第三章 动量定理及动量守恒定律(思考题)
第三章 动量守恒定律和能量守恒定律
注意 在 p 一定时
t 越小,则 F 越大 .
例如人从高处跳下、飞 机与鸟相撞、打桩等碰 撞事件中,作用时间很 短,冲力很大 .
mv
mv1
mv 2
F
F
Fm
F
o t1
t
t2
例 1 一质量为0.05kg、速率为10m·s-1的刚球,以与
钢板法线呈45º角的方向撞击在钢板上,并以相同的速率
y
F
Fx
2mv cos
t
14.1N
方向沿
x
轴反向
3-2 动量守恒定律
t
质点系动量定理 I t0
i
Fiexdt
i
pi
i
pi 0
动量守恒定律
若质点系所受的合外力为零
F ex
Fiex 0
则系统的总动量守恒,即 p
pi
方法:对每个质点分别使用牛顿定律,然后利用质 点系内力的特点加以化简 到 最简形式。
第1步,对
fi
mi
使用动量定理:
t2
t2
Fidt
t1
t1
fidt
Pi
Pi 0
mi
Fi
Pi
mii
Pi0
mii0
t2
t2
第2步,
( Fidt fidt) (Pi Pi0 )
教学基本要求
一 理解动量、冲量概念, 掌握动量定理和 动量守恒定律 .
二 掌握功的概念, 能计算变力的功, 理解 保守力作功的特点及势能的概念, 会计算万有 引力、重力和弹性力的势能 .
动量定理及动量守恒定律
20
动量定理及动量守恒定律
oy N1 − m1g = 0 又f1max = N1μ1
以 m2 为隔离体,m2 受重力W = m2 g ;桌面的支持力 N2 ; m1 的压力 N1′ (大小与 N1 相等); m1 作用在 m2 上的最大静摩擦力 f1max′(大小与 f1max 相等) ;桌面作用在 m2 上的
oA y A W3 − TA′ − TB′ = m3a3
(7)
因为不计滑轮及绳的质量,不计轴承摩擦. 且已知绳不可伸长.
∴ TA = TB = TA′ = TB′ = T
f A ,绳的拉力 TA , A 的动力学方程为
动量定理及动量守恒定律
W1 + N A + f A + TA = m1a1 建立如图 3.5.7(1)所示的坐标系 oA − xA y A .
oA xA TA − f A = m1a1
(1)
oA y A W1 − N A = 0
(2)
且 fA = NAμ
动量定理及动量守恒定律
第三章 动量定理及动量守恒定律
(Momentum and Conservation Law of Momentum)
一、内容简介(Abstract) 1.牛顿第一定律(Newton’s first law)
孤立质点静止或作等速直线运动,即质点在不受力或所受力的合力为零时,将保持静 止或匀速直线运动状态不变.(惯性定律) 2.牛顿第三定律(Newton’s third law)
g
y
x o
N
2
α m2
a2
W2
N1′
图3.5.(5 3)
y′
N1 f∗
m1
动量与角动量习题解答
第三章 动量与动量守恒定律习题一选择题1. 一辆洒水车正在马路上工作,要使车匀速直线行驶,则车受到的合外力:( )A. 必为零;B. 必不为零,合力方向与行进方向相同;C. 必不为零,合力方向与行进方向相反;D. 必不为零,合力方向是任意的。
解:答案是C 。
简要提示:根据动量定理,合力F 的冲量F d t = d p = d (m v )=m d v +v d m =v d m 。
因d m <0,所以F 的方向与车行进速度v 的方向相反。
2. 两大小和质量均相同的小球,一为弹性球,另一为非弹性球,它们从同一高度落下与地面碰撞时,则有:()A. 地面给予两球的冲量相同;B. 地面给予弹性球的冲量较大;C. 地面给予非弹性球的冲量较大;A. 无法确定反冲量谁大谁小。
解:答案是B 。
简要提示:)(12v v -=m I3. 质量为m 的铁锤竖直向下打在桩上而静止,设打击时间为∆t ,打击前锤的速率为v ,则打击时铁锤受到的合外力大小应为:()A .mg t m +∆v B .mg C .mg t m -∆v D .tm ∆v 解:答案是D 。
简要提示:v m t F =∆⋅4. 将一长木板安上轮子放在光滑平面上,两质量不同的人从板的两端以相同速率相向行走,则板的运动状况是:() 选择题4图A. 静止不动;B. 朝质量大的人行走的方向移动;C. 朝质量小的人行走的方向移动;D. 无法确定。
解:答案是B 。
简要提示:取m 1的运动方向为正方向,由动量守恒:02211='+-v v v M m m ,得:M m m /)(21v v --='如果m 1> m 2,则v ′< 0。
5. 一只猴子用绳子拉着一个和它质量相同的石头,在一水平的无摩擦的地面上运动,开始时猴子和石头都保持静止,然后猴子以相对绳子的速度u 拉绳,则石头的速率为:()A. uB. u /2C. u /4D. 0解:答案是B 。
第3章动量守恒
v = 2 gl
在其后的一小段时间dt内,对 在其后的一小段时间 内 的绳子, dm = λ dl = λ vdt 的绳子,忽略重力作 y 用,由动量定理可知 Fdt = 0 − dm ⋅ v − dm 2 ∴F = v = − λ v = − 2λ l g dt N = (m + dm) g + F ' ≈ 3λl g
L-l L
例题4 有一条单位长度质量为λ的匀质柔绳,开始 有一条单位长度质量为λ的匀质柔绳, 例题 时盘绕在光滑的水平桌面上,( ,(1 时盘绕在光滑的水平桌面上,(1)若以恒定的加速 向上提起, 时作用于绳端的力; 度a向上提起,当提起的高度为 时作用于绳端的力; 向上提起 当提起的高度为y时作用于绳端的力 若以恒定的速度v向上提起 当提起的高度为y时 向上提起, (2)若以恒定的速度 向上提起,当提起的高度为 时 F 作用于绳端的力。 作用于绳端的力。 取竖直向上为正, 解 :(1)取竖直向上为正 , 当绳加速上升 高度y 高度y时 v = 2ay a 其后一小段时间 dt 内 ,被提起的绳 被提起的绳 y 子将增加 dm = λ dy = λ vdt ,对提起 的绳子, 的绳子,由动量定理
0.2 × 10 = N + 0.2 × 9.8 N = 231N + 1.96 N ≈ 233 N 0 0.01× cos 30 由牛顿第三定律,小球对地面的平均冲力与F大 由牛顿第三定律 , 小球对地面的平均冲力与 大 小相等,方向相反。 小相等,方向相反。 解法二:用分量式求解, 解法二:用分量式求解,选水平竖直平面内直角坐标 系0xy,写出动量定理的分量式: ,写出动量定理的分量式: x方向: 0 = mv sin β − mv0 sin α 方向: 方向 y方向: ( F − mg ) ⋅ ∆t = mv cos β − (− mv0 cos α ) 方向: 方向 两式联立,消去v得 两式联立,消去 得 mv0 ( F − mg ) ⋅ ∆t = sin(α + β ) sin β 因为 α + β = 900 ,故解得 mv0 F= + mg ∆t cos α
大学物理 第3章动量定理
(m2
m1)v2o m1 m2
2m1v1o
2v1o
vr1o
m2 m1
当m1>>m2时,且第二个 球静止,则碰后,第一个球 速度不变,而第二球以2倍 于第一个球的初速度运动。
第一篇 力学
2.完全非弹性碰撞 totally non-elastic collision
特点:机械能不守恒,动量守恒。碰撞
大
数
理 学
例如:两队运动员拔河,有的人说甲队力气大,乙队
院 力气小,所以甲队能获胜,这种说法是否正确?
赵 承 均
甲队
乙队
第一篇 力学
重
大
数
理
学 院
r
F1
r F2
赵 承
均 分析:
拔河时,甲队拉乙队的力,与乙队拉甲队的力是一对作用 力与反作用力,为系统的内力,不会改变系统总的动量。只 有运动员脚下的摩擦力才是系统外力,因此哪个队脚下的摩 擦力大,哪个队能获胜。所以拔河应选质量大的运动员,以 增加系统外力。
重
大 数
质点质量与速度的乘积,可以表征质点瞬时运动的量,称为动量。
理
rr
学 院
p mv
单位:千克·米/秒, kg·m/s
赵 承 均
由Newton第二定律,得:F
ma
m
dv
d (mv)
dp
dt dt
即:
F dt
这就是动量定理。
在经典力学范围内,m=constant,动量定理与F=ma等价,但在高 速运动情况下,只有动量定理成立。
杆跃过自由下落,运动员与地面的作用时间分别
为 1 秒和 0.1 秒,求地面对运动员的平均冲击力。
大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n
i内
0
设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为
第三章 动量守恒定律与能量守恒定律
第三章 动量守恒定律和能量守恒定律3-1 一架以12ms 100.3-⨯的速率水平飞行的飞机,与一只身长为0.20m 、质量为0.50kg 的飞鸟相碰。
设碰撞后飞鸟的尸体与飞机具有同样的速度,而原来飞鸟对于地面的速率很小,可以忽略不计。
估计飞鸟对飞机的冲击力,根据本题的计算结果,你对高速运动的物体与通常情况下不足以引起危害的物体相碰后产生后果的问题有什么体会?解:以飞鸟为研究对象,其初速为0,末速为飞机的速度,由动量定理。
vlt mv t =∆-=∆ ,0F 联立两式可得: N lmv F 521025.2⨯==飞鸟的平均冲力N F F 51025.2'⨯-=-=式中的负号表示飞机受到的冲击力与飞机的运动速度方向相反。
从计算结果可知N F F 51025.2'⨯-=-=大于鸟所受重力的4.5万倍。
可见,冲击力是相当大的。
因此告诉运动的物体与通常情况下不足以引起危险的物体相碰,可能造成严重的后果。
3-2 质量为m 的物体,由水平面上点O 以初速为0v 抛出,0v 与水平面成仰角α。
若不计空气阻力。
求:(1)物体从发射点O 到最高点的过程中,重力的冲量;(2)物体从发射点到落回至同一水平面的过程中,重力的冲量。
解:(1)在垂直方向上,物体m 到达最高点时的动量的变化量是:αsin 01mv P -=∆而重力的冲击力等于物体在垂直方向的动量变化量:ααsin sin 0011mv mv P I -=-=∆=(2)同理,物体从发射点到落回至同一水平面的过程中,重力的冲力等于物体竖直方向上的动量变化量αααsin 2sin sin 1222mv mv mv mv mv P I -=--=-=∆=负号表示冲量的方向向下。
3-3 高空作业时系安全带是非常必要的。
假如一质量为51.0kg 的人,在操作时不慎从高空跌落下来,由于安全带保护,最终使他悬挂起来。
已知此时人离原处的距离为 2.0m ,安全带弹性缓冲作用时间为0.50s 。
普通物理学第二版第三章课后习题答案
第三章 动量定理及动量守恒定律(习题)3.5.1质量为2kg 的质点的运动学方程为 j ˆ)1t 3t 3(i ˆ)1t 6(r 22+++-=(t 为时间,单位为s ;长度单位为m).求证质点受恒力而运动,并求力的方向大小。
解,j ˆ)3t 6(i ˆt 12v ++= j ˆ6i ˆ12a +=jˆ12i ˆ24a m F +==(恒量)012257.262412tg )N (83.261224F ==θ=+=-3.5.2质量为m 的质点在oxy 平面内运动,质点的运动学方程为ωω+ω=b,a, ,j ˆt sin b i ˆt cos a r为正常数,证明作用于质点的合力总指向原点。
解, ,j ˆt cos b i ˆt sin a v ωω+ωω-= r,j ˆt sin b i ˆt cos a a 22 ω-=ωω-ωω-= r m a m F ω-==3.5.3在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较底的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动。
解答,以谷筛为参照系,发生相对运动的条件是,g a ,mg f a m 000μ≥'μ=≥'a ' 最小值为)s /m (92.38.94.0g a 20=⨯=μ='以地面为参照系:解答,静摩擦力使谷粒产生最大加速度为,mg ma 0max μ= ,g a 0max μ=发生相对运动的条件是筛的加速度g a a0max μ=≥',a '最小值为)s /m (92.38.94.0g a20=⨯=μ='3.5.4桌面上叠放着两块木板,质量各为,m ,m 21如图所示。
2m 和桌面间的摩擦系数为2μ,1m 和2m 间的静摩擦系数为1μ。
动量定理及动量守恒定律第三章
在直角坐标系中: , ,
在自然坐标系中: ,
其中 是 、 在坐标轴上的投影,均为代数量,其正负由矢量和坐标轴方向间的夹角小于或大于 来定。方程的数目等于未知数的数目,有时要根据题目中的物理条件列出数字方程。
5解方程,对所得结果进行必要的讨论。
例题讲解:
1如图所示,在光滑的水平地面上放一质量为M的契块,契块底角为 ,斜边光滑,今在其斜边上放一质量为m的物体,求物体沿契块下滑时对契块和对地面的加速度。
解:参考系:地面
研究对象:契块和物体
m
mg
Nm
θ
受力分析: 契块 物体且N‘=-Nm
X
Y
θ
M
m
M
Mg
N
N’
一 章节小结
(一). 惯性定律
1.惯性定律:自由粒子永远保持静止或匀速直线运动状态。
2.惯性参考系 对某一特定物体惯性定律成立的参考系。
其特性:(1)在惯性系中所有物体遵从惯性定律。
(2)一切相对惯性系作匀速直线运动的参考系都是惯性系。
3.相对性原理 对于牛顿动力学规律,一切惯性系都是等价的。
θ
坐标系:如图所示
β
设物体相对地面的加速度为 ,和水平面的夹角为 向下
物体相对契块的加速度为 ,沿斜面,和地面成角
契块相对地面的加速度为 ,沿水平方向后。
根据相对性: ,
例如,对阿特武德机,只能分别选两个物体为研究对象,而不能把两个物体作为一个研究对象来应用牛顿运动定律。
2分析研究对象的受力情况,画出受力图。
3建立坐标系:有了坐标系,才便于把力、加速度等矢量向坐标轴投影,使矢量运算化为标量运算,在动力学中坐标原点的位置可以任意。
力学答案 三章 动量定理 动量守恒定律(思考题
第三章 动量定理及动量守恒定律(思考题)3.1试表述质量的操作型定义。
解答,kgv v m m 00 ∆∆=式中kg 1m 0=(标准物体质量) 0v∆:为m 与m 0碰撞m 0的速度改变 v∆:为m 与m 0碰撞m 的速度改变这样定义的质量,其大小反映了质点在相互作用的过程中速度改变的难易程度,或者说,其量值反映了质量惯性的大小。
这样定义的质量为操作型定义。
3.2如何从动量守恒得出牛顿第二、第三定律,何种情况下牛顿第三定律不成立? 解答,由动量守恒)p p (p p ,p p p p 22112121 -'-=-'+='+' ,p p 21 ∆-=∆ t p t p 21∆∆-=∆∆ 取极限dt p d dtp d 21-= 动量瞬时变化率是两质点间的相互作用力。
,a m )v m (dt d dt p d F 111111 === ,a m )v m (dt d dt p d F 222222 === 21F F -=对于运动电荷之间的电磁作用力,一般来说第三定律不成立。
(参见P 63最后一自然段)3.3在磅秤上称物体重量,磅秤读数给出物体的“视重”或“表现重量”。
现在电梯中测视重,何时视重小于重量(称作失重)?何时视重大于重量(称作超重)?在电梯中,视重可能等于零吗?能否指出另一种情况使视重等于零?解答,①电梯加速下降视重小于重量; ②电梯加速上升视重大于重量;③当电梯下降的加速度为重力加速度g 时,视重为零;④飞行员在铅直平面内的圆形轨道飞行,飞机飞到最高点时,gR v ,0mg R v m N ,N mg R v m 22==-=+=飞行员的视重为零3.4一物体静止于固定斜面上。
(1)可将物体所受重力分解为沿斜面的下滑力和作用于斜面的正压力。
(2)因物体静止,故下滑力mg sin α与静摩擦力N 0μ相等。
α表示斜面倾角,N 为作用于斜面的正压力,0μ为静摩擦系数。
大学物理练习题第三章 动量守恒定律和能量守恒定律
大学物理练习题第三章动量守恒定律和能量守恒定律一、选择题1. 质量m=2kg的质点在力F⃗=12ti⃗ (SI)的作用下,从静止出发沿X轴正方向作直线运动,求它在3秒末的动量( )A. −54i⃗ kg∙m/sB. 54i⃗ kg∙m/sC.−27i⃗ kg∙m/sD. 27i⃗ kg∙m/s2. 一个质点同时在几个力作用下的位移为:∆r⃗=4i⃗−5j⃗+6k⃗⃗ (SI)其中一个力为恒力F⃗=−3i⃗−5j⃗+9k⃗⃗,则此力在该位移过程中所作的功为( )A. 67JB. 91JC. 17JD. -67J3. 对质点组有以下几种说法①质点组总动量的改变与内力无关②质点组总动能的改变与内力无关③质点组机械能的改变与保守内力无关在上述说法中( )A. 只有①是正确的B. ①、③是正确的C. ①、②是正确的D. ②、是正确的4. 质点系的内力可以改变( )A. 系统的总质量B. 系统的总动量C. 系统的总动能D. 系统的总角动量5. 质量为m的质点在外力作用下,其运动方程为r⃗=Acosωti⃗+bsinωtj⃗其中A,B,ω都是正的常数,则在t1=0到t2=π(2ω)⁄这段时间内所作的功( )A.mω2(A2+B2)2⁄B. mω2(A2+B2)C. mω2(A2−B2)2⁄D.mω2(B2−A2)2⁄6. 如图,一劲度系数为k的轻弹簧水平放置,左端固定,右端与桌面上一质量为m的木块相连,用一水平力F向右拉木块而使其处于静止状态。
若木块与桌面间的静摩擦系数为μ,弹簧的弹性势能为E,则下列关系中正确的是( )A. E=(F−μmg)22kB.E=(F+μmg)22kC. E=F22kD. (F−μmg)22k ≤E≤(F+μmg)22k二、填空题1. 设作用在质量为M=1kg的物体上的力F=6t+3 (SI)。
如果物体在这个力的作用下,由静止开始沿直线运动,在0到2.0s的时间间隔内,这个力作用在物体上的冲量大小I= 。
大学物理-第三章-动量守恒定律和能量守恒定律
20
★一对作用力与反作用力的功只与相对位移有关
f ji
ri
f ij
rij
rj
0
dW
jidWij
f
ji
dri
fij drj
f ji fij
fji f ji
(dd(rriidrrjj))
f ji
drij
S
S u
动量的相 对性和动量定 理的不变性
F(t)
t1 m
v1
光滑
v 2
m t2
参考系 t1 时刻 t2 时刻
动量定理
S系
S’系
mv1
mv2
m(v1 u) m(v2 u)
t2 t1
F (t )dt
mv2
mv1
5
例3-1: 作用在质量为1kg 的物体上的力 F=6t+3,如果物体在这
0=m1(v1+v2)+m2v2
v2
m1v1 m1 m2
x
t 0
v2dt
m1 m1 m2
t 0
v1dt
L
t
0 v1dt
x m1L 0.8m m1 m2
负号表示船移动的方向与人前进的方向相反。
17
3-4 动能定理
一、功的概念(work) 功率(power) 1、恒力的功
2、动能定理
2
1
或
F
dr
F
dr
1 2
mv22
动量与角动量
注:质心位矢rc 与坐标系的选择有,
其相对于质点系内各质点的相对位 置是不会随坐标系的选择而变化的, 即质心是相对于质点系本身的一个 特定位置。
i
m
二. 质心的计算
z
C
rC
y x
图3.4 N个质点组成的质点系
质量连续分布的物体 (微元?)
xdm xC m ydm yC m zdm zC m
y
dm
0
x
y
b
xC
xdm
m
O
x dx
动力学30
a
x
例3.9一段均匀铁丝弯成半圆形,其半 径为R,求半圆形铁丝的质心。
作业:3.12
3.5 质心运动定理
一、质心运动定理
rC
mi ri
i
m
dri mi drc dt i vc dt m
mi vi
矢量法
I F t (mv1 ) 2 (mv2 ) 2 2mv1mv2 cos120 3mv
3mv 3 0.14 40 F 8.1103 N t 1.2 103
例3.3一辆装煤车以v=3m/s的速率从煤斗下面通过,每秒 落入车厢的煤为△m=500kg。如果使车厢的速率保持 不变,应用多大的牵引力拉车厢?
以F 表示喷出气体对火箭体推力
根据动量定理: Fdt ( M dm) (v dv) v Mdv
又由 udM Mdv 0 可得Mdv udM udm dm F u dt 上式表明,火箭发动机的推力与燃料燃烧速率
(dm / dt )及喷出气体的相对速度u成正比。
力学第三章动量&牛顿运动定律&动量守恒定理2
由于技术上的原因,多级火箭一般是三级。
火箭运动
嫦娥二号
动画演示
例题
[例题] 一质量均匀分布的柔软细绳开始时盘绕在水平桌面上。 (1)现以一恒定的加速度a竖直向上提绳,当提起的高度为h时, 作用于绳端的力为多少? (2)若以一恒定的速度v竖直向上提绳,当提起的高度仍为h时, 作用于绳端的力又为多少?
例题
[例题]如图表示一战车,置于摩擦很小的铁轨上,
m1 ,炮弹质量为 m2 ,炮筒与水平面夹角 θ 角。 v v v 炮弹以相对于炮口的速度为 2 射出,求炮身后坐速率 v1 。
车身质量为 y
x
例题
[解] 本题铅直方向动量不守恒。水平方向动量守恒 炮弹相对于地面的速度 由图得
v v v v = v1 + v2
火箭运动
设质点在 t 时刻的质量为 m,速度为v,由于外力 F 的作用 和质量的并入,到 t +dt 时刻,质点质量变为 m+dm,速度 变为 v+dv 。在 dt时间内,质量的增量为 dm,如 dm与 m 合并前的速度为 u,根据动量定理有:
v v v v v Fdt = ( m + dm)(v + dv ) − ( mv + dmu )
(3)系统内力为冲力,外力大小有限时,往往可忽略外力, 系统动量守恒。 例如:爆炸过程中,可忽略爆炸物的重力。
从而改变系统内的动量分配;
动量守恒定律
(4)动量守恒定律是自然界中最重要的基本规律之一。 当质点运动速率与光速相比不可忽略时,有
m=
m0 1 − (v c )
2
当v << c 时,m = m0
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.2.光滑水平轨道上有三个木块A 、B 、C ,质量分别为3A m m =、B C m m m ==,开始时B 、C 均静止,A 以初速度0v 向右运动,A 与B 相撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【答案】065B v v = 【解析】 【分析】【详解】设A 与B 碰撞后,A 的速度为A v ,B 与C 碰撞前B 的速度为B V ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得: 对A 、B 木块:0A A A B B m v m v m v =+对B 、C 木块:()B B B C m v m m v =+由A 与B 间的距离保持不变可知A v v = 联立代入数据得:065B v v =.3.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 动量定理及动量守恒定律(思考题)3.1、力的独立作用原理为何?3.2、什么是主动力和被动力? 主动力 重力、弹簧弹性力、静电力和洛伦磁力等有其“独立自主”的方向和大小,不受质点所受其它力的影响,处于主动地位,称主动力。
被动力物体间的挤压力、绳内张力和摩擦力常常没有自己独立自主的大小和方向,要看质点受到的主动力及运动状态而定,称为被动力。
3.3、什么是伽里略的相对性原理?任何惯性参考系在牛顿动力学规律面前都是平等的或平权的。
这称为经典力学相对性原理或伽利略相对性原理。
最后经爱因斯坦推广为全部物理学。
对于物理学规律来说,一切惯性系都是等价的。
我们说“一切惯性系都等价”,是指不同惯性系中的动力学规律(如牛顿三定律)都一样,从而都能正确地解释所看到的现象。
3.4、物体运动时,如果它的速率不变化,它所受的合力是否为零?答:如果它的速率不变化,它所受的合力可能为零,比如匀速圆周运动,速率不变化,但是合力变化。
3.5、棒球运动员在接球时为何要戴厚而软的手套?篮球运动员接急球时往往持球缩手,这是为什么?答,根据tp p t dt F t I F t t ∆-=∆=∆=⎰00,↓↑∆F t 棒球运动员在接球时戴厚而软的手套是为了延长球在手中停止的时间,从而缓冲手受到的冲力多人手的伤害。
3.6、质点系的内力之和有何特点?答;内力之合为零,内力对空间定点或定轴的力矩之合为零。
内力不改变质点系整体的运动状态,但是改变质点的运动状态。
3.7,“质心的定义是质点系质量集中的一点,它的运动即代表了质点系的运动,若掌握质点系质心的运动,质点系的运动状况就一目了然了。
”对否? 答,不对。
质心运动情况不能说明质点系内各质点的运动情况。
3.8悬浮在空气中的气球下面吊有软梯,有一人站在上面。
最初,均处于静止,后来,人开始向上爬,问气球是否运动?答,运动。
内力不影响质心的运动,人向上爬,气球向下运动,达到质点系的质心位置不变。
3.8跳伞运动员临着陆时用力向下拉降落伞,这是为什么? 答,可达到减少人着陆的速度,减轻地面对人的冲力。
3.9质点系动量守恒的条件是什么?在何种情况下,即使外力不为零,也可用动量守恒方程求近似解?答,(1)∑=0外i F(2)外力远远小于内力;外力在某一方向上的投影代数和为零,则质点系的动量在该方向上守恒。
3.10在什么情况下,力的冲量和力的方向相同?答,冲量是矢量,元冲量的方向总是与力的方向相同;至于在一段较长时间内,力的冲量等于这段时间内各无穷小时间间隔元冲量的矢量和,因此,力的冲量方向决定于这段时间诸元冲量矢量和的方向,即 ⎰=t t dt F I 0,不一定和某时刻力的方向相同。
当在一段时间内,各无穷小时间间隔元冲量方向都相同时,则这段时间内力的冲量和力的方向相同。
另外冲量和平均力的方向总是一致的。
3.11试表述质量的操作型定义。
解答,kg v v m m ∆∆=0式中kg m 10=(标准物体质量)0v∆:为m 与m 0碰撞m 0的速度改变 v∆:为m 与m 0碰撞m 的速度改变这样定义的质量,其大小反映了质点在相互作用的过程中速度改变的难易程度,或者说,其量值反映了质量惯性的大小。
这样定义的质量为操作型定义。
3.12如何从动量守恒得出牛顿第二、第三定律,何种情况下牛顿第三定律不成立?解答,由动量守恒)(p ,22112121p p p p p p p-'-=-'+='+' ,21p p ∆-=∆ tp t p ∆∆-=∆∆21 取极限dtp d dt p d 21 -= 动量瞬时变化率是两质点间的相互作用力。
,)(111111a m v m dtddt p d F ===,)(222222a m v m dt ddt p d F ===21F F -=对于运动电荷之间的电磁作用力,一般来说第三定律不成立。
(参见P 63最后一自然段)3.13在磅秤上称物体重量,磅秤读数给出物体的“视重”或“表现重量”。
现在电梯中测视重,何时视重小于重量(称作失重)?何时视重大于重量(称作超重)?在电梯中,视重可能等于零吗?能否指出另一种情况使视重等于零? 解答,①电梯加速下降视重小于重量; ②电梯加速上升视重大于重量;③当电梯下降的加速度为重力加速度g 时,视重为零;④飞行员在铅直平面内的圆形轨道飞行,飞机飞到最高点时,gRv,0v m N ,22==-=+=mg RN mg R v m 飞行员的视重为零3.14一物体静止于固定斜面上。
(1)可将物体所受重力分解为沿斜面的下滑力和作用于斜面的正压力。
(2)因物体静止,故下滑力mg sin α与静摩擦力N 0μ相等。
α表示斜面倾角,N 为作用于斜面的正压力,0μ为静摩擦系数。
以上两段话确切否?答,不确切。
(1)重力可以分解为沿斜面向下的和与斜面垂直的两个力。
但不能说分解为沿斜面的下滑力和作用于斜面的正压力。
(2)应该说,因物体静止,物体所受的力在斜面方向的分力的代数和为零。
3.15马拉车时,马和车的相互作用力大小相等而方向相反,为什么车能被拉动。
分析马和车的受的力,分别指出为什么马和车能启动。
答,分析受力如图。
地面反作用于马蹄子上的力使系统启动。
3.16分析下面例中绳内张力随假想横截面位置的改变而改变的规律: (1)长为质量为m 的均质绳悬挂重量为W 的重物而处于静止。
(2)用长为 质量为m 的均质绳沿水平方向拉水平桌面上的物体加速前进和匀速前进。
对两种情况均可用F表示绳作用于物体的拉力,不考虑绳因自重而下垂。
(3)质量可以忽略不计的轻绳沿水平方向拉在水平桌面上运动的重物,绳对重物的拉力为F,绳的另一端受水平拉力1F ,绳的正中间还受与1F 的方向相同的拉力2F。
(4)长为 质量为m 的均质绳平直地放在光滑水平桌面上,其一端受沿绳的水平拉力F而加速运动。
(5)长为 质量为m 的均质绳置于水平光滑桌面上,其一端固定,绳绕固定点在桌面上转动,绳保持平直,其角速率为ω。
若绳保持平直,你能否归纳出在何种情况下绳内各假想横截面处张力相等。
(提示:可沿绳建立ox 坐标系,用x 坐标描写横截面的位置)。
答,(1)y mg mg W y mg W T-+=-+=)( y 是在0至ι之间的任意位置。
(2)匀速前进:w F μ=,F T = 加速运动:,w F μ>x xa mF T+= (3),2<<x o ,21F F T +=,2<<x ,1F T = (4)x F x m m F T==)(, (5))22(T ,22222x m xdx m xdm dx m dm x x -====⎰⎰ ωωω若绳保持平直,绳的两端受到大小相等方向相反的外力作用时,绳静止或匀速直线运动。
这时张力处处相等。
若绳保持平直,绳的两端受到大小不等方向相反的外力作用时,绳加速直线运动,这时在忽略绳的质量时,张力处处相等。
3.7两弹簧完全相同,把它们串联起来或并联起来,劲度系数将发生怎样的变化?解答,如图,串联时:,2 ∆'=∆==k k F mg 2k k =' 并联时:,2/ ∆'=∆==k k F mg k k 2='。
3.18用两段同样的细线悬挂两物体,若突然向下拉下面物体,下面绳易断,若缓慢拉,上面线易断。
为什么?答,突然向下拉下面物体时,由于上面物体要保持静止状态(惯性),由于过程的时间极短,上面物体还没有来得及改变状态,下面的绳就断了。
若缓慢拉下面物体时,上面物体能够来得及改变状态,这样上面绳内的张力比下面绳内的张力大,所以上面绳易断。
3.19有三种说法:当质点沿圆周运动时, (1)质点所受指向圆心的力即向心力; (2)维持质点作圆周运动的力即向心力;(3)r mv /2即向心力。
这三种说法是否正确? 答,以上说法都不确切。
(1)如图F 的n ˆ方向投影为向心力,向心力为∑in F 。
(2)维持质点作圆周运动的力可能有∑in F ∑τiF 。
(3)r mv /2不是力,是外力对物体作用的瞬时效应。
a m 是动量的变化率,dtp d v m dt ddt v d ma m===)(。
3.20杂技演员表演水流星,演员持绳的一端,另端系水桶,内盛水,令桶在铅直平面内作圆周运动,水不流出。
(1)桶到达最高点除受向心力外,还受一离心力,故水不流出;(2)水受到重力和向心力的作用,维持水沿圆周运动,故水不流出。
以上两种说法正确否?作出正确分析。
解答,以上两种说法不正确。
(1)向心力不是独立于其它相互作用之外的力,向心力为∑in F 。
离心力为∑in F 的反作用力,它不作用于桶上。
(2)在惯性系内,水沿圆周运动,所受的力为重力和桶对水的作用力即Rv m mg N 2=+在非惯性系内,水除受重力和桶对水的作用力外,还受惯性离心力 Rv m F c 2=3.21游戏场中的车可在铅直圆环轨道上行驶,设车匀速前进。
在图中标出的几个位置E 、C 、A 、B 、D 上,何处乘客对坐位的压力最大?何处最小?解答,,cos 2R v m mg N =+θ,cos 2Rv m mg N +-=θ时 0 ,1cos ==θθ,N 最小时 ,1cos πθθ=-=,N 最大。
在最下面。
可以得出D 、E 点N 最大。
3.22尾部设有游泳池的轮船匀速直线航行,一人在游泳池的高台上朝船尾方向跳水,旁边的乘客担心他跳入海中,这种担心是否必要?若轮船加速行驶,这种担心有无道理?答,(1)不必要。
由伽利略下的相对性原理 (2)若轮船加速行驶,这种担心有道理。
在加速平动的非惯性中人除了受到物体的相互作用力外,还受到与加速度方向相反的惯性力,此力有可能使他跳入海中。
3.23根据伽利略相对性原理,不可能借助于在惯性参照系中所作的力学实验来确定该参照系作匀速直线运动的速度。
你能否借助于相对惯性系沿直线作变速运动的参照系中的力学实验来确定该参照系的加速度?如何作?答,θθθθgtg a g atg T mg T ma ====,,cos ,sin 测出θ,a 可求。
3.24在惯性系测得的质点的加速度是由相互作用力产生的,在非惯性系测得的加速度是惯性力产生的,对吗? 答,不对。
∑'=-+a m a m F i)(,3.25用卡车运送变压器,变压器四周用绳索固定在车厢内,卡车紧急制动时,后面拉紧的绳索断开了。
分别以地面和汽车为参照系,解释绳索断开的原因。
答,地面为参照系(惯性系),变压器为研究对象,其加速度向后,所以作用在变压器上的合力向后,后面的绳索作用在变压器的力比前面的大。
(由于加速度较大,静摩擦力远远小于绳索的拉力,静摩擦力可以不考虑)汽车为参照系(非惯性系),变压器为研究对象,相互作用力和惯性力矢量和为零,可见,后面的绳索作用在变压器的力比前面的大。