博弈论理论经典讲解
第六讲博弈论课件
例12.1 智猪博弈模型
❖ 每次踩出6个单位的食物,按者支付2个单位 成本,小踩,(1,5)大踩(4,2)同时 (2,4)
大猪
小猪
踩
踩 2,4 等待 4,2
等待
1,5 0,0
小猪的收入矩阵
A
2, 4,
❖ 20世纪50年代以来,纳什、泽尔腾、海萨尼 等人使博弈论最终成熟并进入实用。
三位大师主要的贡献
❖ 1950年和1951年纳什的两篇关于非合作博弈 论的重要论文,彻底改变了人们对竞争和市 场的看法。他证明了非合作博弈及其均衡解, 并证明了均衡解的存在性,即著名的纳什均 衡。从而揭示了博弈均衡与经济均衡的内在 联系。因为在现实世界中,非合作博弈要比 合作博弈普遍得多。
囚徒困境的意义
❖ “囚徒的两难选择”有着广泛而深刻的意义。 个人理性与集体理性的冲突,各人追求利己 行为而导致的最终结局是一个“纳什均衡”, 也是对所有人都不利的结局。
❖ 他们两人都是在坦白与抵赖策略上首先想到 自己,这样他们必然要服长的刑期。只有当 他们都首先替对方着想时,或者相互合谋(串 供)时,才可以得到最短时间的监禁的结果。
顺序和信息
❖ 博弈论非常强调时间和信息的重要性,认为 时间和信息是影响博弈均衡的主要因素。
❖ 在博弈过程中,参与者之间的信息传递决定 了其行动空间和最优战略的选择;
❖ 同时,博弈过程中始终存在一个先后问题 Sequence order,参与人的行动次序对博弈 最后的均衡有直接的影响。
分类
❖ 博弈的划分可以从参与人行动的次序和参与 人对其它参与人的特征、战略空间和支付的 知识、信息,是否了解两个角度进行。
聊聊四种经典的博弈论模型
聊聊四种经典的博弈论模型展开全文1、囚徒困境:为什么两个犯人都选择坐牢官差破获了一宗盗窃案,抓住了两名犯罪嫌疑人。
但在审讯过程中,被关在一处的二人始终矢口否认盗窃罪名,说东西不是我们偷的。
为了避免两人达成默契,结成攻守同盟,官差决定对他们进行单独审讯。
官差表示,如果两人中有一人坦白认罪,则可立即释放,另一个不认罪的人判5年徒刑;如果两人都坦白罪刑,则他们将各判2年徒刑。
但还有一种情况,那就是两个人都拒绝坦白,由于缺乏证据,他们只会以扰乱公共场合为名判处3个月拘役。
这就是两名罪犯面临的困境中,他们会做出怎样的选择呢?首先,他们互相之间都不清楚对方是否会坦白,其次,二人都希望将自己的刑期缩至最短。
如此考虑,最终,两名犯人都会选择坦白交代。
上面的案例就是博弈论所说的“囚徒困境”。
犯人们如果彼此合作,可为集体带来最佳利益(刑期最短);但当二人面对同样的情况且不知道对方如何选择时,在理性思考后,双方都会得出相同的结论(坦白交代),以便达到个人利益的最大化。
囚徒困境是博弈论的“非零和博弈”中具代表性的例子,反映的是个人的最佳选择并非是团体的最佳选择。
虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
2、智猪博弈:赢的总是小猪猪圈里有大小两头猪,它们在同一个食槽里进食。
为了保持饲料的新鲜,在远离猪食槽的另一边有一个踏板,大猪或小猪跑过去,每按动一次踏板,投食口就会掉落10个单位的食物。
于是,在大猪和小猪每次进食前,就会形成这样一种局面:如果小猪跑去按踏板,大猪守在食槽边,则大猪小猪吃到的食物比是9:1;反之,如果大猪去按而小猪守在食槽边,则吃食比例是6:4。
如果二猪同时到食槽边,则吃食比是7:3。
这样一来,从纯收益的角度考虑,小猪就更愿意选择在食槽边等待食物落出,因为“等待优于行动”,而大猪只能被迫奔忙在踏板和食槽之间。
上述“智猪博弈”的案例是经济学家的假设论证模型,这个博弈的结果,用经济学视角看待,可以解释为:谁占有更多资源,谁就必须承担更多义务。
博弈论故事及解析
博弈论故事及解析博弈论,又称为博奕论或博奕学,是研究冲突与合作的数学模型和分析方法。
它的研究对象是决策者在冲突和合作的环境中作出的决策,以及这些决策对其他决策者的影响。
博弈论被广泛应用于经济学、政治学、社会学、生物学等多个领域,它帮助我们理解和解决决策过程中的各种问题。
在博弈论中,存在许多经典的故事,这些故事通过描述具体的决策情境,展示了博弈论的原理和应用。
下面我们来看几个博弈论故事,并对其进行解析。
故事一:囚徒困境故事中有两个犯罪嫌疑人,警察将他们分开审问。
如果两人都坦白,将会分别判刑5年,如果两人都保持沉默,将会分别判刑1年,如果其中一个坦白,另一个保持沉默,坦白的人将会被赦免,而保持沉默的人将会被判10年。
在这个情境中,两个犯人面临一个重要的决策,是坦白还是保持沉默。
博弈论解析:在囚徒困境中,两个犯人面临一个合作与背叛的冲突。
博弈论中的解答是,无论对方采取什么策略,自己都应该选择坦白。
这是因为无论对方选择什么,坦白对自己的利益都是最大化的策略。
故事二:雁行队列一群大雁在迁徙时会形成一个V字形的队列。
这个队列的形状可以让大雁在飞行时节省能量,减少空气阻力。
队列中的每只大雁都可以感知到自己前方的大雁,它们会根据前方大雁的动作做出相应的调整。
如果前方的大雁飞得太累,它会离开队列,由后面的大雁取代。
博弈论解析:在这个故事中,每只大雁都是一个决策者,它们的决策会影响到整个队列的形状和飞行效率。
博弈论告诉我们,每只大雁都应该在队列中保持适当的距离,并根据前方大雁的行为做出相应的调整,以达到整个队列最佳的飞行效果。
故事三:拍卖在拍卖中,卖方希望能够以最高的价格卖出物品,而买方则希望能以最低的价格购买物品。
拍卖的形式有很多种,例如一口价拍卖、竞价拍卖等。
不同的拍卖形式会导致不同的结果。
博弈论解析:在拍卖中,卖方和买方都是决策者,他们的决策会直接影响到拍卖的结果。
博弈论提供了一些拍卖的理论模型,帮助卖方和买方制定最佳的决策策略。
博弈论理论经典讲解
博弈论经典案例冰晶淩(杂物区)2010-04-09 22:31:28 阅读258 评论0 字号:大中小订阅引用光光的博弈论经典案例1994年诺贝尔经济学奖授给了三位博弈论专家:纳什,泽尔腾和海萨尼.而博弈论可以划分为合作博弈和非合作博弈.那三位博弈论专家的贡献主要是在非合作博弈方面,而且现在经济学家谈到博弈论,一般指的是非合作博弈,很少指合作博弈.合作博弈与非合作博弈之间的区别主要在于人们的行为相互作用时,当事人能否达成一个具有约束力的协议,如果有,就是合作博弈;反之,就是非合作博弈.非合作博弈强调的是个人理性,个人最优决策,其结果可能是有效率的,也可能是无效率的.而合作博弈强调的是团体理性.下面是我收集的张维迎教授的几个有关博弈论的经典案例.<案例一:囚徒困境>囚徒困境讲的是两个嫌疑犯作案后被警察抓住,分别关在不同的屋子里审讯.警察告诉他们:如果两人都坦白,各判刑8年;如果两个都抵赖,各判1年(或许因证据不足);如果其中一人坦白一人抵赖,坦白的放出去,不坦白的判刑10年(这有点'坦白从宽,抗拒从严'的味道).这里,每个囚徒都有两种战略:坦白或抵赖.表中每一格的两个数字代表对应战略组合下两个囚徒的支付(效用),其中第一个数字是第一个囚徒的支付,第二个数字为第二个囚徒的支付.战略形式又称标准形式,是博弈的两种表述形式之一,它特别方便于静态博弈分析.在这个例子里,纳什均衡就是(坦白,坦白):给定B坦白的情况下,A的最优战略是坦白;同样,给定A坦白的情况下,B的最优战略也是坦白.事实上,这里,(坦白,坦白)不仅是纳什均衡,而且是一个占优战略均衡.就是说,不论对方如何选择,个人的最优选择是坦白.比如说,如果B不坦白,A坦白的话被放出来,不坦白的话判1年,所以坦白比不坦白好;如果B坦白,A坦白的话判8年,不坦白的话判10年,所以,坦白还是比不坦白好。
这样,坦白就是A占优战略;同样,坦白也是B的占优战略.结果是,每个人都选择坦白,各判刑8年.<案例二:智猪博弈>这个例子讲的是,猪圈里有两头猪,一大一小.猪圈的一头有一个猪食槽,另一头安装一个按钮,控制着猪食的供应。
十大博弈论经典案例
十大博弈论经典案例博弈论是研究冲突和合作行为的数学理论,主要研究各方在一定规则下作出决策的过程。
在现实生活中,博弈论可以帮助我们分析各种决策情境,揭示行为背后的逻辑。
下面介绍十大博弈论经典案例,展示不同情境下的决策策略及其结果。
1. 囚徒困境囚徒困境是博弈论中最著名的案例之一。
两名囚徒被单独关押,检察官给每人下达选择“合作”或“背叛”的指令。
如果两人都合作,各自判刑较轻;如果其中一人背叛而另一人合作,则背叛者判刑为0,而合作者将被重判;如果两人都背叛,两者皆受重刑。
在这种情况下,每名囚徒都会选择背叛,因为无论另一人选择什么,背叛都是最优选择。
2. 霍巴和鲍勃游戏霍巴和鲍勃游戏是研究博弈过程中的信任和合作的实例。
霍巴拥有100美元,可以选择分享给鲍勃一部分;鲍勃可以选择保留所有款项或回馈一部分给霍巴。
如果鲍勃选择合作并分享款项,那么霍巴会获得更多回报;反之,如果鲍勃保留所有款项,霍巴就会损失。
通过这一博弈,可以观察到信任和合作如何影响双方的回报。
3. 石头剪刀布石头剪刀布是一种简单的博弈,展示了不完全信息博弈的情形。
两名玩家同时出示石头、剪刀或布中的一种手势,胜利者根据规则确定。
在这个博弈中,玩家需要考虑对手可能的策略,选择最佳的手势进行应对。
4. 抢手织物抢手织物是关于资源分配的博弈。
多位玩家竞相争夺一种有限资源,但资源数量不足以满足所有玩家的需求。
玩家需要权衡合作和竞争的策略,以最大化自己的利益。
这个案例揭示了在资源有限的情况下,合作和竞争之间的平衡。
5. 拍卖博弈拍卖博弈是在资源分配中常见的情景。
卖家将物品提供给潜在买家,买家通过出价来竞争物品,最高出价者将得到物品。
在这种情况下,买家需要权衡自己对物品的价值以及出价策略,以获得最大的利益。
6. 鸿门宴鸿门宴是中国古代著名的博弈案例之一。
项羽与刘邦在鸿门相会,项羽有机会消灭刘邦,但最终刘邦却逆袭成功。
这个案例揭示了在战略选择上的巧妙和胜负的关键。
博弈论经典模型全解析(入门级)
博弈论经典模型全解析(入门级)1. 囚徒困境这是博弈论中最最经典的案例了——囚徒困境,非常耐人寻味。
“囚徒困境”说的是两个囚犯的故事。
这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。
在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。
这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。
但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。
而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。
当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。
那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。
但他们不得不仔细考虑对方可能采取什么选择。
A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。
这种想法的诱惑力实在太大了。
但他也意识到,他的同伙也不是傻子,也会这样来设想他。
所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。
而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。
所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。
企业在信息化过程中需要与咨询企业、软件供应商打交道的。
在与这些企业打交道的过程中,我们不可避免地也会遇到类似的两难境地,这个时候需要相互之间有足够的了解与信任,没有起码的信任做基础,切不可贸然合作。
博弈论的经典案例6篇
博弈论的经典案例6篇篇一:博弈论与经典案例赏析如何运用博弈的思想约会女孩如何和自己喜欢的女孩约会,对男孩来说是个很困难的事。
电影中,主人公纳什在酒吧碰见一位美丽的女孩,于是想要与之约会,却发现他的同伴也喜欢那位女孩,于是,他需要想到一种方法,让自己能够和那位女孩约会,当然,他做到了。
显然,在这样一个约会的空间里,有这样几方博弈者:女孩方,纳什,纳什的同伴。
如果纳什和他的同伴们同时去追求这样一位女孩,那么,女孩便处于优势方,她就具有更高的选择权,选择和谁约会。
而这,假使该女孩对纳什及其同伴的选择概率一样,均为q〔0篇二:周樾关于博弈论的一个精彩案例周樾:关于博弈论的一个精彩案例(海盗与金币)在读MBA时,数据模型与决策课堂上教师讲了一个博弈论的案例有点意思,我在推理之后感觉收获很多。
所以整理如下:有五个海盗分别是ABCDE,都非常理性、聪明。
他们找到了100个金币,需要想方法分配金币。
海盗有严格的等级制度,A>B>C>D>E。
海盗有分配原那么:等级最高的海盗提出一种分配方案。
所有的海盗投票决定是否承受分配,包括提议的这个海盗。
方案如果有≥1/2的人同意,那么通过。
假设没通过,那么提议者将被扔进海里,然后由下一个最高职位的海盗提出新的分配方案。
直到最后。
假设你是A,你如何分配?你首先是活命,其次是获得最多的金币。
课堂上很多同学给出了答案,但教师都摇头。
有的说平均分配原那么,每人20金币,但这显然不行,后面4个海盗会投反对票干掉你。
有的说自己少一点,给别人多一点。
这很好理解,A给自己分配的少,以防止被扔进海里,毕竟保命要紧。
但这也不行,一那么没有完成获得最多金币的任务,二那么后面的人都是“海盗〞,不会因为你的一点低调就放过你,仍然会被干掉。
还有的说自己说服另外其中两个海盗干掉另外两个然后平分金币,但这还是不行,因为有前提海盗都是理性的。
越是想不出答案,越有点意思了。
应该如何设计分配方案,保证自己既活命、又收获最多金币呢?教师继续引导我们,如果正向思维经过努力想不通,或者非常复杂,尝试逆向思维,相当于从未来的世界返回到现实的世界。
十大博弈论经典案例
十大博弈论经典案例1. 约翰·冯·诺伊曼的合作博弈。
约翰·冯·诺伊曼提出了合作博弈的概念,这是一种让参与者通过合作来达成共同利益的博弈形式。
最经典的案例就是囚徒困境,两名犯人被捕,如果他们都保持沉默,那么警察就没有足够的证据定罪,但如果其中一个人选择交待另一个人,那么他可以减轻自己的刑罚,而另一个人将面临更严重的处罚。
这个案例展示了合作博弈中的困境和冲突。
2. 纳什均衡。
约翰·纳什提出了纳什均衡的概念,这是一种在博弈中参与者通过最优化自己的策略来达到一种平衡状态。
经典案例是《美丽心灵》中的情景,两个人面对同一个女孩的选择,他们的最优策略是不知道对方的选择的情况下做出自己的选择,这样才能达到最优的结果。
3. 最优反应原则。
最优反应原则是博弈论中的一个重要概念,它指的是在博弈中参与者根据对手的策略选择自己的最优反应。
一个经典案例是企业之间的价格竞争,如果一家企业降低价格,另一家企业的最优反应可能是跟随降价,但如果两家企业都降价,最终可能会导致双方利润下降。
4. 博弈中的信息不对称。
信息不对称是博弈论中一个重要的概念,它指的是在博弈中参与者拥有不同的信息,这可能会导致不公平的结果。
一个经典案例是二手车市场,卖家通常比买家更了解车辆的情况,这就造成了信息不对称,导致买家很难做出理性的决策。
5. 博弈中的策略与信任。
在博弈中,策略和信任是非常重要的因素。
一个经典案例是国际贸易谈判,各国之间需要通过博弈来确定最优的贸易政策,同时也需要建立信任关系,否则很难达成协议。
6. 零和博弈与非零和博弈。
零和博弈是指参与者的利益完全对立,一方的利益损失就是另一方的利益增加,而非零和博弈则是指参与者的利益可以同时增加。
经典案例是资源的分配,如果资源有限,那么参与者之间的博弈就是零和博弈,但如果资源可以通过合作来增加,那么就可以转变为非零和博弈。
7. 演化博弈论。
演化博弈论是一种研究博弈中策略演化和稳定状态的理论,经典案例是动物群体中的合作行为,通过博弈来解释为什么动物会选择合作而不是竞争,以及合作行为是如何在群体中传播和演化的。
博弈论最全完整-讲解
“乘客侧前轮”看起来是一个合乎逻辑的选择。 但真正起作用的是你的朋友是否使用同样的
逻辑,或者认为这一选择同样显然。并且是 否你认为这一选择是否对他同样显然;反之, 是否她认为这一选择对你同样显然。……以 此类推。 也就是说,需要的是对这样的情况下该选什 么的预期的收敛。这一使得参与者能够成功 合作的共同预期的策略被称为焦点。心有灵 犀一点通。
例3:为什么教授如此苛刻?
问题是,一个好心肠的教授如何维持如 此铁石心肠的承诺?
他必须找到某种使拒绝变得强硬和可信 的方法。
拿行政程序或者学校政策来做挡箭牌 在课程开始时做出明确和严格的宣布 通过几次严打来获得“冷面杀手”的声
誉
导论
博弈均衡与一般均衡 博弈论与诺贝尔经济学奖获得者
博弈论的基本概念与类型 主要参考文献
即使决策或行动有先后,但只要局中人 在决策时都还不知道对手的决策或者行 动是什么,也算是静态博弈
完全信息博弈与不完全信息博弈
(games of complete information and games of incomplete information)
按照大家是否清楚对局情况下每个 局中人的得益。
“各种对局情况下每个人的得益是 多少” 是所有局中人的共同知识 (common knowledge)。
据“共同知识”的掌握分为完全信 息与不完全信息博弈。
完美信息博弈与不完美信息博弈
(games with perfect information and games with imperfect information)
了解自己行动的限制和约束,然后以精心策划的方式 选择自己的行为,按照自己的标准做到最好。 • 博弈论对理性的行为又从新的角度赋予其新的含义— —与其他同样具有理性的决策者进行相互作用。 • 博弈论是关于相互作用情况下的理性行为的科学。
博弈论及经典案例简介
如B未射死C,则C射杀B,然后A要么成功射杀C,要么被C射杀;存活概率
为0.2*0.3=0.06。总体存活概率41.2%。
A射死B
概率树工具
B射死C
0.3
A射空
0.8
B未射死C 0.2
A未射死B 0.7
A射死C 0.3
B射A不中 0.2
A未射死C 0.7
C射A不中 0
A可以采取的行动
对空发射: 存活概率为0.8×(0.3+0.7×0.2)+0.2×0.3=41.2%
方式、以及最终的结果等。 3. 策略(Strategy):一整套的行动方案,规定
了各种情况下的行动。比如:敌进我退,敌退 我追,敌驻我扰,敌疲我打。
4. 相机策略(contingent strategy):仅在不确定 事件发生时才会采取的策略。如:人不犯我,我 不犯人;人若犯我,我必犯人。
5. 行动:局中人在特定条件下的行为 6. 支付( Pay-off ):博弈结束时,各方得到的收益。 7. 策略均衡:参与者之间稳定的、可预测的互动行
博弈论的产生和发展
1. 博弈在中国
《学弈》(《孟子•告 子》) :弈秋,通国之善 弈也。使弈秋侮二人弈, 其一人专心致志,惟弈秋 之为听;一人虽听之,一 心以为有鸿鹄将至,思援 弓缴而射之。虽与之俱学, 弗若之矣。为是其智弗若 与?吾曰:非然也。
博弈又称博戏,是一门古老的游戏。《世 本》说,“乌曹作博”,乌曹乃是夏代著 名之能工巧匠。千百年来,博弈更是与人 们的生活紧紧相连,从博棋到牌戏,从斗 戏到彩票,中华民族的历史长河中就这样 形成了别具风情的博弈文化
三国中的博弈-孙刘联盟的瓦解
可是从对策论来看,孙权却犯了一个大错误,由于 嫉妒,他过早和刘备翻脸,致使两败俱伤。这就好 比枪手A突然翻脸向B开火。坐收渔利的当然是C。 虽然曹操的继任者曹丕没能抓住机会夹攻孙权,一 举消灭这两个敌手,但蜀和吴此后已经没有可能打 败魏国了。
博弈论最全完整-讲解
问题是,大家都这么做。这样一来,所有人 的成绩都不比大家遵守协议来得高。而且, 大家还付出了更多的功夫。
正因为这样的博弈对所有参与者存在着或大 或小的潜在成本,如何达成和维护互利的合 作就成为一个值得探究的重要问题。
存在双赢的博弈吗?实用文档
6
例2:焦点博弈 “We Can’t Take the Exam,
获奖理由:在非合作博弈的均衡分析理 论方面做出了开创性的贡献,对博弈论 和经济学产生了重大影响 。
实用文档
17
约翰·纳什 1928年生于美国
莱因哈 德·泽 尔腾, 1930 年生于 德国
实用文档
约翰· 海萨尼 1920年 生于美 国
18
1996年诺贝尔经济学奖获得者
英国人詹姆斯·莫里斯 (James A. Mirrlees)和美国人威廉-维克瑞 (William Vickrey)
获奖理由:前者在信息经济学理论领域做 出了重大贡献,尤其是不对称信息条件 下的经济激励理论的论述;后者在信息 经济学、激励理论、博弈论等方面都做 出了重大贡献。
实用文档
19
威廉·维克瑞, 1914-1996, 生于美国
詹姆斯·莫里斯 1936年生于英 国
实用文档
20
2001年诺贝尔经济学奖获得者
实用文档
35
第一章 完全信息静态博弈
博弈论的基本概念及战略式表述 纳什均衡
纳什均衡应用举例 混合战略纳什均衡 纳什均衡的存在性与多重性
实用文档
36
第一节 博弈论的基本概念
与战略式表述
Байду номын сангаас
实用文档
37
博弈论的基本概念与战略式表述
博弈论(game theory)是研究决策主体的行 为发生直接相互作用时候的决策以及这种 决策的均衡问题。
博弈论经典案例
博弈论经典案例在我们的日常生活和社会经济活动中,博弈论的身影无处不在。
博弈论,简单来说,就是研究在相互影响的决策环境中,参与者如何做出最优决策的理论。
接下来,让我们一起探讨几个经典的博弈论案例,来感受其中的智慧和策略。
案例一:囚徒困境假设有两个犯罪嫌疑人 A 和 B 被警察抓住,分别关在不同的房间里审讯。
警察掌握的证据并不充分,但知道他们犯了罪。
现在警察给他们两个选择:如果两人都坦白,各判刑 8 年;如果一人坦白一人抵赖,坦白的人判刑 1 年,抵赖的人判刑 10 年;如果两人都抵赖,各判刑 2 年。
从 A 的角度来看,如果 B 坦白,自己坦白判刑 8 年,抵赖判刑 10 年,所以坦白更好;如果 B 抵赖,自己坦白判刑 1 年,抵赖判刑 2 年,还是坦白更好。
所以,对于 A 来说,无论 B 怎么选择,坦白都是自己的最优策略。
同样,B 也会这么想。
最终的结果往往是两人都选择坦白,各判刑 8 年。
这个结果对于两人整体来说并不是最优的,因为如果他们都抵赖,各判刑 2 年,总刑期会更短。
但由于两人无法相互信任和沟通,都从自身利益出发做出了看似最优的选择,却导致了次优的结果。
囚徒困境揭示了个体理性与集体理性之间的冲突,在现实生活中,类似的情况屡见不鲜。
比如企业之间的价格战,每个企业都想通过降价来争夺市场份额,但如果大家都降价,最终可能都赚不到钱。
案例二:智猪博弈猪圈里有一头大猪和一头小猪,猪圈的一头有一个猪食槽,另一头安装着控制猪食供应的按钮。
按一下按钮会有 10 个单位的猪食进槽,但谁按按钮就会首先付出 2 个单位的成本。
若大猪先到槽边,大猪吃到 9 个单位,小猪只能吃到 1 个单位;若同时到槽边,大猪吃 7 个单位,小猪吃 3 个单位;若小猪先到槽边,大猪吃 6 个单位,小猪吃 4个单位。
那么,对于小猪来说,无论大猪是否去按按钮,自己等待都是最优选择。
因为如果大猪去按,小猪等待能吃到4 个单位;如果大猪等待,小猪去按只能吃到-1 个单位,等待能吃到 0 个单位。
博弈论的几个经典模型课件
02
在这个模型中,如果双方都抵赖,则各自获得2年的监禁;如果双方都坦白,则 各自获得3年的监禁;如果一方坦白而另一方抵赖,则坦白的一方获得1年的监 禁,抵赖的一方获得10年的监禁。
03
囚徒困境反映了人类在有限理性和不完全信息下的决策问题。
囚徒困境的策略和最优解
01
02
03
在囚徒困境中,每个参 与者都有两种策略:坦
博弈论的发展趋势和应用前景
发展趋势
随着计算机科学的发展,博弈论在人工智能、机器学 习等领域的应用逐渐增多。同时,博弈论也在生物学 、环境科学、社会学等多个学科中得到广泛应用和发 展。未来,博弈论将继续探索更为复杂和现实的模型 ,以解释和预测更为复杂的行为和现象。
应用前景
博弈论在经济学、政治学、军事等领域有着广泛的应 用前景。例如,博弈论可以帮助理解国际贸易中的策 略行为、国际政治中的权力均衡以及军事战略中的最 优攻击策略等。此外,博弈论也在社交网络分析、市 场机制设计等领域展现出强大的应用潜力。
政治学中的应用
投票悖论
投票悖论是指在某些情况下,多数投票的结 果可能导致无法达成一致意见或产生不合理 的结果。在政治学中,投票悖论被用于探讨 民主制度的缺陷和改进方法。
权力均衡
权力均衡是一种政治博弈模型,它描述了政 治权力在多个参与者之间的分配和转移。在 政治学中,权力均衡被用于分析权力斗争、
政治制度稳定性和政策制定等问题。
纳什均衡模型被广泛应用于市场均衡、产业组织、公共经济学
等领域。
生物学
02
纳什均衡模型也被用于解释生物种群竞争、生态系统平衡等问
题。
社会学
03
纳什均衡模型可以用来分析社会现象,如犯罪、婚姻、教育等
博弈论知识点总结完整版
博弈论(一):基本知识1.1定义:博弈论,又称对策论,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论,是研究竞争的逻辑和规律的数学分支。
即,博弈论是研究决策主体在给定信息结构下如何决策以最大化自己的效用,以及不同决策主体之间的均衡。
1.2基本要素:参与人、各参与人的策略集、各参与人的收益函数,是博弈最重要的基本要素。
1.3博弈的分类:博弈论根据其所采用的假设不同而分为合作博弈理论和非合作博弈理论。
两者的区别在于参与人在博弈过程中是否能够达成一个具有约束力的协议(binding agreement)。
倘若不能,则称非合作博弈(Non-cooperative game)。
合作博弈强调的是集体主义,团体理性,是效率、公平、公正;而非合作博弈则主要研究人们在利益相互影响的局势中如何选择策略使得自己的收益最大,强调个人理性、个人最优决策,其结果有时有效率,有时则不然。
目前经济学家谈到博弈论主要指的是非合作博弈,也就是各方在给定的约束条件下如何追求各自利益的最大化,最后达到力量均衡。
博弈的划分可以从参与人行动的次序和参与人对其他参与人的特征、战略空间和支付的知识、信息,是否了解两个角度进行。
把两个角度结合就得到了4种博弈:a、完全信息静态博弈,纳什均衡,Nash(1950)b、完全信息动态博弈,子博弈精炼纳什均衡,泽尔腾(1965)c、不完全信息静态博弈,贝叶斯纳什均衡,海萨尼(1967-1968)d、不完全信息动态博弈,精炼贝叶斯纳什均衡,泽尔腾(1975)Kreps, Wilson(1982) Fudenberg, Tirole(1991)1.4课程主要内容:完全信息静态博弈完全信息动态博弈不完全信息静态博弈机制设计合作博弈1.5博弈模型的两种表示形式:策略式表述(Strategic form), 扩展式表述(Extensive form)1.6占优均衡:a、占优策略:在博弈中如果不管其他参与人选择什么策略,一个参与人的某个策略给他带来的支付值始终高于其他策略,或至少不劣于其他策略,则称该策略为该参与人的严格占优策略或占优策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
博弈论经典案例
冰晶淩(杂物区)2010-04-09 22:31:28 阅读258 评论0 字号:大中小订阅
引用
光光的博弈论经典案例
1994年诺贝尔经济学奖授给了三位博弈论专家:纳什,泽尔腾和海萨尼.而博弈论可以划分为合作博弈和非合作博弈.那三位博弈论专家的贡献主要是在非合作博弈方面,而且现在经济学家谈到博弈论,一般指的是非合作博弈,很少指合作博弈.合作博弈与非合作博弈之间的区别主要在于人们的行为相互作用时,当事人能否达成一个具有约束力的协议,如果有,就是合作博弈;反之,就是非合作博弈.非合作博弈强调的是个人理性,个人最优决策,其结果可能是有效率的,也可能是无效率的.而合作博弈强调的是团体理性.下面是我收集的张维迎教授的几个有关博弈论的经典
案例.
<案例一:囚徒困境>
囚徒困境讲的是两个嫌疑犯作案后被警察抓住,分别关在不同的屋子里审讯.警察告诉他们:如果两人都坦白,各判刑8年;如果两个都抵赖,各判1年(或许因证据不足);如果其中一人坦白一人抵赖,坦白的放出去,不坦白的判刑10年(这有点'坦白从宽,抗拒从严'的味道).这里,每个囚徒都有两种战略:坦白或抵赖.表中每一格的两个数字代表对应战略组合下两个囚徒的支付(效用),其中第一个数字是第一个囚徒的支付,第二个数字为第二个囚徒的支付.战略形式又称标准形式,是博弈的两种表述形式之一,它特别方便于静态博弈分析.
在这个例子里,纳什均衡就是(坦白,坦白):给定B坦白的情况下,A的最优战略是坦白;同样,给定A坦白的情况下,B的最优战略也是坦白.事实上,这里,(坦白,坦白)不仅是纳什均衡,而且是一个占优战略均衡.就是说,不论对方如何选择,个人的最优选择是坦白.比如说,如果B不坦白,A坦白的话被放出来,不坦白的话判1年,所以坦白比不坦白好;如果B坦白,A坦白的话判8年,不坦白的话判10年,所以,坦白还是比不坦白好。
这样,坦白就是A占优战略;同样,坦白也是B的占优战略.结果是,每个人都选择坦白,各判刑8年.
<案例二:智猪博弈>
这个例子讲的是,猪圈里有两头猪,一大一小.猪圈的一头有一个猪食槽,另一头安装一个按钮,控制着猪食的供应。
按一下按钮会有10个单位的猪食进槽,但谁按按钮需要付2个单位的成本.若大猪先到,大猪吃到9个单位,小猪只能吃1个单位;若同时到,大猪吃7个单位,小猪吃3个单位;若小猪先到,大猪吃6个单位,小猪吃4个单位。
表中第一格表示两猪同时按按钮,因而同时走到猪食槽,大猪吃7个,小猪吃3个,扣除2个单位的
成本,支付水平分别为5和1.其他情形可以类推.
在这个例子中,什么是纳什均衡?首先我们注意到,无论大猪选择"按"还是"等待",小猪的最优选择均是"等待".比如说给定大猪按,小猪也按时得到1个单位,等待则得到4个单位;给定大猪等待,小猪按得到-1单位,等待则得0单位,所以,"等待"是小猪的占优战略.给定小猪总是选择"等待",大猪的最优选择只能是"按".所以,纳什均衡就是:大猪按,小猪等待,各得4个单位.多劳者不多得!
<案例三:性别战>
这个例子讲的是一男一女谈恋爱,有些业余活动要安排,或者去看足球比赛,或者去看芭蕾舞演出.男的偏好足球,女的则更喜欢芭蕾,但他们都宁愿在一起,不愿分开。
这个博弈中,有两个纳什均衡:(足球,足球)(芭蕾,芭蕾).就是说,给定一方去足球场,另一方也会去足球场;类似的,给定一方去看芭蕾舞,另一方也会去看芭蕾舞.那么,究竟哪一个纳什均衡会实际发生?我们不知道.只有看实际生活了.
<案例四:斗鸡博弈>
设想两个人举着火棍从独木桥的两端走向中央进行火拼,每个人都有两种战略:继续前进,或退下阵来.若两人都继续前进,则两败俱伤;若一方前进另一方退下来,前进者取得胜利,退下来的丢了面子;若两人都退下来,两人都丢面子.这个博弈里也有两个均衡:如果一方进,另一方的最优战略就是退。
两人都进或退都不是纳什均衡。
<案例五:市场进入阻挠>
这是产业组织经济学中的一个例子.设想有一个垄断企业已在市场上(称为"在位者"),另一个企业虎视眈眈想进入("进入者").在位者想保持自己的垄断地位,所以就要阻挠进入者进入.
在这个博弈中,进入者有两种战略可以选择:进入还是不进入;在位者也有两种战略:默许或斗争.假定进入之前垄断利润为300,进入之后寡头利润合为100(各得50),进入成本为10.各种战略组合下的支付矩阵亦可列表.这个博弈中也有两个纳什均衡,即(进入,默许),(不进入,斗争).为什么(进入,默许)是纳什均衡?因为给定进入者进入,在位者选择默许时得50单位利润,选择斗争时得不到利润,所以,最优战略是默许。
类似的,给定在位者选择默许,进入者的最优战略就是进入.尽管在进入者选择不进入时,默许和斗争对在位者是一个意思,只有当在位者选择斗争时,不进入才是进入者的最优选择,所以,(不进入,斗争)是一个纳什均衡,而(不
进入,默许)不是一个纳什均衡。
<案例六:承诺行动>
现实中我们知道存在很多不可置信的威胁,而如何令不可置信的威胁变的真正具有威胁能力呢?那就要引入"
承诺行动"这个概念。
承诺行动是当事人使自己的威胁战略变的可置信的行动.一种威胁在什么时候才是可置信的?答案是,只有当事人在不实行这种威胁时,就会遭受更大的损失的时候.所以说,承诺行动意味着当事人要为自己的"失信"付出成本,尽管这种成本并不一定真的发生.但承诺行动会给当事人带来很大的好处,因为它会改变均衡结果.举例说,在市场进入博弈中,如果在位者通过某种承诺行动使自己的"斗争"威胁变的可置信,进入者就不敢进入,在位者可以获得更多的利润.一种简单的方法是,在位者与某个第三者打个赌:如果进入者进入后他不斗争,他就付给后者100.这时,斗争就变成了一种可置信的威胁.因为,如果进入后不斗争而是选择默许,在位者得到50的寡头利润,去掉100的赌注,净得-50;而若选择"斗争",利润为0,所以斗争比合作好.注意,有了这个赌,进入者就不敢进入了,在位者实际上无需支付100的赌注,却得到300垄断利润(在这个例子中,承诺行动的实际成本为0,但一般来说,承诺行动的成本不为零.而且,承诺行动的成本越高,威胁就越值得置信).。