第三章 储层压力与吸附性

合集下载

页岩吸附性能及作用规律

页岩吸附性能及作用规律

页岩吸附性能及作用规律霍培丽;张登峰;王倩倩;李伟;陶军;王浩浩;彭健【期刊名称】《化工进展》【年(卷),期】2016(35)1【摘要】页岩气(主要组分为甲烷)作为一种新兴的非常规天然气,其对于优化能源消费结构、缓解能源对外依存度具有重要意义。

相关研究表明,吸附态是页岩气的主要赋存形态,因此明确页岩吸附性能及作用规律是页岩气有效开采的重要前提。

为此,本文结合国内外相关研究工作,分析了页岩的吸附特性,归纳了影响页岩吸附能力的因素,指出了页岩及页岩气后续研发方向。

分析表明:页岩储层内部页岩气的赋存形态主要包括游离态、溶解态和吸附态,其中吸附态页岩气含量至少占页岩气总含量的40%;页岩气吸附量与页岩储层理化性质、储层温度和压力均有关。

虽然国内外已对页岩气开展大量研究工作,但是相比于煤层气等非常规天然气研究仍显不足。

为此,关于页岩吸附性能及作用规律需要在以下方面开展研究工作:①进一步探明页岩储层地质特征;②深入明确甲烷和页岩之间的流固作用关系;③利用页岩对甲烷和 CO2吸附性能的差异,推进注入 CO2强化页岩气采收率技术。

%Shale gas,a typical unconventional natural gas mainly consisting of methane,is of great importance to optimize energy consumption structure and to mitigate energy dependence on import. Previous study has shown that shale gas is present in shale reservoir mainly due to adsorption. Thus,a review of adsorption performance of shale is of importance for effective exploration of shale gas. In this work,the recent research progress of adsorption performance of shale is summarized. The adsorptionmechanism of shale gas is analyzed. The future work focused on shale and shale gas is also indicated. Shale gas in shale reservoir is accumulated as free state,dissolved state and adsorbed state. The shale gas in adsorbed state accounts for more than forty percent of the total amount of shale gas. Shale gas reserve is greatly dependent on physico-chemical characteristics,temperature and pressure of shale reservoirs. Although investigations on shale gas have been initiated,the depth and scope of study is still inferior to other unconventional natural gas,such as coal-bed methane. Thus,future investigations on adsorption performance of shale could include①exploration of the geologic characteristics of shale gas reservoirs,②elaboration of fluid-solid interaction between methane and shale,and③further implementation of CO2 sequestration in shale reservoirs with enhanced shale gas recovery due to superior adsorption performance of CO2 to methane.【总页数】9页(P74-82)【作者】霍培丽;张登峰;王倩倩;李伟;陶军;王浩浩;彭健【作者单位】昆明理工大学化学工程学院,云南昆明 650500;昆明理工大学化学工程学院,云南昆明 650500;昆明理工大学化学工程学院,云南昆明 650500;太原理工大学矿业工程学院,山西太原 030024;昆明理工大学化学工程学院,云南昆明 650500;昆明理工大学化学工程学院,云南昆明 650500;昆明理工大学化学工程学院,云南昆明 650500【正文语种】中文【中图分类】P66【相关文献】1.吸附性碳材料对水中痕量邻苯二甲酸二甲酯的吸附性能及特征研究 [J], 杜尔登;崔旭峰;宋澄杰;李香青2.煤基质表面官能团对二氧化碳及甲烷吸附性能作用规律的研究进展 [J], 张锦;张登峰;霍培丽;降文萍;杨振;杨荣;李伟;贾帅秋3.油页岩热解过程中微量元素迁移及其作用规律 [J], 何璐;王丽;马跃;李术元4.页岩吸附性能及孔隙结构特征——以四川盆地龙马溪组页岩为例 [J], 薛华庆;王红岩;刘洪林;闫刚;郭伟;李小龙5.氧氯化催化剂的吸附和反应性能及其活性位置——Ⅰ.氧氯化催化剂对HCl、乙烯和氧的吸附性能及吸附位置 [J], 蔡小海;谢有畅;桂琳琳;唐有祺因版权原因,仅展示原文概要,查看原文内容请购买。

煤层气储层特征研究分解

煤层气储层特征研究分解
饱和的
欠饱和的
饱和煤层(A)含有最大的气含量, 这在理论上是可能的,如由实验室确定 的等温吸附曲线所定义的。在开始脱水 和压力下降时,气生产立即开始。
欠饱和煤层(B)含有比煤层可能吸 附量要少的甲烷,由于先前发生过脱气事 件。为了使气产气甚至需要几年的时间进 行脱水和降压,而最终的储力
超压——煤层气井喷
三、储层的空隙压力与原地应力
2、煤层气瓦斯压力
煤层气(瓦斯) 压力是指在煤田勘探钻孔或煤矿矿井中测得的煤 层孔隙中的气体压力。煤储层试井测得储层压力是水压,二者的测试 条件和测试方法明显不同。煤储层压力是水压和气压的总和,在封闭 体系中,储层压力中水压等于气压;在开发体系中,储层压力等于水 压与气压之和。
同一煤样吸附不同气体:CO2>CH4>N2
CH4 CO2 N2
8
10
CH4 CO2 N2
8
10
四、煤储层的吸附性
2、煤层气吸附/解吸过程的差异与解吸作用类型划分
地质条件下的煤层气吸附过程与开采条件下的煤层气解吸过程的差异对比
煤层气物理吸附
煤层气物理解吸
作用过程
吸附偶于煤的热演化生烃、排烃 人为的排水-降压-解吸过程(是一 过程之中(是一种“自发过程”) 种“被动过程”)
一、煤层气的概念
1、煤层气
煤层气是以甲烷为主要成分的矿产,是在煤化作用过程中形成、储集 在煤层及其临近岩层中的非常规天然气。
2、煤层气储层
煤层作为煤层气的源岩和储层,具有2方面的特征:一是在压力作用 下具有容纳气体的能力; 二是具有允许气体流动的能力。
二、煤储层的渗透性
1、概念
储集层的渗透性是指在一定压力差下,允许流体通过其连通孔隙的 性质,也就是说,渗透性是指岩石传导流体的能力,渗透性优劣用渗透 率表示。

油层物理-中国石油大学-华东-复习资料

油层物理-中国石油大学-华东-复习资料

第一章储层流体的物理性质1、掌握油藏流体的特点,烃类主要组成处于高温、高压条件下,石油中溶解有大量的天然气,地层水矿化度高。

石油、天然气是由分子结构相似的碳氢化合物的混合物和少量非碳氢化合物的混合物组成,统称为储层烃类。

储层烃类主要由烷烃、环烷烃和芳香烃等。

非烃类物质(指烃类的氧、硫、氮化合物)在储层烃类中所占份额较少。

2、掌握临界点、泡点、露点(压力)的定义临界点是指体系中两相共存的最高压力和最高温度点。

泡点是指温度(或压力)一定时,开始从液相中分离出第一批气泡时的压力(或温度)。

露点是指温度(或压力)一定时,开始从气相中凝结出第一批液滴时的压力(或温度)。

3、掌握画出多组分体系的相图,指出其特征线、点、区,并分析不同类型油藏开发过程中的相态变化;三线:泡点线--AC线,液相区与两相区的分界线露点线--BC线,气相区与两相区的分界线等液量线--虚线,线上的液相含量相等四区:液相区(AC线以上-油藏)气相区(BC线右下方-气藏)气液两相区(ACB线包围的区域-油气藏)反常凝析区(PCT线包围的阴影部分-凝析气藏)J点:未饱和油藏I点:饱和油藏,可能有气顶;F点:气藏;A点:凝析气藏。

凝析气藏(Condensate gas ):温度位于临界温度和最大临界凝析温度之间,阴影区的上方。

1)循环注气2)注相邻气藏的干气。

4、掌握接触分离、多级分离、微分分离的定义;接触分离:指使油气烃类体系从油藏状态变到某一特定温度、压力,引起油气分离并迅速达到平衡的过程。

特点:分出气较多,得到的油偏少,系统的组成不变。

多级分离:在脱气过程中分几次降低压力,最后达到指定压力的脱气方法。

多级分离的系统组成是不断发生变化的。

微分分离:在微分脱气过程中,随着气体的分离,不断地将气体放掉(使气体与液体脱离接触)。

特点:脱气是在系统组成不断变化的条件下进行的。

5、典型油气藏的相图特征,判别油气藏类型;6、掌握油田常用的分离方式及原因多级分离分出的气少,获得的地面油多,而且其中轻质油含量高,测得的气油比小。

煤层气的藏保存条件及其吸附性分析

煤层气的藏保存条件及其吸附性分析

煤层气藏保存条件煤层气藏定义:含有一定量煤层气,具有相对独立流体流动系统的煤体或地质体。

即煤层气藏是煤层气聚集的最小单元,具有统一压力系统。

煤层气作为开采利用对象,煤层气藏必须具有一定量煤层气。

其处于同一个压力系统,受相同流体流动系统控制,属于最基本单元。

该地质体不仅指煤层,同时包含了煤层顶、底板。

煤是一种有机质高度富集的烃源岩, 生烃能力很强,其生气能力远超煤层自身储气能力,因而决定煤层含气量的主要因素不是煤层生气能力, 而是其储气能力与保存条件。

保存条件主要指盖层的封盖能力、水动力条件和构造运动等因素。

在地质历史中,上述地质作用主要是通过改变地层的温压条件而改变吸附与解吸和吸附与溶解之间的平衡,来控制地层中的煤层气赋存形式,从而影响煤层气的保存与富集。

1、较强的吸附能力是煤层气富集的前提煤层气以溶解气、游离气和吸附气三种方式赋存于煤层的双孔隙系统中:割理系统和微孔隙系统。

割理孔隙度一般都较小且被水充满,溶解气、游离气较少,煤层气主要以吸附状态存在于煤的基质微孔中,吸附气占总含气量的90~95%以上,正是由于煤的这种吸附特性决定了煤的储集能力。

在地层条件下,吸附气、游离气和溶解气处于一种动态平衡过程中,在达到吸附平衡后,吸附量是压力和温度的函数。

但煤对气体的吸附属于物理吸附,吸附与解吸是可逆的,当温度和压力条件改变后,吸附量也会改变:当压力下降或温度升高时,吸附气就会解吸,转化为游离气。

同样,在地层水交替作用下,原有的平衡条件也会被打破而使吸附气越来越少。

由于吸附气的活性较游离气和溶解气弱得多,更易保存,因此煤的吸附能力越强,吸附量越大,越有利于煤层气的保存。

各种地质作用就是通过改变吸附与解吸及吸附与溶解的关系而影响煤层气的保存。

2、良好的封盖条件是煤层气保存的重要因素煤层气属于自生自储式,不需要初次运移,这就要求自生气开始,就需要有良好的封盖条件才能使煤层气得以保存。

盖层对于煤层气藏的作用主要是维持吸附与解吸的平衡,减少游离气的逸散和减弱交替地层水的影响。

煤层甲烷等温吸附拟合模型

煤层甲烷等温吸附拟合模型

煤层甲烷等温吸附拟合模型毋亚文;潘结南【摘要】我国煤层气储量较为丰富,只有更好的了解等温吸附曲线,才能更好估计最大吸附量及采收率等.为了找到更为合适的拟合方程,对单层吸附理论的代表模型Langmuir方程和以微孔填充理论为基础的DR方程进行对比研究,并针对4种不同煤阶(Ro,max介于0.60%~3.18%)煤样吸附甲烷的数据进行了拟合.结果表明:对Langmuir万程中的VL,pL先计算后拟合,可以使两参数的物理意义更加准确,方程拟合更有意义;对DR方程中的V0进行计算,能够提高其他参数拟合的准确性;对DR方程中的p0,引用虚拟饱和蒸气压的概念,并对比5种计算方法,得出Amankwah法最为合适.通过对比Langmuir和DR方程发现,DR方程的拟合效果更好,与实际数据更接近.%China is relatively rich in coalbed methane.A better estimation of maximum adsorption capacity and recovery ratio is based on a better understanding of isothermal adsorption curve.This paper is going to make a comparative study on Langmuir equation,the representative theory of monolayer adsorption theory,and DR equation,which is based on micropore filling theory on an attempt to find a more suitable model fitting equation.Data of the coal sample from four different coal ranks (R from 0.60% to 3.18%) are fitted.The result shows that VL and PL would be more accurate in physical significance and the equation fitting would be more meaningful if the two parameters are calculated before fitted;the accuracy of other parameters is improved while Vo in DR equation is calculated;and Amankwah method is the most suitable method for calculating P0 after a comparison of five calculation methods byintroducing the concept of virtual saturated vapor pressure.DR equation works better in fitting effect and comes nearer to the actual data after a comparison between Langmuir and DR equation.【期刊名称】《煤炭学报》【年(卷),期】2017(042)0z2【总页数】7页(P452-458)【关键词】煤层气;等温吸附;Langmuir方程;DR方程【作者】毋亚文;潘结南【作者单位】河南理工大学资源环境学院,河南焦作454003;中原经济区煤层(页岩)气河南省协同创新中心,河南焦作454003;河南理工大学资源环境学院,河南焦作454003;中原经济区煤层(页岩)气河南省协同创新中心,河南焦作454003【正文语种】中文【中图分类】P618.11根据国土资源部新一轮油气资源评价结果,我国五大聚气区带,38个含煤盆地,68个聚煤单元,2 000 m以浅的煤层气资源量约为36.8×1012 m3[1]。

煤层气地质学考试重点(经典)

煤层气地质学考试重点(经典)

第一章绪论1、天然气:(广义)所谓天然气是指自然界一切天然生成的气体。

(狭义)目前仅限于地壳上部存在的各种天然气体,包括烃类气体和非烃类气体。

性评2、天然气的来源机制,可分为无机成因气和有机成因气。

天然气的成因分类可分为4种:生物成因气(细菌气)、油型气(油成气)、煤型气(煤成气)、无机成因气。

3、煤型气(煤成气):指煤系有机质(包括煤层和煤系地层中的分散有机质)在变质过程中(即热演化)形成的天然气,也称煤成气。

包括煤系气与煤层气两类。

煤系气:是指从生气母岩(煤系地层及煤层)中运移出来聚集在储集层中甚至形成气藏的煤型气,一般均经过较大规模运移。

属常规天然气。

❤煤层气:是指赋存于煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于煤孔隙中或溶解于煤层水中的烃类气体。

属非常规天然气范畴。

(也称煤层吸附气、煤层甲烷或煤层瓦斯。

)4、三重国家需求:资源利用/矿山安全/环保5、全国累计探明面积777km2,探明储量1343亿m3,可采储量621亿m3,初步探明374亿m3。

❤6、我国煤层气研究开发存在的主要问题:①预测理论亟待完善。

②产能预测技术有待解决。

③开发工艺亟待突破。

④投入严重不足。

⑤煤层气基础设施建设不完善。

7、我国煤层气资源存在低压、低渗、低饱和的“三低”现象以及地质变动的特殊性。

我国煤储层的特点和难点:地史复杂、类型多样、改造强烈;低孔、低渗、低相渗、低压、高非均质性。

第二章煤层气的物质组成、性质和利用❤1、煤层气有两种基本成因类型:生物成因和热成因。

生物成因气:各类微生物经过一系列复杂作用过程导致有机质发生降解而形成的。

热成因气:指随着煤化作用的进行,伴随温度升高、煤分子结构与成分的变化而形成的烃类气体。

2、生物成因气阶段:①早期生物气(泥炭~褐煤阶段,Ro,max<0.5%)②热解型煤层气(褐煤~瘦煤阶段,Ro,max0.5~2.0%)以含氧官能团的断裂为主③裂解型煤层气(瘦煤~二号无烟煤,2.0%<Ro,max<3.7%)主要以裂解的方式及芳香核缩合为主④次生生物成因煤层气(褐煤~焦煤,0.3%<Ro,max<1.5%)3、在含煤盆地中,次生生物作用活跃并影响气体成分的深度间隔称作蚀变带,一般位于盆地边沿或中浅部;不发生蚀变的气体一般位于盆地深部,称为原始气带。

储层压力与吸附性资料课件

储层压力与吸附性资料课件

现场监测法
通过在储层现场安装监测设备,实时监测储层压力和吸附性 数据。
现场监测法是在储层现场安装各种监测设备,如压力计、温 度计、流量计等,通过实时监测储层压力和吸附性数据,获 取相应的资料。现场监测法具有实时性和可靠性的优点,但 需要建立完善的监测网络和维护体系。
04
储层压力与吸附性资料应用
油气藏评价
储层压力对吸附性的影响
储层压力对吸附性具有重要影响,随着压力的增加,吸附量通常会增大。
在储层中,随着压力的增加,气体或液体分子与岩石表面的接触更加紧密,从而增强了分子间 的相互作用,导致吸附量增加。这种现象在石油和天然气储层中尤为明显,因为这些储层的压 力较高,吸附量也相对较大。
吸附性对储层压力的影响
吸附性对储层压力的影响主要体现在压力的散布和变化上。
由于储层中存在吸附作用,岩石表面吸附的流体分子会在一定程度上占据储层空间,导致有效孔隙度减小,从而影响压力的 散布和变化。此外,当储层压力变化时,被吸附的流体分子可能会重新散布,进一步影响压力的变化。因此,在石油和天然 气勘探和开发过程中,需要考虑吸附性对储层压力的影响,以确保正确的工程设计和生产操作。
数值模拟法
利用数值计算方法模拟储层压力和吸 附性变化,生成相应的数据资料。
VS
数值模拟法是通过建立数学模型来描 述储层压力和吸附性变化的数值计算 方法。利用数值模拟软件,可以模拟 不同条件下储层压力和吸附性的变化 情况,生成相应的数据资料。数值模 拟法具有较高的效率和灵活性,但需 要建立准确的数学模型和参数设置。
案例二:某气田吸附性分析
总结词
吸附性是气田开发中的重要特性,通过对吸附性的分析,可以了解气体的吸附和解吸规律,优化开发 方案。
详细描述

第四章 煤储层压力及吸附

第四章  煤储层压力及吸附

第四章煤储层压力及吸附/解吸特征煤层气以游离、吸附、固溶和溶解多种状态赋存于煤储层中。

其中吸附状态是煤层气最主要的赋存形式,储层压力是控制煤层吸附气量的最关键因素。

第一节煤储层压力一、定义煤储层通常受到三个方向的应力作用:垂直主应力,近似于上覆岩层的重量;两个相互正交的水平主应力,其大小明显不同,两者比值一般介于0.2~0.8之间,且很少与垂向主应力相等。

构造应力与所处构造部位密切相关,水平应力在逆断层或褶皱发育地段要远大于垂向主应力,在正断层发育地段则小于垂向应力(国家地震局地壳应力研究所,1990)。

煤储层压力,是指作用于煤孔隙—裂隙空间上的流体压力(包括水压和气压),故又称为孔隙流体压力,相当于常规油气储层中的油层压力或气层压力。

煤储层压力一般通过试井分析测得,即利用外推方法求取原始地层条件下相对平衡状态的初始压力。

煤储层压力与煤层含气性密切相关,它与吸附性(特别是临界解吸压力)之间的相对关系直接影响采气过程中排水降压的难易程度。

因此,煤储层压力的研究,不仅对煤层含气性和开采地质条件的评价十分重要,同时也可为完井工艺提供重要参数。

煤储层流体要受到三个方面力的作用,包括上覆岩层静压力、静水柱压力和构造应力。

当煤储层渗透性较好并与地下水连通时,孔隙流体所承受的压力为连通孔道中的静水柱压力,即是说储层压力等于静水压力。

若煤储层被不渗透地层所包围,由于储层流体被封闭而不能自由流动,储层孔隙流体压力与上覆岩层压力保持平衡,这时储层压力便等于上覆岩层压力。

在煤储层渗透性很差且与地下水连通性不好的条件下,由于岩性不均而形成局部半封闭状态,则上覆岩层压力即由储层内孔隙流体和煤基质块共同承担,即:σV=p+σ(4-1)式中,σV—上覆岩层压力,MPa;p—煤储层压力,MPa;σ—煤储层骨架应力,MPa。

此时,煤储层压力将小于上覆岩层压力而大于静水压力。

二、压力状态在实践中,为了对比不同地区或不同储层的压力特征,通常根据储层压力与静水柱压力之间的相对关系确定储层的压力状态,采用的参数为储层压力梯度或压力系数。

第三章表面活性剂在界面的上的吸附好

第三章表面活性剂在界面的上的吸附好
1) 1:1型离子表面活性剂溶液 ) : 型离子表面活性剂溶液 NaR = Na+ + R– H2O = H+ + OH – -dγ/RT=ΓNa+dlnaNa++ΓR-dlnaR= +ΓH+dlnaH++ΓOH-dlnaOH(3-17) )
14
根据电中性原则 ΓNa++ΓH+=ΓR-+ΓOH(3-18)
33
③固体表面区域内,在不改变原子数目的条件下,通 固体表面区域内,在不改变原子数目的条件下, 过压缩和伸长原子间距离可以改变固体表面积的大 小. ④固体表面的不规则性,不完整性和不均匀性使得在 固体表面的不规则性, 不同区域,不同位置的表面原子微环境有差异, 不同区域,不同位置的表面原子微环境有差异,受 到周围原子的作用力也不同,故使表面能不同. 到周围原子的作用力也不同,故使表面能不同.
负吸附-溶质在表面相的浓度小于体相内部浓度 负吸附 溶质在表面相的浓度小于体相内部浓度. 溶质在表面相的浓度小于体相内部浓度
8
例:25℃,一种乙醇水溶液的表面张力与浓度的关系 γ=72-0.5C+0.2C2 计算浓度为0.5mol.L-1时乙醇溶液的表面吸附量? 解:根据已知条件:
dγ dC =-0.5+0.2×2C
16
C Γ
=
1 Γ
m
k
+
C Γ m
0 k = exp( G ) RT
17
3.2.4影响表面吸附的物理化学因素 影响表面吸附的物理化学因素
1表面活性剂浓度
溶液浓度从小变大时, 溶液浓度从小变大时,平躺的状态逐步过渡到直立的定向排 列的状态. 列的状态.

油层物理第三章

油层物理第三章
观分布的影响规律的分析。
本节重点 润湿的相关基本概念; 润湿程度的度量标准; 储层岩石润湿性的判定方法、影响因素及测取途径; 润湿性和润湿次序对油水微观分布的影响规律。
一、有关润湿的基本概念
1、润湿性概念 润湿:流体在分子力作用下沿固体表面延展的现象。 润湿性:流体在分子力作用下沿固体表面延展或附着的倾
WU
A A
一、储层流体的相间界面张力
(4)界面张力——σ的另一物理含义 如图,力F 使L 边移动距离△x: ➢ 作功W: -W=F×△x ➢ 新增表面积:△A=2L×△x (两个表面) ➢ 据σ定义: -W=△A×σ
σ =F/2L=力/总长度
界面张力:在液体表面上,垂直作用在单位长度线段上的
表面紧缩力,用σ 表示。 σ的单位:mN/m,dyn/cm;1 mN/m=1dyn/cm
3、界面张力的测定及求取 (1)实验测定 常用方法:
吊片法:适于△ρow<0.4g/cm3,σ 较高(1-102mN/m)的样品 悬滴法:适于一般液体与粘稠液体间中等σ(10-1 -1 mN/m)的测定 旋转液滴法:适于高密度相为透明相的超低或低σ(10-3-10-1
mN/m)的测定 (2)查图法—— 诺模图
一、有关润湿的基本概念
③接触角与界面张力的关系
在三相周界点O有三种界面
张力σgL、σgs、σLs相互作
用。平衡时有:
gs Ls gL cos gL cos gs Ls A cos gs Ls
gL
(杨氏方程) (附着张力)
一、有关润湿的基本概念
④润湿的实质 是作用于三相周界相应的两相界面张力相互作用的结
表面活性剂的影响 表面活性剂:
能自发吸附到两相界面,并能急剧降低界面张力的物质,SAa。

3-1 储层岩石中的界面现象

3-1 储层岩石中的界面现象

第一节 储层岩石的界面现象
教学目的:
掌握两相界面的自由表面能和表面张力,吸附现象和表 面张力的关系
教学重点和难点:
教学重点:
自由表面能和表面张力
教学难点:
1、吸附现象和表面张力的关系
2、影响界面张力的因素
教法说明:
课堂讲授并辅助多媒体课件展示相关的数据和图表
教学内容:
1、两相界面的自由表面能
②温度的影响:
T↑ρo↓>ρg↓,内聚力↓>附着力↓ 所以:静吸力↓,σ↓
原油与4种气体表面张力和溶解度的关系
与空气
汽油与co2气 与co2气 与天然气
• (2)油—水界面张力
• a.油水系统 • 温度和压力的改变对油水间的界面张力基 本上无影响。
脱气原油
饱和氮的原油
• b.油气水系统 • P<Pb时:P↑→Rs↑→σ↑ T↑→ Rs↓→σ↓ • P>Pb时:P↑→ ρo ↑→ σ↓(不明显) T↑→ Rs ↓→σ↓

F 2L
б—每单位长度上 的作用力,即表面 张力
• 表面能和表面张力是两个不同的概念。
2.比表面能的单位
★ 在SI单位制中,比表面能的单位是: 焦耳/米2(J/m2) 1 J/m2 =1 N•m/m2=1 N/m
★ 在CGS单位制中,比表面能的单位是:
尔格 / 厘米2
尔格=达因 厘米
• 比吸附与表面活性剂浓度的关系

当表面活性物质浓度较小时,随浓度的增加, 表面张力的减小和比吸附的增大都较快,当浓度 增加到一定程度后,比吸附不再增加,趋于最大 值 G
复习思考题:
1、影响两相界面层的自由表面能的因素有 哪些?如何影响?
2、固体的表面吸附具有哪些规律? 3、吸附作用和表面张力有什么样的关系?

煤层气地质学4 储层压力与吸附性

煤层气地质学4 储层压力与吸附性
2 2 3 15 3 15 2 10 9 15
反射率 (%)
0.56 0.54 0.92 0.64 2.12 2.28 0.87 1.04 1.16 2.26 1.86 1.92 4.35 4.32 1.43 1.53 JM ,SM JM
2、封闭体系 储层压力等于上覆岩层压力
3、半封闭体系 上覆岩层压力由储层内孔隙流体和煤基质块共
同承担
二、储层压力状态
压力系数:即实测储层压力与同深度静水压力之比,%
① 超压:压力系数>1,压力梯度>0.98 MPa/100m; ② 正常压力:压力系数=1,压力梯度=0.98 MPa/100m; ③ 欠压:压力系数<1,压力梯度<0.98 MPa/100m。 我国三十二个矿区煤层气试井结果表明,各煤级煤储层 超压状态占33.2%,正常压力状态占21.9%,欠压状态占45.3 %,各煤级煤储层中三种状态均有分布,其中中煤级煤储层 大多处于欠压状态。
吸附模型:单层吸附,多层吸附,容积充填理论
一、朗格缪尔理论
8
12
7
V Vmbp abp VL p
6
10
VL,daf / m3 t·-1 VL,daf / m3 t·-1
1 bp 1 bp p pL 5
8
3 0℃
4
4 0℃
6
VL或Vm或a—最大吸附量;
3
5 0℃ 4
VL 、PL——朗格缪尔体积
矿区
铁法 辽河 靖远 窑街 韩 城 淮南 新集 徐州 峰峰 潞 安 晋 城 霍 州 恩 洪
我国部分矿区煤层甲烷平均解吸量统计结果
地层 时代
K1 E J1+2 J1+2 P1 C2 P2 P1 P2 P1 P1 C2 P1 C2 P1 C2 P2 P2

盐的吸附与储气研究

盐的吸附与储气研究

安全性研究: 如何保证盐的 吸附与储气过 程的安全性, 防止事故发生
未来展望
盐的吸附与储气 技术的发展趋势
盐的吸附与储气 技术的挑战与机

盐的吸附与储气 技术的应用前景
盐的吸附与储气 技术的创新与突

感谢观看
汇报人:
4
盐的吸附与储气应用
天然气储存
盐穴储存: 利用地下盐 穴储存天然

盐层储存: 利用地下盐 层储存天然

储气库建设: 建设专门的 储气库来储
存天然气
储气技术:采 用先进的储气 技术和设备, 提高储存效率
和安全性
氢气储存
氢气吸附原理:利用盐 的吸附性,将氢气吸附
在盐的表面
氢气储存材料:选择具 有高吸附能力和稳定性
盐的吸附与储气技术在环 保领域的应用
盐的吸附与储气技术可以 减少温室气体排放
盐的吸附与储气技术可以 改善空气质量
盐的吸附与储气技术可以 促进可再生能源的发展
5
盐的吸附与储气研究现状与展望
研究现状
盐的吸附与储气研究已 经取得了一定的成果, 但仍然存在许多挑战和 问题。
目前,盐的吸附与储气 研究主要集中在提高吸 附效率、降低成本和改 善环境等方面。
储气压力对盐的储气容量 的影响
储气温度
盐的储气性能受 温度影响
温度降低,盐的 储气性能提高
温度升高,盐的 储气性能下降
储气温度对盐的 储气性能有重要
影响
储气效率
盐的储气性能:高储气效率,低泄漏率 储气机制:吸附、溶解、扩散 储气容量:与盐的种类、粒度、孔隙率等因素有关 储气稳定性:受温度、压力等因素影响
3
盐的储气性能
储气容量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8 7 6 VL ,daf / m 3 ·t -1 5 4 3 2 1 0 0 2 4 6 p / MPa 8 10 12 42号煤样 30℃ 40℃ 50℃
二、 平衡水等温吸附实验
IS-100型气体等温吸附 解吸仪 型气体等温吸附/解吸仪 型气体等温吸附
到色谱仪 氦或 甲 烷 气源
压力 传 感 器 过 滤 器 温度 探头 Sc T 煤样
我国部分矿区煤层甲烷平均解吸量统计结果
矿区 铁法 辽河 靖远 窑街 韩 城 淮南 新集 徐州 峰峰 潞 安 晋 城 霍 州 恩 洪 地层 时代 K1 E J 1+2 J 1+2 P1 C2 P2 P1 P2 P1 P1 C2 P1 C2 P1 C2 P2 P2 煤 1,2 3 11 13-1 11-2 2 2 3 15 3 15 2 10 9 15 煤 层 编 号 12 反射率 (%) 0.56 0.54 0.92 0.64 2.12 2.28 0.87 1.04 1.16 2.26 1.86 1.92 4.35 4.32 1.43 1.53 JM ,SM JM
超压——煤层气井喷 煤层气井喷 超压
三、储层压力的地质控制
1、埋深 、
12 11 10 9 储层压力 /MPa 8 7 6 5 4 3 2 500 600 700 800 煤层埋深/m y = 0.0114x - 1.4369 r= 0.8214 900 1000 1100 线性 ( 实测压力) 线性 ( 正常压力)
吸附状态:过饱和,饱和, 吸附状态:过饱和,饱和,欠饱和
二、临界解吸压力
临界解吸压力: 临界解吸压力:指在等温曲线上煤样实测含气量所对 应的压力。 应的压力。
V实 PL Pcd = VL − V实
临储压力比:临界解吸压力与储层压力之比。 临储压力比:临界解吸压力与储层压力之比。
三、理论采收率
Pad ( PL + Pcd ) η = 1− Pcd ( PL + Pad )
吸附等温线: 吸附等温线 V=VLPL/(P+PL) V ( P
P=V/P V/P=V PL+VL/PL P=V P
p ad
pad
实测饱和度: 实测饱和度:实测含气量与实测储层压力投影到吸附等温
线上所对应的理论含气量的比值。 线上所对应的理论含气量的比值。
S实=V实/V V=VLP/(P+PL)
1、煤对水和单组分气体CH4的吸附 、煤对水和单组分气体
14 12 10 VL ,daf / m t
3 -1
8 6 4 2 0 0 1 2 3 4 p /MPa 5 6 7 Mad=0.00% Mad=0.56% Mad=1.26% Mad=2.08% Mad=2.66% Mad=5.10%
2、平衡水条件下煤对CH4的吸附特征 、平衡水条件下煤对
40 35 30 VL,daf /m 3 . t-1 25 20 15 10 5 0 0 1 2 3 4 5 6 7 8 9 R o , max /% y 1 = 7.9593x + 3.9913 r = 0.89 y 2 = -6.5863x + 61.122 r = 0.97
第三节 等温吸附曲线的应用
视储层压力, p′ —视储层压力,MPa Gw—静水压力梯度;0.98MPa/100m(淡水); 静水压力梯度 静水压力梯度; (淡水) 0.98MPa/100m(咸水) (咸水) h—煤层中点处水头深度,m 煤层中点处水头深度, 煤层中点处水头深度
4、煤层气(瓦斯)压力 、煤层气(瓦斯)
煤层气(瓦斯) 煤层气(瓦斯)压力是指在煤田勘探钻孔或煤矿矿 井中测得的煤层孔隙中的气体压力。 井中测得的煤层孔隙中的气体压力。 煤储层试井测 的储层压力是水压, 的储层压力是水压,二者的测试条件和测试方法明显 不同。煤储层压力是水压与气压的总和,在封闭体系 不同。煤储层压力是水压与气压的总和, 储层压力中水压等于气压;在开放体系中, 中,储层压力中水压等于气压;在开放体系中,储层 压力等于水压与气压之和。 压力等于水压与气压之和。
第三章 煤储层 压力及吸附/ 压力及吸附/解吸特征
第一节 煤储层压力 第二节 煤储层的吸附特征 第三节 等温吸附曲线的应用 第四节 影响煤的吸附性因素 第五节 煤储层的解吸特征
第一节 煤储层压力
一、定义
指作用于煤孔隙—裂隙空间上的流体压力( 指作用于煤孔隙 裂隙空间上的流体压力(包括水 裂隙空间上的流体压力 压和气压),故又称为孔隙流体压力。 压和气压),故又称为孔隙流体压力。 ),故又称为孔隙流体压力 1、开放体系 储层压力等于静水压力 2、封闭体系 储层压力等于上覆岩层压力 3、半封闭体系 上覆岩层压力由储层内孔隙流体和煤基质块共 同承担
ቤተ መጻሕፍቲ ባይዱ
二、吸附时间
定义为实测解吸气体体积累计达到总解吸气量 时所对应的时间。 (STP:标准温度、压力)的63%时所对应的时间。 :标准温度、压力) 时所对应的时间
吸附时间与产能达到高峰的时间有关, 吸附时间与产能达到高峰的时间有关,与煤层气长期的产能 关系不密切。吸附时间短, 关系不密切。吸附时间短,则煤层气井有可能在短期内达到产 能高峰,有利于缩短开发周期,但不利于气井的长期稳产。 能高峰,有利于缩短开发周期,但不利于气井的长期稳产。
Pad—枯竭压力 (据美国的经验可降至的最低储层压力为100磅/平 枯竭压力 据美国的经验可降至的最低储层压力为 磅平 方英寸,约为 方英寸,约为0.7MPa) ) )
第四章 煤储层的解吸特征
一、解吸量与解吸率
解吸率:损失气量与解吸气量之和与总气量之百分比。 解吸率:损失气量与解吸气量之和与总气量之百分比。 解吸量:损失气量与现场两小时解吸气量之和, 解吸量:损失气量与现场两小时解吸气量之和, 即解吸率与该深度下实际含气量的乘积。 即解吸率与该深度下实际含气量的乘积。
第二节 煤储层的吸附特征
吸附方式:物理吸附,范德华力 吸附方式:物理吸附, 吸附模型:单层吸附,多层吸附, 吸附模型:单层吸附,多层吸附,容积充填理论 一、朗格缪尔理论
Vm bp VL p abp V= = = 1 + bp 1 + bp p + p L
VL或Vm或a—最大吸附量; 最大吸附量; 最大吸附量 VL 、PL——朗格缪尔体积 朗格缪尔体积 和压力, 等于1 和压力,PL等于1/b
表 4-7 我国部分煤储层吸附时间统计表(据叶建平,有补充) 矿区 孔号 煤层 编号 4 6 7 谢李 G1 8 9 11-2 淮南 谢李 G2 13-1 8 11-2 13-1 潘集 G1 13-1 潘集 G2 淮北 焦作 CQ3 CQ6 3 13-1 7、9 二1 879 808 1046 960 887 691 1012 695 560 800 1.04 0.89 1.29 1.14 1.02 0.77 0.80 0.80 0.84 3.27 埋深 /m 反射 率/% 吸附 时间/d 0.04 0.13 0.04 0.13~0.67 0.04~1.20 0.04 0.04~1.50 1.50 0.19~1.80 0.25~0.50 0.12~4.60 0.63~4.58 0.75~2.70 3 0.41 阳泉 寿阳 晋城 枣圆 晋城 HG6 大城 韩城 大参 1 HS3 平顶山 峰峰 龙1 矿区 孔号 煤层 编号 2 6 2 4 二1 三 9-10 4 3 11 3 15 FZ001 3 15 CQ9 3 15 埋深 /m 576 648 781 816 1106 919 1190 602 680 437 554 516.5 630.5 382.5 291.5 反射 率/% 2.25 2.27 1.27 1.28 0.95 0.82 1.09 1.74 1.80 1.98 2.12 3.162 3.081 吸附 时间/d 0.35~1.61 0.38 0.06~1.56 0.63 0.54 2~3 0.74 0.88~1.08 0.33 1 9 8.66~19.76 1.72~2.51 2.86~5.68 3.34~9.58
一、理论饱和度或实测饱和度
含气饱和度是指煤储层在原位温度、压力、 含气饱和度是指煤储层在原位温度、压力、水 分含量等储层条件下, 分含量等储层条件下,煤层含气总量与总容气能力 的比值。 的比值。 理论饱和度: 理论饱和度:实际含气量与兰氏体积之比值 S理=V实/VL S理—理论饱和度,%; 理论饱和度, ; 理论饱和度 V实—实测含气量,m3/t; 实测含气量, 实测含气量 ;
二、储层压力状态
压力系数:即实测储层压力与同深度静水压力之比,%
① 超压:压力系数 ,压力梯度>0.98 MPa/100m; 超压:压力系数>1,压力梯度 ;
正常压力:压力系数=1,压力梯度=0.98 MPa/100m; ② 正常压力:压力系数 ,压力梯度 ; ③ 欠压:压力系数 ,压力梯度 欠压:压力系数<1,压力梯度<0.98 MPa/100m。 。 我国三十二个矿区煤层气试井结果表明, 我国三十二个矿区煤层气试井结果表明,各煤级煤储层 超压状态占33.2%,正常压力状态占21.9%,欠压状态占 ,正常压力状态占 超压状态占 ,欠压状态占45.3 %,各煤级煤储层中三种状态均有分布,其中中煤级煤储层 ,各煤级煤储层中三种状态均有分布, 大多处于欠压状态。 大多处于欠压状态。
C D A Fv 恒 温 水浴 B
加湿器
水 浴 温度 显 示 器 数 据 采 集 系统
四、多相介质煤岩体的吸附特征
(一) 气相多组分吸附特征
Q/cm ·g 24 16 8 0 0 6 12 18 p/MPa 24 30
3 -1
CH4+CO2+N2
CO2 CH4+CO2 CH4 CH4+N2 N2
(二) 多相介质的吸附特征
总量 5.23 7.86 6.38 4.26 9.67 4.39 5.40 5.15 4.82 6.53 12.51 11.81 14.24 18.46 5.60 5.00 10.82 10.63
相关文档
最新文档