初中八年级下册数学 平均数课件
合集下载
八年级数学下册教学课件《用样本平均数估计总体平均数》
(1)解:这个月的平均气温为
22 31 25 13 18 23 13 28 30 22 20 20 27 17 28 2114 14 22 12 18 21 29 15 16 14 31 24 26 29 2(1 ℃)
30
这个月的平均气温为21℃. (2)略.
【选自教材P122 习题20.1 第7题】
用样本估计总体的两种类型: 1.用样本平均数估计总体平均数; 2.用样本的总量估计总体的总量.
2.选取样本的方法 (1)用样本估计总体时,样本容量越大,样本对总体的估计 越准确,相应的工作量及破坏性也越大,因此样本容 量的确定,既要考虑问题本身的需要,又要考虑实现 的可能性及付出的代价; (2)抽取的样本要具有一般性和代表性,这样有利于推测全 貌、估计总体,作出决策,解决有关问题.
根据以上图表提供的信息,回答下列问题: (1)计算频数分布表中a与b的值; (2)根据C组28≤x< 32的组中值为30,估计C组中所有数据的 和为_________; (3)请估计该校八年级学生这次体育测试的平均成绩(结果取 整数).
(1)a
=
5
36° 360°
100%
b = 50 - 2 + 3 + 5 + 20 = 20
例3 某灯泡厂 为测量一批灯泡的使用寿命,从中随机抽 查了50只灯泡.它们的使用寿命如表所示.这批灯泡的平均使 用寿命是多少?
使用 寿命 x/h
600≤x<1000
1000≤x< 1400
பைடு நூலகம்
灯泡 只数
5
10
1400≤x< 1800
12
1800≤x< 2200
17
2200≤x< 2600
《平均数》PPT优秀教学课件1
演讲效果 95 95
权是百分数的形式 由上可知选手 B 获得第一名,选手 A 获得第二名.
(1)权能够反映某个数据的重要程度,权越大, 该数据所占的比重越大;权越小,该数据所占的 比重越小. (2)权常见的三种表现形式:①数据出现的次 数(个数)的形式;②百分数的形式;③连比的 形式.
例2 某跳水队为了解运动员的年龄情况,作了一次年龄调查,
14.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主 测评,A,B,C,D,E五位老师作为评委,对“演讲答辩”情况进行评价, 全班50位同学参与了民主测评,结果如下表所示:
成绩如下:
写作能力 普通话水平 计算机水平
小亮 小丽
90分 60分
75分 84分
51分 72分
将写作能力、普通话水平、计算机水平这三项的总分由原先按3∶5∶2
计算,变成按5∶3∶2计算,总分变化情况是( B)
A.小丽增加多
B.小亮增加多
C.两人成绩不变化 D.变化情况无法确定
12.(杭州中考)某计算机程序第一次算得m个数据的平均数为x, 第二次算得另外n个数据的平均数为myx,+ny 则这m+n个数据的平均数等于_____m_+__n______.
综合得分=演讲答辩分×(1-a)+民主测评分×a(0. 表1 演讲答辩得分表(单位:分)
听、说、读、写成绩按照 2:1:3:4 的比确定,这说明赋予各项成绩的“重要程度”有所不同.
以都能录取. 小明认为两个人的总分一样,所以都能录取.
A.小丽增加多
B.小亮增加多
10.如果一组数据a1,a2,…,an的平均数是2,
人教版 · 数学· 八年级(下)
第20章 数据的分析 20.1.1 平均数
《平均数》精品课件八年级
• 在算数学平均成绩的问题中,2 是90的权,30是70的权
2 90 30 70 2 30
3 2 5 3 6 4 234
你能否将上述两个具有共同特征的式子用 一般的模式进行描述? 加权平均数的概念: 若n个数 x1 , x 2 ,..., x n的权分别是
f 1, f 2,..., f n x1 f 1 x 2 f 2 ... x n f n 则x= f 1 f 2 ... f n 叫做这n 个数的加权平均数。
86 6 90 4 x甲 87.6 10
92 6 83 4 x乙 88.4 10
x乙 x甲 乙将被录用
2、晨光中学规定学生的学期体育成绩满分为100分,其中早锻炼及体 育课外活动占20%,期中考试成绩占30%,期末成绩占50%。小桐的 三项成绩(百分制)依次是95分、90分、85分,小桐这学期的体育成 绩是多少?
算术平均数的概念:
一般地,对于 个数
n
1 x = ( x1 x2 xn ) n
x1 , x2 ,, xn ,我们把
叫做这n个数的算术平均数,简称平均数,记 为x 。
2、求下列各组数据的平均数:
(1)已知数据:3,5,6:
(2)已知数据:3,3,5,5,5,6,6,6,6。
3 5 6 14 解:(1) = x= 3 3 33555 6 6 6 6 (2) x= 9
3.1.1平均数
知识回顾——算术平均数的概念
求下列各组数据的平均数:
(1)已知数据:3,5,6:
(2)已知数据:3,3,5,5,5,6,6,6,6。
3 5 6 14 解:(1) x = = 3 3 33555 6 6 6 6 (2)x = 9 =5
人教版八年级下册数学《平均数》数据的分析研讨说课教学课件
第二十章 数据的分中析学数学精品课件
平均数
第2课时
课件
学习目标
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
1.能够根据频数分布表求加权平均数的近似值.
2.能够用样本平均数估计总体平均数.
探究新知
载客量/人
组中值
频数(班次)
1≤x<21
11
3
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
21≤x<41 41≤x<61
31 51
5 20
61≤x<81
71
22
81≤x<101
91
新课导入
当我们收集到数据后,通常是用统计图表整理和描述数据.为 了进一步获取信息,还需要对数据进行分析.以前通过数据计算, 我们学习了平均数,知道它可以反映一组数据的平均水平.这节 课我们将在实际问题情境中,进一步探讨平均数的统计意义.
合作探究
一家公司打算招聘一名英文翻译. 对甲、乙两名应试者进行了听、
9+55
4 ≈31,
即样本平均数约为31 min.
所用时间t/min
人数
因此,可以估计该校八年级 学生平均每天做课外作业所用时
平均数
第2课时
课件
学习目标
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
1.能够根据频数分布表求加权平均数的近似值.
2.能够用样本平均数估计总体平均数.
探究新知
载客量/人
组中值
频数(班次)
1≤x<21
11
3
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
21≤x<41 41≤x<61
31 51
5 20
61≤x<81
71
22
81≤x<101
91
新课导入
当我们收集到数据后,通常是用统计图表整理和描述数据.为 了进一步获取信息,还需要对数据进行分析.以前通过数据计算, 我们学习了平均数,知道它可以反映一组数据的平均水平.这节 课我们将在实际问题情境中,进一步探讨平均数的统计意义.
合作探究
一家公司打算招聘一名英文翻译. 对甲、乙两名应试者进行了听、
9+55
4 ≈31,
即样本平均数约为31 min.
所用时间t/min
人数
因此,可以估计该校八年级 学生平均每天做课外作业所用时
人教版数学《平均数》_完美课件
=
有何关系?
总耕地面积 人口总数
人教版初中数学八年级下 平均数
郊 人数 县 (万) A 15
B7 C 10
人均耕地面积 (公顷) 0.15
0.21 0.18
总耕
人均耕
地面积
地面积 =
人口总数
思考2:总耕地面积
三个郊县耕地面积之和
思考3:人口总数
三个郊县人数之和
解答:这个市郊县的人均耕地面积是: 0.15×15 + 0.21×7 + 0.18×10 ≈ 0.17(公顷) 15+7+10
人教版初中数学八年级下 平均数
我们就把上面求得的平均数0.17称为三个
数0.15、0.21、0.18的 加权平均数,由于各郊
县的人数不同,各郊县的人均耕地面积对这个市 郊县的人均耕地面积的影响就不同.因此我们把 三个郊县的人数(单位:万)15、7、10分别称
为三个数据的权.
特别提示
这很重要,好好理解哟
乙
7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49
人教版初中数学八年级下 平均数
20.1.1平均数
人教版初中数学八年级下 平均数
问题1: 某市三个郊县的人均耕地面积如下表:
郊县 人均耕地面积/公顷
A
0.15
B
0.21
C
0.18
这个市郊县的人均耕地面积如下表示正确吗?
73×3+80×3+85×2+82×2 3+3+2+2
= 79.3.
乙 73 80 85 82
显然甲的成绩比乙的高,所以从成绩看,应该录取甲.
仔细看,要记住正确的书写格式哟
人教版初中数学八年级下 平均数
八年级下册数学课件《平均数》
第二十章 数据的分析 20.1数据的集中趋势 20.1.1平均数
一次数学测验,3名同学的数学成绩 分别是60,80和100分,则他们的平均成 绩是多少?你怎样列式计算?算式中的 分子分母分别表示什么含义?
定义:如果有n个数(用χ1、χ2、
χ3、…χn)那么它们的平均数我们表示
为
x
1 n
( x1
x2
61≤x<81 71
22
81≤x<101 91
18
101≤x<121 111
15
听课手册69页活动2教材导学
用样本平均数估计总体平均数
当所要考察的对象很多,或者对考察对 象带有破坏性时,统计中一般采用抽样 调查,用样本估计总体的方法获得对总 体的认识。
例题:听课手册例1,例2
算术平均数与加权平均数的联系和区别:
(1)算术平均数实质上是加权平均数 的一种特殊情况,即各项的权相等, 算术平均数也是加权平均数,但加权 平均数不一定是算术平均数。
(2)平均数是统计中的一个重要的特 征量,它描述一组数据的集中变化趋 势。当一组数据较小时,可直接用算 术平均数公式计算;当一组数据重复 出现时,可用加权平均数公式计算, 要灵活运用公式。
解:不同意,这位同学计算平均数的方 法认为每个数据同等重要,由于各班的 人数可能不一样,因此应用每班的平均 成绩乘每班人数再相加,然后除以总人 数,才是全年级学生的平均成绩。只有 当各班人数相等时,这位同学的算法才 合理。
练习:某教育局为了了解本地区八年级学生数学
基本功的情况,从两所不同学校分别抽取一部分
请通过计算说明谁的最后得分高。
例2:在一次数学考试中,抽取了20名学生 的试卷进行分析。这20名学生的数学成绩 (单位:分)分别为 87,85,68,72,58,100,93,97,96,83,51,84, 92,62,83,79,74,72,65,79(注:该试卷 满分100分,60分及其以上为合格) 求这20名学生的平均成绩。
一次数学测验,3名同学的数学成绩 分别是60,80和100分,则他们的平均成 绩是多少?你怎样列式计算?算式中的 分子分母分别表示什么含义?
定义:如果有n个数(用χ1、χ2、
χ3、…χn)那么它们的平均数我们表示
为
x
1 n
( x1
x2
61≤x<81 71
22
81≤x<101 91
18
101≤x<121 111
15
听课手册69页活动2教材导学
用样本平均数估计总体平均数
当所要考察的对象很多,或者对考察对 象带有破坏性时,统计中一般采用抽样 调查,用样本估计总体的方法获得对总 体的认识。
例题:听课手册例1,例2
算术平均数与加权平均数的联系和区别:
(1)算术平均数实质上是加权平均数 的一种特殊情况,即各项的权相等, 算术平均数也是加权平均数,但加权 平均数不一定是算术平均数。
(2)平均数是统计中的一个重要的特 征量,它描述一组数据的集中变化趋 势。当一组数据较小时,可直接用算 术平均数公式计算;当一组数据重复 出现时,可用加权平均数公式计算, 要灵活运用公式。
解:不同意,这位同学计算平均数的方 法认为每个数据同等重要,由于各班的 人数可能不一样,因此应用每班的平均 成绩乘每班人数再相加,然后除以总人 数,才是全年级学生的平均成绩。只有 当各班人数相等时,这位同学的算法才 合理。
练习:某教育局为了了解本地区八年级学生数学
基本功的情况,从两所不同学校分别抽取一部分
请通过计算说明谁的最后得分高。
例2:在一次数学考试中,抽取了20名学生 的试卷进行分析。这20名学生的数学成绩 (单位:分)分别为 87,85,68,72,58,100,93,97,96,83,51,84, 92,62,83,79,74,72,65,79(注:该试卷 满分100分,60分及其以上为合格) 求这20名学生的平均成绩。
人教版八年级数学下册20.1.1 平均数(二)课件
某灯泡厂为测量一批灯泡的使用寿命、从中抽查了100 只灯泡,它们的使用 x<1000 1000≤ x<1400 1400≤ x<1800 1800≤ x<2200 2200≤ x<2600
灯泡数(单位:个)
10
19
25
34
12
这批灯泡的平均使用寿命是多少?
20.1.1平均数(2)
知识回顾
概念-:
一般地,对于n 个数 x1, x2 ,, x,n 我们把
x x1 x2 ...... xn n
n 叫做这 个数的算术平均数,简称平均数,
x x 记为 ,读作 拔.
概念二: 一般地,若n个数x1,x2,…,xn的权分别 是w1,w2,…,wn ,则这n个数
也叫做x1,x2,…,xk这k个数的加权 平均数,其中f1,f2,…,fk分别叫做x1, x2,…,xk的权。
解:这天5路公共汽车平均每班的载客量是:
x 11 3 31 5 51 20 71 22 9118 11115 3 5 20 22 18 15
7(3 人) 接下来,同学们请来思考这样的问题: 从上表中,你能知道这…天5路公共汽车大约有多少 班次的载客量在平均载客量以上吗?占全天总班次的 百分比是多少?
由表格可知, 81≤x<101的18个班次 和
101≤x<121的15个班次共有33个班次超过平均载 客量,占全天总班次的百分比为33/83约等于40%。
3、某校为了了解学生做课外作业所用时间的情况,对学生做课
外作业所用时间进行调查,下表是该校初二某班50名学生某一天
做数学课外作业所用时间的情况统计表
所用时间t(分钟) 0<t≤10 10<t≤20 20<t≤30 30<t≤40 40<t≤50 50<t≤60
人教版八年级数学下册《算术平均数与加权平均数》PPT
算术平均数与加权平均数
x x +x +....+x 算术平均数:一般地,对于n个数x1, x2, …, xn,我们把
x=
+
1
2
3
n
n
叫做这n个数的算术平均数,简称平均数.
加权平均数:在实际生活中,一组数据中各个数据的重要程度是不同的,所以我们在计算这组数据的平均数的时 候往往根据其重要程度,分别给每个数据一个“权”。这样,计算出来的平均数叫做加权平均数。
2.在实际问题中,各项权不相等时,计算平均数时就要采用加权平均数, 当各项权相等时,计算平均数就要采用算术平均数.
丙
28元/千克
6千克
你能计算出杂拌糖的售价吗?
想一想
种类
售价
甲
24元/千克
乙
19元/千克
丙
28元/千克
质量
2千克 2千克 6千克
24 19 28 23.7(元 / 千克) 3
思考:你认为小明的做法有道理吗?为什么?
正确解答: 24 2 19 2 28 6 25.4(元 / 千克)
226
小结 算术平均数与加权平均数的区别和联系 1.算术平均数是加权平均数的一种特殊情况(它特殊在各项的权相等);
一般地,若n个数x1,x2,…,xn的权分别是w1,w2,…,wn,则
x=
x1w1+x2w2 + w1+w2 +
+xnwn +种糖果,应顾客要求,妈妈打算把糖果混合成杂拌糖 出售,具体进价和用量如下表:
种类
售价
质量
甲
24元/千克
2千克
乙
19元/千克
2千克
x x +x +....+x 算术平均数:一般地,对于n个数x1, x2, …, xn,我们把
x=
+
1
2
3
n
n
叫做这n个数的算术平均数,简称平均数.
加权平均数:在实际生活中,一组数据中各个数据的重要程度是不同的,所以我们在计算这组数据的平均数的时 候往往根据其重要程度,分别给每个数据一个“权”。这样,计算出来的平均数叫做加权平均数。
2.在实际问题中,各项权不相等时,计算平均数时就要采用加权平均数, 当各项权相等时,计算平均数就要采用算术平均数.
丙
28元/千克
6千克
你能计算出杂拌糖的售价吗?
想一想
种类
售价
甲
24元/千克
乙
19元/千克
丙
28元/千克
质量
2千克 2千克 6千克
24 19 28 23.7(元 / 千克) 3
思考:你认为小明的做法有道理吗?为什么?
正确解答: 24 2 19 2 28 6 25.4(元 / 千克)
226
小结 算术平均数与加权平均数的区别和联系 1.算术平均数是加权平均数的一种特殊情况(它特殊在各项的权相等);
一般地,若n个数x1,x2,…,xn的权分别是w1,w2,…,wn,则
x=
x1w1+x2w2 + w1+w2 +
+xnwn +种糖果,应顾客要求,妈妈打算把糖果混合成杂拌糖 出售,具体进价和用量如下表:
种类
售价
质量
甲
24元/千克
2千克
乙
19元/千克
2千克
人教版《平均数》PPT精品课件
平均每棵苹果树上的苹果为 154 个.
(2)为了进一步估计果园中苹果的总产量(单位:kg), 果农从这 10 棵苹果树的每一棵树上分别随机摘取 4 个苹 果,这些苹果的质量分布如下表:
苹果的质量 0.2≤x<0.3 0.3≤x<0.4 0.4≤x<0.5 0.5≤x<0.6
频数
4
12
16
8
请你估计出这批苹果的平均质量. 平均每个苹果的质量约为 0.42kg.
12
17
6
分析:抽出的 50 只灯泡的使用寿命组成了一个 样本,我们可以利用样本的平均使用寿命来估计 这批灯泡的平均使用寿命.
你能确定各小组的“组中值”和 “权”吗?
解:由表可以得出每组数据的组中值,则抽出 的 50 只灯泡的平均使用寿命为
从计算结果来看,样本的平均数为 1672,则估计这 批灯泡的平均使用寿命大约是 1672h.
成绩
组中值
6.(2020·镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.
频数(人数)
(2)求该班本次考试的平均成绩.
(1)填写表中“组中值”一栏的空白; (2)该班本次考试的平均成绩为分
使用了节水龙头20天的日用水量频数分布表:
49.5~59.5
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71 91 111
频数(班次)
3 5 20 22 18 15
思考1 表格中的组中值指什么?如何确定呢?
(2)求该班本次考试的平均成绩. 这天 5 路公共汽车平均每班的载客量是多少(结果取整数)? 1000≤x<1400 (结果精确到个位)是( ) 绘制了频数分布直方图(如图,满分120分). (1)该班有____名学生; 当要考察的对象很多,或者对考察对象带有破坏性时,统计中常常通过用样本估计总体的方法来获得对总体的认识. 6.(2020·镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19. (1)填写表中“组中值”一栏的空白; (2)该班本次考试的平均成绩为分 绘制了频数分布直方图(如图,满分120分). 现在你能总结出用样本平均数估计总体平均数的一般步骤吗? -10,+5,0,+5,0,0,-5,0,+5,+10. (1)果农从 100 棵苹果树中任意选出 10 棵,分别数出10棵苹果树上苹果的个数,得到以下数据:150,157 ,154 ,155 ,152 ,153 ,150 , 159,155 ,155,你能估算出 平均每棵树上苹果的个数吗? 1800≤x<2200 5 m3 D.260 m3
(2)为了进一步估计果园中苹果的总产量(单位:kg), 果农从这 10 棵苹果树的每一棵树上分别随机摘取 4 个苹 果,这些苹果的质量分布如下表:
苹果的质量 0.2≤x<0.3 0.3≤x<0.4 0.4≤x<0.5 0.5≤x<0.6
频数
4
12
16
8
请你估计出这批苹果的平均质量. 平均每个苹果的质量约为 0.42kg.
12
17
6
分析:抽出的 50 只灯泡的使用寿命组成了一个 样本,我们可以利用样本的平均使用寿命来估计 这批灯泡的平均使用寿命.
你能确定各小组的“组中值”和 “权”吗?
解:由表可以得出每组数据的组中值,则抽出 的 50 只灯泡的平均使用寿命为
从计算结果来看,样本的平均数为 1672,则估计这 批灯泡的平均使用寿命大约是 1672h.
成绩
组中值
6.(2020·镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.
频数(人数)
(2)求该班本次考试的平均成绩.
(1)填写表中“组中值”一栏的空白; (2)该班本次考试的平均成绩为分
使用了节水龙头20天的日用水量频数分布表:
49.5~59.5
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71 91 111
频数(班次)
3 5 20 22 18 15
思考1 表格中的组中值指什么?如何确定呢?
(2)求该班本次考试的平均成绩. 这天 5 路公共汽车平均每班的载客量是多少(结果取整数)? 1000≤x<1400 (结果精确到个位)是( ) 绘制了频数分布直方图(如图,满分120分). (1)该班有____名学生; 当要考察的对象很多,或者对考察对象带有破坏性时,统计中常常通过用样本估计总体的方法来获得对总体的认识. 6.(2020·镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19. (1)填写表中“组中值”一栏的空白; (2)该班本次考试的平均成绩为分 绘制了频数分布直方图(如图,满分120分). 现在你能总结出用样本平均数估计总体平均数的一般步骤吗? -10,+5,0,+5,0,0,-5,0,+5,+10. (1)果农从 100 棵苹果树中任意选出 10 棵,分别数出10棵苹果树上苹果的个数,得到以下数据:150,157 ,154 ,155 ,152 ,153 ,150 , 159,155 ,155,你能估算出 平均每棵树上苹果的个数吗? 1800≤x<2200 5 m3 D.260 m3
2022年人教版八年级数学下册第二十章《20.1.1平均数(2)》优课件(共16张PPT)
x 1 1 2 2
nn
w1 w2 wn
为了了解5路公共汽车的运营情况,公 交部门统计了某天5路公共汽车每个运行 班次的载客量,得到下表:
载客量(人) 频数(班次)
11
3
31
5
51
20
71
22
91
18
111
15
这天5路公共汽车平均每班的载客量是多少?
为了了解5路公共汽车的运营情况, 公交部门统计了某天5路公共汽车每个 运行班次的载客量,得到下表:
载客量(人) 组中值 频数(班次)
1 ≤X<21 11
3
21 ≤X<41 31
5
41 ≤X<61 51
20
61 ≤X<81 71
22
81 ≤X<111 91
18
111≤X<121 111
15
为了绿化环境,柳荫街引进一批法国梧桐,三
年后这些树的树干的周长如下图所示,计算(可 以用计算器)这些法国梧桐树干的平均周长.
谢谢观赏
You made my day!
我们,还在路上……
3:样本估计总体的思想.
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年3月30日星期三2022/3/302022/3/302022/3/30 •书籍是屹立在时间的汪洋大海中的灯塔。2022年3月2022/3/302022/3/302022/3/303/30/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/3/302022/3/30March 30, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
人教版数学八年级下册《用样本的平均数估计总体的平均数》ppt课件
所以这80户居民月平均用水量的一个近似值为3.35吨.
做一做: 小明对小区300户家庭用水情况进行了抽样调查,随机调查了50户家庭5月份的用水 情况结果如图. (1)估计该小区5月份用水量不高于12吨的户数占小区总户数的百分之几? (2)估计该小区5月份的用水量.
(1) 从图中找出5月份用水量不超过12 吨的户数,然后除以50.
分组
频数 8 12
C 分析: 五组数据的组中值分别是5.5,6.5,7.5, 8.5,9.5. 所以这个班学生平均睡眠时间为8-9小时.
【例题3】自来水公司随机调查了80户居民的月用水量,并绘制了下面的统计图.求这 80户居民月平均用水量的一个近似值.
解: 五组数据的组中值分别是1.5,2.5,3.5, 4.5,,5.5.
人教版数学八年级下册
20.1.1 平均数
Байду номын сангаас---组中值
在实际生活中,我们经常对某个量进行测量,而测量往往会产生误差,为了得 到比较准确的结果,可以进行多次重复测量,得到频数分布表,然后求加权平均数.
组中值 数据分组后,每个小组的两个端点的数的平均数叫做这个小组的组中值.
问题: 从某学校九年级学生中,任意选出100人,分别测量他们的体重,将数据进行分组 整理,结果如表:计算这100名学生的平均体重.
(2) 计算组中值,然后求出样本平均数, 再用小区总户数乘以样本平均数.
频数
8
组中值
21
34
23
13
把组中值作为这组数据的一个代表值,把各组的频数看做相应组中值的权,计算 加权平均数,得到100名学生体重平均数的近似值.
所以,这100名学生的平均体重为59.6kg .
【例题1】对一组数据进行整理,结果如下表: 这组数据的平均数是( C )
做一做: 小明对小区300户家庭用水情况进行了抽样调查,随机调查了50户家庭5月份的用水 情况结果如图. (1)估计该小区5月份用水量不高于12吨的户数占小区总户数的百分之几? (2)估计该小区5月份的用水量.
(1) 从图中找出5月份用水量不超过12 吨的户数,然后除以50.
分组
频数 8 12
C 分析: 五组数据的组中值分别是5.5,6.5,7.5, 8.5,9.5. 所以这个班学生平均睡眠时间为8-9小时.
【例题3】自来水公司随机调查了80户居民的月用水量,并绘制了下面的统计图.求这 80户居民月平均用水量的一个近似值.
解: 五组数据的组中值分别是1.5,2.5,3.5, 4.5,,5.5.
人教版数学八年级下册
20.1.1 平均数
Байду номын сангаас---组中值
在实际生活中,我们经常对某个量进行测量,而测量往往会产生误差,为了得 到比较准确的结果,可以进行多次重复测量,得到频数分布表,然后求加权平均数.
组中值 数据分组后,每个小组的两个端点的数的平均数叫做这个小组的组中值.
问题: 从某学校九年级学生中,任意选出100人,分别测量他们的体重,将数据进行分组 整理,结果如表:计算这100名学生的平均体重.
(2) 计算组中值,然后求出样本平均数, 再用小区总户数乘以样本平均数.
频数
8
组中值
21
34
23
13
把组中值作为这组数据的一个代表值,把各组的频数看做相应组中值的权,计算 加权平均数,得到100名学生体重平均数的近似值.
所以,这100名学生的平均体重为59.6kg .
【例题1】对一组数据进行整理,结果如下表: 这组数据的平均数是( C )
浙教版数学八年级下册第3章《3.1平均数》课件
例题探究
(1)解:三个班得分的平均数分别为:
x1 80 84 87 83.7(分) 3
x2 98 78 80 85.3(分) 3
x3 90 82 83 85(分) 3
答:三个班的排名顺序为802班,803班,801班
例题探究
(2)解:三个班得分的加权平均数分别为: x1 ' 8015% 8435% 8750% 84.9(分) x2 ' 9815% 7835% 8050% 82(分) x3 ' 9015% 8235% 8350% 83.7(分) 答:三个班的排名顺序为801班,803班,802班
_
x
6
1
7
3
8
5
9
4
10
2
123
8.2
1 3 5 4 2
15
答:这次训练中该运动员射击的平均成绩为8.2环.
新知探究
【新知3】加权平均数
_
像x
61738594102
这种形式的平均数叫做加权平均数,
13542
其中1,3,5,4,2表示各相同数据的个数,称为权.
【新知4】加权平均数的特征 (1)某个数据的“权”越大,对平均数的影响就越大. (2)加权平均数的分母恰好为各权的和.
例题探究
【例2】某校在一次广播操比赛中801班、802班、803班如下表所示:
801班 802班 803班
广播操比赛各项成绩
服装统一
动作整齐
80
84
98
78
90
82
动作准确 87 80 83
(1)如果根据三项得分的平均成绩从高到底确定名次,求三个班级的排名顺序? (2)如果学校认为这三个项目的重要程度有所不同,而给予三个项目在总分中所占 的比例分别为15%,35%,50%.那么三个班级的排名顺序又怎样?
人教版八年级数学下册《平均数》课件
作业设计: A类 巩固基础
1.数据18,19,14,20,19,24的平均数是_______. 2.有n个数据,平均数是34,数据总和为680,则数 据个数n=______.
3.A、B两组学生,A组有m人,平均身高xcm,B组有
n人,平均身高ycm,则把两组合成一组后,其平
均身高为________.
当堂检测
4.我国从08年6月1日起执行“限塑令”,执行前某校学
生为了解家庭每月使用塑料带的数量情况,随机调查 了10名学生家里每月使用塑料袋的数量,结果如下 (单位:个) 65,70,85,75,85,79,74,91,81,95. (1)计算这10名学生家庭平均每月使用塑料袋的个数; (2)“限塑令”执行后,家庭每月使用塑料袋数量预计 将减少50%。根据上面的计算结果,这10名学生所在家 庭每月使用塑料袋可减少多少个?
情境导入:时事新闻1
情境导入:时事新闻2
情境导入:时事新闻3
平均数
导入:章前语
数学来自于生活
导入:章前图
你怎样看待这家公司员工的收入?
7000 6000
5000
4000 3000 2000 1000 0
自主解疑
实践出真知
请结合课本P48-50页内容将刚 刚在实践中使用的3种方法归纳理 顺,课本没有出现的方法,请自行 定义,归纳建模。
职员C 3200
职员D 3100
职员E 3100
职员F 3100
杂工 2500
冲关练习:第三关
经理 副经 理 职员 职员 职员 职员 职员 职员 杂工
6000 4000 1700 1300 1200 1100 1100 1100 500
我公司员工收 入很高,月平 均工资4000元
人教版八年级数学下册精品教学课件20.1.1第1课时平均数和加权平均数
(4)将问题(1)、(2)、(3)比较,你能体会
到权的作用吗? 数据的权能够反映数据的相对重要程度! 应试者 甲 乙 听 85 73 说 78 80 读 85 82 写 73 83
同样一张应试者的应聘成绩单,由于各个数据 所赋的权数不同,造成的录取结果截然不同.
典例精析
例1 一次演讲比赛中,评委将从演讲内容,演 讲能力,演讲效果三个方面为选手打分,各项成绩 均按百分制,然后再按演讲内容占50%,演讲能力 占40%,演讲效果占10%的比例,计算选手的综合 成绩(百分制).进入决赛的前两名选手的单项成绩 如下表所示:
选手B的最后得分是
95 50% 85 40% 95 10% 47.5 34 9.5 91 50% 40% 10%
由上可知选手B获得第一名,选手A获得第二名.
议一议
你能说说算术平均数与加权平均数的区别和联系吗?
1.算术平均数是加权平均数的一种特殊情况(它特
殊在各项的权相等); 2.在实际问题中,各项权不相等时,计算平均数时 就要采用加权平均数,当各项权相等时,计算平均 数就要采用算术平均数.
x
15 24 16 2 13 8 14 16 = 8 16 24 2
14 ≈______(岁) .
岁 答:这个跳水队运动员的平均年龄约为14 _____.
做一做
某校八年级一班有学生50人,八年级二班有学生 45人,期末数学测试中,一班学生的平均分为81.5分, 二班学生的平均分为83.4分,这两个班95名学生的平 均分是多少? 解:(81.5×50 +83.4×45)÷95
(2)若三项测试得分按3:6:1的比例确定个人的测试
成绩,此时第一名是谁?
八年级下册《20.1.1平均数》课件
进行了听、说、读、写的英语水平测试,他们各项的成绩 (百分制)如下:
应试者
听
说
读
写
甲
85
83
78
75
乙
73
80
85
82
(1)如果这家公司想招一名口语能力比较强的翻译,听、说、读、 写成绩按照3:3:2:2的比确定,计算两名应试者的平均成绩,从他 们的成绩看,应该录取谁?
(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、 写成绩按照2:2:3:3的比确定,计算两名应试者的平均成绩,从 他们的成绩看,应该录取谁?
练 习
种菜能手李大叔种植了一批新品种黄瓜。为了考察这种 黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄 瓜根数,得到下面的条形图。请估计这个新品种黄瓜。 平均每株结多少根黄瓜。
问:李大叔能不能用全面调查的方法去考察这个新品 种黄瓜的平均每株结的黄瓜根数呢? 解:根据条形统计图,可知10的权是10,13的权是 15,14的权是20,15的权是18,所以
灯泡数(单位:个)
10
19
25
34
12
思这考批:灯用泡全的面使调用查寿的命方是法多考少查? 这批灯泡的平均 使用寿命合适吗?
解:根据上表,可以得到各小组的组中值, 于是样本的平均寿命是
x 80010 120019 1600 25 200034 240012 100
1676
即样本平均数为1 676。 因此可以估计这批灯泡的平均使 用寿命大约走1 676小时。
权的差异影响结果
巩固
1.某次歌咏比赛,前三名选手的成绩统 计如下:
测试项目 王晓丽 李真 林飞扬
唱功
98
95
80
音乐常识 80
应试者
听
说
读
写
甲
85
83
78
75
乙
73
80
85
82
(1)如果这家公司想招一名口语能力比较强的翻译,听、说、读、 写成绩按照3:3:2:2的比确定,计算两名应试者的平均成绩,从他 们的成绩看,应该录取谁?
(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、 写成绩按照2:2:3:3的比确定,计算两名应试者的平均成绩,从 他们的成绩看,应该录取谁?
练 习
种菜能手李大叔种植了一批新品种黄瓜。为了考察这种 黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄 瓜根数,得到下面的条形图。请估计这个新品种黄瓜。 平均每株结多少根黄瓜。
问:李大叔能不能用全面调查的方法去考察这个新品 种黄瓜的平均每株结的黄瓜根数呢? 解:根据条形统计图,可知10的权是10,13的权是 15,14的权是20,15的权是18,所以
灯泡数(单位:个)
10
19
25
34
12
思这考批:灯用泡全的面使调用查寿的命方是法多考少查? 这批灯泡的平均 使用寿命合适吗?
解:根据上表,可以得到各小组的组中值, 于是样本的平均寿命是
x 80010 120019 1600 25 200034 240012 100
1676
即样本平均数为1 676。 因此可以估计这批灯泡的平均使 用寿命大约走1 676小时。
权的差异影响结果
巩固
1.某次歌咏比赛,前三名选手的成绩统 计如下:
测试项目 王晓丽 李真 林飞扬
唱功
98
95
80
音乐常识 80
八年级数学下册教学课件《平均数》
(1)计算机、语言、商品知识的权重分别为2,3,5.
则甲的平均成绩为 70 2 + 50 3 + 80 5 = 6(9 分) 2+3+5
乙的平均成绩为 90 2 + 75 3 + 45 5 = 6(3 分)
2+3+5
丙的平均成绩为 故应录取丙.
50 2 + 60 3 + 85 5 = 70.(5 分) 2+3+5
4
(2)如果权这家公司想招一名笔译能力较强
的翻译,听、说、读、写成绩按照
2∶1∶3∶4的比确定,计算两名应试者 的平均成绩(百分制).从他们的成绩看,
加权平 均数
应该录取谁?
甲的平均成绩:85 2 + 781 + 85 3 + 73 4 = 79.5
2+1+3+4
乙的平均成绩:73 2 + 801 + 82 3 + 83 4 = 80.4
9.5 9.5 9.3 9.8 9.4 8.8 9.6 9.5 9.2 9.6 求这位歌手的最后得分.
x = 9.5 3 + 9.3 + 9.4 + 9.62 + 9.2 = 9.4(5 分) 8
答:这位歌手的最后得分是9.45分.
【选自教材P121 习题20.1第5题】
5.某商场招聘员工一名,现有甲、乙、丙三人竞聘.通过计算机、语言
85 + 78 + 85 + 73 = 80.25 4
乙的平均成绩:
73 + 80 + 82 + 83 = 79.5 4
录取甲
(2)如果这家公司想招一名笔译 (3)如果这家公司想招一名口
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由上可知选手B获得第一名,选手A获得第二名。
1、万载县百合食品公司欲从我县女青年中招聘一名百合天 使,作为该公司百合产品的形象代言人。对甲、乙候选人进行 了面视和笔试,他们的成绩如下表所示:
候选人
测试成绩(百分制)
面试
笔试
甲
86
90
乙
92
83
(1)如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取?
=26.8(千克)
日常生活中,我们常用平均数表示一
组数据的“平均水平”
概念一:
一般地,对于n个数x1,x2,…,xn,我
x1 + x2 + … + xn
们把
n
叫做这n个数的算术平均数,简称平均数.
记作:x,(读作:x拔)
白水乡农户杨坤去年百合大丰收,每箩筐 质量和相应筐数如下表:
质量 26 28 29 30 31
20% 30% 50%
3、选择
(1)某次考试,5名学生的平均分是82,除甲外,其余4名学生的平均分
是80,那么甲的得分是(D )Hale Waihona Puke (A)84(B) 86
(C) 88
(D) 90
(2)若m个数的平均数为x,n个数的平均数为y,则这(m+n)个数的
平均数是B( )
A:(x+y)/2 B:(mx+ny)/(m+n) C:(x+y)/(m+n) D:(mx+ny)/(x+y)
权之和
w1 w2 w3 wn
叫做这n个数的加权平均数.
加权平均数也是算术平 均数哦!
问题:白水的百合今年又大面积种植,其中有三个村就
有不少的种植大户,种植大户数和各村大户的户均栽种面积
如下表:
村名
户数
户均种植面积(公顷)
白水村
15
1.5
文义村
7
2.1
永新村
10
1.8
这三个村大户的户均种植面积是多少?(精确到0.1公顷)
10
1.8
这三个村的大户的户均种x植 1.5面 2积3.11是.8 多1.8少(公顷?)(精确到0.1公顷)
由于各村种植的大户数不同,各村的户均种植面积对这三个村总的户
均种植面积的影响不同,因此这三个村总的户均种植面积不能是三个村户
均种植面积的算术平均数
,而
应该是加权平均数,即:
1.5×15表示白水村的
比 例 的
2 2 33 乙的平均成绩为
73 2 80 2 85 3 82 3 80.7 2 2 33
形 式 给
显然乙的成绩比甲高,所以从成绩看,应该录取乙。
出 的
。
这里数据的权是以百分比形式给出的.
例2:万载三中在一次演讲比赛中,评委将从演讲内容、演讲能力、演 讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50 %、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分 制)。进入决赛的前两名选手的单项成绩如下表所示:
x乙 x甲 乙将被录用
2、万载三中规定学生的学期体育成绩满分为100分,其中早锻 炼及体育课外活动占20%,期中考试成绩占30%,期末成绩占50%。 小桐的三项成绩(百分制)依次是95分、90分、85分,小桐这学期 的体育成绩是多少?
解: x 95 0.2 90 0.3 85 0.5 88.5 (分)
乙
73
80
85
82 据
的
(2)如果广播站想招一名笔译能力较强的小记者,听、说、读、 权
写成绩按照2:2:3:3的比确定,计算两名应试者的平均成绩, 是
从他们的成绩看,应该录取谁?
以
解:(2)听、说、读、写的成绩按照2:2:3:3的比确定,
则甲的平均成绩为
85 2 83 2 78 3 75 3 79.5
解:
861 901
x甲
2
88
921 831
x乙
2
87.5
x甲 x乙 甲将被录用
(2)如果公司认为,作为形象代言人面试的成绩应该比笔试更重要,并分 别赋予它们6和4的权,计算甲、两人各自的平均成绩,看看谁将被录取。
86 6 90 4
解:x甲
10
87.6
x乙 92 6 83 4 88.4 10
八年级 下册
1、抗癌 2、清热解毒
3、增强免疫功能 4、抗疲劳、抗应 激
万载县白水乡农户李明去年挖出的百合每 箩筐质量如下(单位:千克): 24 25 29 31 27 30 25 28 26 23 请同学们求出该农户每筐百合的平均质量.
解:2平4均+质25量+=29+31+27+30+25+28+26+23 10
我最大的收获是…… 我对自己和同伴的表现感到……
我从同学身上学到了……
主要知识内容:
若n个数 x1, x2, ,xn 的权分别是
加 w1, w2 , ,wn 则:
权 平
x1w1 x2w2 xnwn
均
w1 w2 w3 wn
数
叫做这n个数的加权平均数。
数据的权能够反映的数据的相对“重要程
(千克)
相应筐 1 3 1
4
2
数
请同学们计算该农户平均每筐百合有多重?
26×1+28×3+29×1+30×4+31×2 解:平均质量=
1+3+1+4+2 ≈29.2(千克)
概念二:
一般地,若n个数x1,x2,…,xn的权分别是
w1,w2,…,wn ,我们把
数与该数的权的积之
和
x1w1 x2w2 xnwn
1.515 2.1 7 1.810 1.7(公顷) 15 7 10
大户百合种植面积吗? 你能说出这个式子中
数据的权不仅反映一组数据中各数据的个数,还能
分子,分母各表示什 反映数据的相对“重要程度”。
么吗?
例1 :万载三中广播站打算招聘一名英文小记者,对甲乙两名应
试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百
度”。 认真体会加权平均数 权 的意义。
作业: P149习题20.1第1、4、
天空的幸福是穿一身蓝 森林的幸福是披一身绿 阳光的幸福是如钻石般耀眼 老师的幸福是因为认识了你们 愿你们努力进取,永不言败
选手
演讲内容
演讲能力
演讲效果
A
85
95
95
B
95
85
95
请决出两人的名次?
解:选手A的最后得分是
选手B的最后得分是
8550% 95 40% 9510% 9550% 85 40% 9510%
50% 40% 10%
50% 40% 10%
=42.5+38+9.5
=47.5+34+9.5
=90
=91
乙的平均成绩为 73 3 80 3 85 2 82 2 79.3 33 2 2
显然甲的成绩比乙高,所以从成绩看,应该录取甲。
例1 :万载三中广播站打算招聘一名英文小记者,对甲乙两名应
试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百
分制)如下:
应试者
听
说
读
写
甲
85
83
78
75 数
小明求得这三个村总的大户的户均种植 面积为:
x 1.5 2.11.8 1.8(公顷) 3
你认为小明的做法有道理吗?为什么?
问题:白水的百合今年又大面积种植,其中有三个村就
有不少的种植大户,种植大户数和各村大户的户均栽种面积
如下表:
村名
户数
户均种植面积(公顷)
白水村
15
1.5
文义村
7
2.1
永新村
分制)如下:
应试者
听
说
读
写
甲
85
83
78
75
乙
73
80
85
82
(1)如果广播站想招一名口语能力比较强的小记者,听、说、读、 写成绩按照3:3:2:2的比确定,计算两名应试者的平均成绩,从 他们的成绩看,应该录取谁?
解:(1)听、说、读、写的成绩按照3:3:2:2的比确定,
则甲的平均成绩为
85 3 83 3 78 2 75 2 81 33 2 2