离心沉降分离原理
第三章 非均相物系的汇总
4d(S
)
u
2 T
3 R
ut是常量,ur随uT和R变化,是变量。
2.离心沉降所处理的非均相物系中固粒直径通常很小,沉降一般
在滞流区进行,故其沉降速度可表示为:
ur
d2 (S ) 18
u
2 T
R
3.分离因数:同一颗粒在同种介质中的离心沉降速度与重力沉降
速度的比值,以Kc表示:
KC
ur ut
u
2 T
粒径d/μm
d<dc的颗粒有些可能已在进口处靠近壁面,在停留时间内能 够到达器壁;或者互相聚集而成大颗粒因而具有较大的沉降速 度。
②颗粒向器壁运动时,穿过厚度为进气口宽度B的流体层;
③颗粒与流体相对运动为滞流,且ρs>>ρ。
ur
d2 (S ) uT2 18 R
d2S 18
u
2 i
Rm
临界粒径计算公式的推导
颗粒到达器壁所需沉降时间:t
B ur
18R mB
d
2Su
2 i
气流在旋风分离器内停留时间: l 2R m Ne
ui
ηo~di粒级效率曲线:
100
粒径效率ηpi/%
此曲线可通过实测旋风分离器进、
出口气流中的含尘浓度及粒度分布得
到。设其临界直径dc为10μm。理论 上 : 凡 d>10μm 的 颗 粒 , 均 应
ηpi=100%;而 d<10μm的颗粒,均
为ηpi=0,即为折线所示。
0 10
实际上:d<dc的颗粒也有可观的 分 离 效 果 ; d>dc 的 颗 粒 也 有 部 分 未 被分离下来。其原因:
第三章 非均相物系的分离——离心沉降
固液分离原理
固液分离原理
固液分离原理是物料中的固态物质与液态物质通过一定的分离方法将二者分离开来的过程。
固液分离工艺是许多行业中常用的一种工艺,如化工、环保、食品等行业。
固液分离的原理主要包括以下几种方法:
1. 重力沉降:根据固态物质的比重较大,在重力的作用下,通过让悬浮于液体中的固体颗粒沉降,实现固液分离。
常见的重力沉降设备有沉淀池、沉淀罐等。
2. 离心沉降:通过高速旋转设备,使固体颗粒在离心力的作用下产生向外的离心力,从而实现固液分离。
常见的离心设备有离心机、沉砂离心机等。
3. 过滤:通过筛网、滤纸、滤布等过滤介质,使固态颗粒截留在过滤介质上,只让液态流过,实现固液分离。
常见的过滤设备有压滤机、真空过滤机等。
4. 榨取和压滤:利用外部力,如液压力或机械力,对固液混合物进行压榨或压滤,使其中的液体通过过滤介质,而固体部分留在过滤介质上,实现固液分离。
常见的设备有压滤机、压榨机等。
以上是常见的固液分离的原理方法,根据不同的物料性质和实际需求,选择合适的分离方法进行操作,可以有效地将固态和液态分离开来,达到所需的分离效果。
离心沉降速度旋风分离器操作原理旋风分离器的
8VS ' D2
9 D
dc
4
N S
8VS ' D2
D 3 32SVS 'dc2 0.695m 9
校核ΔP
ui
8VS ' D2
8 1.08 0.6952
17.9m /
s
或P者从 维u2持i 2指定8的.0 最0大.4允3许21压7.降9数2 值 5为5前0P提a ,求7得00每Pa台 旋
进气管截面积 AB D D D2 0.076m2 24 8
每个旋风分离器的气体处理量为:
VS' ABui 0.076 20.2 1.535m3 / s
含尘气体在操作状况下的总流量为:
VS
5500 273 500 7600 273
4.32m3
/s
所需为旋满风足分规离定器的的气台体数处为理:量n 、VV压SS'强降2.及8 分离效率三项指
个数。
步骤: a) 根据具体情况选择合适的型式,选型时应在高效率与
地阻力者之间作权衡,一般长、径比大且出入口截面小的设 备效率高且阻力大,反之,阻力小效率低。
b) 根据允许的压降确定气体在入口的流速ui c) 根据分离效率或除尘要求,求出临界粒径dC d) 根据ui和dc计算旋风分离器的直径D e) 根据ui与D计算旋风分离器的处理量,再根据气体流量 确定旋风分离器的数目。
标,需要直径不大于0.78m的标准分离器至少三台,为了 便于安排,现采用四台并联。 校核压力降与分离效率
四台并联时,每台旋风分离气分摊的气体处理量为:
Vs '
Vs 4
1.08m3 / s
生物分离-第三章-离心与沉降
离心过滤
离心过滤就是应用离心力代替压力差作为过滤推动力的分离方法, 也称为过滤式离心机。 左图为工业上常用的篮式过滤离心 机,过滤离心机的转鼓为一多孔圆 筒,圆筒转鼓内表面铺有滤布。 操作时,被处理的料液由圆筒口连 续进入筒内,在离心力的作用下, 清液透过滤布及鼓壁小口被收集排 出,固体微粒则被截留于滤布表面 形成滤饼
沉降设备的分类:
• • • • 矩形水平流动池 圆形水平流动池 垂直流动式圆形池 方形池
传统
沉降设备
新型 • 斜板式沉淀池 • 斜管式沉淀池
矩形水平流动池: 沉降特性好,池壁可两池共 用,节省费用
圆形水平流动池: 截面是圆形,高径比小,但 处理量较大,液体从中进入, 向外筒壁流动,通过溢流堰 排出
v0-泵送作用下的液体流速,m/s vc- 粒子在离心力作用下的运动速度, m/s 在多数场合下,vo随r的变化而变化,即r减小时,vo增大,因碟片 间的环隙通道截面积随r减小而缩小。且vo还是微粒位置的y坐标的
函数,即在碟片表面v0=0。 vo可表示为:
Q---为离心机泵送液体的流量,m3/s
n—碟片间隙数
μ—介质黏度,Pa〃s;
v —微粒运动速度,m/s。
这个等式仅当球形微粒较小时方能成立,即:
如果Re>1时,阻力为 f—摩擦系数 当球形粒子在介质中运动时速度较小,因此作用其上的阻力也 较小,当阻力与浮力平衡时,微粒加速度为零。联立方程 3.1 和3.2,得到下式, 此式给出了微粒稳定状态和最终速度
单位面积上的过滤体积可改写为
可得近似离心式过滤机由开始操作至滤饼厚度为(R0-Rc)时的过滤时 间
从一种发酵液中分离提取类固醇,类固醇晶体的 浓度为16kg/m3,料液密度为1000kg/m3.在过滤分 离小试中,处理0.25L发酵液需32min,实验室装 置的过滤面积为8.3· 10-4m2,过滤压降为105Pa, 所得滤饼密度为1090kg/m3,过滤介质阻力可忽 略。扩大实验使用篮式过滤离心机处理发酵液, 离心机转鼓内径为1.02m,高0.45m,转速为 530r/min,在过滤转速时,测知转鼓内的液层和 滤饼的厚度之和为0.055m。求处理1.6m3这种发 酵液所需的分离时间
简述离心沉降与离心分离的原理和主要设备。
简述离心沉降与离心分离的原理和主要设备。
离心沉降和离心分离是常用的分离技术,它们广泛应用于生物化学、环境工程、制药、食品工业等领域。
本文将分别介绍离心沉降和离心分离的原理及主要设备。
一、离心沉降的原理和设备离心沉降是利用物质不同密度和形态的差异,在离心力的作用下使其沉降速度不同,从而实现分离的过程。
常用的离心沉降设备有旋转式离心机和管式离心机。
旋转式离心机是利用来自电机的动力旋转离心轴,产生离心力将样品沉淀预处理和离心分离,从而获得相应分离物的仪器设备。
旋转离心机适用于离心样品量小,操作简便,但离心速度和离心时间比较低,难以获得高分离效率。
管式离心机是在旋转离心机的基础上发展而来,由储液离心、分离离心和预冷离心三部分构成。
离心样品在离心过程中,通过离心管与离心机离心转子的分类,得到不同的离心位置与离心堆积痕迹。
同时该设备离心放大比例可高达20000倍,非常适用于样品的分离、纯化与富集。
二、离心分离的原理和设备离心分离是指根据不同物质的离心系数不同,在离心力的作用下使样品中的物质分离开来,从而实现纯化、富集和分析的一种方法。
常用的离心分离设备有密度梯度离心机和磁珠分离离心机。
密度梯度离心机利用高分子、高糖等某种材料,根据其密度差异构成了密度梯度离心分离设备,便于不同物质在不同密度梯度中进行分离与纯化,从而实现了单细胞分离和混合杂交。
磁珠分离离心机是利用磁性材料的特性,配合外加磁场实现离心分离的一种方法。
它是以磁性材料与样品中特定成分的磁性微珠结合后,利用磁珠在离心过程中的可控性和特殊结构,从而实现离心分离的一种设备。
离心沉降和离心分离的原理都是基于材料的密度、形态、尺寸等因素对离心力的差异响应分离方法,虽然两种设备的使用场景、原理、特点不同,但在样品分离方面都发挥着重要作用。
离心沉降和离心分离广泛应用于生物化学、生物医学、制药、食品工业、环境工程等领域。
下面分别从这几个领域具体涉及的离心沉降和离心分离的实际应用进行简要介绍:1. 生物化学领域离心沉降技术在生物化学领域中的一个重要应用是蛋白质分离。
常用的分离原理有哪些种类
常用的分离原理有哪些种类
常用的分离原理有以下几种种类:
1. 过滤分离:利用过滤介质对混合物进行筛选,通过颗粒物与过滤介质之间的大小差异实现分离。
2. 沉降分离:利用悬浮物在重力或离心力作用下的沉降速度差异,通过沉降使混合物分离。
3. 离心分离:利用离心力使混合物中的组分在离心场中产生运动,根据运动速度差异来分离。
4. 蒸馏分离:利用混合物中不同组分沸点的差异,通过加热或减压使某一组分汽化、冷凝实现分离。
5. 结晶分离:利用混合物中不同组分溶解度的差异,在适当的条件下供过饱和,使其中一个或多个组分结晶出来。
6. 蒸发分离:通过加热使混合物中的溶剂蒸发,使混合物中的溶质与溶剂分离。
7. 萃取分离:利用溶剂的选择性溶解能力,将混合物中的某一组分从原混合物中分离出来。
8. 溶解分离:通过溶解混合物中的某一或多个组分,将其他组分分离。
9. 吸附分离:利用物质在固体表面或固体孔隙中的吸附能力,实现混合物中的组分分离。
10. 色谱分离:利用混合物中组分在固定相和移动相之间的差异,通过移动相的流动对组分进行分离。
化工原理第三章离心沉降
d
3 P
ut2 r
阻
力=
d
2 P
u
2 r
42
7/1/2019
当三力达到平衡时,则:
6
d
3 P
P
ut2 r
6
d
3 P
ut2 r
d
2 P
4
ur2
2
0
【定义】颗粒在径向上相对于流体的运动速度 ur 便
是此位置上的离心沉降速度。可推得:
径向速度
7/1/2019
ur
4dP P ut2
3 r
切向速度
——离心沉降速度基本计算式
2、离心沉降速度与重力沉降
3
ur
4dP P ut2
3 r
【表达式】重力沉降速度公式中的重力加速度改为 离心加速度;
【数值】重力沉降速度为颗粒运动的绝对速度,基 本上为定值;离心沉降速度为绝对速度在径向上的 分量,随颗粒在离心力场中的位置(r)而变。
往往很大)
7/1/2019
旋风分离器的技术规格
规格型号
CZT-3.9 CZT-5.1 CZT-5.9 CZT-6.7 CZT-7.8 CZT-9.0
7/1/2019
进口风速 m/s
11-15 11-15 11-15 11-15 11-15 11-15
风量 m3/h
790-1080 1340-1820 1800-2450 2320-3170 3170-4320 4200-5700
清液或含有微细颗粒的液体则从顶部的中心管排出称为溢送至配碱岗位回收液送盐水工序效蒸发器电解液电解液大罐加料泵螺旋式预热器效蒸发器效蒸发器效蒸发器旋液分离器中间槽段蒸发器冷却器澄清槽高位槽离心机加料槽烧碱生产蒸发流程图20161262016126结构特点是直径小而圆锥部分长
离心浓缩原理
离心浓缩原理
离心浓缩是一种常用的分离和浓缩液体溶液中的物质的方法。
其原理基于不同物质在离心力作用下的分层沉降速度不同的特性。
离心机通过高速旋转,产生强大的离心力,将液体中的物质分离为不同的层次,从而实现浓缩和分离的目的。
离心浓缩利用离心机的离心力,使液体溶液中的分子和颗粒受到离心力的作用,沿着离心机的径向方向分层沉降。
较重的物质会向离心机的外侧移动,形成固体沉淀层,而较轻的物质则会向离心机的内侧移动,形成液体上清层。
在离心浓缩过程中,液体溶液首先被置于离心机的离心杯中。
当离心机开始高速旋转时,液体溶液中的物质会受到离心外力的作用,向离心杯的底部沉淀。
沉淀物质的浓度会随着离心机的加速而增加。
较轻的物质则会在离心杯中形成上清液体层,浓度相对较低。
离心浓缩的原理基于不同物质的重力沉降速度不同。
根据斯托克斯定律,物质在液体中受到的沉降速度与其颗粒大小、形状以及介质黏度等因素有关。
一般来说,颗粒越大、形状越不规则、介质黏度越高,物质的沉降速度就越慢。
离心浓缩可以用于分离悬浮液中的固体颗粒、分离混合溶液中的不同组分、浓缩稀溶液等。
通过调整离心机的运转速度和离心时间,可以控制离心浓缩的效果。
离心浓缩具有操作简单、分离效果好、浓缩速度快等优点,广泛应用于化学、生物、食品等领域。
环境工程原理 第五章 沉降
1 P 2 ut gd P 18
斯托克斯(Stokes)公式
第二节 重力沉降
(2)过渡区:2<ReP<103
18.5 CD 0.6 ReP
ut 0.27
0.6 ( P ) gd P ReP
艾仑(Allen)公式 CD = 0.44
第三节 离心沉降
(二)旋流分离器
• 旋流分离器用于分离悬浮液,在结构和操作原理上与旋风 分离器类似。 • 旋流分离器的特点: ①形状细长,直径小,圆锥部分长,有利于颗粒分离。 ②中心经常有一个处于负压的气柱,有利于提高分离效 果。
• 在水处理中,旋流分离器又称为水力旋流器,可用于高浊 水泥沙的分离、暴雨径流泥沙分离、矿厂废水矿渣的分离等。
utc
4( P )d P r 2 3 CD
4( P )d P g 重力沉降 ut 3 CD
• 沉降方向不是向下,而是向外,即背离旋转中心。 • 由于离心力随旋转半径而变化,致使离心沉降速度也随粒 径所处的位置而变。 • 离心沉降速率在数值上远大于重力沉降速率。
第三节 离心沉降
π 2 u 2 FD CD dP 4 2
CD与Re有关
第三节 离心沉降
F Fc Fb FD
2 1 3 π u 2 πd P ( P )r 2 CD d P 6 4 2 du m dt 颗粒在此位置上的离心沉降速度:
如果这三项力能达到平衡 du/dt=0
2 CD与ReP的关系曲线转换成 CD ReP 与ReP的关系曲线。
第二节 重力沉降
CDReP-1(不包含颗粒直径的摩擦数群) 由颗粒直径计算沉降速度 由颗粒直径和其他参 数,计算摩擦数群。
第二节离心沉降
• 颗粒在离心力的作用下沉降而实现分离的过程。
第二章
1
离心沉降速度计算
离心力(径向向外): 向心力(径向向内 ): 阻力(径向向内 ):
Fc
6
d
3s
uT2 R
Fb d 3 uT2
6R
Fd
d2
u
2 r
42
球形 颗粒
uT——切向速度,m/s。 ur ——颗粒与流体在径向上的相对速度,m/s。
固体颗粒视为球形,ρ s=2640kg/m3,若采用离心沉降,uT2 / R 90m / s2 求(1)d=0.1mm颗粒的 ur 。(2)ur=0.02m/s的 d 。
(1)ut =3.41×10-3m/s (2) d=2.59×10-4m
解: (1)求ur 设沉降属于层流区
ur
d 2 (s ) uT2 18 R
第二章
2
合力为0时:
Fc=Fb+Fd
ur
4d ( s )uT2 3R
ut =
4gd(s ) 3
——离心沉降速度计算通式
计算重力沉降速度的公式及所对应的流动区域仍可用于离心沉降!
ur ut
uT2 Rg
Kc
离心分离因数 是离心分离设备的重要性能指标 。
第二章
3
例:烧碱厂重力沉降净化粗盐水。粗盐水ρ =1200Kg/m3,μ =2.3mPa.s。
直径小
ur
d 2(s 18
)
uT2 R
μ l》µg ρ l》ρ g
锥底长
由于D小,为保证混合物有足够的停留时 间,只有加长锥底。
沉降过滤式离心脱水机工作原理
沉降过滤式离心脱水机工作原理
沉降过滤式离心脱水机是一种常用于固液分离的设备,通过离心力和过滤技术来将悬浮物从液体中分离出来。
工作原理如下:
1. 液体进料:被处理的悬浮液体通过进料管道进入机器的进料腔体。
2. 离心力产生:当液体进入进料腔体后,离心机通过旋转运动产生一定的离心力,将悬浮物质分离出来。
3. 悬浮物质分离:离心力使得悬浮物向离心机的外缘移动,并且在离心力的作用下沉降到静止液面上形成沉淀层。
4. 液体排出:由于产生的离心力,液体中的较重固体颗粒将被迅速分离出来,将干净的液体通过出料管道排出。
5. 沉淀物排出:当悬浮物沉淀在离心机的静止液面上后,可通过卸渣器将其排出。
通过这种方式,沉降过滤式离心脱水机可以有效地实现悬浮液体的固液分离。
它在水处理、矿业、食品加工等领域中广泛应用,可以快速处理大量的固体悬浮物质,使液体更清澈、干燥,提高生产效率和产品质量。
离心沉降和过滤的概念
这种方法是根据分离的粒子在梯度液中沉降速度的不同, 使具有不同沉降速度的粒子处于不同的密度梯度层内分成一系 列区带,达到彼此分离的目的。梯度液在离心过程中以及离心 完毕后,取样时起着支持介质和稳定剂的作用,避免因机械振 动而引起已分层的粒子再混合。用于差速区带离心分离的物质 密度必须大于梯度液中最大密度,离心过程必须在被分离物区 带到达管底前停止。 由于ρs>ρL,可知S>0,因此该离心法的离心时间要严格 控制,既有足够的时间使各种粒子在介质梯度中形成区带,又 要控制在任一粒子达到沉淀前。如果离心时间过长,所有的样 品可全部到达离心管底部;离心时间不足,样品还没有分离。 由于此法是一种不完全的沉降,沉降受物质本身大小的影响较 大,一般是应用在物质大小相异而密度相同的情况。常用的梯 度液有Ficoll、Percoll及蔗糖。)
当管底介质的密度大于粒子的密度即在离心前预先配制介质的密度梯度此种密度梯度液包含了被分离样品中所有粒子的密度待分离的样品铺在梯度液顶上或和梯度液先混合离心开始后当梯度液由于离心力的作用逐渐形成管底浓而管顶稀的密度梯度与此同时原来分布均匀的粒子也发生重新分布
第一章 原料预处理
(一) 细胞分离 了解:重力沉降、离心沉降和过滤的概念。 理解:离心分离与过滤原理以及提高分离效率的方法。 应用:采用不同的离心分离、过滤设备对不同的细胞进 行分离。 (二) 细胞破碎 理解: 各种细胞破碎方法原理、优缺点及其适用范围。 应用:采用不同的细胞破碎方法对不同细胞进行不同程 度的破碎。
令:
S=Leabharlann 18 LS为沉降系数
从该式中可看出:
①当ρs>ρL,则S>0,粒子顺着离心方向沉降。 ②当ρs=ρL,则S=0,粒子到达某一位置后达到平衡。 ③当ρs<ρL,则S<0,粒子逆着离心方向上浮。 离心沉降时,颗粒的相对分子质量越大,沉降系数越大,离心沉降速 度越大。
水污染控制技术-离心
二、分离理论
离心
(一)离心分离
离心分离的基本原理是利用悬浮粒子与周围液体间存在的密度差进行的。
(二)离心过滤
离心过滤形成的滤饼是由固体颗粒组成。离心操作都是以滤饼过滤形式进行的,按照性质分为不可压缩滤饼 (不易变形的固体颗粒)和可压缩滤饼(絮凝团和附聚团的细小颗粒)。
(三)离心沉降
颗粒在离心沉降主要有层流、过渡流和湍流三种流型。在离心机转鼓内进行颗粒的离心沉降分离时,存在自 由沉降与干扰沉降两种过程。
离心
(二)离心机设备
沉降式离心机是实现离心沉降分离的专用设备。本课介绍连续式离心机即螺旋卸料沉降离心机。 它具有以下优点: ①操作自动连续; ②分离性能好; ③适应性强,操作维修费用低,适合现代化大生产的要求。
四、旋液分离
离心
(一)旋液分离器 旋液分离器是利用离心力进行分离或分级
的。其结构:由圆筒体,圆锥体、进料口、底流 口、和溢流口等组成。 (二)工作原理
污水的物理处理技术 ——离心
一、概述
离心
离心分离和旋液分离都是利用离心惯性力实现物料中固-液相或液-液相的分离操作。分离操作的设备称为离心机和旋 液分离器。 (1)离心分离:转鼓周壁无孔,转数最高,旋转时乳浊液在离心力的作用下分为两层。 (2)离心沉降:转鼓周壁无孔,为沉降式转鼓,适合于固相含量较少,颗粒较细的悬浮液分离。 (浮液分离。
悬浮液由进料口沿切线进入圆筒体部分, 形成旋流,外层为下降气流,内层为上升气流。 下降旋流中的粗颗粒在离心力作用下向器壁方向 运动,并被下降旋流聚集到底流口,形成底流浓 浆排出,细粒部分被上升至内旋流带,经溢流口 排出。内旋流中心为负压的气流,有助于提高分 离效果。
谢谢观看
单击此处添加副标题
离心脱水机的工作原理及其特点
离心脱水机的工作原理及其特点
1、离心脱水机的工作原理
污泥脱水离心机又称离心脱水机、卧螺离心沉降脱水机,是指利用离心沉降分离的原理进行污泥脱水的设备。
其工作原理是:将投加絮凝剂调理过的污泥通过中心进料管导入转子,在高速旋转(通常2000~3000r/min)的离心力作用下快速分离,将质量较重的固相污泥甩沉到转鼓的内壁上形成沉渣层,而质量较轻的液相水则形成内环分离液层,然后沉渣在螺旋的推动下甩出,液相水从溢流口排出。
2、离心脱水机的特点
离心脱水机具有以下优点:
(1)利用高速旋转的离心力进行脱水,没有滤网,不会发生堵塞等操
作障碍;
(2)自动化程度高,会自动根据污泥浓度的变化、药剂浓度的变化等调整差速和扭矩,不需要人工过度的干预,甚至可以无人值守;
(3)设备紧凑,占地面积小,但是设备污泥处理效率高,可以实现24h连续运行,处理量大,尤其适合大型污水处理厂;
(4)通体封闭,污泥及污泥的气味几乎不会外泄,安全、环保,工作环境清洁,符合清洁生产的最新要求。
离心脱水机也存在以下缺点:
(1)离心脱水机属于高速运转的设备,设备精密程度高,设备单价较高,维护要求高,对操作人员技术水平要求也很高;
(2)离心机对阳离子絮凝剂的要求很高,必须要求分子量高,或者要有特殊分子结构,这样才能有足够的耐剪切能力。
否则在高速剪切下,药剂消耗量太大,药剂成本太高等。
离心沉降原理
离心沉降原理
离心沉降原理是指在离心力作用下,颗粒悬浮物沉入沉降区域的过程。
离心沉降器是利用离心力将悬浮物和液体分离的设备。
离心力是一种由旋转运动产生的力,其大小与旋转半径、旋转速度和物体质量有关。
当含有颗粒悬浮物的液体进入离心沉降器后,由于离心力的作用,颗粒悬浮物受到向外的离心力而向沉降区域移动。
在离心沉降器中,沉降区域通常是一个圆筒形的容器,其直径逐渐减小。
当液体处于旋转状态时,由于离心力的不同,含有不同密度颗粒的液体将自动分层。
较重的颗粒沉降到容器底部,形成沉渣;较轻的颗粒聚集在容器顶部形成浮渣。
离心沉降器广泛应用于化工、生物技术、环境工程等领域。
它可以用来分离混合物中的悬浮物、提取固液混合物中的固体,以及分离不同密度的物质等。
总之,离心沉降原理是通过利用离心力将悬浮物和液体分离的过程。
离心沉降器的设计和使用使得离心沉降原理得以应用于各个领域,提高了悬浮物分离的效率。
离心机工作原理及相关事项
离心机离心机示意图离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。
所以需要利用离心机产生强大的离心力,才能迫使这些微粒克服扩散产生沉降运动。
离心机离心机是利用离心力,分离液体与固体颗粒或液体与液体的混合物中各组分的机械。
离心机主要用于将悬浮液中的固体颗粒与液体分开;或将乳浊液中两种密度不同,又互不相溶的液体分开(例如从牛奶中分离出奶油);它也可用于排除湿固体中的液体,例如用洗衣机甩干湿衣服;特殊的超速管式分离机还可分离不同密度的气体混合物;利用不同密度或粒度的固体颗粒在液体中沉降速度不同的特点,有的沉降离心机还可对固体颗粒按密度或粒度进行分级。
离心机大量应用于化工、石油、食品、制药、选矿、煤炭、水处理和船舶等部门。
中国古代,人们用绳索的一端系住陶罐,手握绳索的另一端,旋转甩动陶罐,产生离心力挤压出陶罐中蜂蜜,这就是离心分离原理的早期应用。
工业离心机诞生于欧洲,比如19世纪中叶,先后出现纺织品脱水用的三足式离心机和制糖厂分离结晶砂糖用的上悬式离心机。
这些最早的离心机都是间歇操作和人工排渣的。
由于卸渣机构的改进,20世纪30年代出现了连续操作的离心机,间歇操作离心机也因实现了自动控制而得到发展。
工业用离心机按结构和分离要求,可分为过滤离心机、沉降离心机和分离机三类。
离心机有一个绕本身轴线高速旋转的圆筒,称为转鼓,通常由电动机驱动。
悬浮液(或乳浊液)加入转鼓后,被迅速带动与转鼓同速旋转,在离心力作用下各组分分离,并分别排出。
通常,转鼓转速越高,分离效果也越好。
离心分离机的作用原理有离心过滤和离心沉降两种。
离心过滤是使悬浮液在离心力场下产生的离心压力,作用在过滤介质上,使液体通过过滤介质成为滤液,而固体颗粒被截留在过滤介质表面,从而实现液-固分离;离心沉降是利用悬浮液(或乳浊液)密度不同的各组分在离心力场中迅速沉降分层的原理,实现液-固(或液-液)分离。
离心沉降
24 ξ= Re
uT 2 d (ρs − ρ) ur = 18µ R
2
2 离心分离因数
同一颗粒在同一种介质中的离心沉降速度与重力沉降速 同一颗粒在同一种介质中的离心沉降速度与重力沉降速 度的比值为 度的比值为 : ur = uT = K c
2
ut
gR
比值K 就是粒子所在位置上的惯性离心力场强度与重力场 比值 c就是粒子所在位置上的惯性离心力场强度与重力场 强度之比称为离心分离因数。 强度之比称为离心分离因数。 称为离心分离因数
一般旋风分离器是以圆筒直径 为参数 其它尺寸都与D 一般旋风分离器是以圆筒直径D为参数,其它尺寸都与 圆筒直径 为参数, 成一定比例。 的数值一般为0.5~ ,对标准旋风分离器, 成一定比例。Ne的数值一般为 ~3.0,对标准旋风分离器, 可取N 可取 e=5。 。 ui
h
S
标准旋风分离器的尺寸
H1
离心沉降速度( 上的离心沉降速度 绝对速度在径向上的分量) 上的离心沉降速度(绝对速度在径向上的分量)。
4d(ρs − ρ) uT ur = 3ξρ R
4d(ρs − ρ) ut = g 3ξρ
2
——离心沉降速度表达式 离心沉降速速度表达式
两者区别在于加速度的不同 , 一个是“ 两者区别在于 加速度的不同, 一个是 “ ut2/R”, 一个是 “ g” 加速度的不同 , 一个是“ 。
直径小于dc的颗粒中 直径小于 有些在旋风分离器进口处已很靠近壁面, 有些在旋风分离器进口处已很靠近壁面,在停留时间内 能够达到壁面上;有些在器内聚结成了大的颗粒,因而具有 能够达到壁面上;有些在器内聚结成了大的颗粒, 较大的沉降速度 直径大于d 直径大于 c的颗粒中 气体涡流的影响,可能没达到器壁; 气体涡流的影响,可能没达到器壁;即使沉到器壁也会 被重新扬起
离心式物料分离器的工作原理
离心式物料分离器的工作原理
离心式物料分离器的工作原理是利用旋转的离心力将混合物中的不同物料分离开来。
离心式物料分离器通常由一个圆筒形容器和轴线上转动的分离器组成。
混合物被送入容器中,并在容器内形成一个旋转的涡流。
由于离心力的作用,重物料和轻物料将在离心力的作用下分别沉降和浮升。
具体工作过程如下:
1. 混合物经过供料系统进入离心式物料分离器。
通常采用离心泵将混合物从中心供给到分离器内部。
2. 混合物在容器内形成一个旋转的涡流,旋转的速度可以根据物料的性质和需要进行调节。
3. 重物料会受到离心力的作用,沿着容器壁逐渐沉积下来,形成一个底部的物料层。
4. 轻物料由于离心力的作用,相对较轻,会向上浮升,形成一个上层的物料层。
5. 排除系统会收集和排出分离后的物料。
排除系统可以分别收集底部和上层的物料。
6. 分离后的物料可以进一步进行处理或者收集。
离心式物料分离器的工作原理是基于物料在离心力作用下的不同沉降速度来实现分离的。
重物料沉降速度快,而轻物料沉降速度慢,通过调节离心力的大小和容器内的旋转速度,可以实现对不同物料的有效分离。
这种分离器广泛应用于化工、制药、食品等行业中,用于固液、液固、液液等物料的分离和净化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
離心沉降分離原理
A、概述
利用微生物、動物、或植物細胞生產有機酸、胺基酸、抗生素、特化品、酵素、甚或藥用蛋白質已經是相當成熟的生物技術。
不管生產細胞的取得是經由篩選、突變、原生質融合或是基因工程,在量產時通常要給與適當的培養基及培養環境,提高細胞數量並誘導生成產物。
產物生成的模式不外乎三類:(1)分泌於細胞体外醱酵液;(2)溶於細胞体內;(3)不溶性胞內包涵體(inclusion body)。
下表為各種生技產品及其生產菌株表現產物的模式:
第(1)類產物:分泌於細胞体外醱酵液;有機酸產物如檸檬酸、乳酸,胺基酸產物(如味精、離胺酸,抗生素產物如青黴素、紅黴素),酵素產物(如糖化酵素、蛋
白質分解酵素等)。
動物細胞表現藥用蛋白質產品如Erythropoietin 則屬第
(1) 類模式產物。
第(2)類產物:溶於細胞体內;一些分子量較大的生化物質如阿巴汀(avermectin)、勃激素(gibberellin)、過氧化氫觸媒酵素(catalase)等。
將外來的基因轉殖於宿
主微生物表現時,其蛋白質產物無法排出體外,如r-DNA酵母菌B型肝炎
表面抗原(Hepatitis B surface antigen, HBsAg),亦屬於第(2)類產物。
第(3)類產物:不溶性胞內包涵體;常見於採用基因工程改造的微生物表現高等動物蛋白質的情況。
轉殖於宿主微生物的結構基因(structure gene),被強力的啟動
子(promoter)推動而在短時間大量表現蛋白質產物,造成在胞內形成不溶
性胞內包涵體,如r-DNA 大腸桿菌的胰島素等。
下游產品回收的工程包括 : 菌体分離、細胞破碎及去除、粗分離、純化及白質分解酵素,必須除菌取得胞外液;如阿巴汀,必須取菌体後,再行萃取工作;如表現HBsAg 的r-DNA 酵母菌醱酵液,因為HBsAg 生產於酵母菌胞內,在打破細胞釋出產品前,醱酵液中仍含相當多之雜蛋白質宜先行移除,所以必須取菌濃縮及清洗,再行打破。
細胞菌体之分離回收方法甚多,但可以量產規模實施,連續及自動化操作的有下列幾種程序:一般過濾、膜過濾、離心沉降、及離心過濾等。
本實驗僅就離心沉降做簡單的介紹。
B 、離心沉降的原理 ( principle of centrifugal sedimentation)
(1) 離心機介紹
沉降(sedimentation)乃是利用菌體密度大於醱酵液密度而會沉降於底層的特性來分離菌體。
但由於微生物菌体顆粒很小,沉降非常慢,故要提供離心場,來加速沉降速度,稱為離心沉降(centrifugal sedimentation)一般常用的批次離心機(或瓶式離心機,batch centrifuge)為分析及樣品製備用途,但當規模大於150公升時批次離心機已不適合使用,因此一定要以連續離心(continuous centrifugation)的設計,方能放大使用。
<連續離心機>
如下圖,常見之工業用連續離心機有(a)管碗式高速離心機(tubular bowl centrifuge );(b)固体停留盤式離心機(solid-retaining type disk centrifuge );(c)間斷式排渣盤式離心機 (intermittent ejection type disk centrifuge );(d)噴嘴式盤式離心機(nozzle type disk centrifuge)及(e)螺旋式離心機(screw type decanter)。
以下說明:
(b)、(c)、(d)皆為盤式設計,在離心室內安裝重疊之盤狀片以提供大量的沉降面積。
盤與盤之間有管道供醱酵液由下往上流動,其間距僅若干mm或更低,期望如此短之沉降距離,使菌體能在離心室內短暫之滯留時間內被離心抓下來。
(b)為固体停留式,被離心下來之菌体在內壁上累積並不排出,直到充滿整個固体存放空間後,就必須停機清台(屬於半連續式),一般用於醱酵液中菌量小於0.1~1%時。
(c)為間斷排渣式,此機有特別之機械設計,當菌体在整個固体存放空間累積到相當量時,可以自動地將被離心之菌体摔出,達清除作用,適用於於醱酵液中菌量1~10%時。
(d)為噴嘴式,在離心室周圍開有適當之噴嘴,菌体離心到壁上會不斷由噴嘴排出(屬於完全連續操作之機型),適用於更高菌量的情況;工業上最常見以噴嘴式盤式離心機來濃縮及清洗酵母菌。
(e)為螺旋式設計,主要是針對更高固体含量的情形,但離心力比較不足,但是離心後之濃稠固体可經由螺旋的轉動將被離心之菌体擠出機外。
此螺旋式設計能有效地用來分離抗生素整槽萃取(whole broth extraction)液中之有機相、水相及固相。
(a)為管碗式設計,屬於極高速離心機,可高達40,000倍重力,頗適合針對不易離心的細菌類之分離。
此因(b)~(e)機種的離心力多小於10,000倍重力,分離能力比較不足。
對大腸桿菌、枯草桿菌、假單胞菌、乳酸菌等不易離心之細菌是很好的選擇。
唯本機型亦屬半連續型,處理菌量高之醱酵液時,離心次數多,比較不方便。
不過現亦有自動刮渣的機型上市。
<批次離心機>
批次離心機(或瓶式離心機)是實驗室常用的離心機型。
如果批次離心機(或瓶式離心機)具超強之離心力,則可應用於超離心技術(微分離心技術),亦即將混合物中各組成份分離,已成功應用於細胞內所含胞器如粒線體、微粒體、溶酶體等之分離,或各種蛋白質及各種核酸之分離,超離心技術是研究遺傳工程學、酶工程學必須的基礎。
本實驗除介紹離心沉降原理外,並設計一簡單的批次離心實驗,以了解某些變數對離心沉降效果的影響,並從實驗之數據來評估設備之選擇及操作條件之擬定。
(2) 離心沉降原理:
當粒子在流體(牛頓流體)
(F g = F b + F d),則沉降速率即達到終端沉降速度(u t)
(ρp-ρf) d p2
u t = ────── g (Stoke's Law) (1)
18 μ
u t:重力場下菌体的終端沉降速度(sedimentation velocity,m/sec)。
ρp:粒子的密度。
ρf:流體的密度。
d p:粒子的粒徑。
μ:流體的黏度。
g:重力加速度(m/sec2)。
如果粒子在離心力場中沉降,則將重力加速度g 換成離心加速度ω2r,則
(ρp-ρf) d p2
u t = ────── ω2r (2)
18 μ
(ρp-ρf) d p2
= ────── f r,即粒子的u t 與ω2r、(ρp-ρf)、d p、μ等有關。
18 μ
ω:角速度ω = 2πN/60,(ω單位:rad/s)。
N為旋轉速度(單位rpm)。
r:粒子距轉軸心的距離。
(常速離心f r<3000 g,中速離心f r = 3000~50000 g,高速離心f r ≧50000 g,超高速離心f r =20000~200000 g,g為重力加速度)
定義:離心力強度f r= ω2r/g ,亦即離心加速度ω2r 表示成多少個g。
如果粒子在離心力場中作直線運動,則
(ρp-ρf) d p2
u t = dr/dt = ────── ω2r ,積分
18 μ
18 μ
∴t = ─────── ln(r2/r1) (3)
(ρp-ρf) d p2ω2
t:沉降時間
r1:旋轉軸心至離心管液面之距離
r2:旋轉軸心至粒子層之距離
**各種工業用連續離心機之衍生公式可參考生化分離的相關書籍!。