D题储药柜的设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)

D题储药柜的设计

储药柜的结构类似于书橱,通常由若干个横向隔板和竖向隔板将储药柜分割成若干个储药槽(如图1所示)。为保证药品分拣的准确率,防止发药错误,一个储药槽内只能摆放同一种药品。药品在储药槽中的排列方式如图2所示。药品从后端放入,从前端取出。一个实际储药柜中药品的摆放情况如图3所示。

为保证药品在储药槽内顺利出入,要求药盒与两侧竖向隔板之间、与上下两层横向隔板之间应留2mm的间隙,同时还要求药盒在储药槽内推送过程中不会出现并排重叠、侧翻或水平旋转。在忽略横向和竖向隔板厚度的情况下,建立数学模型,给出下面几个问题的解决方案。

1.药房内的盒装药品种类繁多,药盒尺寸规格差异较大,附件1中给出了一些药盒的规格。请利用附件1的数据,给出竖向隔板间距类型最少的储药柜设计方案,包括类型的数量和每种类型所对应的药盒规格。

2. 药盒与两侧竖向隔板之间的间隙超出2mm的部分可视为宽度冗余。增加竖向隔板的间距类型数量可以有效地减少宽度冗余,但会增加储药柜的加工成本,同时降低了储药槽的适应能力。设计时希望总宽度冗余尽可能小,同时也希望间距的类型数量尽可能少。仍利用附件1的数据,给出合理的竖向隔板间距类型的数量以及每种类型对应的药品编号。

3.考虑补药的便利性,储药柜的宽度不超过2.5m、高度不超过2m,传送装置占用的高度为0.5m,即储药柜的最大允许有效高度为1.5m。药盒与两层横向隔板之间的间隙超出2mm的部分可视为高度冗余,平面冗余=高度冗余×宽度冗余。在问题2计算结果的基础上,确定储药柜横向隔板间距的类型数量,使得储药柜的总平面冗余量尽可能地小,且横向隔板间距的类型数量也尽可能地少。

4. 附件2给出了每一种药品编号对应的最大日需求量。在储药槽的长度为1.5m、每天仅集中补药一次的情况下,请计算每一种药品需要的储药槽个数。为保证药房储药满足需求,根据问题3中单个储药柜的规格,计算最少需要多少个储药柜。

图1 储药柜立体示意图

图2 储药柜的侧剖面及药品摆放示意图

图3 储药槽药品摆放情况

灾情巡视路线的数学模型

摘要

本文研究的是根据某县的乡(镇)、村公路网示意图,如何在不同条件下制定出最佳灾情巡视方案的问题。

针对问题一:首先将公路网转化为一张无向赋权图并构造其邻接矩阵,然后根据Dijkstra算法求出任意两点间的最短距离及O点到其余顶点的最短路,最短路构成了一棵以O为树根的最小生成树,将干枝分为三组,每组各顶点间的最短路构成一个完备加权图,再建立混合整数规划模型求其最佳H圈。再逐步调整,使三组中路程较长者减小,最后得到三个组路程分别为204.9km、208.8km和205.3km,最长路程为208.8km,路程均衡度为1.9%,总路程为619km。

针对问题二:依题意至少需要4组,根据问题一中得到的最小生成树将顶点分为4组,利用问题一中的算法,求出每组的最佳H圈,然后逐步调整,使四组中用时较长者减小,最后得到四个组所用时间分别为21.9h、22.41h、22.12h 和21.66h,最长时间为22.41h,时间均衡度为3.3%。

针对问题三:根据O点到最远点的距离确定时间上界,然后根据时间上界和到O点的距离由远及近确定最优巡视路线,得最优方案为分23组,巡视时间为6.43h,具体路径见问题三解答。

针对问题四:以问题二中所得结果为例,固定T,t和V中的两个量,改变一个量,求巡视时间与该变量间的关系,巡视时间与T,t和V的曲线图见解答四。

关键词:Dijkstra算法、最小生成树、加权完备图、最佳H圈、整数规划

1.问题重述

1.1问题背景

今年夏天该县遭受水灾。为考察灾情、组织自救,县领导决定,带领有关部门负责人到全县各乡(镇)、村巡视。巡视路线指从县政府所在地出发,走遍各乡(镇)、村,又回到县政府所在地的路线。

1.2需要解决的问题

问题一:若分三组(路)巡视,试设计总路程最短且各组尽可能均衡的巡视路线。

问题二:假定巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时。要在24小时内完成巡视,至少应分几组;给出这种分组下你认为最佳的巡视路线。

问题三:在上述关于T , t和V的假定下,如果巡视人员足够多,完成巡视的最短时间是多少;给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。

问题四:若巡视组数已定(如三组),要求尽快完成巡视,讨论T,t和V改变对最佳巡视路线的影响。

2.模型的假设

假设一:各组在巡视过程中,路途通畅,无任何延误时间。

假设二:各组行驶车速都相同,并且匀速行驶。

假设三:非本组巡视的乡(镇)或村只是路过,不作停留。

3.符号的说明

4.问题分析

针对问题一:问题一是多个推销员问题,我们首先考虑对乡(镇)、村这些点进行分组,然后安排三组人进行巡视,将多个推销员问题转化为单个推销员问题。首先根据公路网图建立一个邻接矩阵储存相邻顶点间的距离,然后根据所得的邻接矩阵用Dijkstra算法求出任意两个顶点间的最短距离及O点到其余顶点间的最短路,再根据O点到其余顶点的最短路用Matlab画出以O为树根的最小生成树(程序见附录一),由最小生成树的树枝将顶点分为三组,根据每组各点间的最短

距离,构造一个完备加权图,即在一个完备加权图里面求最佳H圈,为TSP问题。再建立一个整数规划模型表示TSP问题,求解得出最佳H圈的路程和其对应的路径,最后逐步调整,是三组中巡视路程最长的减小,可得到一个近似最优解。

针对问题二,首先根据单个组的最小巡视路程和在各个停留点所需的总的停留时间计算出至少应分4个组,考虑到该图中乡(镇)和村分布均匀,故首先将52个要巡视的顶点平分为4组,然后如问题一求出每个组的最佳H圈的路程,根据改组的最佳H圈的路程和停留的时间可算出其巡视时间,然后逐步调整,使四个组中巡视时间最大的减小,可得到一个近似最优解。

针对问题三,在巡视人员充足的前提下,设计最佳巡视路线。先根据问题一中得到的O点到最远点的距离确定巡视时间上界,然后再不超过时间上界的前提下,由远及近设计巡视路线,使巡视时间尽可能接近时间上界。

针对问题四,可以第二问的结果为例进行分析,固定T,t和V中的两个量,改变一个量,绘制出完成巡视任务所需时间随各个量得变化曲线图,观察其对完成巡视任务所需时间的影响,并进行分析。

5.数据分析

首先根据题目所给公路网图建立一个邻接矩阵,然后根据邻接矩阵用Dijkstra算法算出O点到其余顶点间的最短路,根据最短路可用Matlab函数画出以O为树根的最小生成树(程序见附录一),如下图,将树枝从左至右依次编号为①、②、③、④、⑤、⑥,

相关文档
最新文档