激光原理习题解答第四章

合集下载

周炳琨激光原理第四章习题解答(完整版)

周炳琨激光原理第四章习题解答(完整版)

周炳琨激光原理第四章习题解答(完整版)习题1解:根据多普勒效应,有习题2解:为清楚起见,如下图所示光源发出频率为V o 的光,以M 上反射的光为I'它被M1反射并透过M ,由图中 的I 所标记;透过 M 的光记为II '它被M2反射后又为 M 反射,此光记为II ,由 于M 和M1均为固定镜,所以I 光的频率不变,仍为:°,将M2看作光接收器,由于它以速度:运动,故它感受到的光的频率为 :0,依照下式因M2反射II '光,所以它又相当于光发射器,其运动速度为 :时,发出的光的频率为当: = 0.1c 时, ■ 1 : 572 .4 nm 当: = 0.4c 时, ■ 2 : 414 .3nm 当: = 0.8c 时, ■ 3 :'210 .9 nm这样I 光的频率为:° ,11光的频率为■- ° 2v1在屏P 上, I 光和II 光的电场可分c 1相对应的M2镜的空间坐标,且有(Lz -L J^L习题3解:根据光波的相干长度公式(1.1.16)C LCAv由题意可知,忽略自然加宽和碰撞加宽,则主要表现为多普勒加宽7T 1/2_7C T 即:匸 -D 二 7.16 10 ■- 0( )7.16 10( M\ M二 336 MH ZC C则 L C0.89 mAv A%对氦氖激光器,相干长度为因而屏P 上的总光场为E ii = E ° cos |2,: ; o( V 、 fv2血)0t + — 2叱 0t icos 一2皿 0t 1 、、、 c 丿2光强正比于电场振幅的平方,所以P 上光强为I Io它是t 的周期函数,单位时间内的变化次数为u 2°o dLm = - 2: oc c dt由上式可得dt 时间间隔内屏上光强暗变化的次数为mdt 二c因为dt 是镜M2移动dL 长度所花费的时间, 屏上光强的亮暗变化次数,对上式两边积分,所以mdt 也就是镜M2 即可得到镜M2移动L暗变化的次数 S 二t 2t1 mdtL22o dLcL12°°(L 2J )= c式中t1和t2分别为M2镜开始移动的时刻和停止移动的时刻,L1和 移动dL 过程中 时,屏上光强亮 2L ■■"••0L2为与t1和t2E = E | :卜Eu =2E 0cos丿1 +c 0S|2兀 I v2uL C( ),—63.28 mu a习题4解:CO 2气体,T=300K ,考察10.6」m 线,多普勒线宽为35 10 H由- P - D 得:P .1.08kPa 。

北交大激光原理第4章高斯光束部分-final

北交大激光原理第4章高斯光束部分-final

第四章高斯光束理论一、学习要求与重点难点学习要求1.掌握高斯光束的描述参数以及传输特性;2.理解q 参数的引入,掌握q 参数的ABCD 定律;3.掌握薄透镜对高斯光束的变换;4.了解高斯光束的自再现变换,及其对球面腔稳定条件的推导;5.理解高斯光束的聚焦和准直条件;6.了解谐振腔的模式匹配方法。

重点1.高斯光束的传输特性;2. q 参数的引入;3. q 参数的ABCD 定律;4.薄透镜对高斯光束的变换;5.高斯光束的聚焦和准直条件;6.谐振腔的模式匹配方法。

难点1. q 参数,及其ABCD 定律;2.薄透镜对高斯光束的变换;3.谐振腔的模式匹配。

1等相位面:以R 为半径的球面,R(z) =z [ 莘 -2点的远场发散角, m = lim 2w(z) _2 --- =e zY : z 二 W oW o(或f )及束腰位置―;将两个参数W(z)和R(Z)统一在一个表达式中,便于研究 z、知识点总结振幅分布:按高斯函数从中心向外平滑降落。

光斑半径 w(z)二w 0.:高斯光束特征参数 光斑半径w(z)和等相位面曲率半径:/% =w(z) 1 +⑷(z)丿 R(z)、 -'I :( z = R(z) 1十卜 j 匚 辽w(z)丿.二 W 2(z) 2咼斯光束基本性质远场发散角: 1 1. 九iq 参数,q (z) R(z)兀 w(z)2 q (z )=if+z =q +z =i 孚1高斯光束通过光学系统的传输规律2傍轴光线L 的变换规律器 士C ; D』傍轴球面波的曲率半径R 的变换规律R AR^B .遵从相同的变换规律 CR +D高斯光束q 参数的变换规律q^Aq^B Cq i +DABCD 公式高斯光束q 参数的变换规律 高斯光束的聚焦:只讨论单透镜 高斯光束的准直:一般为双透镜ABCD 公式云誓T 高斯光束的模式匹配:实质是透镜变换,分两种情况已知w 0,w 0,确定透镜焦距F 及透镜距离I ,I' 已知两腔相对位置固定l^ I I '及W o ,W o 确定,F 如何选择高斯光束的自再现变换 )W’o =W o or I'=I高斯光束的自再现变换和稳定球面腔q(I')=q(O )T 2透镜F J U 1+徳J]-丿」I 球面镜R(I)=I 1+@曲[] . 4丿」二w 0即F E R(I)=稳定球面腔、典型问题的分析思路2高斯光束的q 参数在自由空间中的传输规律 q(z) = i —些亠z = q 0亠z1)高斯光束通过单个透镜的变换。

激光原理第四章答案1

激光原理第四章答案1
解: 气体在室温(300K)下的多普勒线宽 为
气体的碰撞线宽系数 估算,根据 气体的碰撞线宽与气压p的关系近似为
可知,气体压强为 时的碰撞线宽约等于碰撞线宽系数.
再由 和 ,其中
可估算出其值约为
当 时,其气压为
所以,当气压在 附近时以多普勒加宽为主,当气压比 大很多时,以均匀加宽为主。
5.氦氖激光器有下列三种跃迁,即 的632.8nm, 的 和 的 的跃迁。求400K时它们的多普勒线宽,分别用 、 、 为单位表示。由所得结果你能得到什么启示?
(2)在 时间内自发辐射的光子数为:
所以
(3)量子产额为:
无辐射跃迁导致能级2的寿命偏短,可以由
定义一个新的寿命 ,这样
7.二能级的波数分别为 和 ,相应的量子数分别为 和 ,上能级的自发辐射概率 ,测出自发辐射谱线形状如图4.1所示。求
(1)中心频率发射截面 ;
(2)中心频率吸收截面 。
(能级简并度和相应量子数的关系为 ,可设该工作物质的折射率为1.)
解:实验方框图如下:
实验程序以及计算公式如下:
(1)测量小信号中心频率增益系数:移开红宝石棒,微安表读数为 ,放入红宝石棒,微安表的读数为 ,由此得到小信号增益系数为
减小入射光光强,使小信号增益系数最大。然后维持在此光强,微调单色仪鼓轮以改变入射波长(频率),使小信号增益系数最大,此最大增益系数即为小信号中心频率增益系数 。
式中 和 分别为镜 开始移动的时刻和停止移动的时刻; 和 为与 和 相对应的 镜的空间坐标,并且有 。
得证。
3.在激光出现以前, 低气压放电灯是很好的单色光源。如果忽略自然加宽和碰撞加宽,试估算在77K温度下它的605.7nm谱线的相干长度是多少,并与一个单色性 的氦氖激光器比较。

激光原理第四章答案

激光原理第四章答案

第四章 电磁场与物质的共振相互作用1 静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 、0.8c 的速度向着观察者运动,问其表观中心波长分别变为多少?解:根据公式νν=c λν=可得:λλ=代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。

试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。

证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。

由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。

将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。

在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)vcνν'=+2(1)(1)(12)v v v c c cνννν'''=+=+≈+0cos(2)I E E t v πν=⎡⎤因而光屏P 上的总光场为光强正比于电场振幅的平方,所以P 上面的光强为它是t 的周期函数,单位时间内的变化次数为由上式可得在dt 时间内屏上光强亮暗变化的次数为(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。

对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。

激光原理部分课后习题答案

激光原理部分课后习题答案

µ
上一页 回首页 下一页 回末页 回目录
练习: 思考练习题2第 题 练习: (思考练习题 第9题).
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
连 续 激 光 器 的 原 理
µ hν 0 f (ν 0 ) πc∆ν c I s (ν 0 ) = hν 0 σ e (ν 0 ) ⇒ I s (ν 0 ) = 2 µτ σ e (ν ) = ⇒ ∆n σ e (ν 0 )τ 2 µ f (ν 0 ) = G (ν ) = ∆nB21 hνf (ν ) π∆ν c hν 0 (2) I s (ν 0 ) = σ e (ν 0 )τ ⇒ 2 c f (ν 0 ) σ e (ν 0 ) = 2 8πν 0 µ 2τ hν 0 4π 2 hcµ 2 ∆ν I s (ν 0 ) = = = 3.213 × 10 5 W / cm 2 σ e (ν 0 )τ λ3 上一页 回首页 下一页 回末页 回目录
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
练习: 思考练习题2第 题 练习: (思考练习题 第6题). 推导均匀增宽型介质,在光强I,频率为ν的光波作 用下,增益系数的表达式(2-19)。
∆ν 2 0 ) ]G (ν ) G (ν ) 2 = G (ν ) = I f (ν ) I ∆ν 2 1+ (ν − ν 0 ) 2 + (1 + )( ) I s f (ν 0 ) Is 2
.
I ( z ) = I ( 0) e
− Az
I ( z) 1 − 0.01⋅100 ⇒ =e = = 0.368 I ( 0) e

激光原理答案

激光原理答案

激光原理答案测验1.11、梅曼(TheodoreH.Maiman)于I960年发明了世界上第一台激光器一—红宝石激光器,其波长为694.3nm。

其频率为:A:4.74某10^14(14是上标)HzB:4.32某10人14(14是上标)HzC:3.0某10人14(14是上标)Hz您的回答:B参考答案:Bnull满分:10分得分:10分2、下列说法错误的是:A:光子的某一运动状态只能定域在一个相格中,但不能确定它在相格内部的对应位置B:微观粒子的坐标和动量不能同时准确测定C:微观粒子在相空间对应着一个点您的回答:C参考答案:Cnull满分:10分得分:10分3、为了增大光源的空间相干性,下列说法错误的是:A:采用光学滤波来减小频带宽度B:靠近光源C:缩小光源线度您的回答:B参考答案:Bnull满分:10分得分:10分4、相干光强取决于:A:所有光子的数目B:同一模式内光子的数目C:以上说法都不对您的回答:B参考答案:Bnull满分:10分得分:10分5、中国第一台激光器——红宝石激光器于1961年被发明制造出来。

其波长为A:632.8nmB:694.3nmC:650nm您的回答:B参考答案:Bnull满分:10分得分:10分6、光子的某一运动状态只能定域在一个相格中,这说明了A:光子运动的连续性B:光子运动的不连续性C:以上说法都不对您的回答:参考答案:Bnull满分:10分得分:10分7、3-4在2cm的空腔内存在着带宽(A入)为1某10m、波长为0.5m的自发辐射光。

求此光的频带范围A V°A:120GHzB:3某10八18(18为上标)Hz您的回答:B参考答案:Anull满分:10分得分:0分8、接第7题,在此频带宽度范围内,腔内存在的模式数?A:2某10八18(18为上标)B:8某10八10(10为上标)您的回答:A参考答案:Bnull满分:10分得分:0分9、由两个全反射镜组成的稳定光学谐振腔腔长为L腔内振荡光的中心波长为求该光的波长带宽的近似值。

激光原理第四章习题解答

激光原理第四章习题解答

1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少? 解答:根据公式(激光原理P136) 由以上两个式子联立可得:代入不同速度,分别得到表观中心波长为:nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ解答完毕(验证过)2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化L 2次。

证明:对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。

在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。

以上是分析内容,具体解答如下:无多普勒效应的光场:()t E E ⋅=πνν2cos 0 产生多普勒效应光场:()t E E ⋅=''02cos ''πνν在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:⎪⎭⎫⎝⎛+=c υνν1'第二次多普勒效应:⎪⎭⎫⎝⎛+≈⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=c c c υνυνυνν21112'''在观察者处:()⎪⎭⎫ ⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅+⋅==⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛++⋅=+=t c t c t E t c t E E E E πνυπνυπνυπνπν2cos 22cos 2212cos 2cos 0021观察者感受到的光强:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⋅⎪⎭⎫ ⎝⎛⋅+=t c I I υνπ22cos 12显然,光强是以频率cυν⋅2为频率周期变化的。

激光原理第四章答案1

激光原理第四章答案1

第四章 电磁场与物质的共振相互作用1 静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 、0.8c 的速度向着观察者运动,问其表观中心波长分别变为多少?解:根据公式νν=c λν=可得:λλ=代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。

试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。

证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。

由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。

将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。

在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)vcνν'=+2(1)(1)(12)v v v c c cνννν'''=+=+≈+00cos(2)cos 2(12)I II E E t v E E t πνπν=⎡⎤=+因而光屏P 上的总光场为光强正比于电场振幅的平方,所以P 上面的光强为它是t 的周期函数,单位时间内的变化次数为由上式可得在dt 时间内屏上光强亮暗变化的次数为(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。

对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。

2023大学_激光原理及应用(陈家璧著)课后习题答案下载

2023大学_激光原理及应用(陈家璧著)课后习题答案下载

2023激光原理及应用(陈家璧著)课后习题答案下载激光原理及应用(陈家璧著)课后答案下载绪论一、激光的发展简史二、激光的特点三、本课程的学习方法第1章光和物质的近共振相互作用1.1 电磁波的吸收和发射1.2 电磁场吸收和发射的唯象理论1.3 光谱线加宽1.4 激光器中常见的谱线加宽1.5 光和物质相互作用的近代理论简介思考和练习题第2章速率方程理论2.1 典型激光器的工作能级2.2 三能级系统单模速率方程组2.3 四能级系统单模速率方程组2.4 小信号光的介质增益2.5 均匀加宽介质的增益饱和2.6 非均匀加宽介质的增益饱和2.7 超辐射激光器思考和练习题第3章连续激光器的工作特性3.1 均匀加宽介质激光器速率方程3.2 激光振荡阈值3.3 均匀加宽介质激光器中的'模竞争3.4 非均匀加宽介质激光器的多纵模振荡 3.5 激光器输出特性思考和练习题第4章光学谐振腔理论4.1 光学谐振腔的研究方法4.2 光学谐振腔的基本知识4.3 光学谐振腔的矩阵光学理论4.4 光学谐振腔的衍射积分理论4.5 平行平面腔的自再现模4.6 对称共焦腔的自再现模思考和练习题第5章高斯光束5.1 高斯光束的基本特点5.2 高斯光束的传输5.3 高斯光束的特性改善思考和练习题第6章典型激光器6.1 概述6.2 气体激光器6.3 固体激光器6.4 染料激光器6.5 半导体激光器6.6 其他激光器思考和练习题第7章激光的应用7.1 激光在基础科学研究中的应用 7.2 激光在通信及信息处理中的应用 7.3 激光在军事技术中的应用7.4 激光在生物及医学中的应用7.5 激光在材料加工中的应用7.6 激光在测量技术(计量学)中的应用7.7 激光在能源、环境中的应用7.8 激光在土木、建筑中的应用思考和练习题附录A.常用物理常数表B.常见激光器的典型技术参数C.常用电光晶体的典型技术参数D.常用光学非线性晶体的典型技术参数E.常用激光晶体的典型技术参数F.常见光功率计型号和厂家G.典型激光波长使用的光学零件及其材料性能参数H.常见光路和光学元件的传播矩阵参考文献激光原理及应用(陈家璧著):内容简介点击此处下载激光原理及应用(陈家璧著)课后答案激光原理及应用(陈家璧著):目录主要介绍了激光发展简史及激光的特性,激光产生的基本原理,光学谐振腔与激光模式,高斯光束,激光工作物质的增益特性,激光器的工作特性,激光特性的控制与改善,典型激光器,半导体激光器,光通信系统中的激光器和放大器,激光全息技术,激光与物质的相互作用,以及激光在其他领域的应用等内容。

激光原理(陈玉清)答案

激光原理(陈玉清)答案
第一章 作业
习题一> ※<习题一 习题一 为使氦氖激光器的相干长度达到1km,它的单色性Δλ/λ 为使氦氖激光器的相干长度达到 ,它的单色性Δ 应是多少? 应是多少? 习题二> ※<习题二 习题二 (1)一质地均匀的材料对光的吸收为 )一质地均匀的材料对光的吸收为0.01mm-1,光通过 10cm长的该材料后,出射光强为入射光强的百分之几?( ) 长的该材料后, ?(2) 长的该材料后 出射光强为入射光强的百分之几?( 一光束通过长度为1m的均匀激活的工作物质 的均匀激活的工作物质, 一光束通过长度为 的均匀激活的工作物质,如果出射光强是 入射光强的两倍,试求该物质的增益系数. 入射光强的两倍,试求该物质的增益系数. ※<习题三 习题三> 习题三 如果激光器和微波激射器分别在= 如果激光器和微波激射器分别在=10um,λ=5×10-1um和ν , = × 和 输出1W连续功率 连续功率, =3000MHz输出 连续功率,试问每秒钟从激光上能级向下 输出 能级跃迁的粒子数是多少? 能级跃迁的粒子数是多少? 习题四> ※<习题四 习题四 设一光子的波长= × 设一光子的波长=5×10-1um,单色性 =10-7,试求光子位 , 若光子的波长变为5× 射线) 置的不确定量 Δx.若光子的波长变为 ×10-4um(x射线)和 ( 射线 5×10-18um(射线),则相应的 Δx又是多少? ),则相应的 又是多少? × (射线),
习题二> ※<习题二 习题二
(1)一质地均匀的材料对光的吸收为0.01mm-1,光通 )一质地均匀的材料对光的吸收为 长的该材料后, 过10cm长的该材料后,出射光强为入射光强的百分之几? 长的该材料后 出射光强为入射光强的百分之几? 的均匀激活的工作物质, (2)一光束通过长度为 的均匀激活的工作物质,如果 )一光束通过长度为1m的均匀激活的工作物质 出射光强是入射光强的两倍, 出射光强是入射光强的两倍,试求该物质的增益系

激光原理——课后习题解答

激光原理——课后习题解答
其中(II)式可以改写为
因为 与 相比很大,这表示粒子在 能级上停留的时间很短,因此可以认为 能级上的粒子数 ,因此有 。这样做实际上是将三能级问题简化为二能级问题来求解。
由(I)式可得:
代入式(V)得:
由于
所以
红宝石对波长为694.3nm的光透明,意思是在能量密度为 的入射光的作用下,红宝石介质内虽然有受激吸收和受激辐射,但是出射光的能量密度仍然是 。而要使入射光的能量密度等于出射光的能量密度,必须有 为常数,即 ,这样式(VI)变为:
第四章电磁场和物质的共振相互作用
习题
2.设有一台迈克尔逊干涉仪,其光源波长为 。试用多普勒原理证明,当可动反射镜移动距离L时,接收屏上的干涉光强周期地变化 次。
证明:如右图所示,光源S发出频率为 的光,从M上反射的光为 ,它被 反射并且透过M,由图中的I所标记;透过M的光记为 ,它被 反射后又被M反射,此光记为II。由于M和 均为固定镜,所以I光的频率不变,仍为 。将 看作光接收器,由于它以速度v运动,故它感受到的光的频率为:
解:入射高斯光束的共焦参数
根据 ,可得
束腰处的q参数为:
与束腰相距30cm处的q参数为:
与束腰相距无穷远处的q参数为:
16.某高斯光束 =1.2mm, 。今用F=2cm的锗透镜来聚焦,当束腰与透镜的距离为10m、1m、10cm、0时,求焦斑的大小和位置,并分析所得的结果。
解:入射高斯光束的共焦参数
又已知 ,根据
解: 气体在室温(300K)下的多普勒线宽 为
气体的碰撞线宽系数 为实验测得,其值为
气体的碰撞线宽与气压p的关系近似为
当 时,其气压为
所以,当气压小于 的时候以多普勒加宽为主,当气压高于 的时候,变为以均匀加宽为主。

激光原理课后习题答案

激光原理课后习题答案
3
2 2

x2 y2
0 s
x ))e
0 s 2
2 2
0 s
6 6 x ( , 0, ) 2 2
6 6 x ( , 0, ) 2 2 2 2
等间距
0 s
8.今有一球面腔,Rl=1.5m,R 2=—1m,L =80cm。试证明该腔为稳定腔;求出它的等 价共焦腔的参数;在图上画出等价共焦腔的具 体位置。
f sqrt ( L( R1 L)( R2 L)( R1 R2 L)
( L R1 ) ( L R2 )
2
) 0.48
0
f

1.28 *10 3 m
束腰处R1右0.37mR2左边0.13m。半径为1.28mm
第四章习题解答
第五章习题
第七章习题
13.某二氧化碳激光器,采用平—凹腔,凹面 镜的R=2m,胶长L=1m。试给出它所产生 的高斯光束的腰斑半径0的大小和位置、该 高斯束的f及0的大小。
解:
g1 g 2 0.5 z1 0, z2 1, f 1
f
0
0 2

1.84 *10 m
3
3 3.68 *10 rad f
第二章
6.试求出方形镜共焦腔面上TEM30模的节线位 置,这些节线是等距分布的吗?
2 2 2 2 V x)H 0 ( y )e 解: 30 ( x, y ) C30 H 3 ( 0 s 0 s
C30 (8( 2 2
x2 y2 0 s 2
0 s
x ) 12(
q() 0
21.已知一二氧化碳激光谐振腔由曲个凹面 镜构成,R1=l m,R2=2m,L=0.5m。如 何选样南斯束腰斑0的大小和位置才能使它 成为该谐振腔中的自再现光束?

激光原理(陈鹤鸣版)部分习题答案整理

激光原理(陈鹤鸣版)部分习题答案整理

激光原理(陈鹤鸣版)部分习题答案整理第⼆章5)激发态的原⼦从能级E2跃迁到E1时,释放出m µλ8.0=的光⼦,试求这两个能级间的能量差。

若能级E1和E2上的原⼦数分别为N1和N2,试计算室温(T=300K )时的N2/N1值。

【参考例2-1,例2-2】解:(1)J hcE E E 206834121098.310510310626.6---?===-=?λ(2)52320121075.63001038.11098.3exp ---?-?=-==T k Eb e N N10)激光在0.2m 长的增益物质中往复运动过程中,其强度增加饿了30%。

试求该物质的⼩信号增益系数0G .假设激光在往复运动中没有损耗。

104.0*)(0)(0m 656.03.1,3.13.014.02*2.0z 0000---=∴===+=====G e e I I me I I G z G ZzG Z ααα即且解:第三章2.CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。

求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、?νc (设n=1) 解:衍射损耗:1880107501106102262.).(.a L ==λ=δ-- s ..c L c 881075110318801-?=??=δ=τ输出损耗:1190809850502121.)..ln(.r r ln =??-=-=δ s ..c L c 881078210311901-?=??=δ=τ4.分别按图(a)、(b)中的往返顺序,推导旁轴光线往返⼀周的光学变换矩阵??D C B A ,并证明这两种情况下的)(2 1D A +相等。

(a )(b )解: 1234T T T T T =(a) ???? ??=???? ?????--=D C B A LR L R T 1011201101120121221R L A -= 124421212+--=R L R L R R L D244421212+--=+R LR L R R L D A(b) ???? ??=???? ?????- -=D C B A LR L R T 1011201101120112121R L A -= 124412212+--=R L R L R R L D244421212+--=+R LR L R R L D A L ④③②① L④③②①8.腔长为0.5m 的氩离⼦激光器,发射中⼼频率0ν=5.85?l014Hz ,荧光线宽ν?=6?l08 Hz ,问可能存在⼏个纵模?相应的q 值为多少? (设η=1)解:纵模间隔为:Hz L cq 881035.0121032?===ην, 210310688=??=??=q n νν,则可能存在的纵模数有3个,它们对应的q 值分别为: 68141095.11031085.522?=??=?=?=νµµνc L q L qc ,q +1=1950001,q -1=194999918.欲设计⼀对称光学谐振腔,波长λ=10.6µm ,两反射镜间距L =2m ,如选择凹⾯镜曲率半径R =L ,试求镜⾯上光斑尺⼨。

激光 原理课后习题答案

激光 原理课后习题答案

激光原理复习题第一章电磁波1、麦克斯韦方程中麦克斯韦方程最重要的贡献之一是揭示了电磁场的内在矛盾和运动;不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。

在方程组中是如何表示这一结果?答:每个方程的意义:1)第一个方程为法拉第电磁感应定律,揭示了变化的磁场能产生电场。

2)第二个方程则为Maxwell的位移电流假设。

这组方程描述了电荷和电流激发电磁场、以及变化的电场与变化的磁场互相激发转化的普遍规律。

第二个方程是全电流安培环路定理,描述了变化的电场激发磁场的规律,表示传导电流和位移电流(即变化的电场)都可以产生磁场。

第二个方程意味着磁场只能是由一对磁偶极子激发,不能存在单独的磁荷(至少目前没有发现单极磁荷)3)第三个方程静电场的高斯定理:描述了电荷可以产生电场的性质。

在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。

4)第四个方程是稳恒磁场的高斯定理,也称为磁通连续原理。

2、产生电磁波的典型实验是哪个?基于的基本原理是什么?答:赫兹根据电容器经由电火花隙会产生振荡原理设计的电磁波发生器实验。

(赫兹将一感应线圈的两端接于产生器二铜棒上。

当感应线圈的电流突然中断时,其感应高电压使电火花隙之间产生火花。

瞬间后,电荷便经由电火花隙在锌板间振荡,频率高达数百万周。

有麦克斯韦理论,此火花应产生电磁波,于是赫兹设计了一简单的检波器来探测此电磁波。

他将一小段导线弯成圆形,线的两端点间留有小电火花隙。

因电磁波应在此小线圈上产生感应电压,而使电火花隙产生火花。

所以他坐在一暗室内,检波器距振荡器10米远,结果他发现检波器的电火花隙间确有小火花产生。

赫兹在暗室远端的墙壁上覆有可反射电波的锌板,入射波与反射波重叠应产生驻波,他也以检波器在距振荡器不同距离处侦测加以证实。

赫兹先求出振荡器的频率,又以检波器量得驻波的波长,二者乘积即电磁波的传播速度。

激光原理第七版重要习题

激光原理第七版重要习题
R1
-1.3
f 0.5
等价共焦腔
R2
-0.5
z1
z2
L=0.8
f=0.5
0
0.5
12.在所有a2/Lλ 相同而R不同的对称稳定球面腔中,共焦腔的衍射损耗最低。这里L表示 腔长,R=R1=R2为对称球面腔反射镜的曲率半径,a为镜的横向线度。 证明:对于共焦腔有: R=R1=R2,所以g1=g2=g=0 此时: 相同,不变
1 d 0 1
0 r 0 1 2 0
1
2
d
1 1d 2 相当于长度L=η1d/ η2的均匀空间变换矩阵 T 0 1
此题中,设等效腔长L’=L-d+η1d/ η2,解不等式:
L' L' 0 (1 )(1 ) 1 R1 R2
01 10
L1 1 0
01 1 0
L 1
1 1 ( A D ) 1 稳定腔要求: 2
B D
带入F即可求得R的范围,其中θ =30°
7.有一方形孔径共焦腔氦氖激光器,腔长L=30cm,方形孔边长d=2a=0.12cm, λ =632.8nm,镜的反射率为r1=1,r2=0.96,其他损耗以每程0.003估计。此激光器能 否单模运转?如果想在共焦镜面附近加一个小孔光阑来选择TEM00模,小孔的边长应 为多大?氦氖增益由公式 eg l 1 3 104 l 估算。
1 T 0
2
0 1
r r 1 1 2 0 T 1 0 0
即两次往返可自行闭合
0 r0 r0 1 0 0
d 2.证明光线通过如图所示厚度为d的平行平面介质的光线变换矩阵为 1 1 2 0 1

华南师范《激光原理》复习整理与部分习题解答

华南师范《激光原理》复习整理与部分习题解答

2 L

2 q
c 2 L c 2 L
纵模间隔: q 1 q
横模记法: TEM mnq :对于轴对称图形,m 表示沿腔镜面直角坐标系方向光场节线数,n 表示垂直方向光场节线数;对于旋转对称图形,m 表示沿辐角向的节线数(按直径数), n 表示沿径向节线圆数(暗环数)。 基模: TEM 00 q 光学谐振腔的损耗: ①几何损耗(选择性损耗,高阶横模的几何损耗比低阶横模大) 举例:腔镜倾斜:
1 L 2m 2D
②衍射损耗(选择性损耗,高阶横模的几何损耗比低阶横模大) 菲涅耳数(衍射光在腔内的最大往返次数,也表示从一面镜子的中心看到另一面镜子上可 划分的菲涅耳半波带数): N
a2 L
5 / 36
《激光原理》复习整理
平均单程衍射损耗因子: d
1 N
③透射损耗(非选择性损耗)/输出损耗:
1 A21
原子在该能级的平均寿命(起始值降到其 1/e): s
受激辐射:①外来光子能量达到 h E2 E1 才能引起受激辐射;②受激辐射所发出的光 子与外来光子的频率、传播方向、偏振方向、相位等性质完全相同。 受激辐射跃迁的爱因斯坦系数: B21 :
1 dn2 dn 1 W21 21 n2 dt dt st n2 W21 B21 v
《激光原理》复习整理
《激光原理》复习整理
序数 (No.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 激光器名称 (Laser name) He-Cd N2 Kr Ar He-Cd Ar Kr Xe Ar-Kr He-Ne 红宝石 Cr Kr Ca、Al、As Ca、As Nd Nd/YAG(掺钕的钇 铝石榴石) He-Ne CO2 H2O HCN
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(验证过)
6考虑二能级工作系统,若E2能级的自发辐射寿命为τS,无辐射跃迁寿命为τnr。假设t=0时激光上能级E2的粒子数密度为n2(0),工作物质的体积为V,发射频率为ν,求:
(1)自发辐射功率随时间的变化规律。(2)E2能级的原子在其衰减过程中发出的自发辐射光子数。(3)自发辐射光子数与初始时刻E2能级上的粒子数之比η2。
1静止氖原子的 谱线中心波长为632.8纳米,设氖原子分别以0.1C、O.4C、O.8C的速度向着观察者运动,问其表观中心波长分别变为多少?
解答:
根据公式(激光原理P136)
由以上两个式子联立可得:
代入不同速度,分别得到表观中心波长为:
, ,
解答完毕(验证过)
2设有一台麦克尔逊干涉仪,其光源波长为 ,试用多普勒原理证明,当可动反射镜移动距离L时,接收屏上的干涉光强周期性的变化 次。
解:根据P138页的公式4.3.26可知,多普勒加宽:
因为均匀加宽过渡到非均匀加宽,就是 的过程,据此得到:
,得出
结论:气压P为1.08×103Pa时,是非均匀加宽与均匀加宽的过渡阈值,.当气压远远大于1.08×103Pa的情况下,加宽主要表现为均匀加宽。
(验证过)
5氦氖激光器有下列三种跃迁,即3S2-2P4的632.8纳米,2S2-2P4的1.1523微米和3S2-3P4的3.39微米的跃迁。求400K时他们的多普勒线宽,并对结果进行分析。
又因为小信号下(粒子数翻转刚刚达到阈值) ,因此 ,且
由此,方程组的第一个式子可以转变为: ,代入1式,得到:
既然对入射光场是透明的,所以上式中激光能级发射和吸收相抵,即激光上能级的粒子数密度变化应该与光场无关,并且小信号时激光上能级的粒子数密度变化率为零,得到
最后得到:
解答完毕。
8略
9略
10略
11短波长(真空紫外、软X射线)谱线的主要加宽是自然加宽。试证明峰值吸收截面为 。
(1)试证明在稳态情况下,在具有洛伦兹线型的均匀加宽介质中,反转粒子数表达式具有如下形式:
,其中 , ,Δn0是小信号反转粒子数密度。
(2)写出中心频率处饱和光强Is的表达式。
(3)证明 时,Δn和Is可由P152-4.5.13及P151-4.5.11表示。
解:1稳态工作时,由激光上、下能级的粒子数密度速率方程(4.4.28)可得:
(2)由上式可知,在t-t+dt时间内,E2能级自发辐射的光子数为:
则在0-∞的时间内,E2能级自发辐射的光子总数为:
(3)自发辐射光子数与初始时刻能级上的粒子数之比为:
7根据激光原理4.4节所列红宝石的跃迁几率数据,估算抽运几率 等于多少时红宝石对波长694.3纳米的光透是明的(对红宝石,激光上、下能级的统计权重为 ,且计算中可不考虑光的各种损耗)
无多普勒效应的光场:
产生多普勒效应光场:
在产生多普勒效应的光路中,光从半透镜到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上)
第一次多普勒效应:
第二次多普勒效应:
在观察者处:
观察者感受到的光强:
显然,光强是以频率 为频率周期变化的。
因此,在移动的范围内,光强变化的次数为:
解:在腔内多模振荡条件下,P151-4.5.7应修正为:
根据P150-4.5.5可知,增益系数与反转粒子数成正比,即:
把修正后的反转粒子数表达式代入上式,得到:
因此,所求第一问“频率为ν的弱光的增益系数”为:
第二问“频率为ν1的强光增益系数表达式”为:
解答完毕。
17激光上下能级的粒子数密度速率方程表达式为P147-4.4.28所示。
证明完毕。
3在激光出现以前,Kr86低气压放电灯是最好的单色光源。如果忽略自然加宽和碰撞加宽,试估计在77K温度下它的605.7纳米谱线的相干长度是多少?并与一个单色性Δλ/λ=10-8的He-Ne激光器比较。
解:根据相干长度的定义可知, 。其中分母中的是谱线加宽项。从气体物质的加宽类型看,因为忽略自然和碰撞加宽,所以加宽因素只剩下多普勒加宽的影响。
证明:根据P144页吸收截面公式4.4.14可知,在两个能级的统计权重f1=f2的条件下,在自然加宽的情况下,中心频率ν0处吸收截面可表示为:
- -------------------------------------------------1
上式 (P133页公式4.3.9)
又因为 ,把A21和ΔνN的表达式代入1式,得到:
解:
(1)根据P11相关内容,考虑到E2的能级寿命不仅仅是自发辐射寿命,还包括无辐射跃迁寿命,因此,E2能级的粒子数变化规律修正为:
,其中的τ与τS、τnr的关系为 ,为E2能级的寿命。
在时刻t,E2能级由于自发和无辐射跃迁而到达下能级的总粒子数为:
由于自发辐射跃迁而跃迁到激光下能级的粒子数为 ,因此由于自发辐射而发射的功率随时间的变化规律可以写成如下形式:
其中 ,
由(3)式和(2)式可得:
整理得:
将(4)代入(1)式:
整理得:
其中 , ,Δn0是小信号反转粒子数密度。
(2)
当ν1=ν0时,
(3)高功率的激光系统中
当 时,Δn和Is可由P152-4.5.13及P151-4.5.11表示
22设有两束频率分别为 和 ,光强为 和 的强光沿相同方向或者相反方向通过中心频率为 的非均匀加宽增益介质, 。试分别划出两种情况下反转粒子数按速度分布曲线,并标出烧孔位置。
证毕。
12已知红宝石的密度为3.98g/cm3,其中Cr2O3所占比例为0.05%(质量比),在波长为694.3nm附近的峰值吸收系数为0.4cm-1,试求其峰值吸收截面(T=300K)。
解:
分析:红宝石激光器的Cr3+是工作物质,因此,所求峰值吸收截面就是求Cr3+的吸收截面。
根据题中所给资料可知:
根据P138页的公式4.3.26可知,多普勒加宽:
因此,相干长度为:
根据题中给出的氦氖激光器单色性及氦氖激光器的波长632.8纳米,可根据下述公式得到氦氖激光器的相干长度:
可见,即使以前最好的单色光源,与现在的激光光源相比,相干长度相差2个数量级。说明激光的相干性很好。
(验证过)
4估算CO2气体在300K下的多普勒线宽ΔνD,若碰撞线宽系数α=49MHZ/Pa,讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。
分析:
非均匀加宽的特点是增益曲线按频率分布,当有外界入射光以一定速度入射时,增益曲线对入射光频率敏感,且产生饱和效应的地方恰好是外界光场频率对应处,而其他地方则不会产生增益饱和现象。当然,产生增益饱和的频率两边一定频谱范围内也会产生饱和现象,但是与外界光场对应的频率出饱和现象最大最明显。
设外界光场以速度 入射,作为增益介质,感受到的表观频率为:
解答:已知红宝石的 , , , ,
分析如下:增益介质对某一频率的光透明,说明介质对外界光场的吸收和增益相等,或者吸收极其微弱,以至于对进入的光场强度不会产生损耗。对于本题中的红宝石激光器,透明的含义应该属于前者。
根据公式:
(激光原理P146-4.4.22)
由上边的第二项和第四项,可以得到:
--------------------------------------1
---------------------------------------------- 1
---------------------------------------------2
------------------------------------------------------------------3
,当增益介质的固有频率 时,产生激光(发生粒子数反转)
而发生粒子数翻转所对应的速度为:
正方向:
负方向:
一、当都是正方向入射时,两束光对应的速度分别为:
也就是说在反转粒子数按速度分布图上,在速度等于 和 处形成反转粒子数饱和效应。
根据公式(激光原理p156-4.6.7)
对于 ,孔的深度为:
对于 ,孔的深度为:
因为两个光强不同的外场同时作用于某一品率处而产生增益饱和(反转粒子数饱和),因此,次品率处的光强是两个光强的和,因此,烧孔深度为
解答完毕。
Cr2O3的质量密度为3.98g/cm3×0.05%=1.99×10-3g/cm3,摩尔质量为52×2+16×3=152g/mol
设Cr3+的粒子数密度为n,则n=2×(1.99×10-3/152)×6.02×1023=1.576×1019/cm3
根据 可知,
根据n≈n1+n2,Δn=n1-n2,且 ,其中 ,可知E2能级粒子数密度接近于零,可求出Δn=n1=1.756×1019/cm3,代入到 ,可求出:
证明:
对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度 移动,存在多普勒效应。在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。以上是分析内容,具体解答如下:
解:根据P138页的公式4.3.26,可分别求出不同跃迁的谱线加宽情况。
3S2-2P4的632.8纳米的多普勒加宽:
2S2-2P4的1.1523微米的多普勒加宽:
3S2-3P4的3.39微米的多普勒加宽:
由以上Байду номын сангаас个跃迁的多普勒线宽可见,按照结题结果顺序,线宽是顺次减少,由于题中线宽是用频率进行描述,因此频率线宽越大,则单色性越好。
又因为线型函数以 为对称形式,且两个入射光产生烧孔的位置也以 为中心对称分布,因此,产生烧孔的两个对称位置处的小信号反转粒子数相等,即 ,因此,两个烧孔的深度相比,因为 ,所以两个孔的深度入射光强大的反转粒子数深度大。
相关文档
最新文档