面解析几何-多选题练习
![平面解析几何-多选题练习](https://img.taocdn.com/s3/m/ad4225930408763231126edb6f1aff00bfd57003.png)
9.(2024·石家庄调研)已知双曲线 C:x42-y52=1,F1,F2 为 C 的左、右焦点,则( BC )
A.双曲线4+x2m-5+y2m=1(m>0)和 C 的离心率相等
B.若 P 为 C 上一点,且∠F1PF2=90°,则△F1PF2 的周长为 6+2 14
C.若
C
上存在四个点
P
使得
PF1⊥PF2,则
C
的离心率的取值范围是0,
2 2
D.若|PF1|≤2b 恒成立,则 C 的离心率的取值范围为0,53
1 2 3 4 5 6 7 8 9 10
解析 对于 A,设 P(x0,y0),则xa202+by202=1, ∵e=ac=12,∴a=2c,∴a2=34b2, ∴∴43kxbP20A21+·kbyPA202=2=1y,0x-∴0 b3·yx020x++0 b4=y20=y20-x420bb22,=b2-34xx2020-b2=-34,故 A 错误; 对于 B,若 PF1⊥PF2,则|PF1|+|PF2|=2a,|PF1|2+|PF2|2=4c2, ∴|PF1|·|PF2|=2b2,则△PF1F2 的面积为12·|PF1|·|PF2|=b2,故 B 正确; 对于 C,若 C 上存在四个点 P 使得 PF1⊥PF2,
则a2≥2b2,所以选项AC满足.
1 2 3 4 5 6 7 8 9 10
4.已知 F1,F2 分别是双曲线 C:y2-x2=1 的上、下焦点,点 P 是其一条渐近线
上一点,且以线段 F1F2 为直径的圆经过点 P,则( ACD )
A.双曲线 C 的渐近线方程为 y=±x B.以 F1F2 为直径的圆的方程为 x2+y2=1 C.点 P 的横坐标为±1 D.△PF1F2 的面积为 2 解析 等轴双曲线C:y2-x2=1的渐近线方程为y=±x,故A正确; 由双曲线的方程可知|F1F2|=2 2, 所以以F1F2为直径的圆的方程为x2+y2=2,故B错误; 设点P(x0,y0),因为点P是双曲线C的一条渐近线上一点,
解析几何试题及答案
![解析几何试题及答案](https://img.taocdn.com/s3/m/ae80752c24c52cc58bd63186bceb19e8b9f6ec12.png)
解析几何试题及答案1、试题分析本文将为大家解析几个典型的解析几何试题,并给出详细的答案解析。
这些试题涵盖了解析几何的基本概念和常见解题方法,有助于提高解析几何的应用能力。
2、试题一已知平面直角坐标系中,直线L的方程为2x+3y=6,直线L与x轴、y轴分别交于点A、B。
求证:点A、B和原点O构成等边三角形。
解答:首先,求直线L与x轴的交点,令y=0,得到x=3。
所以,点A的坐标为(3,0)。
然后,求直线L与y轴的交点,令x=0,得到y=2。
所以,点B的坐标为(0,2)。
接着,计算OA的长度,用两点间距离公式可得:OA = √[(3-0)²+(0-0)²] = 3同理,计算OB的长度得到OB = √[(0-0)²+(2-0)²] = 2最后,计算AB的长度得到AB = √[(3-0)²+(2-0)²] = √13由于OA = OB = AB,所以点A、B和原点O构成等边三角形。
证毕。
3、试题二在平面直角坐标系中,一条直线L与x轴的交点为A,与y轴的交点为B。
已知A点坐标为(3,0),且直线L与另一条直线M:2x+y=6平行。
求直线L的方程。
解答:由题可知,直线L与x轴的交点为A(3,0),与y轴的交点为B。
设直线L的斜率为k。
由于直线L与直线M平行,所以L的斜率与M的斜率相等。
而M的斜率为2,所以L的斜率也为2。
斜率为k的直线通过点A(3,0),即可得到直线L的方程为y=k(x-3)。
至此,直线L的方程为y=2(x-3),即L的方程为y=2x-6。
4、试题三已知直线L1过点A(1,2),斜率为k。
直线L2过点B(-2,3),斜率为-2。
若直线L1与L2相互垂直,求直线L1的方程。
解答:设直线L1的方程为y=kx+b,代入点A(1,2)的坐标可得2=k+b。
由于L1与L2相互垂直,所以L1的斜率与L2的斜率之积为-1。
即k*(-2)=-1,解得k=1/2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线测试题一.选择题(每小题5分共40分) 1. 下列四个命题中的真命题是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示;B.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程 (y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)表示;C.不经过原点的直线都可以用方程1=+bya x 表示; D.经过定点A (0,b )的直线都可以用方程y =kx +b 表示。
【答案】B【解析】A 中过点P 0(x 0,y 0)与x 轴垂直的直线x =x 0不能用y -y 0=k (x -x 0)表示,因为其斜率k 不存在;C 中不过原点但在x 轴或y 轴无截距的直线y =b (b ≠0)或x =a (a ≠0)不能用方程bya x +=1表示;D 中过A (0,b )的直线x =0不能用方程y =kx +b 表示.评述:本题考查直线方程的知识,应熟练掌握直线方程的各种形式的适用范围.2. 图1中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2【答案】D【解析】直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2、α3均为锐角,且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D.3. 两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( ) A. A 1A 2+B 1B 2=0 B.A 1A 2-B 1B 2=0 C.12121-=B B A A D.2121A A BB =1 【答案】A【解析】法一:当两直线的斜率都存在时,-11B A ·(22B A -)=-1,A 1A 2+B 1B 2=0. 图1当一直线的斜率不存在,一直线的斜率为0时,⎩⎨⎧==⎩⎨⎧==0001221B A B A 或, 同样适合A 1A 2+B 1B 2=0,故选A. 法二:取特例验证排除.如直线x +y =0与x -y =0垂直,A 1A 2=1,B 1B 2=-1,可排除B 、D. 直线x =1与y =1垂直,A 1A 2=0,B 1B 2=0,可排除C ,故选A.评述:本题重点考查两直线垂直的判定、直线方程的一般式等基本知识点,重点考查分类讨论的思想及逻辑思维能力.4. 若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.)3,6[ππ B.)2,6(ππ C.)2,3(ππ D.]2,6[ππ【答案】B【解析】法1:求出交点坐标,再由交点在第一象限求得倾斜角的范围:⎪⎪⎩⎪⎪⎨⎧+-=++=⇒⎩⎨⎧=-+-=k k y kx y x kx y 3232632)32(306323 ∵交点在第一象限,∴⎩⎨⎧>>00y x 即⎪⎪⎩⎪⎪⎨⎧>+->++032326032)32(3kk k解得k ∈(33,+∞), ∴倾斜角范围为(2,6ππ)法2:如图,直线2x +3y -6=0过点A (3,0),B (0,2),直线l 必过点(0,-3),当直线过A 点时,两直线的交点在x 轴,当直线l 绕C 点逆时针旋转时,交点进入第一象限,从而得出结果.5. 设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin A ·x +ay +c =0与bx -sin B ·y +sin C =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直【答案】C【解析】由题意知a ≠0,s i n B ≠0,两直线的斜率分别是k 1=-a A sin ,k 2=Bbsin . 由正弦定理知k 1·k 2=-a A sin ·Bbsin =-1,故两直线垂直. 评述:本题考查两直线垂直的条件及正弦定理.6. 已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( )A.(0,1)B.(3,33) C.(33,1)∪(1,3) D.(1,3) 【答案】C【解析】直线l 1的倾斜角为4π,依题意l 2的倾斜角的取值范围为(4π-12π,4π)∪(4π,4π+12π)即:(6π,4π)∪(4π,3π),从而l 2的斜率k 2的取值范围为:(33,1)∪(1,3). 评述:本题考查直线的斜率和倾斜角,两直线的夹角的概念,以及分析问题、解决问题的能力. 7. 若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b +≤ D .22111a b+≥【答案】D 本题是训练思路的极好素材,看能否找到10种解法?8.已知点(1,0),(1,0),(0,1)A B C -,直线(0)y ax b a =+>将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1)B .21(1,)22-( C) 21(1,]23-D .11[,)32【答案】B二.填空题(每小题5分,共30分)9.过点)3,2(P ,且在两坐标轴上的截距互为相反数的直线方程是 . 【解析】错解:设所求直线方程为1x y a a+=-,过点)3,2(P ,则有2311a a a-=⇒=- ∴直线的方程为01=+-y x .错因:少了直线经过原点的情况,故还有x y 23=,即023=-y x 也适合题意. 10. 与直线0532=++y x 平行,且距离等于13的直线方程是 . 【解析】设所求直线方程为032=++m y x ,则1332522=+-m ,解得18=m 或8-=m ,∴直线方程为01832=++y x 或0832=-+y x .11. 直线l 经过点)3,2(P ,且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为 .【解析】依题意,直线l 的斜率为±1,∴直线l 的方程为23-=-x y 或)2(3--=-x y ,即01=+-y x 或05=-+y x .12. 在△ABC 中,BC 边上的高所在的直线的方程为x-2y+1=0,∠A 的平分线所在的直线方程为y=0,若点B 的坐标为(1,2),则点A 和点C 的坐标分别为 。
【答案】(1,0),(5,6)--13.光线自点)3,2(M 射到点)0,1(N 后被x 轴反射,则反射光线所在直线的方程为 . 【答案】330x y +-=14.若ABC ∆的顶点)4,3(A ,)0,6(B ,)2,5(--C ,则A ∠的平分线AT 所在直线方程为 .【解析】如图,在此对图形特征从不同角度给予分析以获得解题思路:法1 AB 的方程为4(6)43243y x x y =--⇒+-AC 的方程为3374(3)444y x y x -=-⇒=+3470x y ⇒-+=设直线AT 的斜率为k ,则用到角公式可得433443(34)3411()43k k k k k k ---=⇒-=±+++-,解得7k =或17k =-(舍去)所以有47(3)7170y x x y -=-⇒--=。
法2 3tan 4AC k α==,如图有314tan(45)7314AT k α+=+==-,下略。
法3 取直线CA,TA,BA 的方向向量分别为12(4,3),(1,),(3,4)v v k v ===-,则1212cos 43347.v v v v k k k v vv vθ==⇒+=-+⇒=法4 设AT 上任意一点坐标为(a,b ),则43243474324(347)55x y x y x y x y ++-+=⇒++=±-+检验,舍去一个即可。
三.解答题(满分30分)15.(7分)已知点)2,5(),1,1(B A -,直线l 的倾斜角是直线AB 的倾斜角的一半,求直线l 的斜率. 【解析】设直线l 的倾斜角为α,则直线AB 的倾斜角为α2,依题意有4315)1(22tan =---=α,∴43tan 1tan 22=-αα,即03tan 8tan 32=-+αα, ∴31tan =α或3tan -=α. 由0018020≤≤α,得0900≤≤α,有0tan ≥α, ∴31tan =α,∴直线l 的斜率为31.16. (7分)已知三条直线0,0134,0532=-=+-=++y mx y x y x 不能构成三角形,求实数m 的值. 【解析】依题意,当三条直线中有两条平行或重合,或三条直线交于一点时,三条直线不能构成三角形,故23m =-或34=m 或1=m ,∴实数m 的取值集合是24,,133⎧⎫-⎨⎬⎩⎭. 17. (8分)已知点)15,2(),5,3(B A -,在直线0443:=+-y x l 上求一点P ,使PB PA +最小.【解析】由题意知,点A 、B 在直线l 的同一侧.由平面几何性质可知,先作出点A 关于直线l 的对称点'A ,然后连结B A ',则直线B A '与l 的交点P 为所求.事实上,设点'P 是l 上异于P 的点,则PB PA B A B P A P B P A P +=>+=+''''''.设),('y x A ,则⎪⎪⎩⎪⎪⎨⎧=++⋅--⋅-=⋅+-0425423314335y x x y ,解得⎩⎨⎧-==33y x ,∴)3,3('-A ,∴直线B A '的方程为05118=-+y x .由⎩⎨⎧=-+=+-051180443y x y x ,解得⎪⎩⎪⎨⎧==338y x ,∴)3,38(P .18. (8分)在直角坐标系中,设矩形OPQR 的顶点按逆时针顺序依次为O (0,0),P (1,t ),Q (1-2t ,2+t ),R (-2t ,2),其中t ∈(0,+∞).求矩形OPQR 在第一象限部分的面积S (t ).【解析】(1)当1-2t >0即0<t <21时,如图7—13,点Q 在第一象限时,此时S (t )为四边形OPQK 的面积,直线QR 的方程为y -2=t (x +2t ).令x =0,得y =2t 2+2,点K 的坐标为(P ,2t 2+2).t t t S S S OKR OPQR OPQK 2)22(21)1(2222⋅+-+=-=)1(232t t t -+-=当-2t +1≤0,即t ≥21时,如图7—14,点Q 在y 轴上或第二象限,S (t )为△OP L的面积,直线PQ 的方程为y -t =-t1(x -1),令x =0得y =t +t1,点L 的坐标为(0,t +t1),S △OPL =1)1(21⋅+t t )1(21tt += 所以S (t )=⎪⎪⎩⎪⎪⎨⎧≥+<<-+-21 )1(21210 )1(232t t t t t t t附加题(计入总分,每题5分,但总分不超过100分):1.已知长方形的四个顶点)0,0(A 、)0,2(B 、)1,2(C 和)1,0(D ,一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角).设4P 的坐标为)0,(4x .若412x <<,则θtan 的取值范围是( )A.)1,31( B.)32,31( C.)21,52( D.)32,52(图7—13图7—14【解析】用特例法,取14=x ,则1P 、2P 、3P 、4P 分别为BC 、CD 、DA 、AB 的中点,此时21tan =θ.依题意,包含21tan =θ的选项(A )(B )(D )应排除,故选(C ).2. 在直角坐标系xOy 中,已知△AOB 三边所在直线的方程分别为x =0,y =0,2x +3y =30,求△AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数为 。